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Abstract

Haplotype-aware diploid genome assembly is crucial in genomics, precision medicine, and many other
disciplines. Long-read sequencing technologies have greatly improved genome assembly thanks to
advantages of read length. However, current long-read assemblers usually introduce disturbing biases
or fail to capture the haplotype diversity of the diploid genome. Here, we present phasebook, a novel
approach for reconstructing the haplotypes of diploid genomes from long reads de novo.
Benchmarking experiments demonstrate that our method outperforms other approaches in terms of
haplotype coverage by large margins, while preserving competitive performance or even achieving
advantages in terms of all other aspects relevant for genome assembly.
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Background

There are generally multiple copies of hereditary material in most eukaryotic organisms, where each
copy is inherited from one of the ancestors. The copy-specific nucleic acid sequences are called
haplotypes, and the haplotype-specific contigs that assembly programs compute for reconstructing
them are often referred to as haplotigs. Most vertebrates (such as human and mouse) and many
higher plants (such as maize and arabidopsis) are diploid, which means that there are two copies for
each chromosome.

Haplotype reconstruction plays a crucial role in various disciplines. For example, haplotype
information is important in functional genomics since there is widespread allele-specific gene
expression across the human genome Tewhey et al. (2011); haplotype information also crucially
supports studies on population demography, gene flow, and selection in conservation genomics
Leitwein et al. (2020); the haplotype-specific combinations of genetic variants usually affect disease
phenotypes and clinical responses, which is of great concern in precision medicine Muers (2011);
Glusman et al. (2014).

Over the last few years, long-read sequencing technologies such as single-molecule real-time
(SMRT) sequencing of Pacific Biosciences (PacBio) and nanopore sequencing of Oxford Nanopore
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Technologies (ONT), have improved genome assembly greatly because sequencing reads are
sufficiently long (generally ranging from several Kbp to hundreds of Kbp, or even to a few Mbp) to
also span more complex repeat regions Jain et al. (2018); Wenger et al. (2019); Miga et al. (2019);
Jung et al. (2019).

Although long reads have tremendous advantages in terms of read length in comparison to next
generation sequencing (NGS) derived short reads, they suffer from (substantially) elevated
sequencing error rates. In particular, PacBio CLR and ONT reads, as the most representative
examples of long reads, have sequencing error rate as high as 5 to 15%. While PacBio HiFi reads
have much lower error rates (< 1%), and in comparison with NGS reads are still long, such reads
considerably sacrifice on read length in comparison with PacBio CLR and ONT. Overall, short-read
genome assembly tools are not directly applicable to long-read data. This explains the need for novel
approaches.

Existing methods for haplotype reconstruction of diploid genome from long reads basically fall
into two classes. The first one involves alignment based methods, which are referred to as haplotype
assembly programs. Recent works such as WhatsHap Patterson et al. (2015), HapCut2 Edge et al.
(2017) and HapCol Pirola et al. (2016) are designed for diploid haplotype assembly. It is
characteristic for these tools to make use of a high-quality reference as a backbone sequence. They
align reads to it to call variants using external tools. Subsequently, variants are separated into
different haplotypes based on their own phasing algorithms. The output haplotigs of these tools then
reflect modified reference sequence patches. However, because only minor modifications of the
backbone sequence can be applied, the haplotigs can be affected by non-negligible biases.

For avoiding reference induced biases, de novo assembly based methods can be used as an
alternative. A series of remarkable de novo genome assemblers specialized for long-read sequencing
data have been developed so far. FALCON Chin et al. (2016), which follows the hierarchical genome
assembly process, and its haplotype aware version FALCON-Unzip, are mainly designed for PacBio
long reads. Improved Phased Assembler (IPA) PacificBiosciences (2020) is designed to produce
phased genome assemblies from PacBio HiFi reads. Canu Koren et al. (2017) uses adaptive
overlapping algorithm and sparse assembly graph construction which helps to separate repeats and
haplotypes, and its modification version HiCanu Nurk et al. (2020) is tailored for haplotype aware
assembly from PacBio HiFi reads. Moreover, Flye Kolmogorov et al. (2019) tries to generate optimal
assemblies using repeat graphs. Generic long-read assemblers Shasta Shafin et al. (2020) and
Wtdbg2 Ruan and Li (2020), considerably speed up the large-scale long-read assembly based on
novel graph representations. Notably, Hifiasm Cheng et al. (2021) is a haplotype-resolved assembler
specifically designed for PacBio HiFi reads. A graph-based approach to haplotype aware diploid
assembly was proposed in Garg et al. (2018), which combines accurate short-read data and long-read
(PacBio) data in a hybrid (employing both NGS and long reads) type framework.

There are various other long read assembly approaches, all of which are not designed to produce
haplotype-aware assemblies. They usually collapse homologous sequences into one consensus
sequence, and therefore do not distinguish between the haplotypes of a diploid genome sufficiently
accurately. We refer the reader to Shafin et al. (2020); Logsdon et al. (2020) for a comprehensive
overview of such tools.

In summary, long read assemblers are either designed to work for only specific types of data, such
as PacBio HiFi or ONT, or they do not address ploidy by design. In somewhat more detail, there is
no method that combines the following three important points: it generates high-quality
haplotype-aware genome assemblies only based on long read data (1), is capable of handling all three
of PacBio CLR, PacBio HiFi and Nanopore reads (2), and does not depend on high-quality reference
sequence as a backbone (3).

Here, we present phasebook, and suggest it as an approach that to the best of our knowledge is
the first one to address all (1),(2) and (3) in combination. By bridging the gap in the body of
existing work, phasebook appears to be the first approach that presents a framework that allows to
reconstruct the haplotypes of diploid genomes de novo from long reads without having to specialize
in a particular sequencing technology.

