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ABSTRACT 

 

Accurate positioning of functional residues is critical for the design of new protein functions, but 

has remained difficult because of the prevalence of irregular local geometries in active sites. 

Here we introduce two computational methods that build local protein geometries from 

sequence with atomic accuracy: fragment kinematic closure (FKIC) and loophash kinematic 

closure (LHKIC). FKIC and LHKIC integrate two approaches: robotics-inspired kinematics of 

protein backbones and insertion of peptide fragments, and show up to 140-fold improvements in 

native-like predictions over either approach alone. We then integrate these methods into a new 

design protocol, pull-into-place (PIP), to position functionally important sidechains via design of 

new structured loop conformations. We validate PIP by remodeling a sizeable active site region 

in an enzyme and confirming the engineered new conformations of two designs with crystal 

structures. The described methods can be applied broadly to the design of many new protein 

geometries and functions. 
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INTRODUCTION 

 

The ability to design proteins with new and useful functions has many applications in 

biotechnology and medicine. Computational methods have been successfully applied to the 

design of many new proteins with “idealized” stable structures1, but engineering new functions 

has remained a substantial challenge2. This discrepancy in design success can, at least 

partially, be attributed to several features that distinguish functional sites from idealized protein 

structures. First, functional sites are often highly sensitive to small errors in functional group 

positioning, and nonproductive conformations must be avoided for efficient catalysis. Second, 

cavities and charged functional surfaces in active sites can destabilize proteins considerably. 

Finally, many activities require multiple functional conformations separated by finely tuned 

energy barriers. 

  

Here we focus specifically on the problem of positioning functionally important sidechains via 

design of new structured loop conformations. Loops make up 50% of residues in enzyme active 

sites, compared to just 30% of residues overall3. This prevalence of loops in active sites 

suggests that structured loops are well suited to supporting the bespoke geometries of 

sidechain and backbone functional groups that are often necessary for function. However, the 

large number of degrees of freedom, which enable loops to adopt geometries optimized for 

function, also makes loops difficult to design since the space of backbone conformations to 

consider is vast.  

 

A handful of methods have been developed to address these challenges as reviewed 

previously4, including strategies utilizing the protein design program Rosetta5. Eiben et al. 

tasked players of the computer game Foldit with designing a loop region to better desolvate the 

active site of a computationally designed Diels-Alderase6. The players were successful, 
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ultimately designing a 13-residue insertion that improved catalysis by 20-fold, in part via a de 

novo helix-turn-helix motif. This strategy is not generalizable, however, as it required human 

intervention to solve the loop design problem. Murphy et al. developed an algorithm to redesign 

an active site loop in human guanine deaminase7, and Borgo et al. developed a similar 

algorithm to redesign a substrate-binding loop in E. coli methionine aminopeptidase8. Both 

algorithms place a sidechain in the ideal position for function, enumerate backbone coordinates 

capable of supporting the sidechain and then remodel the backbone to intersect one or more of 

those coordinates. In particular, Murphy et al. automatically determined the ideal length of the 

redesigned loop, while Borgo et al. derived ideal sidechain positions from the Protein Data Bank 

(PDB) and simultaneously accommodated multiple sidechains. Unlike the Foldit players6, 

however, neither of these two computational methods made large rearrangements to the loop 

backbone or incorporated regions of secondary structure into the designed loop, placing a 

practical limit on the extent to which loops can be rearranged to adopt new functions.  

  

In this study we introduce two robotics-inspired loop modeling methods, fragment-inspired 

kinematic closure (FKIC) and loophash-sampled kinematic closure (LHKIC), that can generate 

considerable structural changes and can include secondary structure elements. Each of these 

methods combines the robotics-inspired inverse kinematic closure algorithm (KIC) with a 

fragment-based search of conformational space, and are geared towards the design of new 

backbone geometries (LHKIC) and the prediction of backbone geometries from sequence 

(FKIC). We incorporate these methods into a new loop design protocol called Pull Into Place 

(PIP). The PIP protocol has three steps: (i) generation of new backbone conformations, where 

functional groups of interest are gently pulled towards their desired positions using harmonic 

restraints, (ii) sequence design using fixed-backbone side-chain optimizations with the same 

restraints, and (iii) structure prediction using unrestrained flexible-backbone simulations to 

identify designs predicted to adopt the desired new backbone conformation. We demonstrate 
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that PIP is capable of accurately designing large segments of the protein backbone by 

remodeling an enzyme active site loop and confirming the conformations of two designs with 

crystal structures. Detailed characterization of one successful design reveals a robustness to 

mutation, suggesting that multiple interactions contribute to the conformation of the remodeled 

loop. Together, the techniques described in this paper will advance the engineering of functional 

proteins by allowing the design of user-defined new active site geometries. 

 

 

RESULTS 

 

We set out to develop a method (PIP) to design new local backbone geometries in Rosetta to 

accurately position amino acid functional groups in a functional site. The PIP algorithm required 

3 components: (1) a method to generate suitable and designable backbone conformations for 

positioning defined functional groups, (2) a way to stabilize these new backbone and side chain 

conformations by finding sequences optimal for the desired structure, and (3) a method to 

predict the new conformation given a sequence, to assess whether the desired structure is also 

optimal for the designed sequence. 

 

We reasoned that robotics-inspired methods developed in our lab and incorporated into 

Rosetta9,10 would be suitable to generate conformations for (1), and design methods for (2) 

existed in Rosetta11. However, modeling structures given designed sequences represents a 

major bottleneck that becomes limiting especially when many designed sequences are to be 

evaluated and target structures do not exclusively adopt regular secondary structure 

geometries. We first describe two new methods that address this bottleneck and increase the 

efficiency of robotics-inspired sampling methods to predict and design new backbone 

conformations: fragment-kinematic closure (FKIC) and loophash-kinematic closure (LHKIC). We 
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then describe the application of the entire PIP protocol to a design problem in which we reshape 

the backbone geometry of the active site in ketosteroid isomerase (KSI) to enable catalysis with 

a non-native residue.  

 

FKIC and LHKIC algorithms 

 

FKIC and LHKIC integrate two concepts that have separately led to considerable advances in 

protein modeling: sampling preferred combinations of backbone torsions from fragments of 

proteins in the protein structure databank (PDB)12, and improved sampling of loop regions with 

an inverse kinematic closure algorithm termed ‘KIC’9 borrowed from the field of robotics13. 

 

KIC determines ‘mechanically accessible’ conformations for internal protein segments of given 

lengths by sampling the phi/psi torsion degrees of freedom in the segment. Three Cα atoms of 

an N-residue segment are designated as pivots, leaving N-3 non-pivot Cα atoms. In the 

standard implementation of KIC in Rosetta9, non-pivot torsions are sampled from a residue type-

specific Ramachandran map. A major bottleneck for KIC is that the number of possible 

conformations (combinations of torsion angles) increases dramatically with increasing numbers 

of residues to be modeled. This problem becomes especially limiting when predicting larger 

contiguous segments or entire functional sites which often contain both loop and secondary 

structure regions in several interacting segments; sampling of neighboring torsions from 

Ramachandran space is particularly non-ideal for secondary structure regions, where coupled 

torsions are unlikely to be sampled independently.  

 

To enable these more challenging but also more realistic problems, we integrated KIC with 

fragment insertion14 in the Rosetta protein structure prediction and design program5. In the new 

FKIC structure prediction method, non-pivot degrees of freedom are taken from peptide 
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fragments that are picked from the PDB using the sequence of the target loop15; KIC is then 

used to determine the values of the pivot torsions (Fig. 1a). We reasoned that FKIC would 

combine the improvements of KIC demonstrated previously9 with the reduction of degrees of 

freedom by using coupled torsion angles from fragments (in contrast to sampling all non-pivot 

torsions independently from Ramachandran space as in KIC), making FKIC particularly suitable 

for sampling local active site geometries. 

 

In design problems, the sequences of the target segments are variable during the sampling, 

which might limit the utility of FKIC for designing new segment conformations since the 

fragments in FKIC are picked based on sequence similarity to the starting structure. We 

therefore developed an additional method, LHKIC, which uses the loophash protocol16 to pick 

fragments that simultaneously sample structures and sequences of the target loops. The 

loophash protocol uses the 6D transformation between the residue before the first pivot and the 

residue after the last pivot as a query key to find peptide fragments from the PDB that 

approximately close the gap between these two residues (Fig. 1a). After insertion of a fragment, 

KIC determines the pivot torsions that close the gap and LHKIC mutates remodeled residues to 

the amino acids from the inserted fragment to improve local sequence-structure compatibility. 

