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Abstract 

Mass spectrometry-based proteomics generates vast amounts of signal data that require 

computational interpretation to obtain peptide identifications. Dozens of algorithms for this 

task exist, but all exploit only part of the acquired data to judge a peptide-to-spectrum match 

(PSM), ignoring important information such as the observed retention time and fragment ion 

peak intensity pattern. Moreover, only few identification algorithms allow open modification 

searches that can substantially increase peptide identifications.  

 

We here therefore introduce ionbot, a novel open modification search engine that is the first to 

fully merge machine learning with peptide identification. This core innovation brings the ability 

to include a much larger range of experimental data into PSM scoring, and even to adapt this 

scoring to the specifics of the data itself. As a result, ionbot substantially increases PSM 

confidence for open searches, and even enables a further increase in peptide identification rate 

of up to 12% by also considering lower-ranked, co-eluting matches for a fragmentation 

spectrum. Moreover, the exclusive use of machine learning for scoring also means that any 

future improvements to predictive models for peptide behavior will also result in more 

sensitive and accurate peptide identification. 
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Main 

Liquid Chromatography combined with high-resolution (Tandem) Mass Spectrometry (LC-

MS/MS) has established itself as an invaluable technology for sensitive proteome analysis. It 

generates vast amounts of raw signal data that require biological interpretation from dedicated 

bioinformatics tools, known as peptide identification engines. These engines seek to accurately 

match the observed LC-MS/MS signals with the peptide molecules that generated them. To 

date, dozens of such identification engines have been developed 
1
.  

Nevertheless, peptide identification from LC-MS/MS data remains far from trivial. Spectra are 

noisy and incomplete, and sequences can be several tens of amino acids long. This leads to an 

extremely large number of potential target sequences, which in turn poses computational 

challenges, along with specificity challenges 
2
. As a result, a commonly employed tactic for 

identification engines is to reduce the search space to only the proteome of interest for the 

sample under study. Yet, even this strong restriction is typically not sufficient, as several 

hundreds of potential amino acid modifications should be considered as well, again leading to 

an enormous growth in the number of possible targets, even for small proteomes. Most of the 

classical identification engines maintain a more manageable search space by drastically 

reducing the amount of potential modifications that can be considered. The obvious result is 

that many relevant modifications may be missed, leading to many false negatives. Recently, 

several so-called open modification search engines have therefore been developed, that see to 

address this limitation by allowing the full range of potential modifications to be considered 

during a fast open modification search that can be applied to large LC-MS/MS datasets 
3–5

.  
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All identification engines compute a score for each considered peptide-to-spectrum-match 

(PSM) that is typically designed to reflect the probability of obtaining a true positive 

identification. As this PSM scoring function decides on the best match for a given MS2 

spectrum, the resulting scores should predict the likelihood of a true positive identification as 

accurately as possible, especially when searching spectra against large search spaces, as is the 

case for open searches 
2
. With different engines implementing different PSM scoring functions, 

the set of identified PSMs can be very different between them. 

Ideally, the PSM scoring function accurately models the expected LC-MS/MS signal from a given 

peptide and relies on the comparison between the expected and the observed data to judge a 

match. This can be achieved in practice by exploiting all accessible PSM data as matching 

information, including the observed retention time for the LC separation, the precursor m/z for 

the MS1 analysis, and the MS/MS spectrum for the fragmentation analysis. Importantly, 

Machine learning models already exist to accurately predict calibrated expected retention 

times 
6–8

 and expected MS2 peak intensities from peptide sequences 
8–11

  

However, current identification engines fail to efficiently exploit this matching information in 

the scoring function. Typically, the PSM score is computed by counting matched peaks, in some 

way weighted by the MS2 intensities they explain. This implicitly or explicitly penalizes 

unmatched fragment ions, which is particularly problematic in open searches, where more 

accurate scoring functions are required. To address this issue and improve accuracy, the 

relationship between the peptide amino acid sequence and the corresponding peak intensity 

pattern needs to be considered in the PSM scoring function 
12

. 
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An ideal PSM scoring function would optimally combine all the relevant sources of matching 

information into a single accurate score. Substantial progress towards building such a scoring 

function was made by applying Machine learning to rescore leveraged feature vector 

representations of PSMs that can contain any source of information 
13,14

. The PSM rescoring 

function is then computed from these feature vector representations of the experimental data. 

However, only limited data is explored as only first-ranked PSMs obtained by an engine are 

rescored. This means that false first-ranked PSMs cannot be replaced by the true PSM based on 

the leveraged matching information.  

 

We here therefore introduce ionbot, a completely new type of open modification search engine 

that exploits the ability to incorporate all relevant matching information into a single, Machine 

learning-based score. To achieve this, we introduce the concept of a candidate match set that is 

not restricted to first-ranked matches and is computed from a vast open search space using 

predicted sequence tags 
15

 and a set of biased PSM scoring functions. Furthermore, the ionbot 

PSM scoring function is computed from this candidate match set using semi-supervised 

Machine learning, making the PSM scores reproducibly tailored to the experimental data. This 

leads to an engine that outperforms traditional search engines, allows for reliable open 

modification searches that outperform current open modification engines, and can be readily 

adapted to very specific conditions, such as TMT labelled data sets, further increasing 

identification rates. Finally, we show that our approach naturally leads to the identification of a 

substantial amount of lower-ranked co-eluting PSMs from chimeric MS2 spectra. Throughout, 
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ionbot maintains a tightly controlled FDR, illustrating superior sensitivity while maintaining 

specificity. 
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Results 

Sequence tag prediction models learn from MS2 peak intensities and show high accuracy 

In this section the prefix and suffix tag prediction models (Methods) implemented in ionbot are 

evaluated on the testing set by the Area under the ROC Curve (AUC) and the Average Precision 

(AP) computed from the Precision-Recall (PRC) curve. All models show very high predictive 

accuracy with suffix tag models (AUC=99.9/AP=98.2 for HCD and AUC=99.9/AP=99.4 for 

HCDTMT) performing better than prefix tag models (AUC=99.8/AP=93.1 for HCD and 

ACU=99.9/AP=99.2 for HCDTMT) (Supplementary Fig. 1). It is worth noting that TMT trained 

models show highest predictive accuracy, especially for the prefix tags.  