We evaluate phasebook on different long-read sequencing data, namely PacBio CLR/HiFi reads
and Nanopore reads. Benchmarking results on both simulated and real data indicate that our
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method outperforms state-of-the-art tools (both haplotype assembly and de novo assembly
approaches) in terms of various aspects. Thereby, an application scenario of major interest is to
reconstruct individual haplotypes of the Major Histocompatibility Complex (MHC) region, spanning
∼5 Mbp of chromosome 6, and playing a pivotal role in the adaptive immune system. Because of its
great hereditary variability, haplotype identity is of utmost interest with respect to numerous human
diseases and the corresponding medical treatments. Overall, phasebook generates more complete,
more contiguous and more accurate haplotigs compared with other approaches in this particularly
challenging case.

Results

We have designed and implemented phasebook, a novel approach to assemble individual haplotypes
of diploid genomes from long read sequencing data, namely PacBio HiFi, PacBio CLR and Oxford
Nanopore reads. In this section, we provide a high-level description of the workflow and evaluate its
performance on both simulated and real data, in comparison with an exhaustive selection of existing
state-of-the-art tools. These tools include both de novo long-read assemblers and reference-based
haplotype assembly approaches.

Approach

See Figure 1 for an illustration of the following description. For full details on the following outline,
see descriptions of the individual steps in the workflow figure in Methods.

Workflow: Sketch and Motivation. The approach of phasebook is to first collect contiguous
raw reads into small clusters, and compute two haplotype-specific super reads for each of the
clusters. Secondly, phasebook constructs an overlap graph where nodes correspond to super reads,
and edges indicate that super reads stem from identical haplotypes. Based on the resulting overlap
graph, phasebook extends super reads into haplotigs, as the final output.

phasebook is inspired by a few recent approaches, whose virtues are synthesized into an approach
that is able to address the universal challenge. First, phasebook is inspired by WhatsHap Patterson
et al. (2015), as an approach that is based on the minimum error correction (MEC) framework, and
excelled in phasing long third-generation sequencing reads in particular, but itself depends on
high-quality reference. Here, we design a framework, in which solving the minimum error correction
problem can be employed without the need for high-quality reference sequence.

To make this possible, we first determine polymorphic loci using Longshot Edge and Bansal
(2019), as a state-of-the-art tool for calling variants in long reads. Then, phasebook constructs an
overlap graph on groups of mutually overlapping reads. This allows to align the long reads within
the groups with one another. As a result, we can raise a local coordinate systems, which is an
essential part of the MEC problem (and which comes without efforts when using reference sequence).

After solving the resulting local MEC instances, phasebook adopts techniques to support
haplotype-aware de novo assembly based on overlap graphs, in full consistency with prior steps. In
this, phasebook is inspired by recent, related work on short reads that focuses on on overlap graph
based assembly (see SAVAGE Baaijens et al. (2017) or POLYTE Baaijens and Schönhuth (2019), for
example). Here, we adapt these techniques to dealing with long reads. For computing the necessary
overlaps, we make use of Minimap2 Li (2018), as the superior current approach to compute overlaps
among long reads in sufficiently short time also for large datasets.

Workflow: Paradigms and Stages. From a larger perspective, phasebook pursues a
divide-and-conquer strategy: in the divide stage, it separates reads into small local groups, which
results in many local instances of the minimum error correction (MEC) problem. Solving the local
MEC instances concludes the divide stage. In the conquer stage, it generates assembly output by
following the Overlap-Layout-Consensus (OLC) assembly paradigm. As such, phasebook reflects a
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Figure 1. An overview of phasebook. The purple text represents that this step is optional. Correct
errors for raw reads is recommended for long reads with high sequencing error rate such as PacBio
CLR and ONT reads. Filter overlaps based on SNPs is recommended for small genomes or specific
genomic regions such as MHCs.

combination of an approach that is able to solve the MEC problem without reference sequence, and
performing OLC based assembly in a ploidy-aware setting.
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Workflow: Overview of Technical Steps. Each of the two stages falls into two basic steps.
In the divide stage, phasebook first determines clusters where each of the clusters reflects a

collection of reads that overlap each other in terms of genomic position (executed by ’Algorithm 1’ in
Figure 1).

Secondly, during divide, phasebook solves an instance of the MEC problem for each such cluster.
Thereby, phasebook applies the principles of the original, reference-guided WhatsHap, by
implementing them in the de novo setting given here. As above-mentioned, the de novo setting
implies the need for an ad-hoc coordinate system as part of the MEC problem. This makes part of
methodical challenges that affect this step. As a result, this phases the reads of each such local
clusters into two groups. Each such group contains reads that agree in terms of local haplotype.
Along with the phasing, it corrects errors in raw reads, and determines an error-corrected super read
for each such group. In Figure 1, this comprises all steps from ’Assemble to ad-hoc reference’ to
’polish and trim super read’ (where polishing and trimming may be required in low coverage areas).
See also Figure 2 for further illustrations. This results in two super reads that reflect local
haplotypes for each cluster, one of which generated as per the blue, and one of which generated as
per the red branch in Figure 1. We recall that each pair of blue/red super-reads reflects the optimal
solution of a local instance of the MEC problem.

In the conquer stage, phasebook first constructs an overlap graph on all resulting super reads
(comprising all steps from ’Merge super reads’ to ’Filter overlaps based on SNPs’ in Figure 1), where
edges indicate that two overlapping super-reads stem from the same haplotype, based on sound
statistical considerations. Note that the number of super reads is limited which renders the
construction of an overlap graph certainly manageable, arguably a virtue of the design of the overall
setup. Because super reads are haplotype specific, the corresponding overlap graph virtually consists
of two components each of which reflects one of the haplotypes, with only a handful spurious edges
connecting the components, see Figure 3 for further illustration.

Finally, in the second step of the conquer stage, super reads are assembled into haplotype specific
contigs by careful elimination of redundant and spurious edges, where the identification of spurious
edges is based on evaluating (putative) polymorphic sites. After edge elimination, phasebook lays
out paths in the resulting connected components of the overlap graph, indicated by ’Simplify graph’
and ’Merge simple paths’ in Figure 1.

See Methods for full details on each of the sub-steps involved in the overall workflow.