Individual FKIC or LHKIC sampling moves (Fig. 1a) are then followed by optimization of side 

chain conformations in and around the altered backbone region and integrated into a Monte 

Carlo minimization protocol (Fig. 1b, Supplementary Fig. 1); sampled conformations are 

evaluated with Rosetta’s all-atom energy function17,18s. 

 

Loop structure prediction benchmarking   

 

We tested the ability of FKIC to recapitulate the local conformations of protein segments, given 

their sequences, on a benchmark of 45 12-residue loops19, which were used previously to 
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evaluate KIC9 (“Standard” set). We also constructed two new datasets designed to address the 

challenges of modeling active site regions highlighted above. The first new set contained 30 16-

residue-segments where each segment contains both regular secondary structure elements and 

loop regions (“Mixed Segment” set). We reasoned that FKIC should improve the sampling of 

regular secondary structure elements by building them from fragments, whereas these elements 

might be difficult to model with KIC alone, since KIC samples each non-pivot torsion angle 

independently. The second new set contained 30 pairs of interacting 10-residue segments 

(“Multiple Segments” set). For all three benchmark sets, we discarded information on the native 

geometry of all target segments by building starting conformations with extended phi/psi torsion 

angles and idealized bond lengths and angles. All side chains within 10Å from the target 

segments were deleted and replaced with side chain conformations from a rotamer library20 

during FKIC simulations. In all benchmark simulations, we also excluded fragments from 

structures homologous to the benchmark cases (Methods) to test FKIC’s ability to predict novel 

structures. For each test protein in each set, we generated 500 models with FKIC and 

calculated the backbone heavy atom root mean square deviation (RMSD) of each target 

segment after aligning the protein without the modeled segment to its crystal structure. We also 

applied control methods that use KIC and fragment insertion (CCD)21 alone to the same 

datasets using an otherwise identical protocol in Rosetta. For most comparisons, we replaced 

KIC with an improved KIC protocol called next-generation KIC (NGK)10. We used two 

performance metrics: The first quantifies prediction accuracy by determining the RMSD of the 

model with the lowest (best) Rosetta energy to each native structure and then taking the median 

RMSD value across each dataset. The second quantifies sampling performance by measuring 

the fraction of native-like (correct) models generated for each protein case, where native-like is 

defined as <1Å (“sub-Å”) RMSD to the native structure, and again taking the median for each 

dataset. We also measured the median run time to determine whether any increased sampling 

performance increases computational cost (Methods and Supplementary Table 1a). 
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The Rosetta KIC method had previously been shown9 to be comparable to a state-of-the-art 

molecular mechanics method19. The NGK update10 led to improved performance over KIC, and 

had comparable performance to GalaxyLoop-PS222, RCD+23, Sphinx24, LEAP25 and FREAD26,27 

when tested on identical datasets. Here we show that FKIC improves structure prediction 

accuracy over CCD, KIC and NGK, with the largest changes for the two new datasets (Fig. 2a, 

top and Supplementary Table 1a). On the 16-residue Mixed Segment dataset, which tests the 

ability of FKIC to predict conformations of protein segments with arbitrary secondary structure 

composition, the median accuracy improved to 0.53Å RMSD with FKIC compared to 1.29Å and 

1.07Å with CCD and NGK alone, respectively. In 23/30 cases FKIC was able to identify 

conformations very close to the crystallographic structure (<1Å RMSD) as the lowest scoring 

model, compared to only 13 cases with CCD and 15 cases with NGK (Supplementary Table 

2). For the Multiple Segments dataset, which tests the ability of FKIC to predict conformations of 

discontinuous interacting segments (a common feature of protein active sites), FKIC was the 

only method that yielded atomic (1Å) median accuracy, compared to 1.97Å and 1.29Å with CCD 

and NGK alone, respectively (Fig. 2a, top and Supplementary Table 1a). Representative 

examples where FKIC correctly predicted protein conformations while NGK failed are shown for 

the Mixed Segment and Multiple Segments datasets in Figs. 2b,c and details are given in 

Supplementary Tables 2 and 3. The improvements on the Standard dataset were smaller 

(median RMSD was 0.62Å with FKIC compared to 0.64Å for NGK, Supplementary Table 1a), 

but for 35/45 proteins FKIC finds lower energy structures than NGK (Supplementary Table 4). 

Cases where FKIC predictions did not lead to the identification of sub-Å accuracy lowest-scoring 

models can be attributed to both sampling and energy function limitations (Supplementary 

Table 5, Supplementary Fig. 2, and Supplementary Note 1). LHKIC performed similarly to 

FKIC when tested on the standard dataset (Fig, 2a, Supplementary Table 1a, and 

Supplementary Note 2). 
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The second notable advance with FKIC, in addition to the improvements in accuracy described 

above, is how frequently FKIC generated conformations that are <1Å RMSD from the 

crystallographic conformation (Fig. 2a, bottom). For the Mixed Segment set, the median 

fraction of sub-Å predictions for FKIC was 52.3%, which was 45- and 105-fold higher than for 

NGK and CCD, respectively. For the Multiple Segments dataset, the median fraction of sub-Å 

predictions was 28.5% with FKIC, which was 5-fold higher than with NGK (5.5%) and 143-fold 

higher (0.2%) than with CCD (Supplementary Table 1a). In several cases, FKIC was able to 

find correct solutions for even larger conformational sampling problems such as a set with 2 

interacting 12-residue segments (Supplementary Note 3 and Supplementary Tables 6-7). 

These improvements in sampling efficiency are important in particular for design, since they 

reduce the computational time needed to predict the conformation of a designed segment, 

allowing for more designs to be evaluated. Overall, the improvement of the fraction of sub-Å 

predictions is negatively correlated with the mean 3-mer fragment distance from the native 

structure (Fig. 2d, Methods). This observation shows that high quality fragments focus the 

sampling on native-like conformations. 

 

In all benchmark simulations described above, we excluded fragments from structures 

homologous to the benchmark cases. As expected, both prediction accuracy and the median 

fraction of sub-Å predictions improved further with fragments from homologs present in the 

database (Supplementary Table 1b). FKIC might therefore be able to accurately sample even 

larger regions in cases where homologous structures are available. Taken together, we 

conclude that FKIC drastically increases sampling efficiency in the prediction of protein 

segments from sequence. 
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Application of the PIP protocol  

 

With improved methods for sampling and prediction of backbone conformations in hand, we set 

out to test the entire PIP protocol in a design application. We chose Pseudomonas testosteroni 

ketosteroid isomerase (KSI) as a model system. In the KSI active site, a catalytic aspartate at 

position 38 abstracts a proton from a steroid substrate to catalyze an energetically favorable 

double-bond rearrangement. When using 5(10)-estrene-3,17-dione as a substrate (selected for 

the absorbance change caused by the KSI-catalyzed double-bond rearrangement), we observe 

that mutating aspartate 38 in KSI to a glutamate reduces the protein’s kcat by approximately 104-

fold (Table 1), similar to previous work that reported a reduction of 240-fold in the D38E mutant 

compared wild-type28. This reduction in kcat was attributed to the misplacement of the side chain 

carboxyl group that is common to glutamate and aspartate due to the additional carbon-carbon 

bond in the glutamate sidechain. Because of this sensitivity to perturbations on the length scale 

of a carbon-carbon bond, we reasoned that KSI was a good model system to test the ability of 

PIP to accurately position functional groups. In particular, we set out to replace aspartate with 

glutamate while maintaining the precise placement of the side chain carboxyl group (Fig. 3a) by 

reshaping a sizable region of the protein backbone (11-12 residues, Fig. 3b). No known 

homologs of KSI contain a glutamate at the catalytic position29. Thus, any designed solutions 

would be novel and a fragment-based design protocol would not be able to rely on naturally 

occurring homologs that have already solved this particular problem.  