 

Furthermore, scoring a HCD testing set with a HCDTMT model and vice versa substantially 

decreases predictive accuracy. For the models trained on HCD and evaluated on HCDTMT, the 

prefix model reduced to AUC=98.9 and AP=58.7, while the suffix model shows a slight decrease 

to AUC=99.8 and AP=95.6. Notably, for models trained on HCDTMT and evaluated on HCD, the 

prefix models prediction performance decreased much further to AUC=87.7 and AP=7, with a 

smaller decrease for the suffix model (AUC=99.5/AP=92.2).  

  

To further evaluate the models, the true PSMs identified by an open search were analyzed. For 

each true PSM a prefix and suffix tag ranking was computed by scoring all tags with the 

corresponding predictive models. The highest rank between the true prefix and suffix tag 
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(determined by the matched peptide) is then recorded as a metric for how well the predicted 

sequence tags can reduce the search space (Methods). The vast majority of these ranks were 

within the top-10, with many ranked first for one of the two models (Supplementary Fig. 2).  

Expanding the search space is crucial; we recommend to no longer use closed searches 

Open searches can match peptidoforms never considered in closed searches. However, at the 

same time, a larger search space leads to higher scoring decoy matches, thereby potentially 

increasing the PSM score threshold required to maintain a 1% FDR 
16

. In this section we 

investigate the difference between a closed and open ionbot search for the five evaluation 

datasets (Methods).  

 

Our findings confirm previous research showing that open searches considerably increase 

proteome coverage. The increase in PSM identifications is 52% for HEK239 (Fig. 1a), and up to 

70% for TMTCPTAC (Supplementary Fig. 3). At the unique peptide level, identification gains go 

up to 25% (HEK239) and 27% (TMTCPTAC). It is worth noting that this overall increase in the 

number of identifications will play an important role in the accurate downstream protein 

inference and quantification, as well as in increasing the power of the succeeding differential 

analyses. 

 

Counting PSM and peptide identifications does not reveal all the differences between a closed 

and open search. We found that a substantial number of closed search identifications are no 

longer called in the corresponding open search. This is 12% of the closed search identifications 
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for HEK239 (Fig. 1b) and goes up to 19% for the Breast dataset (Supplementary Fig. 5). 

Furthermore, many of these ‘lost’ matches are overruled by a better match in the open search, 

as indicated in the figures. It is likely that most of these overruled peptide matches are 

incorrect and have been forced upon closed search identifications due to the absence of the 

otherwise higher scoring, true peptide 
17

. This is confirmed by the group FDR computed 

specifically for overruled PSMs, which is 8.7% for Brain, 10% for HEK239 and CD8T, 12% for 

Breast, and goes up to 16.6% for TMTCPTAC. Note that PSMs are overruled by a different 

peptide sequence as we consider PSMs as the same when they match the same peptide 

sequence with potentially different peptidoforms. 

 

Notably, the majority of PSMs gained in open searches are explained by the wide (7.5 Da) 

precursor mass error tolerance that ionbot allows for matches without unexpected 

modification. These precursor errors show a periodic pattern at 1 Da intervals (Supplementary 

Fig. 6). This is likely due to another peptide within the isolation window that accounts for (most 

of) the MS2 singals
18

.  

Prediction models trained on specific experimental conditions improve identification 

For each predictive model implemented in ionbot (tag-models, MS2PIP and DeepLC), there is a 

version trained on unlabeled HCD data, and a version trained on TMT labeled HCD data. In this 

section we apply ionbot with TMT specific prediction models on the non-TMT labeled 

evaluation datasets. Similarly, we applied ionbot not using TMT-specific models on the 

TMTCPTAC dataset.  
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We observed a 17% decrease in PSM and a 15% decrease in peptide identifications when 

employing non-optimal predictive models in HEK239 (Fig. 1a). For the other datasets the loss in 

PSMs amounts for 16% for CD8T, 15% for Brain, 24% for Breast, and 14% for TMTCPTAC. At the 

peptide level these losses are repeated, with a loss of 13% for CD8T, 15% for Brain, 20% for 

Breast, and 24% for TMTCPTAC (Supplementary Fig. 3-4). 

Predicted retention time and fragment ion intensities provide decisive PSM information 

In this section we investigate the relevance of the DeepLC retention time predictions (RT-pred-

error) and MS2PIP peak intensity predictions (intensity-correlation) features in the ionbot PSM 

scoring function (Methods). Grouping PSMs by peptidoform (Methods) to compute the 

corrected observed retention time to compute RT-pred-error clearly reduced long elution time 

windows peptidoforms identified by multiple spectra (Fig. 1d-e). This is especially true for 

peptides at the end of an LC run, where the issue can be even more problematic for the RT-

pred-error feature.  