Datasets

Simulated data. We simulated various datasets using different long read sequencing technologies,
namely, PacBio CLR, PacBio HiFi and ONT. Generally, PacBio CLR and ONT reads have high
sequencing error rate (5% ∼15%), while PacBio HiFi reads have much lower error rate (< 1%). We
selected two human MHC haplotypes from the Vega Genome Browser: PGF and COX. Subsequently,
We used PBSIM Ono et al. (2013) model-based simulation, reflecting a sound way to generate
PacBio CLR reads of N50 length 20kbp and average sequencing error rate 10% for each of the two
haplotypes at a coverage of 25x. We used PBSIM sampling-based simulation to generate PacBio
HiFi reads of N50 length 10kbp for each of two haplotypes at a coverage of 15x by utilizing human
individual HG00731 as the sample profile, which was downloaded from EBI. Besides, we used
NanoSim V2.6.0 Yang et al. (2017) as an approved simulator to generate ONT reads of N50 length
20kbp and average sequencing error rate 10% using the built-in pre-trained model
human_NA12878_DNA_FAB49712_albacore for each of the two haplotypes at a coverage of 25x. For
each sequencing platform, the reads from each of the two haplotypes were combined respectively,
resulting a read set for a pseudo-diploid genome (PGF and COX). Additionally, we used PBSIM
model-based simulation to generate PacBio CLR reads of N50 length 20kbp and average sequencing
error rate 10% for each of the two haplotypes at a coverage of 15x, 25x, 35x and 45x, respectively, in
order to evaluate the effect of sequencing coverage.

Real data. To evaluate our method on real sequencing data, we downloaded PacBio HiFi and
CLR sequencing reads of human individual HG00733 from EBI and SRA (accession number:
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Figure 2. A schematic diagram for reads phasing and super reads generation in a read cluster.
The blue reads belong to haplotype 1 and the orange reads belong to haplotype 2. The green read
means that this read is a seed read. We use WhatsHap to separate reads into two different groups
based on SNPs involved in long reads. The dash line regions in super reads represent the bases with
sequencing low coverage, which can be optionally trimmed to generate corrected super reads.

SRR7615963), and Oxford Nanopore PromethION sequencing reads of human individual NA19240
from ENA where the project ID is PRJEB26791. Subsequently, we extracted reads primarily aligned
to chromosome 6, which is ∼170 Mbp in length. The approximate sequencing coverage per
haplotype of the chromosome 6 for these three types of long reads is 15x, 40x and 25x, respectively.
Full length haplotypes have been reconstructed for HG00733 and NA19240 in a recent study
Chaisson et al. (2019) by applying multi-platform sequencing technologies and specialized algorithms.
Hence, we downloaded the corresponding haplotype sequences as the ground truth for benchmarking
experiments with focus on chromosome 6. More details about data sources are shown in
”Availability of data and materials”.

Run other approaches for comparison

Reference-guided haplotype assembly. Haplotype assembly methods such as WhatsHap and
HapCut2 take as input a reference genome sequence and a variant set (unphased VCF file), and
output a phased VCF file. For simulated data, we selected another MHC haplotype (named DBB)
as the reference also from the Vega Genome Browser. For real data, we extracted the sequence of
chromosome 6 from GRCh38 as the reference. Subsequently, we aligned sequencing reads to
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Figure 3. A schematic diagram for super read overlap graph construction. The blue super reads
belong to haplotype 1 and the orange super reads belong to haplotype 2. The solid arrow lines
(blue or orange) represent non-transitive edges and the dash arrow lines represent transitive edges,
respectively. The solid arrow lines (red) represent spurious edges caused by incorrect super read
overlaps from different haplotypes.

reference genomes and called variants using Minimap2 and Longshot, respectively. Ultimately, we
followed the method proposed in Baaijens and Schönhuth (2019) to reconstruct contigs for each
haplotype block from phased VCF files using bcftools consensus.

De novo haplotype aware assembly. For the sake of a fair comparison of the performance of
the assembly programs, we chose to use the results which keep the haplotype information rather
than collapse it. Consequently, we used the output file prefix.unitigs.fasta for Canu, the
combination of primary contigs and associated contigs for Falcon, we added the option
--keep-haplotypes when running Flye, and used the output file prefix.p_utg.fasta in Hifiasm
for haplotype-aware comparisons. For the remaining assemblers, we just compared with the contigs
as output, because of the lack of alternative options. Note that we failed to run Falcon-Unzip on our
datasets1, because no adequate read overlaps were generated likely due to too low coverage, thus
only results of Falcon are reported.

1We contacted the authors, but received no response, note that the latest update in the github repository is from 4
years ago. This seems to be in agreement with earlier attempts to contact the falcon-unzip crewGarg et al. (2018).
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Assembly performance evaluation

The assembly performance was evaluated by means of several commonly used metrics, routinely
reported by QUAST V5.1.0 Mikheenko et al. (2018), as a prominent assembly evaluation tool. See
Section ’Metrics’ below for specific explanations. Contigs with length less than 20kbp were filtered
before evaluation. For reference-guided haplotype assembly approaches, we generated contigs for
each haplotype from phased variants, even if haplotypes share highly similar regions. De novo
assembly approaches, however, can assemble genomic sequences from regions shared by the different
haplotypes only once, which can be interpreted misleadingly. To circumvent the issue, we used the
parameters --ambiguity-usage all and --ambiguity-score 0.999 so as to obtain reasonable
alignments of contigs with both haplotypes. In addition, for evaluation of large genomes such as
chromosome 6, we used the default optimal parameters by adding the flag --large.

Metrics

Haplotype coverage (HC). Haplotype coverage is the percentage of aligned bases in the ground
truth haplotypes covered by haplotigs, which is used to measure the completeness of the assembly.

N50 and NGA50. N50 is defined as the length for which the collection of all contigs of that
length or longer covers at least half the assembly. NGA50 is similar to N50 but can only be
calculated when the reference genome is provided. NGA50 only considers the aligned blocks (after
breaking contigs at misassembly events and trimming all unaligned nucleotides), which is defined as
the length for which the overall size of all aligned blocks of this length or longer equals at least half of
the reference haplotypes. Both N50 and NGA50 are used to measure the contiguity of the assembly.

Error rate (ER) and N-rate (NR). The error rate is equal to the sum of mismatch rate and
indel rate when mapping the obtained contigs to the reference haplotype sequences. Besides, N-rate
is defined as the proportion of ambiguous bases (’N’s).

Misassembled contigs proportion (MC). If a contig involves at least one misassembly event,
it is referred to as misassembled contig, which indicates that left and right flanking sequences align
to the true haplotypes with a gap or overlap of more than 1kbp, or align to different strands, or even
align to different haplotypes. Here, we report the percentage of misassembled contigs relative to the
overall contigs.

Benchmarking results

We performed benchmarking experiments including all methods on the simulated and real data as
described above, for all three types of long reads, namely, PacBio HiFi, PacBio CLR and Oxford
Nanopore reads. In summary, the results show that for both simulated and real PacBio HiFi reads,
phasebook arguably reconstructs more complete (HC), more continuous (NGA50, except IPA) and
more accurate (ER, NR) haplotigs compared with other existing relevant approaches. Advantages of
phasebook are most evident for PacBio CLR and Nanopore reads, where our approach outperforms
other methods in terms of haplotype coverage on both simulated and real data in terms of a
relatively large margin. At the same time, phasebook maintains better or comparable performance
in terms of various other metrics (NGA50, ER, NR, and MC). On PacBio HiFi reads, Hifiasm and
phasebook share top performance. More details on results are provided in the following sections.

PacBio HiFi reads. Table 1 shows the assembly statistics on PacBio HiFi reads. In simulation
experiment, phasebook achieves the largest haplotype coverage (HC: 99.4%), while in real data, it
reconstructs the second largest part of the haplotypes (HC: 91.2%), rivaled only by Hifiasm (HC:
91.4%), which outperforms phasebook by a relatively small amount. This is arguably compensated
by the fact that Hifiasm fails to achieve a large fraction of the haplotype sequence when dealing with
the MHC regions (HC: only 11.1%, see ’Simulated data’). As for assembly contiguity, phasebook
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achieves the second best NGA50 across all methods except IPA in both experiments while its N50 is
much lower than other generic assemblers such as Flye and Wtdbg2, which however is certainly offset
that overall assembly length (indicated by HC), to which N50 refers, is small for Flye and Wtdbg2.
High N50 is usually further achieved through collapsing small bubbles and smoothing the tangled
regions in the assembly graph. This, however, may introduce error bases and misassemblies. An
indication of this happening are the high error rate (≥ 10 and 2 ∼ 3 times higher than our method in
simulated and real data, respectively) and the large proportion of misassembled contigs of Flye and
Wtdbg2. HiCanu is the only approach that generates haplotype coverage that is on a par with our
method in terms of orders of magnitude (only 1.6% lower) in both datasets, while maintaining the
lowest proportion of misassembled contigs (HiCanu: 1.4% vs phasebook: 12.5%, where phasebook
comes in clear second however, comparing with all methods supporting sufficient haplotype
coverage). One reason for the reduced misassembly rate of HiCanu may be the short length of
contigs overall, as indicated by N50 and NGA50 values that are half as large as those of phasebook.

The currently most predominant reference-guided methods (WhatsHap and HapCut2) only yield
less than 60% and 77% haplotype coverage in MHC and Chromosome 6 datasets, respectively.
Meanwhile, they have N50 and NGA50 about twice as short, and higher error rates in comparison to
our approach. Moreover, reference-guided methods strongly depend on high-quality reference, which
is generally hard to generate for highly diverse genomic regions such as the MHC region. Due to the
ambiguous bases (’N’s) in the reference genomes, we therefore observe that the final assemblies
generated from reference-guided methods harbor 9.0% and 0.4% N-rate in MHC and Chromosome 6
datasets, respectively. De novo assemblies, however, do not suffer from biases that are inherent to
reference genome based approaches, hence do not contain any ’N’.

Table 1. Benchmarking results for PacBio HiFi reads. HC = Haplotype Coverage, ER = Error Rate
(mismatches + indels), NR = N-Rate (ambiguous bases), MC = Misassembled contigs proportion.
Top: simulated diploid data (sequencing coverage is 15x per haplotype) for the MHC region. Bottom:
real diploid data for chromosome 6 of individual HG00733. Note that we compared with IPA, the
official PacBio assembler for HiFi reads instead of Falcon.

HC (%) N50 NGA50 ER (%) NR(%) MC(%)

Simulated data

phasebook 99.4 501076 539378 0.017 0.0 12.5

HiCanu 97.8 283691 283691 0.009 0.0 1.4

IPA 81.9 1426746 818630 0.021 0.0 5.6

Flye 56.0 827817 10861 0.169 0.0 42.9

Wtdbg2 49.8 3347120 - 0.212 0.0 100.0

Hifiasm 11.1 27223 - 0.183 0.0 0.0

WhatsHap 59.4 257599 155079 0.240 9.0 20.0

HapCut2 56.5 257599 155079 0.245 9.0 20.0

Real data

phasebook 91.2 450480 491919 0.042 0.0 3.5

HiCanu 89.6 235876 206729 0.109 0.0 2.2

IPA 73.3 11997148 722645 0.073 0.0 2.5

Flye 55.1 16247741 - 0.084 0.0 41.2

Wtdbg2 54.8 33738322 - 0.101 0.0 55.6

Hifiasm 91.4 446213 380384 0.090 0.0 4.2

WhatsHap 76.5 381196 359841 0.058 0.4 3.3

HapCut2 76.5 381196 354305 0.058 0.4 3.2
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PacBio CLR reads. The assembly results for PacBio CLR reads are shown in Table 2.
phasebook achieves the largest haplotype coverage in both simulated (HC: 95.2%) and real (HC:
92.9%) data compared with all other approaches (HC: 50% ∼ 76% throughout). Besides, it
outperforms all other de novo approaches in terms of NGA50 (quite dramatically) whereas its N50 is
shorter in comparison to others. phasebook also achieves the lowest error rate across all methods in
simulated data (MHCs). While other de novo approaches such as Canu and Flye perform better
than our method in terms of error rate in real data (Flye ER: 0.079 and Canu ER: 0.124 versus
phasebook ER: 0.198), they obtain much lower haplotype coverage (60% and 52%, respectively
versus 92,9 from phasebook), higher misassembled contigs proportion, and smaller NGA50 values.

Reference-guided methods generate more contiguous haplotigs (larger N50 and NGA50 values).
Nevertheless, as we already observed in PacBio HiFi read data, this comes at the cost of
substantially elevated N-rates and misassemblies. Additionally, these methods only reconstruct
56% ∼ 63% haplotype fraction, which is much lower compared with our method.

Table 2. Benchmarking results for PacBio CLR reads. Top: simulated diploid data (sequencing
coverage is 25x per haplotype) for the MHC region. Bottom: real diploid data for chromosome 6 of
individual HG00733.

HC (%) N50 NGA50 ER (%) NR(%) MC(%)

Simulated data

phasebook 95.2 146274 172577 0.061 0.0 1.9

Canu 76.3 134458 74230 0.174 0.0 0.8

Falcon 60.5 4814264 32719 0.376 0.0 21.4

Flye 74.1 935167 66242 0.218 0.0 57.1

Wtdbg2 58.9 4726253 - 0.269 0.0 100.0

WhatsHap 56.6 393164 254386 0.215 8.8 28.6

HapCut2 56.4 438026 254386 0.209 8.9 28.6

Real data

phasebook 92.9 218500 253785 0.198 0.0 5.9

Canu 60.0 3038775 93324 0.124 0.0 9.0

Falcon 63.4 19121214 132950 0.330 0.0 12.2

Flye 51.9 21573250 - 0.079 0.0 50.0

Wtdbg2 64.6 11926627 - 0.606 0.0 18.1

WhatsHap 63.4 3349274 1944877 0.073 0.4 24.8

HapCut2 61.8 3899799 1944878 0.073 0.4 26.2

Oxford Nanopore reads. Table 3 shows the benchmarking results for Oxford Nanopore reads
assembly. phasebook still achieves the largest haplotype coverage in both simulated (HC: 97.0%) and
real (HC: 84.4%) data compared with all other approaches (HC: 56% ∼ 77% in simulated data,
56% ∼ 65% in real data). In addition, it generates haplotigs with the lowest error rate (about 2 ∼ 11
times lower) in simulated MHC data, and with the lowest misassembled contigs proportion in both
simulated and real datasets. Our approach outperforms other de novo assemblers in terms of NGA50
in the real data while its N50 value is still much smaller than others, which is similar to that we
already observed in PacBio HiFi/CLR read datasets.

Reference-guided methods generate more contiguous haplotigs (larger N50 and NGA50 values) in
real data. As we have already observed in PacBio HiFi/CLR datasets, this comes at the expense of
significantly higher N-rate and misassemblies. Notably, these methods only obtain approximately
56% haplotype coverage, which is much inferior to the result reconstructed from our reference-free
approach.
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Table 3. Benchmarking results for Oxford Nanopore reads. Top: simulated diploid data (sequencing
coverage is 25x per haplotype) for the MHC region. Bottom: real diploid data for chromosome 6 of
individual NA19240.

HC (%) N50 NGA50 ER (%) NR(%) MC(%)

Simulated data

phasebook 97.0 108774 152599 0.092 0.0 2.8

Canu 56.8 1056827 119066 0.171 0.0 17.4

Falcon 67.8 2489921 442832 0.375 0.0 20.0

Flye 54.5 1274112 86893 0.181 0.0 50.0

Wtdbg2 76.5 4821843 208838 0.834 0.0 33.3

Shasta 63.0 3859518 136119 1.005 0.0 33.3

WhatsHap 56.9 493723 279218 0.204 8.9 50.0

HapCut2 55.9 493723 279218 0.211 8.9 46.2

Real data

phasebook 84.4 84379 85595 1.988 0.0 9.6

Canu 65.8 4619460 - 1.289 0.0 33.5

Falcon 64.0 4764209 37993 1.895 0.0 29.5

Flye 57.3 11457239 - 0.686 0.0 59.3

Wtdbg2 60.6 15480861 - 1.703 0.0 37.3

Shasta 62.7 2212948 - 2.275 0.0 66.2

WhatsHap 56.4 27552232 3520811 0.775 0.4 62.5

HapCut2 56.2 27552232 3285944 0.787 0.4 62.5
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Effect of sequencing coverage

In order to evaluate the effect of sequencing coverage on noisy long read assembly performance, we
used a two MHC haplotypes (PGF and COX) as a template for a diploid genome, and simulated
PacBio CLR reads with different sequencing coverage, namely, 15x, 25x, 35x, 45x per haplotype.
Subsequently, we ran phasebook and all other tools on these four datasets. The benchmarking
results are shown in Table S1 (see Additional File 1??).

As the sequencing coverage varies, phasebook always achieves the best performance in terms of
haplotype coverage (95% ∼ 97%), clearly outperforming all other tools (52% ∼ 76%). In addition, it
yields haplotigs with much lower error rate (∼ 0.06%, 2 to 6 times lower) at coverages per haplotype
of 25x, 35x and 45x. Only at a coverage of 15x, it performs worse than other approaches (phasebook:
0.33% versus 0.217% from Canu, as the best performing de novo assembler). The explanation for
this effect is that phasebook corrects sequencing errors at haplotype level, whereas other methods
correct errors by considering reads from the two haplotypes together, which yields improvement at
low coverage rates, while not being able to improve error rates on increasing coverage. Note as well
that it is difficult to correct sequencing errors in noisy long reads when coverage is low, with
difficulties arising from 15x and less. In all coverage settings, phasebook computes very little
misassembled contigs in comparison with the other approaches; Canu is the only approach that has
less misassembled contigs, which however is offset by lower HC, smaller NGA50 values and higher
error rates. Besides, the haplotype coverage of phasebook slightly improves on increasing sequencing
coverage, and the error rate of phasebook is improved when sequencing coverage increases from 15x
to 25x, whereas only slight improvements are observed when raising sequence coverage further to 35x
and 45x.

Runtime and memory usage evaluation

The runtime of phasebook is dominated by two steps. First, the computation of all-vs-all long read
overlaps for which we use Minimap2, as one of the fastest approaches to compute read overlaps.
Second, generating corrected super reads consumes a considerable amount of time, as a consequence
of the high rate of sequencing errors in long reads.

Of note, the number of read clusters is approximately linear with the genome size, as a logical
consequence of the design of the clusters. Converting massive amounts of raw reads into a much
reduced set of super reads, parallelized across clusters, and only then constructing overlap graphs on
(the reduced amount of) super reads, and deriving assemblies from this (comparatively small) graph
greatly speeds up the process, and avoids consumption of excessive amounts of memory.

In an overall account, our approach is perfectly apt for assembling large genomes, such as human
genomes or other diploid genomes of similar length.

We evaluated the runtime and memory usage of related tools on both simulated and real data
(Chr6) for three kinds of long read data, namely, PacBio HiFi, PacBio CLR and Oxford Nanopore
reads, and the results are shown in Table S2, S3, S4 (see Additional File 1), respectively. In detail,
Table S2 shows that phasebook takes 64.8h CPU time on Chr6 data for PacBio HiFi reads, which is
more than other approaches, while not different by orders of magnitude (other de novo approaches:
10.3 to 41.0h). In terms of peak memory usage, phasebook requires roughly similar amounts like
Canu and Flye. As was to be expected, reference-guided methods, such as WhatsHap and HapCut2,
have advantages in terms of runtime and space consumption.

Table S3 shows that phasebook, Canu and Falcon are orders of magnitude slower when assembling
CLR reads in comparison with the much more accurate HiFi reads. phasebook requires 1129h CPU
time on Chr6 data, which is comparable with Falcon. Table S4 indicates that phasebook takes 727h
CPU time on Chr6 data, which is faster than Canu (1139h), but somewhat slower than Falcon
(508h). Shasta is the fastest tool for Nanopore reads assembly among all methods we are comparing.

In summary, on real data our approach generally is among the slowest, while, however, never
being slower than by a factor of 1 ∼ 1.5. In addition, phasebook is well behaved in terms of memory
usage. This demonstrates that our approach is very well applicable in all real world scenarios of
interest.
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Discussion

Haplotype aware assembly of diploid genomes, which preserves haplotype identity of the assembled
sequences, plays a crucial role in various applications. Long-read sequencing data appears to be
particularly suitable for addressing this task since long reads can capture linkage of genetic
variations across much longer ranges than short reads. However, the elevated error rates of long
reads induce considerable difficulties, because it can be challenging to distinguish errors from true
variations. The error rates are the major reason why existing long-read assemblers tend to collapse
assemblies into consensus sequence, thereby loosing haplotype information. Further, the majority of
existing methods for generating haplotype-aware assemblies tends to require guidance by reference
genomes. The difference in error profile characteristics of the most popular long-read technologies,
such as PacBio HiFi, PacBio CLR and Oxford Nanopore add to the challenge, because it seems that
each sequencing technology requires a specially tailored tools, where each tool integrates the
particularities of the individual sources of errors. In summary, this explains why prior methods were
struggling to address to generate haplotype-aware de novo assemblies for diploid genomes for all
predominant sequencing technologies, despite the currently overwhelming interest in such tools.

We have introduced phasebook to overcome this gap in terms of existing methods: phasebook is
(to the best of our knowledge) the first method that successfully addresses all of these (crucial)
points. phasebook reconstructs the haplotypes of diploid genomes, supporting usage of all
predominant sequencing technologies, namely PacBio HiFi, PacBio CLR and Oxford Nanopore, de
novo, that is without requiring external guidance. Results demonstrate the superiority of the new
approach in terms of the majority of approved assembly related metrics.

Key to success for phasebook is to not just follow standard assembly paradigms (such as
de-Bruijn or overlap graph based assemblies). Rather, phasebook adopts ideas from the original
(non-de-novo) WhatsHap, as a predominant tool for reference-guided read based phasing, and
reframes these ideas in a reference-free setting.

In somewhat more detail, phasebook casts the overall assembly problem as several local instances
of the minimum error correction (MEC) problem, and assembles the resulting solutions of the local
instances thereafter. The challenge inherent to this is to establish the instances of the MEC problem
correctly; while this is straightforward in a reference-aided setting, the setup of appropriate MEC
instances in a de novo, that is reference-free, setting requires careful consideration of various issues.

Solving the instances corresponds to determining local haplotype-specific patches of genomics
sequence. Just as for the original WhatsHap these patches are extremely accurate in terms of error
content. This kills two birds with one stone: the local sequence patches do not only account for
accurately preserving haplotype identity, but also for correcting errors in the original (long) reads.
The high accuracy of the resulting sequence patches, referred to as super-reads, then allows for a
fairly straightforward procedure that finalizes the generation of high-quality assemblies: One raises
an overlap graph on the super reads, and determines the longest paths in this overlap graph.
Because super-reads are 1) long, 2) accurate, and 3) haplotype-specific, the resulting long and
accurate overlaps reliably identify the haplotypes also across regions of the genomes that extend the
read length by considerable amounts: Full-length assemblies can be easily determined by computing
longest paths in the overlap graph. To further polish assemblies, we implement options for
sequencing error correction and read overlap refinement that account for differences in terms of
sequencing platform characteristics.

Benchmarking results on both simulated and real data indicate that our approach achieves the
best performance in terms of haplotype coverage, while maintaining better or comparable
performance in terms of various other relevant aspects. Our comparisons consider all state-of-the-art
tools that address to assemble diploid genomes in a way that takes ploidy into account. Note that
some of the methods are reference-guided, while others generate de novo assemblies.

Among the three kinds of long-read sequencing data, PacBio HiFi data is the most promising one
in terms of distinguishing the different haplotypes thanks to its low error rates. PacBio CLR and
Nanopore reads, on the other hands, come with elevated error rate. As usual, combining long and
highly erroneous reads with accurate short reads may establish a viable alternative to achieving even
better performance than phasebook, at the expense, of course, of additional efforts in terms of
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sequencing experiments.
In summary, the results demonstrate that phasebook successfully reconstructs individual

haplotypes of the most polymorphic region (MHC) in the human genome at utmost quality in terms
of completeness, contiguity and accuracy. The integration of phasebook in population-scale long read
sequencing projects may open up novel opportunities.

Still, there is room for improvements. Most importantly, phasebook is confined to work with
diploid genomes, so cannot handle polyploid genomes. We consider it worthwhile future work to
expand on the idea of polyploids and to design and implement a method that can deal with
polyploid genomes, or even cancer and metagenomes, while adopting the ideas of WhatsHap style
approaches further.

Conclusions

We have presented phasebook, a novel approach for reconstructing the haplotypes of diploid genomes
from long reads de novo, that is without the need for a reference genome. The approach is
implemented in an easy-to-use open-source tool https://github.com/phasebook/phasebook.
Benchmarking results on both simulated and real data indicate that our method outperforms
state-of-the-art tools (both haplotype assembly and de novo assembly approaches) in terms of
haplotype coverage, while preserving competitive performance or even achieving advantages in terms
of all other aspects relevant for genome assembly. Therefore, the integration of phasebook may
reveal new opportunities in population-scale long read sequencing projects.

Methods

Read clusters generation

Read overlaps calculation. We firstly compute all-vs-all overlaps for raw reads using Minimap2
Li (2018), whose seed-chain-align procedure is known to perform pairwise alignments extremely fast,
so can manage the large amount of read pairs we need to process. Secondly, resulting bad overlaps
are filtered by reasonable, additional criteria. For example, overlaps that are too short, that do not
exceed a minimum level of sequence identity, that reflect self-overlaps, duplicates or internal matches
are removed. In this, we follow Algorithm 5 in Li (2016).

Read clusters. We sort reads by their length in descending order, considering that longer reads
tend to have more overlaps. Processing reads in the corresponding order therefore results in larger
read clusters, which reduces the number of clusters, increases the length of the resulting super-reads
and hence improves the assembly overall. In each iteration, the longest read having remained
unprocessed is selected as the seed read. The corresponding cluster is then determined as the set of
reads that overlap the seed read (according to the criteria listed above), and all of its reads are
discarded from the sorted list of reads. The procedure stops when all reads have been processed. See
the details in Algorithm 1.
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Algorithm 1 Generate read clusters

Input: The set of raw reads R, minimum cluster size k;
Output: The set of read clusters S
1: Sort R by length in descending order;
2: Initialize a set of used reads: U ← ∅;
3: S ← ∅
4: i← 0
5: for each read r ∈ R do
6: n← number of overlaps for read r;
7: if r 6∈ U & n+ 1 >= k then
8: Ci ← {r, overlapped reads of r} ;
9: U ← U ∪ Ci ;

10: S ← S ∪ {Ci} ;
11: i← i+ 1 ;
12: else
13: next;
14: end if
15: end for
16: return S

Reads phasing

Since read clusters contain reads from both haplotypes, we further phase reads into two
haplotype-specific groups. See Fig. 2 for the explanation of this step.

Read overlap graph. For each read cluster, we largely follow the method proposed in Baaijens
et al. (2017); Baaijens and Schönhuth (2019) to construct a read overlap graph G = (V,E) where
nodes v ∈ V represent reads and edges e = (v, w) ∈ E indicate overlaps that are consistent in terms
of length, sequence identity (see ’Parameter settings’). Edges (v, w) are directed indicating that the
suffix of v is likely to be identical with the prefix of w. Note that the overlaps were already
determined when computing clusters. Appropriate thresholds for sequence identity and length of the
overlaps are user defined.

Ad-hoc reference construction. In order to reduce the complexity of the overlap graph, we
remove transitive edges, which reflects a common procedure. An edge u→ v is called transitive if
there is a vertex w and edges u→ w,w → v. Subsequently, we determine the longest path in this
directed acyclic graph, and the reads that give rise to it. The resulting reads are then assembled into
an ad-hoc reference by concatenating the overlapping reads that give rise to the path.

SNP calling. To remove remaining sequencing errors, and improve variant (SNP) calling and
phasing, we polish the ad-hoc reference using Racon Vaser et al. (2017). The raw reads are then
mapped back to the ad-hoc reference. SNPs are detected by utilizing a pair-Hidden Markov Model,
as implemented in Longshot Edge and Bansal (2019).

Reads phasing. Reads within a cluster can stem from both haplotypes. One can phase the reads
conveniently, because the majority of them tend to be sufficiently long to bridge neighboring
polymorphic sites. For performing the phasing, we make use of WhatsHap Martin et al. (2016), as a
tool that has been shown to operate at superior performance rates when phasing long reads.
WhatsHap centers on the weighted minimum error correction problem, providing a solution with
runtime linear in the number of variants. The solution corresponds to partitioning the reads in two
groups, each of which immediately corresponds to one of the two local haplotypes of the diploid
genome.
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Corrected super reads generation

Super read construction. We construct a super-read for each of the two haplotype-specific
groups of reads resulting from the phasing procedure. For each read group, we construct another
read overlap graph, now comprising only reads as nodes that belong to the same haplotype. Using
the overlap graph, we then assemble the reads in each group into a long haplotype specific sequence,
which we refer to as super-read. As a result, we obtain two super reads for each read cluster (see Fig.
2).