 

Our PIP design protocol for KSI (Fig. 3c) proceeded in three steps: In step 1, we built 20,000 de 

novo backbone conformations that positioned the functional carboxyl group using harmonic 

coordinate restraints defined by the amide atoms of asparagine 38 (an inactivating mutation for 

the catalytic D38 that enables a transition state mimic to be crystallized) in PDB file 1QJG in 

place of the catalytic D38) (Fig. 3c). We selected the 1,600-4,000 conformations that best 
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matched the desired geometry based on their restraint satisfaction, which we defined as the 

maximum distance of any restrained atom in the model to the atom’s ideal position (Fig.3c, top 

right panel).  

 

In the second step, these new backbone conformations were stabilized by redesigning the local 

environment, where all residues of the new backbone segments as well as residues in the 

environment were redesigned using design methods in Rosetta (see Methods). This process 

resulted in 10-50 designs per input structure. We then selected 200-422 design models for 

structure prediction in step 3. These designs were selected based on how close the catalytic 

residue carboxyl group atoms were to their desired positions, and several computational design 

quality metrics (see below and Methods).  

 

While step 2 (design) aims to find sequences that are optimal for the targeted new 

conformations, step 3 (structure prediction) aims to assess whether these sequences indeed 

fold into the targeted conformation (i.e. is the conformation also optimal given the sequence). 

Steps 2 and 3 were iterated to further optimize sequence-structure combinations. In particular, 

designed sequences that produced structure prediction models that correctly placed the 

functional carboxyl group but are not the lowest-scoring model generated by the structure 

prediction protocol were fed back to step 2 for further sequence optimization.  

 

We created designs using two versions of the PIP protocol, denoted versions 1 and 2, which 

differed in several details. Version 1 was developed before FKIC and LHKIC, and therefore 

used NGK for both model generation (step 1) and structure prediction (step 3). In step 1, we 

varied the length of the active site loop from 0 to -6 residues (relative to its native length). In 

subsequent steps, we made comparisons only between loops of the same length, to avoid 

biases towards longer loops that can make more favorable interactions at the expense of loss of 
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conformational entropy not considered in Rosetta. Sequence design (step 2) was done using 

fixed-backbone rotamer sampling. Residues within 4Å of the active site loop were designed (i.e. 

allowed to change amino acid identity, see Methods) excluding residues Y14, F54, D99, A114 

and F116 that are important for catalysis. In total, 33-39 residues were allowed to design, 

depending on loop length. Designs from step 2 to be evaluated in step 3 were selected with a 

probability proportional to their Boltzmann-weighted Rosetta scores (see Methods). This 

approach was intended to improve the diversity of the selected designs, while still selecting 

more favorable (low-scoring) designs. The designs selected for experimental testing either 

retained the native loop length or shortened the loop by one residue. 

  

In version 2, we made several changes: We used LHKIC for model generation (step 1) and 

FKIC for structure prediction (step 3). This strategy takes advantage of the ability of LHKIC to 

sample both sequence and structure simultaneously in step 1 (as fragment picking in LHKIC is 

independent of the starting sequence). Conversely, FKIC is better suited to predicting 

conformations given a sequence in step 3, since FKIC picks fragments based on the input 

sequence. In step 2, we incorporated a small degree of backbone flexibility into the design 

process by using the Rosetta FastDesign method, which iterates fixed-backbone sequence 

design and fixed-sequence structure minimization. Because this design algorithm is more 

computationally expensive than that from version 1, we made fewer designs per backbone 

model (10 instead of 50). Based on the results from version 1, we only considered two loop 

lengths: the native length and a one-residue deletion. We also allowed a different (and smaller) 

set of residues to design: 25 – 26 residues in the active site loop and 4 residues in a small β-

hairpin (residues 74 – 77 in the dimer partner) that make inter-chain contacts with the active site 

loop. To select designs for step 3, we incorporated knowledge from additional metrics besides 

Rosetta score and functional group positioning. We used metrics including the number of buried 

unsatisfied and oversaturated hydrogen bonds, a fragment quality filter, total solvent-accessible 
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surface area, and Rosetta’s foldability metric (Methods). Because it is unclear a priori how to 

prioritize these metrics, we used Pareto fronts consisting of the above metrics to choose 

designs for computational structure prediction (Fig. 3c, Supplementary Fig. 3). We also 

selected more designs than in version 1 (up to 422 instead of 200) for structure prediction in 

early iterations of step 3, taking advantage of the fact that FKIC requires fewer simulations than 

NGK to make sub-Ångstrom predictions. 

 

Selection of designed KSI variants 

 

We selected 32 designs for experimental testing, 14 from version 1 and 22 from version 2. 

Designs were named according to the version of PIP used to create them (V1 and V2) and a 

design number (D1, D2, ...) (Supplementary Tables 8-9, Supplementary Figs. 4-5). Designs 

appended with “r” indicate that mutations were reverted to the wild-type residue based on visual 

inspection; 8/14 designs from version 1 contained reversion mutations (Supplementary Tables 

8-9), and 11/22 designs from version 2 contained reversion mutations (for version 2, 

Supplementary Table 8 and Supplementary Figs. 4-5 show the 11 original computational 

designs, with the mutations for 7 additional reversion designs listed in Supplementary Table 9). 

Design selection was based on a number of factors: We chose designs that maximized the gap 

in Rosetta total (version 1) or fa_attr (version 2) score between models that correctly place the 

catalytic residue (<1 Å restraint satisfaction, defined as the maximum distance between a 

restrained atom and its defined position) and models which do not correctly position the catalytic 

residue (>2 Å restraint satisfaction). We also chose designs that were predicted to have few 

buried unsatisfied hydrogen bonds, and that did not have significant sequence and structural 

similarity to previously selected designs. Selected designs contained between 5 (V2D9r) and 32 

(V1D7) mutations. For PIP version 1, all selected designs expressed in the insoluble fraction 

after cell lysis and had to be purified from inclusion bodies. We selected one design to 
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characterize in further detail based on an initial screen of catalytic activity (Supplementary 

Table 10), V1D8r. For version 2 we obtained one design that expressed in the soluble fraction, 

V2D9r. 

 

Structural characterization of designed KSI variants 

 

We first compared the active site conformations of the computational models for the two 

selected designs, V1D8r and V2D9r, to that of the active site conformation of the wild-type 

protein. We defined two regions: the entire reshaped region, which consists of residues 34-45 

for V1D8r and 34-46 for V2D9r, and a highly variable segment consisting of residues 37-42 for 

V1D8r and 37-43 for V2D9r. Both computational design models had conformations considerably 

different from the wild-type backbone (Fig.4a): V1D8r differed from wild-type by 2.41 Å 

backbone RMSD in the whole reshaped region and 3.49 in the highly variable region. V2D9r 

differed from wild-type by 2.50 Å backbone RMSD for the whole reshaped region and 3.34 Å 

RMSD for the highly variable region.  

 

To assess whether V1D8r and V2D9r indeed adopted the designed new backbone 

conformations, we determined crystal structures of the two designs. Both structures contained a 

ligand in the active site. For V1D8r, we observed density from deoxycholate retained from the 

purification process. V2D9r was co-crystallized with equilenin (which was present in the 

structure that was used as a basis for design) but also contained some residual density for 

deoxycholate (see further below). For both designs the electron density of the reshaped 

backbone region was well-resolved (Fig. 4b). Importantly, the backbone geometries of the 

reshaped backbone region in V1D8r and V2D9r were within 1.39 and 1.15 Å RMSD (N, C, Cɑ, 

and O backbone atoms) of the corresponding lowest-energy design models (Fig.4c).  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2021. ; https://doi.org/10.1101/2021.07.02.450934doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.02.450934
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

We next examined the positioning of the catalytic glutamate carboxyl group. Each design placed 

the catalytic carboxyl within 1.3 Å RMSD of the wild-type aspartate carboxyl (Fig. 4d). V2D9r, 

which was co-crystallized with equilenin, placed the catalytic oxygen with particularly good 

accuracy (0.7 Å). We note that the crystal structures of both designs showed at least partial 

occupancy of deoxycholate in the ligand-binding site, and that it is conceivable that the bulky 

carboxyl moiety of the ligand changed the placement of the catalytic carboxyl group. This 

hypothesis is supported by the observation that the V2D9r crystal had partial occupancy of 

deoxycholate in 3 out of 4 asymmetric units, and the positioning of the catalytic residue in those 

monomers was significantly worse than in the asymmetric unit that contained only equilenin. In 

the asymmetric unit which contained only equilenin, we observed two distinct possibilities for the 

placement of the carboxyl of E38, which we modeled as alternate conformations 

(Supplementary Fig. 6). Despite the apparent flexibility of E38, the crystallographic data 

support the conclusion that the designed backbone is indeed capable of supporting the desired 

functional site geometry, as one of the alternate conformations is close to the wild-type carboxyl 

placement (0.75 Å restraint satisfaction, 0.67 Å carboxyl heavy-atom RMSD compared to the 

amide group of 38N of 1QJG, Fig. 4d). Taken together, the structural analysis shows that PIP is 

capable of designing novel backbone conformations that differ by over 3 Å from their native 

counterparts with high accuracy. 