 

Comparing open searches with and without using the RT-pred-error feature in the PSM scoring 

function showed that consistently more PSMs were identified when the feature is added to the 

scoring function. At first, this gain appears to be relatively small, at 3.8% for HEK239 (Fig. 1a) 

and 2.2% for CD8T, 2.8% for Brain, 6.8% for Breast, and 0.6% for TMTCPTAC (Supplementary 

Fig. 1), but it is worth noting that the vast majority of true PSMs are (also) confirmed by the 

other sources of matching information, which leaves the retention time feature to correct only 
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ambiguous situations that cannot be distinguished by any of the other sources. We found that 

PSM identifications unique to the search not using RT-pred-error show high retention time 

error in general, and, that many PSMs that were overruled when adding the feature show high 

prediction error as well (Fig. 1f, Supplementary Fig. 8).  

 

Similarly, we compared open searches with and without using the intensity-correlation feature 

in the scoring function. The latter search also does not use this correlation information as a 

biased PSM scoring function. We saw an increase in PSMs (7.6%) identified when adding the 

feature for HEK239 (Fig. 1a). For the other datasets the gain is 5.4% for CD8T, 6.8% for Brain , 

6% for Breast, and 10% for TMTCPTAC (Supplementary Fig. 1). Yet here again, this information 

only gains importance in ambiguous situations that cannot be distinguished by any of the other 

sources. For HEK239, identifications called only by using the intensity-correlation feature show 

high correlations (Fig. 1g), while PSMs that are eliminated when the correlation feature is used 

show low overall correlations (Fig. 1i). Also, for overruled matches when intensity-correlation is 

used, the difference in correlation can be large, even though the vast majority shows only small 

differences in the higher correlation range (Fig. 1h). In these cases, it becomes difficult to 

decide on the correct match based on correlation and other matching information is required 

to decide on the true match. The same conclusions were made for the other evaluation 

datasets (Supplementary Fig. 9). 

 

We repeated the same experiment with RT-pred-error and intensity-correlation omitted from 

the scoring function. This resulted in a much more substantial increase in the number of PSM 
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identifications, with 13% for HEK239 (Fig 1a), 10% for CD8T, 11.8% for Brain, 13.6% for Breast, 

and 12.4% for TMTCPTAC (Supplementary Fig. 1). At the peptide level the gains amount to 9% 

for CD8T, 11% for HEK239, 11.6% for Brain, 10.8% for Breast, and 11.5% for TMTCPTAC 

(Supplementary Fig. 2).   

 

Considering retention time error and intensity correlation in the PSM scoring function not only 

increases the number of identifications, but also corrects and overrules incorrect matches 

based on the additional matching information that becomes available. For instance, for 

HEK239, 2.8% of the PSMs identified omitting both features were overruled by a better match 

when using them (Fig. 1c). Similar results were found for the other datasets (Supplementary 

Fig. 10).  

 

Finally, we computed the group FDRs for PSMs that were identified when not using RT-pred-

error and intensity-correlation but that were no longer identified when these  predictions were 

added as a biased scoring function and as a component in the PSM scoring function. The group 

FDRs for these ‘disappearing’ identificationswere again very high, with 6% for Breast, 21% for 

HEK32, 23.5% CD8T, 24% for Brain, and up to 36% for TMTCPTAC, respectively. 
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Identification sensitivity is substantially increased by considering lower rankedco-eluting 

matches 

To determine the best match for an MS2 spectrum, ionbot learns the PSM scoring function 

from the candidate match set and then selects the first-ranked match for each spectrum based 

on the computed scores. Next, a more accurate PSM score is computed from these first-ranked 

matches, and the statistical significance is determined for these first-ranked PSM scores 

(Methods). 

 

Nevertheless, the candidate match set explicitly contains multiple candidates for many spectra 

(Methods). In this section we investigate computing the statistical significance of scores from all 

PSMs in the candidate match set, which can then result in multiple candidate peptides passing 

the 1% FDR threshold for a given spectrum. We found that even though the FDR threshold does 

not impose a limit on the number of possible matches, the vast majority of spectra with 

multiple identified matches had just two (Supplementary Fig. 11). The maximum number of 

different matches observed for an MS2 spectrum was four. 

 

Considering all co-eluting matches greatly increases identification sensitivity, particularly at the 

unique peptide sequence level. This gain in unique peptide sequences is 12.4% for Brain, 10.2% 

for HEK239 (Fig. 2a), 10.3% for CD8T, 2.5% for TMTCPTAC, and 5.1% for Breast (Supplementary 

Fig. 14). 
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Despite the fact that similar peptide matches (edit distance < 4) for a given spectrum were 

filtered out of the candidate match set before learning the PSM scoring function (Methods), 

there can still be a substantial overlap in fragment ions between co-eluting matches, which 

leads to the use of the same intensity information more than once. To investigate, we 

computed the ratio of the intersection of b- and y-ion peak masses over the union of these 

masses (Supplementary Fig. 12). The results clearly show that the vast majority of these co-

eluting matches have a ratio close to zero, indicating almost no overlap between the assigned 

b- and y-ion peaks. 

Universal Spectrum Identifiers 
19

 to spectrum annotations can be found in the Supplementary 

Tables.  

 

 

Entrapment peptides confirm accuracy and stability of the ionbot open search FDR estimates 

For the FDR estimates to be meaningful, the ionbot PSM scoring function should treat false 

matches against the decoy and target database equally, i.e., decoy matches should be 

representative random matches. For ionbot, this conveys that the PSM scoring function learned 

from experimental data should not be biased towards favoring matches against the target 

database. 

 

To estimate a potential matching bias, we adopted the entrapment peptides approach that 

adds sequences of evolutionary sufficiently different species to the target database to capture 
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random matches against the true target database
20

 (Methods). If a bias exists, we should 

observe more than the expected number of matches against the entrapment compared to the 

decoy database. For the Pyrococcus furiosus sample, the entrapment database (279.618 

sequences) is significantly larger than the true target database (2045 sequences), so we expect 

to see about the same ratio of entrapment as of decoy hits for random matches. Note that 

peptides shared between true and entrapment database are counted as matches against the 

true database. The human and mouse target databases both contain a similar number of true 

target, and of Archaea entrapment sequences. In this case we expect to see about twice as 

many decoy hits compared to entrapment hits for random matches. Supplementary Fig. 13 

plots the PSM q-values against the entrapment FDR for each of the six datasets.  