Error correction for raw reads. This step is optional and recommended for long reads with
high sequencing error rate such as PacBio CLR and Nanopore reads, while it is not necessary when
processing PacBio HiFi reads because of their great accuracy. For small genomes or specific genomic
regions such as MHCs, we make use of a method for self-correction of long reads in each read group.
This method combines a multiple sequence alignment (MSA) strategy with local de Bruijn graphs,
and is implemented in CONSENT Morisse et al. (2020). When dealing with large genomes
(e.g. Chr6), to increase efficiency, we use the MSA-based error correction modules built in MECAT2
Xiao et al. (2017) and NECAT Chen et al. (2020) for PacBio CLR and Nanopore reads, respectively.
Reads in one group are supposed to stem from the same haplotype, thus one can avoid the
elimination of true variation, which happens when reads from different haplotypes are mixed
together. Therefore, because of the prior arrangement of partitioning reads into haplotype-specific
groups, the corrected reads enjoy error rates that are lower than when running these tools on reads
referring to unphased settings.

Super reads polishing and trimming. Using the error corrected reads, we return to the
super-reads computed earlier, and polish each super-read by comparing it with the now error
corrected reads. (When using PacBio HiFi reads, we apply the procedure without prior correction of
errors.) As a result, the super-reads come with error rates that are comparable to the ones obtained
for the error-corrected raw reads. We finally trim the super read, removing parts of low coverage of
raw reads. The final result is an error corrected super-read.

Note that the steps in Section ’Reads phasing’ and Section ’Corrected super reads generation’
can be parallelized conveniently across clusters, because computations within clusters are
independent of other clusters.

Super read overlap graph construction

Super read overlap graph. The super read overlap graph G′ = (V ′, E′) is very similar to the
read overlap graph, except that it is constructed from the set of corrected super reads instead of raw
reads (see Fig. 3). Thus, each node v ∈ V ′ corresponds to a super read and there is an edge
vi → vj ∈ E′ if they have sufficient overlap length and sequence identity. For the last point, consider
that the super-reads exhibit very low sequencing error rates, so near-perfect identity in the overlap is
a necessary condition for edges.

Because the number of super reads is substantially smaller than the number of raw reads, the
super read overlap graph can be constructed in short time. For constructing it, we again compute
all-vs-all super read overlaps using Minimap2, filter bad overlaps (remove self-overlaps, internal
overlaps, etc.), and eventually establish the overlap graph analogous to the procedure of Section
’Reads phasing’, where the only difference is that parameters differ; in general, because of the low
error rates and the extended length of super reads, more stringent thresholds are necessary.

SNP-based spurious edges removal. As there may still be errors in super reads, one still
needs to distinguish between uncorrected errors and true variations. As a consequence, super reads
can have false positive overlaps when considering sequence identity in the overlapping regions alone,
which leads to the introduction of misassemblies.

To control false positive overlaps, we further refine the edges of the super read overlap graph by
applying a heterozygous SNP-based procedure to remove spurious edges that we developed. In more
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detail, for a pair of overlapping super reads, we collect the corrected reads which belong to the read
groups that correspond with the super reads, and map the reads back to the sequence formed by
concatenating the pair of super reads along their overlap.

Subsequently, we genotype the variants involved in the overlap regions, and remove overlaps that
contain at least k heterozygous SNPs. In our experiments k = 0, which correspond to requiring
perfect overlap. This step might be time-consuming if genome size is large. We therefore consider it
optional, and recommend it preferably for small genomes or particular genomic regions, such as the
MHC region in our case.

Final contigs generation

Graph simplification. First, we simplify the super read overlap graph by removing tips, because
tips are likely to be introduced by spurious overlaps, hence reflect mistaken junctures of super reads.
Second, we remove all transitive edges, for the exact same reasons for which we remove such edges in
the read overlap graph (see Section ’Reads phasing’ and Fig. 3).

Merging simple paths. A node v ∈ V ′ in the directed graph G′ is defined as a non-branching
node if its indegree and outdegree are both equal to one, and v is defined as a branching node if
either its indegree or outdegree is greater than one. A simple path is a maximal non-branching path,
that is its internal nodes are non-branching nodes, while starting and final nodes are branching. For
such paths, there is only one possible way to combine the corresponding super reads. Therefore, we
merge every simple path into a single contig. Since the number of nodes and edges in super read
overlap graph G′ is small, it is straightforward and very efficient to enumerate and merge all simple
paths (see Fig. 3).

Final contigs polishing. This step is recommendable when the sequencing coverage is low, i.e.
less than 20x per haplotype. The reason is that the ends of super reads are likely to contain an
elevated amount of errors. This needs to be addressed and corrected. So, for each contig generated
from a simple path, we collect all corrected reads involved in the read groups that gave rise to the
super reads forming the simple path, and align them to the contig. By evaluation of the resulting
alignment, further errors can be eliminated, resulting in polished contigs as the final output.

Parameter settings

There are mainly two parameters to be set during the read overlap graph construction, namely, the
minimum overlap length and the minimum sequence identity of the read overlap. In our experiments,
the minimum overlap length is 1000 bp, and the minimum sequence identity of the read overlap is
0.95 for PacBio HiFi reads, and 0.75 for PacBio CLR and ONT reads, in agreement with the
approximate expected amount of identity according to the inherent error rates. These parameters
reflect similar choices used with other tools Chin et al. (2016); Koren et al. (2017).
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Availability of data and materials

Simulated data can be downloaded from https://doi.org/10.5281/zenodo.4603608. The data
used to generate PacBio HiFi sample profile when simulating HiFi reads can be downloaded from
EBI http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/
20190925_PUR_PacBio_HiFi/. For real sequencing data, PacBio HiFi/CLR reads of human
individual HG00733 can be downloaded from EBI http://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/data_collections/HGSVC2/working/20190925_PUR_PacBio_HiFi/ and SRA (accession
number: SRR7615963), respectively. Oxford Nanopore PromethION sequencing reads of human
individual NA19240 can be downloaded from ENA (project ID: PRJEB26791). As for ground truth
reference sequences used for benchmarking experiments, three human MHC haplotypes (PGF, COX
and DBB) are from the Vega Genome Browser
http://vega.archive.ensembl.org/info/data/MHC_Homo_sapiens.html. Full length haplotypes
(chromosome 6) of individuals HG00733 and NA19240 can be downloaded from
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/

working/20180227_IlluminaPolishedPhasedSV/.
The source code of phasebook is GPL-3.0 licensed, and publicly available at

https://github.com/phasebook/phasebook.
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