 

Functional characterization of designed KSI variants 

 

Both designs V1D8r and V2D9r showed robustly measurable enzymatic activity when using 

5(10)-estrene-3,17-dione as a substrate (Fig. 5a,b). Even though our structural analysis 

confirmed successful design of backbone and side chain placements, both designs were 

considerably less active than both wild-type and D38E KSI (Table 1): V1D8r and V2D9r had kcat 

values of 1.7 and 0.29 min-1, respectively, compared to a kcat value of 3.4 min-1 for D38E in our 
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assay. This result might be expected for several reasons: First, while we took steps to avoid 

mutations in residues known to be important for catalysis, we still made extensive changes (19 

and 12 mutations in design V1D8r and V2D9r, respectively) in and around the active site, which 

could change the electrostatic environment as well as affect functional or non-productive 

dynamics that impact catalysis. Second, while wild-type KSI is a dimer, our designs (while 

modeled as a dimer) are monomeric at the concentrations of the enzyme assay 

(Supplementary Fig. 7) although dimeric in the crystal. These differences could affect 

functional group positioning in solution30. Third, even though the glutamate side chain 

placement in V2D9r was close to ideal, it was not perfect; even small perturbations towards 

nonproductive conformations can be significant to catalysis and the designed glutamate may 

only sample catalytic conformations a fraction of the time. Finally, there is evidence that the 

catalytic residue in the homologous Pseudomonas putida KSI accesses multiple specific 

productive conformations to enable its participation throughout the catalytic cycle31, a property 

which was not considered by our protocol. Despite these difficulties, our designed enzymes still 

enhanced the catalysis of their substrate by 4 to 5 orders of magnitude when compared to the 

water-catalyzed isomerization of the similar 5-androstene-3,17-dione32.  

 

We chose the KSI model system because of its sensitivity to functional group positioning, 

specifically the considerable drop in catalytic activity upon addition of a carbon-carbon bond 

when mutating the catalytic aspartate to glutamate. To position the catalytic glutamate 

carboxylate in the designs close to the aspartate carboxylate in the wild-type, the crystal 

structures of both designs (Fig. 4) showed considerable remodeling of the KSI active site. 

Accordingly, we wondered whether subtracting the carbon-bond again, i.e. reverting the 

glutamate in the design back to the original wild-type aspartate, would have much reduced 

activity. Therefore, to determine whether the designs successfully switched KSI’s preference for 

its catalytic residue, we tested the catalytic activity of E38D reversion mutations in the context of 
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the V1D8r and V2D9r designed backbones (both E38D reversion mutants in the design 

background were folded, Supplementary Fig. 6b-d). For both V1D8r and V2D9r, we found a 

substantial reduction in kcat in the E38D reversion mutant; the activities of both mutants were 

near the detection limit of the assay, and were at least 41-fold and 119-fold for V1D8r and 

V2D9r, respectively. These fold changes are similar to the fold-change in kcat between wild-type 

KSI and the D38E mutations (Fig. 5c, Table 1). This result suggests that the positioning of the 

catalytic residue’s carboxyl moiety is still an important determinant of catalytic activity despite 

the designs’ low kcat compared to wild-type, and that the designed backbone geometries 

successfully altered the enzyme’s preference for its catalytic residue.  

 

Finally, we sought to test the robustness of V2D9r’s redesigned backbone segment to mutation. 

To determine whether the activity of V2D9r was dependent on any particular residue in the 

redesigned region, we performed an experimental alanine scan along all mutated residues. We 

also made reversion mutants for residues whose backbone atoms did not move significantly 

between the wild-type and the design conformations (Table 1, Fig. 5d). No alanine or reversion 

mutant affected the kcat more than two-fold except for the catalytic glutamate, suggesting that 

the designed loop depends on several interactions to adopt a catalytically competent 

conformation, as well as the glutamate as a general base. 
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DISCUSSION 

 

We introduced and validated methods to accurately position functional groups in protein active 

sites by computational design. We developed and benchmarked two new robotics-inspired 

sampling methods, FKIC and LHKIC (Fig. 1), which model the conformations of backbone 

segments with high accuracy and efficiency (Fig. 2). We then integrated these methods into a 

new design protocol, PIP (Fig. 3), which we validated experimentally by solving crystal 

structures of designs with reshaped active site regions (Fig. 4). 

 

FKIC leads to considerable improvements over the two approaches it combines, the fragment-

independent loop modeling method NGK10 and the fragment-insertion based prediction 

approach CCD21 (Fig. 2a). In addition to sub-Å structure prediction accuracy, our results 

demonstrate that FKIC provides up to ~140- fold improvement in sampling native-like 

conformations on the challenging problems of modeling local protein conformations with multiple 

segments and arbitrary secondary structure composition. This key advance in sampling 

performance paves the way to integrate FKIC with other methods in a variety of applications. 

We expect that FKIC will be most useful in applications that predict or design the conformations 

of local regions in proteins where the remainder of the protein stays relatively fixed or 

undergoes only slight adjustments. As such, applications to homology modeling may require 

integration of FKIC with more aggressive remodeling in the entire protein, not just a local region 

(Supplementary Note 4, Supplementary Table 11). In contrast, FKIC should be suited to 

accurately predict the conformations of local protein regions from limited or low-resolution 

experimental data, and, in combination with LHKIC, to design new backbone geometries not 

seen in nature. Our results provide a first proof-of-concept for the latter. LHKIC, while 

performing similarly to FKIC overall when predicting conformations given their sequences 

(slightly worse in the median sub-A fraction on the standard dataset, Supplementary Table 1a), 
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is well-suited to design because of the ability of LHKIC to sample both new sequences and new 

structures simultaneously. 

 

Both versions of PIP used similar robotics-inspired approaches to conformational sampling, but 

PIP version 2 placed an additional emphasis on fragment-based sampling using FKIC / LHKIC, 

and analysis of fragment quality using Pareto fronts (Fig. 3). Fragment quality measures how 

well designs conform to local sequence / structure relationships observed in naturally occurring 

proteins, and designs with a better fragment quality might be expected to be more stable33. 

Indeed, FKIC sampling improvements and fragment quality are correlated (Fig. 2d) and 

attention to fragment quality as a design metric may have resulted in several beneficial 

characteristics in design V2D9r, which was both more soluble when expressed in E. coli, and 

had a higher TM (Supplementary Fig. 6) than design V1D8r. However, our design sample is 

small and further exploration of the impact of fragment-based design on design success would 

be interesting. 

 

Despite the success with positioning a functional group that required reshaping of an active site 

backbone region, our results also highlight the considerable challenges faced when designing 

functional proteins. There are several main problems. First, the irregular geometries of naturally 

occurring proteins are more difficult to engineer than entirely de novo protein structures that 

largely consist of regular elements of secondary structure connected by very short loops34. One 

solution would be to start with entirely de novo designed proteins into which to build new 

functions, but for certain applications and functions, redesign of existing proteins that already 

possess desired properties may be the preferred strategy. In those cases, the methods 

presented here provide a new approach. Moreover, FKIC/LHKIC and related methods could 

also provide a new way to systematically reshape local regions to endow de novo designed 

proteins with new functions. The second problem concerns the difficulty of predicting the 
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conformations and energetics of polar interactions making up protein functional sites with 

sufficient accuracy. Third, in the case of enzyme engineering, current computational design 

methods may not correctly represent and optimize for important determinants of specific 

catalytic functions, such as the role of dynamics or active site electrostatics. Moreover, these 

determinants may be incompletely understood. Fourth, certain functions may require switching 

between two or more approximately isoenergetic conformations. Such a scenario is much more 

challenging to engineer than optimizing for one deep energy minimum, which is sufficient for 

successful de novo design of protein structures. Nevertheless, the ability to sample both 

conformational and sequence space afforded by the robotics-inspired approaches and protocols 

presented here should help address these problems, and be useful in both the design and 

modeling of novel loop conformations that enable specific functional geometries that do not yet 

exist in nature.  
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METHODS 

 