 

When we compare the first ranked matches for ionbot and MSFraggerPercolator we observe 

very similar results for all datasets. For the five evaluation datasets we observe, at q-value = 1%, 

that first ranked ionbot matches show an entrapment FDR of 0.43% for Breast, 0.44% for CD8T, 

0.47% for TMTCPTAC, 0.5% for Brain, and 0.51% for HEK239. This even goes as low as 0.23% for 

the Pyrococcus furiosus dataset. 

 

For MSFraggerProphet no q-values were available. We observe surprisingly small entrapment 

FDRs for Brain (0.02%), HEK239 (0.03%), and TMTCPTAC (0.03%). However, for the Pyrococcus 

furiosus dataset, the entrapment FDR is much higher than expected at 2.4%.  
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With the exception of the Brain dataset, the lower ranked ionbot matches show slightly higher 

entrapment FDRs compared to the first ranked matches. For the five evaluation datasets we 

observe, at q-value = 1%, an entrapment FDR for lower ranked ionbot matches of 0.48% for 

Brain, 0.58% for TMTCPTAC, 0.65% for CD8T, 0.84% for HEK239, and 1.4% for Breast. For the 

Pyrococcus furiosus dataset this goes up to 2.4%. However, note that for this dataset, there 

were only 257 lower ranked co-eluting matches identified with just 7 PSMs matching the 

entrapment database. It is therefore very difficult to obtain an accurate estimate. 

The ionbot engine compares favorably to other state-of-the-art open modification engines 

Many open search engines exist, but few can produce sensitive identification results for large 

datasets that contain hundreds of thousands of spectra, mainly due to computational 

limitations. Two recent engines stand out in terms of identification sensitivity and speed: 

MSFragger and open-pFind (Methods). In terms of speed, MSFragger is well known for its fast 

implementation of the open search. On a 24 CPU machine, MSFragger takes 9 minutes to 

process a 50k spectra dataset in open search. It took ionbot 24 minutes to process that same 

dataset with the same settings. However, even though ionbot is 2.5 times slower than 

MSFragger, ionbot is still sufficiently fast to process large dataset within acceptable time.  

 

We first examine first ranked matches only. Note that the number of identifications obtained 

with PeptideProphet or Percolator can be very different, with an 11% difference for the HEK239 

dataset (Fig. 2a and Supplementary Fig. 14).  At the PSM level, both ionbot and 

MSFraggerProphet show substantially higher identification rates compared to open-pFind, 
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mainly due to the 7.5 Da wide error matches (data not shown) that are considered only in 

ionbot and MSFragger. At the peptide level, ionbot identifies substantially more unique 

peptides compared to the other search engines (except for the Breast dataset), in turn resulting 

in more protein identifications (Supplementary Fig. 18).  

 

Next, we focused on comparing ionbot and MSFraggerProphet.We plotted the PSM and peptide 

identification overlap, which reveals a notable level of disagreement between these two search 

engines (Fig. 2b, Supplementary Fig. 15). To obtain more insight into this disagreement, we 

looked at the intensity-correlation computed for PSMs uniquely identified by one of the engines 

(Supplementary Fig. 16). To avoid bias because of unknown effects of specific modifications on 

the peak intensity pattern, we limited this investigation to identifications without an 

unexpected modification. We found that many identifications unique to MSFragger are 

questionable. For HEK239 (Fig. 2c), when we look at the PSMs unique to ionbot, the 25% with 

the lowest intensity-correlation still show correlation within [0.59,0.9] (excluding outliers). For 

the PSMs unique to MSFragger this interval falls substantially lower at [0.01,0.53].. The same 

observations were made for the other datasets, with the 25% unique matches with the lowest 

peak intensity correlation for MSFragger falling within the interval [0.07,0.57] for CD8T, 

[0.3,0.65] for Brain, [0.13,0.54] for Breast, and [0.36,0.68] for TMTCPTAC. For the RT-pred-error 

information we observe less pronounced differences between the search engines (Fig 2d and 

Supplementary Fig. 17).  

Finally, the number of protein group identifications is plotted in Supplementary Fig. 18. For the 

five evaluation datasets we observe an increase in the number of protein groups identified 
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when using all identified PSMs (first and lower ranked) during protein inference. Comparing 

protein group identifications with MSFragger results in more protein groups for MSFragger in 

the HEK239, Brain and Breast dataset, but less in CD8T and TMTCPTAC. It should be noted here 

that the protein inference algorithms also differ between the two engines, and that this may 

also have an effect on the final result. 
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Discussion and conclusion 

We presented ionbot, a novel type of open identification engine that is unique in taking full 

advantage of the accurate predictions provided by Machine learning algorithms. This is realized 

by omitting the predefined PSM scoring function altogether, and instead relying on a data-

driven strategy to learn the weights of all matching information provided which includes the 

MS2 peak intensity pattern correlation and LC retention time prediction error. This provides 

ionbot with the flexibility to adapt the PSM scoring function to the experimental conditions and 

passes the identification bias from the expert to the data.  

 

We have shown that ionbot exploits the additional matching information in its PSM scoring 

function to increase the number of identifications at the PSM as well as at the peptide level, 

and that it also allows ionbot to adapt to specific experimental protocols such as TMT-labelling 

with ease. Moreover, we show that the additional matching information is also highly useful in 

reducing false positive matches by either eliminating these, or by replacing them with higher 

scoring identifications. 

