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Abstract

Understanding how point mutations can render a ligand or a drug ineffective against

a given biological target is a problem of immense fundamental and practical relevance.

Often the efficacy of such resistance mutations can be explained purely on a thermo-

dynamic basis wherein the mutated system displays a reduced binding affinity for the

ligand. However, the more perplexing and harder to explain situation is when two pro-

tein sequences have the same binding affinity for a drug. In this work, we demonstrate

how all-atom molecular dynamics simulations, specifically using recent developments
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grounded in statistical mechanics and information theory, can provide a detailed mech-

anistic rationale for such variances. We establish the dissociation mechanism for the

popular anti-cancer drug Imatinib (Gleevec) against wild-type and N387S mutant of

Abl kinase. We show how this single point mutation triggers a non-local response in

the protein’s flexibility and eventually leads to pathway differentiation during dissoci-

ation. This pathway differentiation explains why Gleevec has a long residence time in

the wild-type Abl, but for the mutant, by opening up a backdoor pathway for ligand

exit, an order of magnitude shorter residence time is obtained. We thus believe that

this work marks an efficient and scalable approach to pinpoint the molecular determi-

nants of resistance mutations in biomolecular receptors of pharmacological relevance

that are hard to explain using a simple structural perspective and require mechanistic

and kinetic insights.

Significance statement: Relapse in late-stage cancer patients is often correlated with

the onset of drug resistance mutations. Some of these mutations are very far from the

binding site and thus hard to explain from a purely structural perspective. Here we employ

all-atom molecular dynamics simulations aided by ideas from information theory that can

reach timescales of seconds with minimal human bias in how the sampling is enhanced.

Through these we explain how a single point mutation triggers a non-local response in the

protein kinase’s flexibility and eventually leads to pathway differentiation during dissociation,

thereby significantly reducing the residence time of the drug.

Introduction

Post-translational modifications of protein kinases play a crucial role in the modulation of

multiple signaling pathways, which regulate key cellular processes like cell growth and prolif-

eration.1,2 Protein kinases assist phosphorylation by catalyzing the transfer of γ-phosphate

of an ATP molecule to the hydroxyl group of Ser, Thr, or Tyr residues.1,2 Kinases thereby

act as switches that control key cellular signaling pathways. Over the years, the importance
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of kinases as drug targets and thereby effort to develop therapeutic agents for modulating

kinase activity has been well established.2–4 The development of kinase inhibitors is however

challenging because of the high sequence conservation of the kinase ATP-binding site, the

major site targeted by these small molecules. However, despite the challenges, remarkable

progress in the field of kinase-based drug design was made with the discovery of Imatinib

(Gleevec)5,6 as a potent Abl kinase inhibitor. Gleevec has continually been found to be

highly efficacious in the treatment of early-stage chronic myeloid leukemia (CML).5,6 Unfor-

tunately, a large fraction of late-stage cancer patients suffer from cancer relapse due to the

onset of drug resistance.7–10

Understanding the molecular basis of the effects of these oncogenic mutations on the

efficacy of cancer drugs is the first step in solving the problem of drug resistance. From

a molecular point of view, the mutations can be classified as either orthosteric i.e, in the

inhibitor binding site directly affecting Imatinib binding or allosteric wherein these muta-

tions modulate drug resistance indirectly.11 In the past, multiple computational7,12,13 and

experimental11,14 studies have tried to explain the resistance mechanism by either point-

ing to direct abrogation of H-bonding interactions or steric effects in the reduction of the

binding affinity. The well-studied T315I mutation in Abl kinase is such an example.12,15,16

Particularly, alchemical free energy-based calculations17,18 have been employed to quantify

the direct effects of the point mutation on inhibitor binding free energy. Although alchemical

methods to a certain degree have been able to quantify the effects of resistant mutations on

inhibitor binding free energies, it remains untenable to use them for allosteric mutations

that rely mainly on modulating conformational dynamics of the kinase. Of particular in-

terest are a certain class of mutations that have no appreciable effect on Imatinib binding

affinity. Rather, these mutations are expected to regulate drug efficacy by modulating drug

dissociation kinetics. Thus, for this class of mutations understanding the drug dissociation

kinetics is paramount to understanding drug resistance. Despite the importance of kinetic

measurements in understanding drug efficacy,19–21 such measurements either computation-
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ally or experimentally have remained non-trivial. In the context of drug-receptor binding,

experimental methods have been useful in the elucidation of low energy states, however, they

have lacked in the description of short-lived metastable and transition states.