Structure prediction simulations 

 

Fragment-sampled KIC (FKIC) Overview 

 

We developed FKIC as a new protocol for modeling local protein geometries in Rosetta. FKIC is 

based on the KIC protocol9, but, instead of sampling non-pivot φ/ψ torsions probabilistically from 

Ramachandran space, FKIC uses coupled φ/ψ/ω degrees of freedom from consecutive 

residues of protein fragments of size nine, three or one to sample conformational space. During 

the low- and high-resolution sampling stages (Fig. 1b), each KIC move in the original KIC 

protocol is replaced by an FKIC move (Fig. 1a). An FKIC move consists of the following 

sequence of steps: (i) a fragment library (see “Generation of fragment libraries” section below) is 

chosen at random from all available libraries (i.e. 9mers, 3mers and 1mers), (ii) the chosen 

fragment library is searched for fragment alignment frames that (at least partially) overlap with 

the given target sub-segment, (iii) one of the alignment frames is chosen at random, (iv) one of 

the 200 fragments contained in the given alignment frame is chosen at random, (v) the φ/ψ/ω 

torsions of that fragment are applied to the respective overlapping region of the given target 

sub-segment, and (vi) the segment is closed using kinematic closure. We ran the FKIC protocol 

using the same fragment libraries as for the CCD protocol. 

 

Loophash-sampled KIC (LHKIC) Overview 

 

We developed LHKIC for designing local protein geometries in Rosetta. LHKIC and FKIC share 

the same simulation protocol (Fig. 1, Supplementary Fig. 1). In LHKIC, the non-pivot φ/ψ/ω 

degrees of freedom are sampled from fragments picked by the loophash algorithm16. At each 
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KIC sampling step, we calculate the 6D transformation from the residue before the first pivot to 

the residue after the last pivot. We use the 6D transformation to query a pre-compiled loophash 

database (see “Generation of loophash databases” in Supplementary Methods). One 6D 

transformation query can return multiple loops. Torsions of a random loop from the returned 

loops are applied to the residues between the pivot residues. By default, LHKIC does not 

mutate the sequence of the loop. When the loophash_perturb_sequence option is set to true, 

LHKIC applies the sequence of the returned loop to the pivot residues and the residues 

between the pivots. 

 

Rosetta Simulations 

 

FKIC and NGK benchmarking simulations were performed using the Rosetta macromolecular 

modeling and design suite (https://www.rosettacommons.org/software), revision 59052. The 

LHKIC method was developed later and used Rosetta revision 60022. KIC simulation results 

reported in Fig. 2a in the main text were taken from ref.10. Since the publication of the original 

KIC method, the Rosetta energy function has undergone several revisions, including the 

changes described in the “talaris2013” and “talaris2014” versions35 and the latest improvements 

made in the “ref2015” version17. The ref2015 energy function17 was used for all benchmarks 

unless otherwise noted. Compared to the other energy functions, ref2015 showed a consistent 

performance improvement (Supplementary Table 12).  

 

Benchmark Datasets 

 

12-Residue “Standard” benchmark dataset. We first tested FKIC on the 12-residue loop 

benchmark dataset used in previous work9,10,36. This benchmark dataset consists of 45 protein 

structures from the Protein Data Bank (PDB) containing non-redundant 12-residue target 
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segments without regular secondary structure, curated from two previously described 

datasets19,37. We used this dataset even though it is not ideal (for example, the conformation of 

several segments might be influenced by crystal contacts, see Supplementary Note 1 and 

Supplementary Table 5) to facilitate comparison of FKIC with previous protocols. For each 

loop, we retained the N and Cα atoms of the N-terminal residue, as well as the Cα, C and O 

atoms of the C-terminal residue, which serve as loop anchor points for kinematic closure (as in 

ref.9). 

 

16-Residue “Mixed Segment” benchmark dataset. The Mixed Segment benchmark dataset 

consists of 30 structures from the PDB containing 16-residue target segments. The target 

segments were derived from structures in the Standard benchmark dataset above using the 

following criteria: 

● The crystallographic resolution of the experimentally determined structure is equal to 

or better than 2Å. 

● Each segment has 5 to 11 residues that contain alpha helices or beta strands defined 

using DSSP38 and the remainder of the segment is designated as loop. 

● Residues in the segment are at least 4Å away from any chains or copies of the 

molecule in other asymmetric units, to avoid crystal contacts. 

● The segment is at least 5 residues away from the chain termini. 

The segment that satisfied all criteria with the lowest distance from the protein surface was 

selected.  

 

10-Residue “Multiple Segments” benchmark dataset. The Multiple Segments benchmark 

dataset consists of 30 structures from the PDB each containing a pair of 10-residue interacting 

target segments. Structures were derived from the top8000 dataset39 using the following criteria: 
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● The crystallographic resolution of the experimentally determined structure is equal to 

or better than 2Å. 

● Each segment has less than 3 residues that have regular secondary structure, 

defined as above. 

● Residues in the segment are at least 4Å away from any chains or copies of the 

molecule in other asymmetric units, to avoid crystal contacts. 

● Each segment is at least 5 residues away from the chain termini. 

● Segments in each pair are within 4Å and are separated by at least 5 residues in 

primary sequence. 

The pair of segments that satisfied all criteria with the lowest distance from the protein surface 

was selected. We also constructed two analogous sets that contain either two 8-residue 

segments or two 12-residue segments (Supplementary Note 3; Supplementary Table 6 and 

Supplementary Table 7).  

 

Preparation of benchmark input structures  

 

To exclude information on the native conformation of the target segment(s) for all benchmark 

datasets, all side chains in the segment(s) as well as side chains within 10Å of the segment(s) 

(based on all-atom pairwise distance measurements) were removed. The backbone information 

was removed by changing the segment into an extended conformation with idealized bond 

lengths and angles. The datasets were constructed with an openly available script: 

https://github.com/Kortemme-Lab/benchmark_set_construct. 

 

Generation of fragment libraries  
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We generated libraries of 9-mer and 3-mer fragments for all benchmark cases using the 

fragment picking method described in ref.15. The method selects fragments from a 

representative database of 16,801 protein chains extracted from the PDB and culled such that 

any two chains have at most 60% sequence identity. The fragment database is part of the 

Rosetta software and located in rosetta/tools/fragment_tools/vall.jul19.2011.gz. The fragments 

selected for each segment sequence position span a 3- or 9-residue frame, which overlaps with 

neighboring frames. Moreover, we allow sampling of 1-mer fragments, which consist of a single 

triplet of φ/ψ/ω torsions that are generated on the fly by the respective modeling protocol (see 

below) based on the 3-mer fragment library for the given position. The make_fragments.pl script 

in the rosetta/tools/fragment_tools/ directory integrates several data sources to maximize 

fragment quality, including sequence similarity and the detection of homologs using 

PsiBLAST40, predicted secondary structure similarity using PsiPred41 and prediction of preferred 

φ/ψ torsions and solvent accessibility using SPARKS-X42. Importantly, for benchmarking 

purposes, we ran simulations using fragment libraries that excluded homologs to the given 

query sequence, by providing the –nohoms flag to the make_fragments.pl script, which 

excluded all protein chains with a PsiBLAST E-value < 0.0540 from the fragment picking 

process. 

 

Simulation protocols 

 

The Rosetta ‘CCD’ loop modeling method using fragment insertion and the cyclic coordinate 

descent (CCD) closure technique21 is described in ref.35. The NGK loop modeling method is 

described in ref.10. For FKIC simulations, NGK was modified to sample torsions from the 

generated fragment libraries described above. Similarly, for LHK, NGK was modified to sample 

torsions from loops picked using loophash43 (Supplementary Methods). For control simulations 

that use native bond lengths and angles as input, we replaced the input structure with the native 
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structure and disabled the randomization of torsions at the beginning of the simulation. Full 

descriptions of RosettaScripts code and command lines can be found in Supplementary 

Methods. 