 

When compared to other open modification search engines, ionbot performs on par at the 

identification sensitivity level. However, looking at the PSM evidence in terms of matching 

information reveals that many identifications unique to the other engines show very low 

intensity pattern correlation. This can indeed be expected as other open search engines do not 
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exploit these sources of matching information in their scoring function and, as such, are unable 

to make accurate decisions based on these sources. 

 

Finally, co-eluting lower-ranked PSMs arise naturally from the data-driven identification 

strategy implemented in ionbot. The results of the entrapment peptide experiments show that 

ionbot correctly estimates the FDR for both first ranked matches and lower ranked co-eluting 

matches. By considering all these co-eluting matches, ionbot can provide substantially higher 

identification sensitivity compared to the other open search engines. 

 

We believe this research opens up new avenues for improving the analysis of LC-MS/MS data. 

The Machine learning models employed by ionbot can likely still be improved, especially in 

terms of predicting the effects on analyte behavior of different protein modifications. 

Moreover, different (non-)linear models can be evaluated for learning the PSM scoring 

function. Because ionbot can very easily be fitted with new or improved models, and because 

ionbot is implicitly highly adaptive, any such improvements will very likely result in more 

accurate PSM scoring functions. Finally, this highly adaptive nature of ionbot can also allow 

dedicated optimization for specific experimental conditions, thereby increasing identification 

sensitivity and accuracy even further. 
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Methods 

The search space 

Observed MS2 spectra are matched against a peptide search space that is computed in silico 

from a known proteome using a specific simplified enzymatic cleavage pattern (e.g., for 

trypsin). In the Human proteome dataset used in this research (see section Datasets), cleaving 

after lysine or arginine results in 512.990 unique peptide sequences. This number increases to 

2.148.714 by allowing for two missed cleavages. 

Furthermore, proteins can undergo chemical modifications, with some modifications observed 

more frequently (e.g. oxidation) than others 
21

. Public repositories that list previously observed 

modifications, such as unimod.org, currently contain more than 1000 different modifications 

that are known to alter a specific amino acid in a peptide. Therefore, the peptide search space 

should be expanded by all possible modified versions of each peptide. Each modification 

changes the m/z pattern of the MS2 spectrum generated by the modified peptide and can, 

potentially, also alters the MS2 peak intensity pattern 
22

 and expected LC retention time 
6,23

. To 

make matters worse, candidate matches for an MS2 spectrum can become very hard to 

distinguish due to the expanded search space 
2
  

The vast majority of peptide identification engines consider only a few of the most expected 

protein modifications. This is known as a closed search. In contrast, in an open search one tries 

to consider all possible peptidoforms (considering all possible modification patterns for a 

peptide) by adding these to the search space. Even though this space is still considerably 
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smaller than the one evaluated by de-novo identification engines (which consider all possible 

peptide sequences as well), as the number of modifications taken into account increases, the 

search space expands exponentially, putting a strong computational load on the peptide 

identification task.  

To reduce this computational burden, ionbot limits the open search by setting a maximum on 

the number of modifications allowed within one peptide. In a closed search, the space consists 

of all peptidoforms that carry at most two expected (variable) modifications simultaneously. 

Next, to an unlimited number of expected modifications that are fixed. In an open search, the 

space is further expanded by all peptidoforms that can be constructed by (i) adding one of the 

1000+ post-translational, chemical derivative, or artefactual peptide modifications listed in the 

unimod.org repository, (ii) considering the delta-masses generated by the modifications in (i) 

only at the MS1 level, (iii) adding a single amino acid substitution, or (iv) by removing any 

number of N-terminal amino acids from the peptide to obtain a semi-tryptic peptide. For (i) and 

(iii), all possible unmodified locations for the modification or substitution are considered. For (ii) 

ionbot tries to match delta-masses observed only at the MS1 level and therefore not part of the 

MS2 fragmentation spectrum. For (iv), semi-tryptic peptides are considered up to a length of 

seven amino acids.  

The candidate match set 

The PSM scoring function in ionbot is learned from a candidate match set that is a small subset 

of the search space, while still being large enough to still contain the true PSMs and to learn an 
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accurate scoring function. To achieve this, ionbot employs a sequence tag strategy driven by 

Machine learning scoring models, and a set of biased expert-driven PSM scoring functions. 

A sequence tag is a short amino acid sequence with a prefix mass and a suffix mass that 

allocates its position within a peptide. Tags are typically computed from a graph representation 

of an MS2 spectrum 
24,25

. This spectral graph exploits fragment ion mass differences but ignores 

the relationship between the tag’s amino acid sequence and the observed MS2 peak intensity 

pattern. Intensity information is typically exploited only to prefer tags that match higher-

intensity peaks.  

Instead, ionbot implements a data-driven approach to construct constrained sequence tags. By 

constraining the tags to the first three (prefix) or the last four (suffix) amino acids in a tryptic 

peptide, predictive Machine learning models can accurately score a tag from a feature vector 

representation of the tag and the corresponding MS2 spectrum, thereby eliminating time 

consuming spectral graph construction, while also exploiting MS2 peak intensity information. 

For each observed MS2 spectrum, the prefix model scores 8000 3-mers and the suffix model 

scores 16.000 4-mers, all constructed from nineteen amino acids – structural isomers leucine 

and isoleucine are treated as a single residue – and oxidized methionine, which was added due 

to its high prevalence. For each MS2 spectrum, the T-top scoring tags from both the prefix and 

the suffix model are used to reduce the search space to those peptides that match any of these 

tags within a user-defined MS1 mass error tolerance. For candidate peptides with only fixed, 

expected or no modifications, this mass error tolerance is increased to 7.5 Da, as justified in the 

Results section. The parameter T should be chosen large enough such that only unlikely 
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peptides are removed from the search space. Here, we set T=50 as increasing T resulted in just 

a small identification increase (1%-3%) for all datasets while substantially increasing compute 

time. 