Our specific interest in this work pertains to a recent discovery made by Lyczek etitat

al,22 who have identified a novel N387S mutant of Abl kinase to which the FDA-approved and

widely prescribed oral chemotherapy drug Imatinib (Gleevec) binds with a similar binding

affinity as it does to the wild-type (WT). However, they find that Imatinib displays a three-

time faster dissociation rate koff from the mutant than from the WT. In this work, we use

recent statistical mechanics and information theory-based all-atom resolution methods23–25

to provide a mechanistic all-atom resolution rationale for this perplexing and important

finding. Our method provides absolute koff estimates for both WT and mutant Abl within

an order of magnitude of the experimentally determined values, also capturing their relative

magnitudes. Going even beyond reproducing koff values, our calculations directly pinpoint

the varied dissociation pathways and mechanisms adopted by Imatinib in both variants

of Abl kinase. Our key mechanistic finding can be summarized as follows: We find that

there are two distinct Imatinib dissociation pathways for the WT and the mutant Abl.

Furthermore, we explain the order of magnitude difference between WT and mutant Imatinib

unbinding kinetics by invoking varied structural rearrangements required to allow for two

distinct Imatinib dissociation pathways in WT and mutant Abl.

To perform such mechanistically insightful simulations, in principle one could use compu-

tational methods like molecular dynamics (MD) simulations. These have the potential to not

just quantify koff , but also give a direct atomistic understanding of metastable states along

with drug binding/unbinding pathways which have remained elusive through experimental

measurements. However, even with highly specialized hardware, brute-force MD has been

limited to at best a fraction of a millisecond.26,27 On the other hand, numerous enhanced

sampling algorithms28–38 have been employed for koff calculations with more reasonable

computational costs and the ability to achieve pharmacologically relevant timescales of sec-
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onds, minutes, and slower. Here we use one such enhanced sampling method “infrequent

metadynamics” that has been employed to obtain unbiased estimates of dissociation kinetics

in numerous systems.23,35,36,39 The reliability of such calculations40 is closely linked to the

ability to design an appropriate reaction coordinate (RC) that describes the dissociation pro-

cess and that can be used to construct the low-dimensional biasing potential as a function

thereof. In general, learning such an RC is an extremely difficult problem especially for rare

events such as drug dissociation, wherein any framework used to learn the RC depends on

the quality of the sampling, while accurate sampling itself can not be achieved without hav-

ing a reasonable RC. In this work, we make use of recently developed machine learning and

statistical mechanics-based methods23–25 that tackle the above chicken-versus-egg problem

through systematically iterating between sampling and RC optimization in a nearly auto-

mated manner (see Fig. 6 in Supplementary Information (SI) for a flowchart of the overall

protocol). Once a reliable RC is obtained, infrequent metadynamics can be performed along

it to calculate koff estimates with error bars41 and directly observe the entire dissociation

pathway with all-atom and femtosecond resolution.

Results and discussion

Abl-kinase structure

For the sake of completeness, we begin by summarizing some well-known structural details.

Abl kinase has a typical bilobal kinase domain, consisting of a smaller N-terminal lobe (N-

lobe) and a larger C-terminal lobe (C-lobe). The ATP binding site is located between the

N-lobe and the C-lobe of the catalytic domain, distinguished by conserved structural features

like the phosphate-positioning loop (P-loop), the activation loop (A-loop), the αC helix, and

the conserved Asp-Phe-Gly (DFG) motif (Fig. 1). As evidenced by biophysical experi-

ments42–45in addition to computational46–53 and structural studies,8,12,44,54–56 Abl-kinase ex-

ists in a dynamic equilibrium between multiple conformations: active, inactive and multiple
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intermediate states interspersing these. These states are characterized by the conformational

flexibility of evolutionarily preserved kinase motifs such as the A-loop, DFG motif and the

αC-helix (Fig. 1). Abl-kinase in its active conformation is characterized by the “DFG-in”

and “αC-in” state. In this state the D400 residue of the DFG loop points towards the active

site, ready to coordinate with ATP and the Mg2+ ion. The αC helix swings in towards the

binding site adopting the “αC-in” conformation and allowing for ion-pair interaction between

the conserved E305 on αC helix with conserved K290 in the β3 strand. At the same time,

the A-loop adopts an extended conformation allowing for space for the substrate to dock.