 

Fragment distance calculation 

 

The chord distance44 was calculated between pairs of fragments. The chord distance between 

two angles is defined as: . In our case, this value was calculated for  

backbone dihedral angles and summed over paired residues between fragments and target 

loops: , with n=3 defining 3mer fragments for example. 

 will have a minimum of 0 if the angles match exactly and a maximum of 4 if the angles differ 

by 180 degrees. 

 

 

Pull Into Place (PIP) design protocol 

Rosetta version. PIP was run using Rosetta commit 

10b6f2f8e20d70757e6b510def2ddcbeef172538 (PIP version 1) or revision 60048 (PIP version 

2). We used the latest available scorefunction for each PIP version, which were talaris2013 for 

PIP version 1 or ref2015 for PIP version 2. 

Input files. KSI designs were based on PDB structure 1QJG45. KSI is an obligate dimer, so we 

included both monomers in our initial structure. To design different loop lengths, we created 

several versions of the initial structure: one for each deletion of up to 6 residues, and one with 

wild-type length. We replaced N38 with a glutamate and relaxed the resulting models 100 times 

in the talaris2013 (version 1) or ref2015 (version 2) score function using FastRelax, with all atom 
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coordinates restrained to their starting positions. The best (lowest-scoring) relaxed structure 

was then repacked 100 times, and the lowest-scoring model was used as a template for design. 

The desired position of the E38 sidechain was defined in a restraint file (Supplementary 

Methods). Each atom in the E38 carboxylate group was restrained to the position of the 

corresponding atom in the N38 amide group in the starting structure (1QJG). We visually 

confirmed that N38 in 1QJG had the same rotameric conformation as D38 in wild-type KSI (PDB 

structure 8CHO). When working with the version 1 designs, we noticed that F54 sometimes 

changed its rotamer conformation, causing subsequent designed mutations to stabilize the 

altered conformation. For version 2, we addressed this issue by placing restraints on the zeta-

carbon of F54 in a manner similar to the catalytic residue (Supplementary Methods). 

The residues being remodeled were defined in loop files (Supplementary Methods). We chose 

which residues to remodel based on proximity to secondary structure elements and intuition. 

Our goals were (i) to allow sufficient remodeling on either side of E38 to stabilize its new 

conformation, (ii) to anchor the loop in secondary structural elements, and (iii) to minimize loop 

length. With these considerations in mind, we remodeled loops that were 7-13 (version 1) or 12-

13 (version 2) residues long. For version 2, we also remodeled a second 4-residue loop on the 

dimer interface (residues 199-202 using Rosetta numbering, residues 74-77 on chain B using 

PDB numbering), hoping to maintain favorable contacts between those residues and the 

catalytic loop.  

The residues that were allowed to design (change amino acid identity) and repack (only change 

rotamer conformation) were specified in a resfile (Supplementary Methods). For version 1, any 

residue that had a sidechain atom within 4Å or 6Å of any loop atom in any model generated in 

PIP step 1 was allowed to design or repack, respectively. For version 2, we only allowed 

Rosetta to design residues on the catalytic loop, as well as four residues on the short 
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dimerization loop which directly interacts with the catalytic loop (described above) 

(Supplementary Methods). Repackable residues were selected using the Rosetta clash-based 

repack shell selector. F54, A114, and F116 were not allowed to design in either version 

because they are known to be important for positioning the catalytic residue46. For version 1, 

each designed residue was allowed to change to any of the 20 canonical amino acids except 

cysteine (due to the potential for disulfide bonds) and histidine (due to the potential for pH-

dependent behavior). For version 2, we used the LayerDesign task operation in Rosetta to 

determine which residue identities were allowed at each position. Since version 2 introduced 

backbone degrees of freedom during the design step, we specified a fold tree to keep 

conformational changes as local as possible (Supplementary Methods). 

PIP Step 1: Build Models. We created models positioning the E38 carboxylate group by running 

20,000 NGK10 (version 1) or LHKIC (version 2) simulations with restraints as described above. 

Backbone remodeling was limited to the loop defined in the appropriate loop file and design was 

allowed according to the appropriate resfile (Supplementary Methods). In version 1 of PIP, the 

initial coordinates of the loop being remodeled were discarded and rebuilt from scratch. This 

step was skipped for version 2. Only models that put all three restrained atoms within 0.6 Å 

(version 1) or 0.7 Å (version 2) of their intended positions were carried on to the next step. 

PIP Step 2: Design Models. To stabilize models that correctly positioned E38, we ran 50 fixed-

backbone (version 1) or 10 FastDesign (version 2) simulations per model, or more if there were 

relatively few models. Design was allowed according to the appropriate resfile (Supplementary 

Methods). For version 1, we picked 200 designs for PIP step 3 with probability proportional to 

their Boltzmann-weighted talaris2013 scores (in Rosetta energy units, REU). For version 2, we 

used Pareto fronts to pick designs so that we could supplement information from the Rosetta 

score function with additional metrics. These metrics consisted of the total solvent-accessible 

surface area of the model, two “foldability” metrics that perform 60 brief forward-folding 
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simulations on pieces of the loop and report the fraction of results that placed the segment’s N-

terminus within 4 Å of the concomitant residue in the design structure, the maximum distance of 

the restrained atoms to their ideal position, a fragment quality metric, and the Rosetta fa_attr 

score. The Foldability metrics remove a portion of the design’s backbone, then rebuild it starting 

from the N-terminus of the deleted segment using fragment-based assembly. This is repeated 

100 times, and the average distance of the C-terminus of the rebuilt segment to its position in 

the design is reported. The fragment quality metric assesses the geometric similarity between 9-

residue fragments in the designed loops and fragments of natural proteins in the PDB, as 

described in ref.33. Specifically, we picked protein fragments from the PDB based on their 

similarity in sequence, predicted solvent exposure, and predicted secondary structure to the 

post-simulation design sequence and determined the RMSD of the backbone atoms in each 

fragment to the final structure. We then determined the lowest RMSD at each position being 

evaluated, and reported the highest of these. 

PIP Step 3: Structure Prediction. We computationally assessed our designs by running between 

100 and 500 NGK (version 1) or FKIC (version 2) structure prediction simulations for each 

design; for version 2, we opted to perform fewer structure prediction simulations on a larger 

number of designs during the early rounds of design. Backbone movement was limited to the 

loop defined in the appropriate loop file (Supplementary Methods). The initial coordinates for 

that loop were discarded and rebuilt from scratch. Any design for which the lowest scoring 

decoy put all three carboxylate atoms within 1.2 Å of their intended positions was carried on to 

the design selection step. Furthermore, any decoy (regardless of score) that put all three 

carboxylate atoms within 0.6 Å of their intended positions was used as input for a second round 

of design simulations. 

PIP Shared Parameters. Filter, scorefunction, residue selector, and certain Rosetta mover 

definitions were used during every step of the PIP protocol. These were stored as separate 
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RosettaScripts files and imported into each main step template. The fragment quality filter 

additionally required a weights file describing which scores to use when picking fragments15 

(Supplementary Methods). 

Design Selection. We picked designs to experimentally test by comparing quality metrics and 

visually inspecting models. The quality metrics are described in Supplementary Table 8. We 

paid particular attention to the score gap, which measures the difference in the score between 

the lowest-scoring model with under 1 Å restraint satisfaction and the lowest-scoring model with 

over 2 Å restraint satisfaction. Several designs were selected despite having a score gap of 0 

REU, as they had multiple low-energy conformations. We also made an effort to pick designs 

from different sequence and structure clusters. Design sequences were clustered hierarchically 

such that inter-cluster distance was no greater than the mean sequence distance (calculated 

according to the BLOSUM80 substitution matrix) across all designs. Structure clusters were 

formed hierarchically such that the RMSD between any two designs in the same cluster was no 

greater than 1.2 Å. We visually inspected the lowest scoring model for each design to eliminate 

those with irregular backbone or strained sidechain conformations. 

Wildtype Reversions. For each design from PIP version 1 selected for experimental validation, 

we reran the structure prediction simulations (PIP Step 3) for each single wildtype reversion 

mutation. We then combined any reversions that had no apparent detrimental effect on our 

quality metrics and again ran the structure prediction simulations. In cases where the 

combination of all the individually acceptable reversions had a deleterious effect, we selected 

more conservative combinations of reversions for additional structure prediction simulations. If 

no acceptable combination of reversions could be found, no reversions were made 

(Supplementary Table 8). For PIP version 2, positions where the backbone was in a similar 

position to wildtype were reverted, or in some cases mutated to a residue picked by visual 

inspection (Supplementary Table 9), and designs with and without those reversions were 
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ordered for experimental validation. 