The implementation of a set of biased PSM scoring functions further differentiate ionbot from 

traditional identification engines. These biased functions each consider just one source of 

matching information and are listed in Table 2. For peak counting and explained intensity 

information, ionbot also considers different subsets of fragment ion types. The candidate match 

set is then further reduced to the top-ranked match for each biased PSM function (when there 

are multiple matches with the same top-ranked score then all these are kept in the candidate 

match set). 

We observed that in many cases, there can be multiple candidates with highly similar peptides 

matched for a spectrum. Some examples are shown in Table 1 (IDs 1-5). We filter these out of 

the candidate match set before learning the PSM scoring function using the following rule: ifa 

given spectrum matches multiple peptide with edit (Levenshtein) distance three or lower, then 

keep the peptide match that did not require an unexpected modification. For example, in Table 

1 for ID 1, the methylated peptide is removed from the candidate match set. All similar matches 

without unexpected modification are maintained. For example, for IDs 3 and 5 in Table 1, the 

candidate match set contains both matches. 
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The prefix and suffix tag prediction models 

This section explains how the prefix and suffix models score the corresponding 3-mer and 4-

mer tags. Both are two-class classification models trained on publicly available spectral libraries 

(see section Datasets). For a given MS2 spectrum and tag, each model computes the probability 

that the k-mer matches the peptide that generated the spectrum. For the prefix model this is 

the 3-mer corresponding to the N-terminal three amino acids in the peptide, and for the suffix 

model this is the 4-mer corresponding to the C-terminal four amino acids in the peptide. The 

suffix model is designed specifically for peptides that are tryptic at the C-terminal. Even though 

the prefix model can find tags for peptides not tryptic at the N-terminal, it is important to note 

that we designed the current version of ionbot for identifying tryptic peptides. The feature 

vector representation implemented in these models contains discriminative information about 

both the spectrum and the tag. This allows for modelling the relationship between the tag’s 

amin acid sequence and the observed MS2 peak intensities. 

To represent the tag, a one-hot-encoding of the k-mer amino acids was considered, but this 

yielded much inferior results. Instead, as implemented in our MS²PIP tool 
11

, amino acids in the 

k-mer are encoded by each of five amino acid properties: mass, hydrophobicity, helicity, 

basicity and iso-electric point estimates.  

The MS2 spectrum is represented by the observed peak intensities, normalized by total ion 

current of the spectrum 
26

, of the relevant fragment ions that can be explained by the tag. 

These are the first three a-, b-, and c-ions for the prefix model, and the first four x-, y- and z-

ions for the suffix model, both with variable H2O- and NH3-losses, and with fragment ion charge 
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states 1+ and 2+ considered as well. Variable methionine oxidation is also encoded by adding 

three binary features that indicate the presence of an oxidation at any position in the tag 

(excluding the last amino acid in the suffix model tag, which is restricted to lysine or arginine). 

Lastly, the precursor charge state and precursor mass are encoded as features as well. 

Each PSM in the training set is represented by a feature vector for each model, which are 

collectively labeled as the positive class. For the negative class, the MS2 spectrum is matched to 

N different random k-mers from which features vectors are created. For the suffix model, these 

negative examples remain constrained to lysine or arginine at position four. We found N=200 to 

be a sufficient number of negative k-mer examples, while balancing with the computational 

cost of computing the models. 

As in MS²PIP, accurate predictive gradient boosted tree models (GBT) are learned with the 

open-source XGBoost tool 
27

. The boosting algorithm fits an additive decision tree ensemble on 

the data that allows for extremely fast predictions, which is crucial, considering that ionbot 

computes hundreds of millions of predictions for a typical spectrum file. 

To train and evaluate the prefix and suffix tag scoring models (Methods), the Orbitrap-HCD-best 

and Orbitrap-HCD-TMT-10 datasets (Table 4) were split into a training and testing (5%) set. The 

split was computed such that both the positive and all negative feature vectors computed from 

a tag are either in the training or in the testing set. GBT hyperparameters were optimized using 

cross-validation on the training set. 
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The PSM scoring function 

Ionbot adopts the semi-supervised learning approach pioneered by the Percolator tool 
28

. Each 

PSM in the candidate match set is encoded as a 43-dimensional feature vector in which each 

feature represents a different source of matching information. These features are listed in 

Table 3. The 36 X-ions-counts and X-ions-explained features each consider one type of fragment 

ion. Combining these into one PSMs scoring function together with the other features is left to 

the semi-supervised the Linear Support Vector Machine (LSVM) algorithm implemented in 

Percolator. For the intensity-correlation feature, MS2PIP is called to predict all b- and y-ion 

peak intensities with the Pearson correlation between the predicted and observed intensities as 

the value. The RT-pred-error feature is computed as the difference between the corrected 

observed retention time and the calibrated prediction of DeepLC. The correction is obtained by 

grouping the PSMs by peptidoform and then, for each group, using the retention time of the 

PSM with the lowest prediction error as the corrected observed retention time. As shown in the 

Results section, this substantially increases the relevance of the LC error feature in the PSM 

scoring function as it is more robust towards peptidoform with long elution windows. 

The RT-pred-error feature requires calibration to correct for different experimental conditions. 

This calls for a limited set of highly confident true PSMs obtained without using the feature. 

This is realized by first learning the PSM function without the RT-pred-error feature, then 

selecting the 1000 highest scoring first-ranked matches to calibrate the DeepLC predictions and 

add the feature to the scoring function. This function is then learned again from the candidate 

match set. 
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Finally, ionbot follows the well-established concatenated target-decoy method for computing 

significance statistics to call true PSMs at a controlled FDR. This means that the learned PSM 

scoring function selects the highest scoring PSM for each spectrum, from which q-values and 

other statistics are computed. 

Note that ionbot is not restricted to using the Percolator tool. Other Machine learning 

algorithms can be applied to learn the PSM scoring function as well, including unsupervised 

and/or non-linear models. Here, we limited ionbot to the LSVM as it is already well-established 

in the Proteomics community.  

Entrapment peptide database 

The entrapment peptides FDR estimation evaluation procedure was adopted from 
20

. Herein, 

target sequences from evolutionary sufficiently different species are added to the target 

database, known as the entrapment peptides, that act as true target peptide. The Pyrococcus 

furiosus sample was downloaded from PRIDE (PXD001077) and contains 15.365 MS2 spectra. 

This spectrum file was searched against a target database that consists of 2045 Pyrococcus 

furiosus proteins and 339 know contaminant proteins as the expected proteins (UniProt 

reviewed), extended with 193.521 eukaryote and 86.097 vertebrate proteins as entrapment 

sequences. 

The entrapment peptides evaluation procedure was also implemented for the five evaluation 

datasets in this manuscript by adding 19.678 Archaea proteins to the human and mouse target 

databases. The decoy databases were constructed by shuffling the sequences in the extended 

target databases. 
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The result plots (Supplementary Fig. 13) were constructed by sorting the obtained PSMs by q-

value (x-axis) and then computing the entrapment FDR 

# ������	��� 
������� 	��
���

# ������ 
������� 	��
���
 

that corresponds to each q-value. 

MSFragger and open-pFind search settings 

We compared ionbot with MSFragger (version 3.1 in fragpipe 14.0) and open-pFind (pFind 

version 3.1.5). We set the following settings equal for each search engine: 20ppm precursor 

mass error tolerance, peptide length in [7,30], delta-mass (mass range allowed for unexpected 

modifications) in [-150Da,500Da], a maximum of two missed cleavages, oxidation of M as 

expected and carbamidomethylation of C as fixed modification. Other settings were left to the 

default open search settings for each engine. 

 

For MSFragger, we evaluated two post-processing methods: the default PeptideProphet 

method, and the Percolator method. For the latter we employed Percolator on the .pin files 

written by MSFragger for further post-processing. The full command line command used to run 

both versions of MSFragger is included as Supplementary Notes. 
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Datasets 

Spectral libraries  

The Human Orbitrap-HCD-best and Orbitrap-HCD-TMT-10 spectral libraries were downloaded 

from the NIST Libraries of Peptide Tandem Mass Spectra1. PSMs in these libraries were filtered 

to contain unique peptide sequences that end with a lysine or arginine only. For peptides that 

are matched with different spectra, one is selected at random to avoid peptide bias. PSMs are 

encoded as feature vectors as described in the Methods section. Table 4 shows the number of 

positive and negative examples in each dataset for training the prefix and suffix tag models. 

Evaluation projects 

To evaluate ionbot, we selected five MS2 HCD spectrum datasets of different sizes that were 

obtained from different labs and with different overall experimental conditions (Table 5). One 

dataset (Breast) was labeled with super-SILAC and another (TMTCPTAC) with TMT10. All RAW 

files were downloaded from the PRIDE repository 
29

 and converted to the Mascot MGF format 

using ThermoRawFileParser 
30

 with the MS2 peak picking option enabled. Spectrum files 

belonging to the same sample were merged.  

  

                                                           
1
 https://chemdata.nist.gov 
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Tables 

 

ID Peptide Modification Intensity-

Correlation 

RT-pred- 

error 

Protein(s) 

1 IENNDNKPVTNSR [34]Methyl 0.956 8.6E-03
 

YTHD1,YTHD3 

1 IENNENKPVTNSR - 0.958 6E-03
 

YTHD2 

2 GGVSIAAIK Gly->Ser[G] 0.973 4.1E-02
 

H11 

2 SGVSIAAIK - 0.98 1.8E-03
 

H13 

3 IEEIAAK - 0.904 1.3E-02
 

CO5 

3 IEQIAAK - 0.993 2.8E-02
 

RBP2 

4 PAPPKPEPR - 0.961 2.4E-04
 

HMGN4 

4 PAPPKPEPK [122]Formyl 0.962 4.4E-03
 

HMGN2,HMGN3 

5 GQVGGDVNVEMDAAPGVDISR - 0.82 6.6E-03
 

K1C14 

5 GQTGGDVNVEMDAAPGVDISR - 0.867 1.6E-03
 

K1C16 

6 ADIDVSGPK - 0.92 1.5E-04
 

AHNK 

6 VPGIDATTK - 0.958 2.3E-05
 

AHNK 

7 IPVEVAYK - 0.966 9.3E-04
 

PLEC 

7 VGDVYIPR - 0.966 1.1E-03
 

SRSF2,SRSF8 

8 QQTIQIIR - 0.94 1.1E-03
 

DEP1A 

8 NFSEVFQK - 0.92 2.2E-02
 

SMC3 

9 AQYEEIAQR  0.966 2.2E-03 K22O 

9 AIEPNDYTGK  0.956 3.2E-03 GGCT 

10 NDEIIDATQK - 0.903 5.7E-03
 

SETD2 

10 IPGNTNVNYR - 0.95 5.4E-02
 

BPTF 

11 SIPYDQSPGPK - 0.93 3.2E-02
 

GHITM 

11  DETPISTPTAR - 0.9 3.8E-02
 

DACH1 

 

Table 1 | Examples of MS2 spectra with two co-eluting matches. Every ID in the table shows two matches for one 

MS2 spectrum. For each match, the table shows the peptide sequence (Peptide), its modifications to form the 

identified peptidoform (Modification), the intensity-correlation, the RT-pred-error (divided by the maximum 

retention time observed in the corresponding dataset), and the protein(s) that contain the peptide. IDs 1—5 are 

examples of highly similar matches. IDs 6—11 show matches with highly dissimilar matches. 
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Biased scoring function Description 

b1y1-peak-count total number of b- and y-ions matched considering only charge 1+ 

b1b2y1y2-peak-count total number of b- and y-ions matched considering charge 1+ and 2+ 

peak -count total number of X-ions matched with X in [a,b,b-H2O,b-NH3,c,x,y,y-H2O,z], 

considering charge 1+ and 2+ 

b1y1-intensity-explained total explained intensity of matched b- and y-ions matched considering only 

charge 1+ 

b1b2y1y2-intensity-explained total explained intensity of matched b- and y-ions matched considering 

charge 1+ and 2+ 

intensity-explained total explained intensity of matched X-ions matched with X in [a,b,b-H2O,b-

NH3,c,x,y,y-H2O,z], considering charge 1+ and 2+ 

intensity-correlation Pearson correlation between observed and MS2PIP predicted b- and y-ion 

intensities 

average-rank ranks the PSMs by the average rank for ions-count, ions-explained and 

intensity-correlation 

 

Table 2 | Biased PSM scoring functions that filter the search space. Each function considers some plausible form 

of matching information. 

 

Name Description 

charge charge state of match 

peplen length of matched peptide 

precursor_mass MS1 precursor mass 

num_peaks number of peaks in the MS2 spectrum 

max_peak intensity of highest peak in MS2 spectrum 

XY-ion-count number of XY-ions matched with X in [a,b,b-H2O,b-NH3,c,x,y,y-H20,z] and Y charge state 

+1 or +2 

XY-ion-explained total explained intensity for the XY-ions matched with X in [a,b,b-H2O,b-NH3,c,x,y,y-H20,z] 

and Y charge state +1 or +2 

intensity-

correlation 

Pearson correlation between observed and MS2PIP predicted b- and y-ion intensities 

RT-pred-error difference between corrected observed and DeepLC  predicted retention time 

 

Table 3| The 43 features used in the ionbot PSM scoring function feature vector. Note that XY-ion-count and XY-

ion-explained each constitute 18 different features. 
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Dataset Version #Positives #Negatives 

Orbitrap-HCD-best 05-19-2020 212.761 42.531.154 

Orbitrap-HCD TMT-10 10-30-2019 318.972 63.794.400 

 

Table 4: Spectral libraries used to train the prefix and suffix models. For each library the number of computed 

feature vectors labeled as positive (#Positives) and computed feature vectors labeled as negative (#Negative) is 

show. Libraries were downloaded from chemdata.nist.gov. 

 

 

Name Accession #MS/MS spectra Sample Machine 

HEK293  PXD001468 1.121.149 HEK293 cell Orbitrap Q-Exactive 

CD8T PXD000561 406.913 CD8T cell Orbitrap Elite 

Brain PXD001250  669.350 Mouse brain Orbitrap Q-Exactive 

Breast PXD000815  382.022 Breast cancer tumor Orbitrap Q-Exactive 

TMTCPTAC PXD012703 1.064.359 Tumor tissue Orbitrap Q-Exactive Plus 

 

Table 5: Evaluation datasets used in the Results section. The first four datasets were downloaded from the PRIDE 

repository (Accession). The TMT datasets was downloaded from the CPTAC portal. 
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Figures 

 

 

Fig. 1 | Comparing different implementations of the ionbot search engine. (a) shows the number of 

identifications in HEK239 for the different implementations. These are a closed search (dark blue), a standard open 

search (orange), an open search using non-optimal models (red) (for the TMTCPTAC dataset, models (tag-models, 

MS2PIP and DeepLC) trained on unlabeled HCD were used, while for all other datasets models trained on TMT 

labeled data were used), an open search without using the RT-pred-error feature (green), an open search without 

using the intensity-correlation feature and biased scoring function (light blue), and an open search without 

intensity-correlation and RT-pred-error (yellow). (b) shows the identification overlap between a closed and open 

HEK239 search. For the closed searches, spectra with overruled identifications are shown in red. For open 

searches, matches with an unexpected modification are shown in green, while wide error matches are shown in 

yellow. (c) shows the identification overlap between an open HEK239 search and the same open search without 

using the intensity-correlation and RT-pred-error information. (d) true observed versus DeepLC predicted retention 

time for CD8T. (e) corrected observed versus DeepLC predicted retention time for CD8T. (f) compares corrected 

observed versus predicted retention times for HEK239 searches using (with-RT) and not using (no-RT) the RT-pred-

error feature. (g) shows intensity-correlation (R) for PSMs identified in HEK239 identified with using R but not 

identified not using R (no R). (h) plots the intensity-correlations for spectra identified in R and no R, but with a 

different match. (i) shows R for PSMs identified in no R but not identified in R. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2022. ; https://doi.org/10.1101/2021.07.02.450686doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.02.450686
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

 

 

 

Fig. 2 | Identification comparison between ionbot and MSFragger for HEK239. (a) shows the number of PSM and 

unique peptide identifications for each engine. (b) shows the identification overlap between ionbot and MSFragger 

at PSM level (left), and at unique peptide sequences level (right). (c) shows the value of the intensity-correlation 

feature for PSMs unique to ionbot or MSFragger. (d) shows the value of the retention time prediction error feature 

for PSMs  unique to ionbot or MSFragger. 
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