Figure 1: Crystallographic binding mode: Imatinib (grey) bound to the catalytic domain
of Abl kinase (PDB id 1OPJ). Kinase domain is divided into N-terminal lobe (N-lobe) and
C-terminal lobe (C-lobe), with the inhibitor (Imatinib) binding site located between the
lobes. Abl-kinase has conserved structural features like A-loop (pink ribbon), P-loop (blue
ribbon), αC helix (yellow ribbon), hinge (purple ribbon), and DFG motif (yellow sticks).
Salt bridges involve D305 in the DFG motif, R386 in the A-loop, E305 in the αC helix, and
K290 cover and block the binding tunnel in front. The mutant residue N387S lies behind
the DFG motif and is shown in a gray stick.

The conserved E305, in turn, interacts with the α and β phosphates of ATP. In contrast to

this very specific characterized active state, a kinase can also adopt one of many inactive

conformations.57–60 One such often-mentioned conformation is the so-called “DFG-out” con-

formation, where the D400 switches its position with the phenylalanine F402, pointing away
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from the ATP binding site. Type II inhibitors such as Imatinib are suspected to selectively

target this “DFG-out” inactive state.14,61 Imatinib is stabilized in the ATP binding site pre-

dominately via hydrophobic interactions along with 6 hydrogen bonding interactions with

the side chain hydroxyl of the gatekeeper residue T315, backbone and side chain of E305,

and the carbonyl and backbone-NH of D381 on the αC helix.

Infrequent metadynamics simulations reveal two distinct pathways

In this work, our central aim is to use all-atom MD simulations to understand the molecular

determinants that result in an order of magnitude difference in the measured Imatinib koff

for WT relative to the mutant N387S Abl kinase. Due to the extremely slow timescales of

the dissociation process relative to what can be achieved in MD simulations, here we use a

combination of enhanced sampling methods as mentioned in the Introduction and detailed in

the Methods section. The first step in the koff calculation for Imatinib is the description of a

low-dimensional reaction coordinate (RC) that can suitably describe biological processes of

interest, in this case, the dissociation of Imatinib from WT/Mutant Abl kinase. Briefly, we

perform 100 ns long unbiased MD simulation on Imatinib bound with WT and Mutant Abl

kinase respectively. By employing the method AMINO25 (Methods) on these trajectories

we learned non-redundant trial order parameters (OPs) that describe Imatinib dissociation

(Fig. 2 A-B). Starting from a total possible 84 OPs corresponding to different possible kinase-

Imatinib heavy-atom contacts, AMINO identifies 5 OPs to be sufficient for the WT and the

mutant complexes respectively shown in Fig. 2 A-B. See Table 2 in SI for a summary of OPs.

These OPs are expressed as distances between Cα atoms of highlighted residues and centers

of mass of two halves of Imatinib. These two halves are labeled p2a (blue stick), which is

initially solvent exposed, and p2b (orange stick) which is the buried half. In the case of WT,

AMINO derived OPs measure the distance between p2a and the Cα atoms of the residues

Y251, Y272 along with the distance between p2b and Cα atoms of the residues E257 and

S248. In comparison, mutant OPs are defined by the distance between p2a and the Cα atoms
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Figure 2: A) and B) show order parameters OPs obtained through AMINO for WT and
Mutant respectively. C) and D) show the respective RC constructed from these OPs through
SGOOP. E) shows the residence times (red bar) obtained by biasing the respective RC for
WT and mutant system compared against experimental measurements (blue bars). The red
bars represent the fitted residence time39 while the standard deviation is shown as a black
error bar. See main text for further details of the OPs.
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of the residues I332,K293 along with the distance between p2b and Cα atoms of the residues

D344,Y272, F302. Along with these OPs, the other common OPs for mutant and WT are

the distances between CαCβ atoms of T334 shown in red spheres and the N3 and N4 atoms

of Imatinib shown in blue spheres. Subsequently, multiple rounds of maximum caliber-based

SGOOP optimization24,62 are performed to construct an even lower-dimensional RC from

these OPs shown in Fig. 2 C-D. Finally, 11 independent trials of infrequent metadynamics

were performed starting from the bound crystal pose and biasing the aforementioned RC,

stopping when the ligand was fully solvated. Through these, we generated an ensemble of

ligand dissociation pathways along with the associated protein conformational changes and

culminating in the koff calculation (Fig. 2 E) through the procedure of Ref.23,39

Figure 3: Mutational effect on the substrate release pathway (red arrows in the top panel):
A) WT (top left) and Mutant (top right) panels. Ligand dissociation trajectory is depicted by
ligands in licorice representation sampled every 100 ps. The overall direction of the substrate
release is depicted by transparent pink arrows. Bar plot and the error bar representing the
mean and standard deviation of the closest distance between the center of mass of Imatinib
and B) hinge and C) αC helix for WT (blue bar) and mutant (orange bar) trajectories.
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In the infrequent metadynamics simulations, depending upon the protein, WT or mutant,

two distinct Imatinib release pathways were observed. The two pathways as shown in Fig.

3A (left/right upper panel), can be described as: (i) exit under the P-loop closer to the

αC helix (i.e., through the hydrophobic pocket), henceforth named as the αC pathway, or

(ii) exit through a pathway closer to the P-loop and the kinase hinge, named as the hinge

pathway. These two pathways can be more quantitatively characterized by projecting them

onto a 2-D space spanned by the two distances between the Imatinib center of mass and the

centers of mass (i) of the alpha carbons of the hinge, and (ii) of the αC helix. Evidently,

as can be seen in Fig. 3 A (upper/bottom left panel), in the WT dissociation trajectory,

the hinge pathway is the dominant pathway. Quantitatively, Imatinib during its dissociation

comes as close as 3.8±1 Å to the hinge region while not getting closer than 9±0.5 Å from the

αC helix. Sharply contrasted to this, for dissociation from N387S we find that Imatinib does

not get closer than 8±0.5 Å to the hinge region while it comes as close as 6±0.5 Å to the

αC helix. These distances are the averaged values over the different independent trajectories

with error bars shown in Fig. 3.

Together these observations give mechanistic insight into the different dissociation time

scales for Imatinib from WT Abl and from N387S Abl. A single point mutation results

in divergent pathways for Imatinib dissociation, opening up the possibility to take a much

quicker release route for the drug and thus lowering its residence time. In the next section,

we provide calculated residence times from our simulations for both systems along with

experimental benchmarks, following which we provide an atomistic underpinning for the

observed differences in the WT and mutant dissociation pathways and koff values.

Overall kinetics of the dissociation process

In order to determine the kinetics of the dissociation process, we first define the dissociated

state of the ligand as when Imatinib has reached the solvent-exposed surface of the protein.

We find that starting here there could be other “trap states” on the surface where Imatinib
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Table 1: Summary of Imatinib dissociation kinetics, comparing the residence time/koff of
WT and mutant Abl as measured in this work against experiments in Ref.22

System
Infreq
Metad

residence time (sec)

Infreq.
Metad.

koff (sec−1)

Experimental
residence time (sec)

Experimental
koff (sec−1)

p-value

Wild-Type 1560± 797 6.41± 3.28 e-04 1357 7.368 e-04 0.11
N368S 269± 176 3.700± 0.24 e-03 562 1.770 e-03 0.23.

could bind with much weaker strength, but we ignore the kinetics corresponding to these as

they can be expected to contribute much less relative to the time Imatinib takes to dissociate

from the main binding site. More quantitatively, Imatinib is considered to be dissociated

if the distance between the ligand center of mass and the binding site exceeds 15 Å. As

stated in the previous section, ligand dissociation was observed in each of the 11 infrequent

metadynamics simulations for the WT and for the mutant. By fitting the respective 11

observations of the residence time to a Poisson distribution as per the protocol in Ref.36,39

and described further in Supplementary Information (SI), we calculate the residence times τ

for both systems along with koff = 1
τ
. We also perform a p-value analysis (Table 1 and Fig.

8 in SI) for both which indicates that the residence time calculations meet the reliability

threshold from Ref.36,39 The residence time for Imatinib in WT Abl was 1560±797 sec, in

excellent agreement with the experimentally determined residence time of 1357 sec. On the

other hand, we find a shorter residence time for Imatinib in the mutant Abl kinase, equalling

269±176 sec and again in excellent agreement with the experimentally measured value of

562 sec. Thus as can be seen in Fig. 2 E, qualitatively and quantitatively we are successful

in recapitulating the experimentally observed residence times, with Imatinib koff for mutant

Abl being around an order of magnitude faster than WT. More importantly, apart from

having a qualitative agreement in predicting the order of magnitude difference in Imatinib

koff for mutant vs WT Abl, the absolute values of the calculated residence time and koff are

well within the same order of magnitude as the experimentally determined values (Fig. 2 E).

In the next section, the different dissociation pathways are explored in detail, describing the
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structural features distinguishing the two main pathways and finally culminating in providing

a mechanistic explanation for the observed difference in Imatinib koff values between WT

and N387S Abl kinase.

Mechanistic underpinning of mutational effects on dissociation path

In the previous sections, we established that Imatinib unbinds from WT-Abl and N387S-Abl

dominantly via the hinge pathway and the αC pathway respectively and that our enhanced

sampling approach is based on AMINO, SGOOP and infrequent metadynamics can return

quantitatively accurate residence times for Imatinib in WT and N387S Abl kinase. We now

provide further mechanistic analysis joining the results of the previous sections. For this,

we approximately classify the Imatinib-Abl kinase system in three states, on the basis of

the distance d between the Imatinib center of mass and the binding site. These are the

(i) starting state (crystal structure), (ii) pre-release state (d ≤ 4.5 within Å) and (iii) the

dissociated state (d≥15 Å).

We observe that for Imatinib in complex with the WT-Abl system (Fig. 4 A), the sub-

strate release pathway is enclosed by a triad of interactions between the P-loop, hinge, and

the DFG loop. In this state, the residue Y272 from the P-loop forms a hydrogen bond with

N341 from the hinge. Furthermore, Y272 packs against F401 from the DFG loop stabilized

by the CH–π interaction. Subsequently, as Abl kinase transits to the pre-release state, P-

loop moves away from the hinge and the DFG loop, resulting in the loss of the Y272-N341

hydrogen bond. The resultant pre-release state is characterized by weakened P-loop hinge

interaction and an open pathway for substrate release. Consistent with this, for the WT

Abl-Imatinib system by averaging over all 11 independent dissociation trajectories, we find

(Fig. 4 A, C) the minimum attained distance between Imatinib and the hinge region to be

8.7±3.1 Å, implying an open pathway for the substrate release proximal to the P-loop-hinge

region. In comparison to the dissociation of Imatinib from N387S Abl, the corresponding

Imatinib-Hinge region minimum distance (Fig. 4 C) is 6±3.73 Å, signifying a relatively oc-
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Figure 4: A) Left: Starting state of WT Abl (Crystal structure). H-bond between Y272 (P-
loop) and N341 (hinge) is shown as a blue dashed line. Right: Abl conformation transiting
to the pre-release state involves disrupted h-bond between Y272 and N341 forming an open
ligand release pathway depicted by a black arrow. B) Left: H-bond between D400 from the
DFG motif and Imatinib (gray sticks) in N387S Abl is shown as a thick red line. Right:
Conformational changes in N387S Abl as it transits to the pre-released state involve the
disruption of the interaction network of E305, K290, Imatinib, and DFG motif. C) and D)
respectively show the closest distance (with error bars) between C) Cα atoms of Y272 and
N341 for WT Abl (Blue) and N387S Abl (orange); and D) Cα atoms of K290 and D400 for
WT Abl (Blue) and N387S Abl (orange).
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cluded P-loop-hinge pathway as compared to WT Abl. In the case of N387S mutant Abl,

αC pathway is blocked by the packing of αC helix against the DFG motif and Imatinib.

Particularly, the residue K290 from the K290–E305 of the prototypical ionic lock interacts

with the backbone carbonyl (Fig. 4 B) of the residue D400 from the DFG motif. Further-

more, the backbone N-H of the F401 from the DFG motif stabilizes the binding of Imatinib.

As mutant Abl transits to the pre-released state, the major conformational change that we

observe involves (Fig. 4 B) the outward motion of αC helix from the αC helix-in state. As

a direct consequence of the αC helix outward motion, we observe diminished K290-DFG

interaction resulting in the formation of an open the αC helix pathway. Consistently, in the

N387S Abl-Imatinib system by averaging over all 11 independent dissociation trajectories,

we find (Fig. 4 D) the K290-D400 distance to be 7.9±1 Å in the pre-released state. Com-

paratively, for WT Abl-Imatinib, the average K290-D400 distance was 5±3 Å, signifying an

open αC helix pathway for Imatinib release.

In order to further understand the molecular basis of distinct Imatinib release pathways

for WT and N387S Abl and the resulting differences in dissociation kinetics, we also analyze

the effect of mutation on the conformational dynamics of the DFG motif. We observe

(Fig. 5 A (left panel)) that the residue N387 in WT Abl forms hydrogen bonds with the

backbone of residue A399 which is one residue upstream of D400 from the DFG motif.

However, in N387S Abl, the mutated residue Serine with a smaller side-chain than the original

Asparagine in the WT Abl has diminished propensity (Fig. 5 A (right panel)) to form the

aforementioned hydrogen bonding interaction. Evidently, by averaging over all independent

11 WT dissociation trajectories prior to the substrate release, we observe (Fig. 5 B) that

on average N387 forms 0.8±0.5 hydrogen bonds with backbone A399. On the other hand,

by averaging over all independent 11 trajectories, the average number of hydrogen bonds

between S387 and DFG motif was observed to be only 0.3±0.5. As a direct consequence

of impaired hydrogen bonding interactions, we observe that the DFG motif has an elevated

conformational flexibility (Fig. 5 B) in mutant Abl as compared to WT. Consistently, we
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Figure 5: Flexibility of DFG motif is modulated by h-bond interaction of N387 and the DFG
loop. A) Crystal structure pose of Imatinib (gray licorice representation) in WT (left panel)
and N387S (right panel). DFG motif is represented by yellow licorice. H-bond between N387
(gray licorice) and A399 is shown as blue dashed line. Bar plot and the error bar representing
the mean and standard deviation of B) N387 and DFG motif for WT Abl (Blue bar) and
N387S Abl (orange bar) C) Root mean square deviation (RMSD) of DFG motif from the
crystal structure position for WT Abl (Blue bar) and N387S Abl (orange bar).
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observe that on an average in the N387S Abl-Imatinib trajectories, the mean root mean

square deviation (RMSD) of the DFG motif from the crystal structure was observed to be

2.8 Å in comparison to 2.2 Å for the WT trajectories.

We hypothesize that the increased flexibility of the DFG motif in the mutated N387S

Abl kinase correlates with the diminished interaction between K290 and the DFG backbone,

thereby allowing for the outward αC helix motion. This outward αC helix motion results

in an open Imatinib release pathway proximal to αC helix. However, the P-loop and hinge

interaction in mutant Abl remains unaffected and hence the pathway proximal to the hinge

remains closed. In comparison to WT Abl, the DFG motif has diminished conformational

flexibility, and thus the K290 DFG interaction is conserved. As a result, the αC helix remains

packed against the DFG motif effectively blocking the αC helix proximal pathway. At the

same time, we observe that in WT Abl instead of the outward αC helix motion, the P-loop

and hinge interaction is weakened by the outward motion of the P-loop from the binding

site. The outward P-loop motion contributes to opening up the substrate release pathway

proximal to the hinge rather than the αC helix.

Conclusion

Drug resistance in late-stage cancer patients remains a major factor in the failure of anti-

cancer therapeutic treatments. In this work, we describe an efficient formalism to charac-

terize the molecular determinants of the resistance mutations, leading to potentially develop

therapeutics that can potentially overcome the drug efficacy loss due to resistance muta-

tions. Particularly, we focus on a novel N387S Abl kinase mutation discovered by Lyczek

et al 22 that results in a three times faster koff for Imatinib against mutated Abl versus

wild-type Abl, while the Imatinib binding affinity remains unchanged (note different residue

numbering in both works, offset by 19 residues). We systematically employ a combination

of information theory (AMINO)25 and statistical mechanics based (SGOOP)24 methods to
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determine an optimum reaction coordinate (RC) that describes Imatinib unbinding mech-

anism from the WT and N387 Abl. The RC is optimized by iterating between rounds of

SGOOP and metadynamics simulations and then used in independent rounds of infrequent

metadynamics23 to obtain dissociation kinetics.

We observe that Imatinib dissociates from WT and N387S Abl through two distinct

pathways. The predominant Imatinib dissociation pathway from WT Abl is through the

kinase hinge region, while against N387S Abl Imatinib dissociates via the αC helix region.

Subsequently, comparing the Imatinib unbinding from the N387S and WT infrequent meta-

dynamics trajectories, we observe a diminished propensity of the mutated serine at N387 to

form an H-bond with the backbone carbonyl of A399 which is one residue upstream from

D400 of the DFG motif. In comparison, in the WT Abl aforementioned H-bonding interac-

tion is conserved. Furthermore, the reduced H-bonding interaction between N387S and the

DFG motif gets manifested in increased flexibility of the DFG motif. We hypothesize that

the increased DFG motif flexibility as observed in N387S Abl results impairs the interaction

of K290 and the DFG backbone, facilitating an outward αC helix motion, thus allowing for

Imatinib release via the αC helix pathway. In comparison, in WT Abl Imatinib unbinding

requires a drastic conformational change involving disruption of the H-bonding interaction

of N341 from the hinge and Y272 from the P-loop, creating a pathway for Imatinib to release

via the hinge pathway. We reason that comparatively larger conformational change in the

Abl resulting in Imatinib release from WT as compared to N387S Abl assists in faster koff

for N387S as compared to WT Abl. This work thus represents the potential to perform such

investigations in the future for diverse systems using all-atom simulations that can access

pharmacologically relevant timescales with minimum human intervention and prior bias.
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Methods

Molecular Dynamics

Molecular dynamics simulations were initiated from the crystal structure of Abl kinase bound

to Imatinib in the DFG-in state (PDB id: 1OPJ). Protonation states of titratable residues

were assigned on the basis of pKa calculations performed using PROPKA 3.163,64 at pH 7.

N387S mutant structure was prepared using the side-chain mutation module of MOE.65 Using

the solution builder module in CHARMM-GUI,66,67 the Abl kinase-Imatinib crystal structure

was solvated with TIP3P water molecules.68 Finally, Na+ and Cl− ions were added, and the

system was neutralized with the ionic concentration set to 100 mM. The final simulation

box comprising of Abl kinase, Imatinib, water molecules, and ions was ∼55 K atoms. All

simulations were performed on GROMACS2018 patched with PLUMED version 2.469,70

with a 2 fs time step. Simulations were performed utilizing CHARMM36 force field71 for

protein, TIP3P for water molecules68 and, CHARMM General Force Field (CGenFF)72

for Imatinib. Temperature and pressure were kept at 300 K and 1 bar using the velocity

rescale thermostat73 and Parrinello–Rahman barostat.74 The non-bonded interactions were

calculated with a 10 Å cutoff, and long-range electrostatics were calculated using the particle-
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mesh Ewald (PME) method.75

AMINO

The basis set of OPs used in this work was determined using AMINO.25 AMINO reduces

a large set of OPs to a minimally-redundant subset using k-medoids clustering with the

following mutual information based distance metric:

D(X;Y ) = 1− I(X;Y )

H(X, Y )
(1)

= 2−
∑

x∈X
∑

y∈Y P (x, y) ∗ log(P (x) ∗ P (y))∑
x∈X

∑
y∈Y P (x, y) ∗ log(P (x, y))

(2)

The input trajectory for AMINO was 100 ns of unbiased simulation for N387S and WT

Abl bound to Imatinib with an initial set of 84 OPs corresponding to the heavy atom

distance between Imatinib and the Cα atoms of Abl. The stationary probabilities for pairs

of these OPs were estimated using histograms with 50 bins and clusters of up to 20 OPs

were compared to determine the optimal number of outputs. The output of AMINO was a

set of 5 OPs for each system.

SGOOP

The RCs used for enhanced sampling were linear combinations of the OPs found using

SGOOP.24,76 This framework uses a maximum caliber model77,78 to construct a transition

matrix along a given low-dimensional projection. The eigenspectra associated with the

transition matrix is then calculated and the largest gap between consecutive eigenvalues,

called the spectral gap, is found. This spectral gap represents the timescale separation

between slow and fast processes. SGOOP scans different linear combinations in order to

find the RC which maximizes the spectral gap and in turn the timescale separation between

slow and fast processes. In this work, SGOOP was used in an iterative manner using input

trajectories from the most recent simulation.
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The first round of SGOOP was performed on a well-tempered metadynamics trajectory

using a crude trial RC to learn a new putative RC which was a linear combination of AMINO

OPs. Using the learned RC, a well-tempered metadynamics simulation was performed, to

accelerate Imatinib dissociation. The resultant biased trajectory was fed back to SGOOP

to learn an improved RC. The improved RC was then used to bias the next round of well-

tempered metadynamics, subsequently, SGOOP was performed to further improve the RC.

This process was iterated and at each step, the accelerated time and spectral gap were calcu-

lated. The iterative process was terminated when an improvement (lowering) in accelerated

time was not observed (see SI Fig. 7, 9). Typically, this required 2-3 rounds of iterative

SGOOP for both WT and N387S Abl systems.

Infrequent Metadynamics

We performed 11 independent infrequent metadynamics simulations starting from the crystal

structure of WT and N387S Abl. Metadynamics was performed using the PLUMED imple-

mentation of well-tempered metadynamics with a bias factor of 10, an initial hill height of

1.5 kJ/mol, and bias deposited every 20 picoseconds.69,70,79 Biases were deposited on the RC

learned from the iterative SGOOP calculation as described previously. The sigma value of

the Gaussian bias kernel was estimated by calculating the standard deviation of the biased

RC from the 100 ns of equilibrium MD simulation of WT and N387S Abl.
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Supplementary Information

Table 2: Summary of order parameters for Wild-Type and N387S simulation set. Order
parameters are defined as the distance between the Cα atom of Abl kinase and the center
of mass of Imatinib atoms.

System OP Abl kinase residue (Cα) Imatinib atoms

Wild-Type d1 T334 N3-N4
Wild-Type d1a Y251 p2a
Wild-Type d1b Y272 p2a
Wild-Type d2a S248 p2b
Wild-Type d2b E257 p2b

N368S d’1 T334 N3-N4
N368S d’1a K293 p2a
N368S d’1b I332 p2a
N368S d’2a Y272 p2b
N368S d’2b F302 p2b

30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2021. ; https://doi.org/10.1101/2021.07.02.450932doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.02.450932
http://creativecommons.org/licenses/by/4.0/


Figure 6: Schematic representing our protocol to generate a suitable RC to be used in
biasing infrequent metadynamics simulation. Starting from a trial RC and an unbiased MD
simulation, we perform AMINO to generate a list of OPs. Subsequently, we systematically
iterate between sampling and RC optimization in a nearly automated manner to obtain the
RC to used to bias infrequent metadynamics simulations.

Figure 7: Variation in accelerated time (logarithmic scale) through rounds of preliminary
metadynamics (i.e. frequent biasing as opposed to infrequent) is used to assess the quality
of RC. Bar plot showing the evolution of log accelerated time in WT (blue bar) and Mutant
(red bar) upon 3 stages of iterative SGOOP refinement. The reaction coordinate chosen for
infrequent metadynamics run was obtained from the refinement round that corresponded to
minimum accelerated time.
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Figure 8: Empirical (dashed line) and fitted cumulative distribution functions (solid line) for
WT (blue curves) and Mutant (red curves) corresponding to kinetics and p-values reported
in main text in Table 1.

Figure 9: RC constructed for A) WT B) Mutant after multiple rounds of SGOOP.
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