 

Experimental characterization 

Cloning and purification 

The 14 designs chosen for experimental tests from PIP version 1 were ordered from GenScript 

pre-cloned into the pET-21a expression vector. For PIP version 2, and for characterization of 

V1D8r and the wild-type protein, we used an expression vector using parts from the modular 

yeast cloning toolkit47 which was similar to pET-21a, except that the cloning resulted in a 

glycine-serine genetic scar at the C-terminus. Full sequences of ordered designs and vectors 

can be found in Supplementary Data 1. Proteins were expressed in E. coli BL21(DE3) cells. 

Wild-type KSI and design V2D9r were purified essentially as described previously48,49 with minor 

differences. Briefly, cells were lysed in 40 mM potassium phosphate, 2 mM DTT, 1 mM EDTA, 

and 6 U/mL DNAse I, pH 7.2 using a Microfluidics M-110L microfluidizer. Clarified lysate was 

then passed through a 10 mL sodium deoxycholate gravity affinity column, prepared as 

described in reference48. The column was washed with 400 mM phosphate, 2 mM DTT, 1 mM 

EDTA, pH 7.2 followed by lysis buffer (minus DNAse), then eluted with 40 mM phosphate, 2 mM 

DTT, 1 mM EDTA, and 50% ethanol, pH 7.2. Proteins were then either further purified using a 

HiLoad 16/600 Superdex 75 pg gel filtration column or dialyzed twice in 1L lysis buffer to 

remove the ethanol. Most other designed proteins expressed in the insoluble fraction, so 

inclusion bodies were first purified from the cell lysate: Cells were grown in 1 L LB broth to an 

optical density of 0.6 at 37 C, followed by overnight expression at 18 C. Cells were then 

harvested by centrifugation at 3500 rpm for 20 minutes at 4 C, then resuspended in lysis buffer 

(40 mM Tris-HCl, 1 mM EDTA, 25% sucrose w/v, pH 8.5). Suspensions were lysed in a M-110L 
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microfluidizer and centrifuged at 20,000 rpm for 20 minutes at 4 C. The resulting inclusion body 

pellet was washed once in 25 mL of 20 mM Tris-HCl, 1% sodium deoxycholate, 200 mM NaCl, 

and 2 mM EGTA, followed by at least 3 washes of 25 mL 10 mM Tris-HCl, 0.25% sodium 

doxycholate, pH 8.5, followed by at least 3 washes of 25 mL 20 mM Na-HEPES, 500 mM NaCl, 

1 mM EDTA, pH 8.5. Inclusion bodies were centrifuged at 8,000 xg for 10 minutes at 4 C 

between washes. Proteins in inclusion bodies were solubilized by shaking for 30 minutes with 

10 mL 8 M urea, 20 mM Na-HEPES, 500 mM NaCl, 10 mM DTT, and 1 mM EDTA at pH 8.5, 

then centrifuged at 20,000 rpm for 20 minutes at 4 C to remove cell debris. Solubilized protein 

was then refolded by stirring for 2 hours at 4 C in 200 mL of 40 mM KPi, 1 mM EDTA, 2 mM 

DTT. Proteins were then sterile-filtered using 0.4 μm filter paper and further purified via 

deoxycholate column as described above. 

Activity assay 

Purified KSI variants were tested for catalytic activity using an absorbance assay. 5(10)-

Estrene-3,17-dione was solubilized at 2.1 mM and serial-diluted two-fold down to 0.51 μM in 

100% DMSO. 115 μL enzyme, prepared in 40 mM potassium phosphate, 2 mM DTT, and 1 mM 

EDTA at pH 7.2, was then added to 5 μL of substrate for final substrate concentrations between 

520 and 0.51 μM. KM and kcat values for the WT enzyme and designs V1D8r and V2D9r were 

measured at enzyme concentrations between 0.5 and 18 μM. For reversion and alanine scan 

mutations, kcat values were measured in triplicate at 512 µM substrate. Absorbance at 248 nm 

was tracked for 5 minutes in a Varian Cary 50 Bio UV-Visible spectrophotometer using a 1cm 

path length. The first 30-60s of each reaction were excluded to allow the reaction to reach 

steady-state. 

X-ray crystallography 
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Designed proteins were crystallized in 1 M ammonium sulfate (design V1D8r) or 1.6 M 

ammonium sulfate, 50 mM potassium phosphate, pH 7.2 (design V2D9r) using the hanging drop 

method. For design V2D9r, an equal volume of 2 mM equilenin (CAS 517-09-9 from Steraloids 

Inc., catalog ID E0400-000) was added to each drop. 

 

X-ray data collection and processing 

 

Prior to X-ray data collection, crystals were cryoprotected and flash-cooled by rapid plunging 

into liquid nitrogen. Crystals that yielded the V1D8r structure were cryoprotected using a mixture 

of 50% glycerol and 50% crystallization mother liquor, and crystals that yielded the V2D9r 

structure were cryoprotected using a mixture of 25% glycerol and 75% crystallization mother 

liquor. We collected single-crystal X-ray diffraction data on beamline 8.3.1 at the Advanced Light 

Source. Data collection for V1D8r was performed while the beamline was equipped with a 

Quantum 315r CCD detector (ADSC), while data collection for the V2D9r structure utilized a 

newer Pilatus3 S 6M photon-counting detector (Dectris). Both data sets were collected using an 

X-ray energy of 11111 keV, and the crystals were maintained at a cryogenic temperature (100 

K) throughout the course of data collection. 

 

We processed the X-ray data using the Xia2 system50, which performed indexing, integration, 

and scaling with XDS and XSCALE51, followed by merging with Pointless52. For the [6UAE] 

structure, a resolution cutoff (1.93 Å) was taken where the signal-to-noise ratio (<I/σI>) of the 

data fell to a value of approximately 1.0. In the case of the V1D8r structure, the data were 

collected on an older, smaller detector, and the resolution was limited by the detector edge and 

the geometric requirements of the experiment. Although other metrics of data quality (such as 

CC1/2 and <I/σI>) suggest that a more aggressive resolution cutoff would be acceptable, we 

were limited by the data completeness that could be obtained with the minimum accessible 
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sample-to-detector distance. Further information regarding data collection and processing is 

presented in Supplementary Table 12. The reduced diffraction data were analyzed with 

phenix.xtriage to check for common crystal pathologies, none of which were identified. 

 

Structure determination 

 

We obtained initial phase information for calculation of electron density maps by molecular 

replacement using the program Phaser53, as implemented in the PHENIX suite54. For the V1D8r 

structure, we identified a single copy of the protein in the asymmetric unit using the coordinates 

from a previous KSI model, and for the V2D9r structure we identified four copies of the protein 

in the asymmetric unit. Both solutions were consistent with an analysis of Matthews probabilities 

for the observed unit cell and molecular weight of the protein55,56. 

 

We manually rebuilt the molecular replacement solutions using the resulting electron-density 

maps, followed by iterative refinement of atomic positions, individual atomic displacement 

parameters (B-factors) with a TLS model, and occupancies, using riding hydrogen atoms and 

automatic weight optimization, until the model reached convergence. Throughout the course of 

manual model building, electron density corresponding to several ligand molecules became 

apparent, which we were able to model. In the V1D8r structure, we observed electron density 

for two steroid-like molecules, one occupying the KSI active site, and a second nestled at a 

crystal contact. These densities were modeled using deoxycholate, which was present in one of 

the purification buffers used to prepare the crystallization samples. Additionally, we identified 

two phosphate ions in this structure. In the V2D9r structure, we also saw density for steroid 

ligands in the active sites of each of the four copies of the enzyme. In this case, the modeling 

was challenging, because the samples were exposed to both deoxycholate (during purification) 

and equilenin (post-purification), and electron density features suggested that there could be a 
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mixture of both ligands represented in the electron density. We attempted to model various 

combinations of the ligands into the active site densities, and found that the electron density 

features could best be described by modeling equilenin in one active site (chain B), 

deoxycholate in one active site (chain D), and a mixture of both ligands in the other two active 

sites (chains A and C). Our choice to model the ligand densities in this way is based on both 

reduction of refinement R-factors, as well as on overall flatness of residual Fo-Fc difference 

density maps around the modeled ligands. In the V2D9r structure, we also modeled 12 sulfate 

ions. All model building was performed using Coot57 and refinement steps were performed with 

phenix.refine within the PHENIX suite54,57. Restraints for the ligands were calculated using 

phenix.elbow58. The final model coordinates were deposited in the Protein Data Bank (PDB59) 

under accession codes 6UAD and 6UAE. Further information regarding model building and 

refinement is presented in Supplementary Table 12. 

 

Size exclusion chromatography 

Six uM of purified wild-type KSI, V1D8r, or V2D9r were loaded onto a Superdex 75 10/300 GL 

column from Cytiva which was pre-equilibrated with running buffer (40 mM phosphate, 2 mM DTT, 

and 1 mM EDTA). Samples were run isocratically in an Agilent Technologies 1200 Series HPLC 

for 150 minutes and absorbance was monitored at 280 nm.  

 

CD spectroscopy 

Samples for CD analysis were prepared at approximately 6 μM enzyme in 40 mM phosphate pH 

8.5, 2 mM DTT, and 1 mM EDTA. CD spectra were recorded at 25°C using 2 mm cuvettes (Starna, 

21-Q-2) in a JASCO J-710 CD spectrometer (Serial #9079119). The bandwidth was 2 nm, rate of 

scanning 20 nm/min, data pitch 0.2 nm, and response time 8 s. Each spectrum represents the 
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average of 5 scans. Buffer spectra were subtracted from the sample spectra using the Spectra 

Manager software Version 1.53.01 from JASCO Corporation. Melting temperatures were 

assessed by measuring molar ellipticity at 222 nm and increasing the temperature from 25 C to 

95 C at 1°C per minute, using a data pitch of 0.5°C.  

 

RMSD Calculations 

For all RMSD calculations, structures were aligned to all residues except those involved in the 

RMSD calculation. In order to calculate backbone RMSDs that involved comparing the shorter 

V1D8r loop to the full-length WT protein, we had to exclude one residue in WT structure. We 

chose to exclude residue 38, as this resulted in the lowest RMSD between the design and the 

WT protein. 

 

Data Availability Statement 

Coordinates and structure files have been deposited to the Protein Data Bank (PDB) with 

accession codes 6UAD (V1D8r) and 6UAE (V2D9r). All other relevant data are available in the 

main text or the supplementary materials.  

Code Availability Statement 

Rosetta source code is available from rosettacommons.org. Pull Into Place is available at 

https://github.com/Kortemme-Lab/pull_into_place. The parameter files used to design KSI are 

available at https://github.com/Kortemme-Lab/ksi_inputs. 
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FIGURES 

 

 

Figure 1. FKIC and LHKIC protocols for sampling protein backbone conformations. (a) 
Individual FKIC/LHKIC move. Three Cα atoms (blue) on the target segment to be modeled (grey) 
are picked randomly as pivots. Fragment insertion (FKIC) or loop hash (LHKIC) is applied to 
sample torsion degrees of freedom at non-pivot atoms (red), which breaks the chain. The KIC 
algorithm is then used to close the chain by determining appropriate values for the pivot torsions. 
(b) Integration of FKIC/LHKIC moves into a structure prediction protocol in Rosetta. Two stages 
of Monte Carlo simulated annealing - a beginning low resolution stage (centroid, light red) followed 
by a high-resolution stage (all-atom, red) - are used to find the lowest Rosetta energy 
conformation of target segments. For benchmarking, the native conformations of target segments 
and surrounding side chains are removed at the beginning of the simulation (Methods). 
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Figure 2. FKIC improves structure prediction accuracy. (a) Comparison of performance of 
different methods for three datasets: (i) Standard dataset described in ref.9, and 2 new sets: (ii) A 
“Mixed Segment” dataset with 30 16-residue regions that contain both loops and segments of 
regular secondary structure and (iii) a “Multiple Segments'' dataset of 30 cases with 2 separate 
10-residue regions that are interacting. KIC9: grey; CCD21: orange; NGK10: blue; FKIC: red, 
LHKIC: brown. Upper panel: violin plot of RMSD of lowest energy (best) model across each dataset. 
Horizontal bars indicate the median lowest-energy RMSD. FKIC is the only method that provides 
predictions with atomic accuracy (≤ 1Å median RMSD) for all datasets. Lower panel: violin plot of 
fraction of predicted models in each dataset that have sub-Å accuracy. FKIC leads to considerable 
improvements over previous methods. Asterisk indicates data from ref.36; all other simulations 
were run with the ref2015 Rosetta energy function17; methods using fragments (CCD and FKIC) 
used identical fragment libraries that excluded fragments from structural homologs to the target 
proteins. (b,c) FKIC correctly reconstructs geometries where the previous state-of-the-art method, 
NGK, fails. Shown are examples from the Mixed Segment (b) and Multiple Segments dataset (c). 
Experimentally determined structures: grey; predictions from FKIC: red, top; predictions from 
NGK: blue, bottom. RMSDs to the experimentally determined structures are given in each panel 
in Å. (d) The fraction of sub-Å predictions is negatively correlated with the mean 3-mer fragment 
distance (Methods). Each data point represents a protein from the standard 12-residue dataset. 
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Figure 3. PIP design protocol applied to ketosteroid isomerase (KSI). (a) Schematic of design 
goal for KSI. Green: wild-type KSI with catalytic aspartate. Yellow: Designed KSI variant with 
reshaped active site to position the glutamate carboxyl group in place of the wild-type aspartate 
carboxyl group. (b) KSI wild-type structure (PDB 1QJG), showing the active site regions to be 
remodeled in yellow. Residues allowed to change identity (design) or conformation (repack) 
during the design process (PIP version 2) are shown in yellow or orange, respectively, and static 
positions are shown in green. (c) Steps of the PIP protocol applied to KSI. Top left: functional 
geometry is defined. Top middle: new backbone conformations (yellow) are built to satisfy the 
geometric restraints. Top right: Backbones are filtered based on their ability to satisfy the 
geometric restraints. d1, d2, and d3 refer to the distances of the atoms in the carboxyl group to 
their defined ideal positions. Bottom right: Sequences are designed to stabilize the de novo 
backbone. Bottom middle: Pareto fronts are used to select designs for structure prediction. Blue: 
all designs, red: Pareto-efficient designs. Bottom left: The lowest-energy structure (orange) is 
predicted using loop modeling methods in Rosetta. 
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Figure 4. Structural characterization of designs V1D8r and V2D9r. (a) Overlay of wildtype KSI 
crystal structure (grey) and V1D8r (orange, top) and V2D9r (orange, bottom) lowest-energy 
design models. (b) Electron density of catalytic loop for V1D8r (top) and V2D9r (bottom) at 1.0 
sigma in mesh representation. (c) Overlay of crystal structure (blue) for V1D8r (top) and V2D9r 
(bottom) with their lowest-energy design models (orange). (d) Crystal structure (blue) of V1D8r 
(top) and V2D9r (bottom) showing the catalytic glutamate’s placement relative to the amide in the 
KSI starting structure (PDB 1QJG) used to define the catalytic position (grey). RMSD values 
between compared structures are indicated in different panels. 
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Figure 5. Functional characterization of designs V1D8r and V2D9r. Representative 
Michaelis-Menten curves for design V1D8r (a) or V2D9r (b). (c) Bar graph of kcat values for 
design V2D9r (black), alanine scan mutants (grey), and reversion mutants (red). Standard 
deviation of independent triplicate experiments are shown as error bars with individual 
measurements shown as points. (d) Bar plots showing the kcat values of V1D8r (top), V2D9r 
(middle), or wild-type KSI (bottom) and their E38D or D38E active site mutations. Values show 
the fold-change in kcat between the respective D/E active-site residue pairs. Error bars and 
points are as in (c). 
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Enzyme kcat (min-1) KM (μM) kcat/KM (μM-1 min-1) 

WT 350 ± 18 120 ± 32 2.9 ± 0.79 
WT D38E 3.4 ± 0.50 37 ± 4.9 0.092 ± 0.018 
V1D8r 1.7 ± 0.41 67 ± 15 0.025 ± 0.0084 
V2D9r 0.29 ± 0.0040 9.0 ± 2.0 0.032 ± 0.0084 

Table 1. Kinetic parameters of wild-type (WT) KSI, WT D38E, and designs. