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 457 

Fig 4. Exemplary Trial & Stimuli. (A) Trial structure of the classic, passive condition (left) and four exemplary 458 

stimuli (right). (B) Trial structure of the more natural, free viewing condition (left) and four exemplary 459 

stimuli (right). 460 

Data Analysis 461 

All analyses were done in MATLAB (Release 2016b, The MathWorks, Inc., Natick, Massachusetts, 462 

United States) using the EEGLAB toolbox v. 14.1.1b [53]. For integrating and synchronizing ET and 463 

EEG data the EYE-EEG toolbox (http://www2.hu-berlin.de/eyetracking-eeg) was used [38].  464 

2x2 statistical Design  465 

Following the literature, we are interested in the difference between processing faces and other 466 

objects. In addition, we introduce sequential effects, as we hypothesized that the previous 467 

fixation category will influence the processing of the current fixation. This effectively results in a 468 

2x2 design with the factors Current and Previous, both with levels Face and Object. 469 

Eye Tracking 470 

In both experiments, fixations were detected by the EyeLink system using the default cognitive 471 

setting (SR Research 2007). The eye tracker uses an acceleration-based algorithm to determine 472 

saccades, and fixations are classified as the non-saccadic segments. That is, fixations are defined 473 

by being below a certain threshold of acceleration within the eye tracker’s camera (velocity 474 

threshold: 30°/s, acceleration threshold: 8000°/s², and motion threshold: 0.15°, [54]). Blink 475 

saccades, which were those spuriously detected due to blinks, were subsequently removed, by 476 

detecting whether a blink was enclosed between two saccades. 477 

In the free viewing experiment, we identified the category of the currently fixated object and, to 478 

analyze sequential effects, of the previous fixation. We differentiated between i) fixations on a 479 
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human face, ii) on a non-human face (mannequins, advertisements, etc.), iii) on a human head 480 

without a visible face, iv) on the background of the scene, or v) outside the stimulus on the phase 481 

scrambled border. Note that only fixations of type i) are of interest and all other types were not 482 

directly investigated here. Furthermore, we classified fixations whether they were on 483 

overlapping bounding boxes and whether consecutive fixations were within the same bounding 484 

box, i.e. within the same face. 485 

While we estimated fERPs for all previously mentioned conditions, we focus on the previously 486 

introduced 2x2 design. In addition to the main effects of previous and current fixation-category 487 

and the interaction, we additionally investigated subsequent fixations on the same face.  488 

489 
Fig 5. Exemplary eye tracking data of one trial and schematic visualization of the 2x2 categorization. (A) 490 

Eye tracking data of one subject. White dots represent the single samples, while the crosses represent the 491 

fixations as detected by the eye tracker. For visualization purposes, the faces are overlaid with their 492 

respective bounding boxes. (B) Fixations were categorized by their origin and their current placement. We 493 

distinguish between fixations made on the background (blue) or a face (red). For face to face fixations, we 494 

additionally specify whether they are the first fixation on a face, or a refixation within the same bounding 495 

box (within face fixations, purple).  496 

EEG 497 

Preprocessing 498 

The eye tracking data was imported and synchronized with the EEG with the help of the EYE-EEG 499 

toolbox (v0.8) for EEGLAB [38]. 500 

Then EEG data were downsampled to 512 Hz and highpass filtered at 0.1 Hz (EEGlab plugin firfilt 501 

with a cutoff frequency 0f -6dB at 0.5 Hz, a hamming window, and a length of 3381 points, [55]). 502 

Continuous data were visually inspected and artifactual sections were manually marked (muscle 503 

artifacts) and noisy channels removed (mean: 25.8, range: 19-34). Next, we used an independent 504 

component analysis (ICA, amica12, [56]) to remove components with eye-muscle artifacts [57]. 505 

Only for this step, the data were highpass filtered at 2 Hz to increase decomposition quality [58]. 506 

The ICA weights were then re-applied on the downsampled and continuous data. The ICA 507 

components were visually inspected and muscle and eye movement components were removed 508 
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from the continuous data causally filtered at 1 Hz based on their topography, spectrum, and 509 

activation over time (mean: 22.41, range: 6-39). Data were re-referenced to average reference 510 

and removed channels were interpolated using spherical interpolation. 511 

Because we need to correct for overlapping activity and eye tracking parameters, we used a 512 

regression-based approach implemented in the unfold toolbox [22]. A linear model including the 513 

factors Previous and Current (each consisting of the levels Background, HumanFace, and Other), 514 

the factor Samebox (if multiple fixations were made within the same face), and an interaction 515 

term was defined for the fixation ERP (fERP). Furthermore, spline regression was used to model 516 

non-linear effects of horizontal and vertical fixation position and saccade amplitude on the EEG. 517 

Additionally, the stimulus onset driven ERP (sERP) was modeled to correct for the overlap 518 

between the stimulus onset and the first fixation. This time expansion and thus overlap 519 

correction was applied between -500ms and 1000ms relative to fixation onset. 520 

The data were modeled with the following Wilkinson-Formulas in the unfold toolbox by 521 

Fixation ERP ~ 1 + currently fixating a face + currently fixating a face +  522 

currentlyOnFace:previouslyOnFace + within face fixation + 523 

spline (fixation position x, 5) + spline (fixation position y, 5) +  524 

spline (saccade amplitude, 5) 525 

Stimulus ERP ~ 1 526 

 

We used the same overlap correction for the passive viewing condition, even though we 527 

expected no overlapping activity between trials. However, participants did make some rare eye 528 

movements in the 300ms stimulus presentation, which might influence the ERP [23]; on the other 529 

hand, we keep comparability between conditions maximal by using the same analysis algorithms. 530 

The passive viewing condition data were modeled with the following Wilkinson-Formulas: 531 

 532 

Fixation ERP ~ 1 + spline (fixation position x, 5) + spline (fixation position y, 5) +  533 

spline (saccade amplitude, 5) 534 

Stimulus ERP ~ 1 + currently a face + previously a face +  535 

currently a face:previously a face 536 
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ERP Analysis 537 

N170 analysis 538 

The epoched, deconvolved ERP estimates were averaged over the occipital electrodes P7, PO7, 539 

P8, and PO8 according to [3]. The amplitude of the N170 was determined as the minimum in the 540 

time range of 130 to 200ms after fixation or stimulus onset according to [3], while the P100 was 541 

defined as the maximum between 80 to 130ms after the event of interest. After observing that 542 

some subjects had a P100 peak later than our initial prespecified time limit of 130ms, we 543 

extended the time limit to 150ms for all subjects. Additionally, in the lab condition, the N170 544 

peaked earlier. Therefore, the time limits for the N170 were adjusted to 120 to 200ms. 545 

Mass Univariate 546 

Besides only performing the classic N170 analysis, we used the mass univariate approach to 547 

analyze the deconvolved ERPs for all electrodes and time points. Statistical testing was done using 548 

a one-sided t-test of parameter estimates at each time point with an alpha level of 0.05. The 549 

multiple comparison problem was corrected using a cluster-based permutation test with 550 

threshold-free cluster enhancement (TFCE) with 10.000 permutations. For each permutation, we 551 

randomly flipped the signs of each subject’s parameter estimate, calculated the t-values, and 552 

enhanced them using TFCE, generating an empirical H0 distribution of TFCE enhanced t-values. 553 

The maximum over the time range of -500ms to 1000ms was used to construct an H0 TFCE-value 554 

distribution, against which the actual TFCE enhanced t-values were compared. We considered t-555 

values above the 95th percentile of this distribution to be significant. 556 

Correlation and effect size 557 

The correlation between the N170 amplitude from the passive viewing and Free viewing was 558 

calculated using the skipped Pearson correlation implemented in the robust correlation toolbox 559 

[59]. To minimize the effect of signal differences in previous time points, the peak-to-peak 560 

amplitude between the P100 and N170 was calculated [60]. We then subtracted the object peak-561 

to-peak amplitude from the face peak-to-peak amplitude resulting in a difference-value for face 562 

processing for each subject in both the passive viewing and the Free viewing conditions. Seeing 563 

our high correlation value, we were interested whether this correlation value is compatible with 564 

a perfect correlation and calculated the noise-ceiling of an assumed perfect correlation, given 565 

the between (STD over subjectwise means, passive viewing: 1.6, free viewing: 1.0) and the within-566 

subject variability (mean of subjectwise standard errors, passive viewing: 0.73, free viewing: 567 

0.55). To simulate the between-subject variability, we sampled 20 new values from a normal 568 

distribution and scaled them each once by the condition-wise between-subject variability. This 569 

led to 2x20 values with a correlation of 1 (i.e. perfect). Because we cannot perfectly measure 570 

these data points, we added the within-subject sampling variability: for each subject and 571 

condition separately, we drew a random number from a normal distribution, scaled it by the 572 

respective within-subject variabilities, and added it. We repeated the procedure 1000 times, with 573 

each repetition resulting in a 2x20 matrix. For these randomly sampled results, we calculated the 574 

Pearson-correlation coefficient. The resulting distribution of Pearson correlations can be used as 575 
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a parametric estimate of the H0 distribution taking measurement error into account. The median 576 

of this distribution is 0.8, whereas our observed correlation value is 0.78. 577 

In order to calculate whether the between-subject variance in the free viewing condition was 578 

lower than in the classic lab condition, we bootstraped the individual experiment’s standard 579 

deviations. This procedure was done 10.000 times with all subjects detected as not being outliers 580 

in the robust correlation (see Fig 1C). Furthermore, we calculated the bootstrapped 95% 581 

confidence interval (10.000 repetitions) for the difference between the Cohen’s dz of Passive 582 

Viewing and Free Viewing to estimate the difference in effect size with dz= mean(Face peak-to-583 

peak - Object peak-to-peak)/std(Face peak-to-peak –Object peak-to-peak). 584 

585 
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Supplementary materials: 752 

753 
Supp. Fig 1. fERP split by the previous fixation. When coming from a face, the current fERP will show a 754 

positive offset independently of what is currently fixated. 755 

 

756 
Supp. Fig 2. ERPs as split by the 2x2 design. (A) Resulting stimulus-driven ERPs as obtained in the classic 757 

lab condition. Top: Before the deconvolution, bottom: after. No major differences can be seen. (B) Resulting 758 

fixation-driven ERPs as obtained in the free viewing condition. Top: Before the deconvolution, bottom: 759 

after. Strong differences can be seen before the fixation onset. These spurious effects stem from 760 
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overlapping activity of the stimulus onset. These changes can be explained by the dependencies on the eye 761 

movement parameters. 762 

 

763 
Supp. Fig 3. Distribution of eye movement parameters in the free viewing task as split by the 2x2 design. 764 

(A) Fixation duration. A clear distinction can be seen, leading to differences in overlap strength between 765 

the conditions. (B) Saccade Amplitude. Again, we see systematic differences, which might lead to 766 

differences in the ERP and therefore have to be controlled. (C) Main sequence. The eye tracking data show 767 

the typical main sequence.  768 
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Table 1: Details on the ERP amplitudes split by condition. Amplitudes and times are based on the individual 769 

participant’s ERP peaks. The confidence values are bootstrapped 10.000 times. 770 

Passive viewing: 771 

 P100 with 95%-CI N170 with 95%-CI 

Obj to Obj 6.4µV 95CI [5.0;7.7] at 104ms 
[98;108] 

-0.97µV 95CI [-2.2;0.1] at 160ms 
[152;167] 

Obj to HF 6.2µV 95CI [5.0;7.5] at 96ms 
[93;100] 

-3.6µV 95CI [-4.7;-2.4] at 143ms 
[138;148]  

HF to Obj 6.1µV 95CI [4.8;7.5] at 103ms 
[97;108] 

-0.8µV 95CI [-2.1;0.3] at 156ms 
[151;161]. 

HF to HF 5.75µV 95CI [4.6;7.1] at 96ms 
[93;100] 

-3.5µV 95CI [-4.5;-2.4] at 141ms 
[137;146]. 

 
Free viewing: 772 

 P100 with 95%-CI N170 with 95%-CI 

BG to BG 4.5µV 95CI [3.7;5.5] at 102ms 
[97;106] 

-1.6µV 95CI [-1.9;-1.3] at 162ms 
[154;170] 

BG to HF 4.9µV 95CI [4.0;6.0] at 101ms 
[97;105] 

-3.0µV 95CI [-3.5;-2.6] at 155ms 
[152;161]. 

HF to BG 5.1µV 95CI [4.1;6.1] at 101ms 
[96;105] 

-1.3µV 95CI [-1.7;-0.7] at 159ms 
[153;167] 

HF to HF 5.7µV 95CI [4.7;6.9] at 104ms 
[100;109] 

-2.3µV 95CI [-2.7;-1.9] at 164ms 
[158;171] 
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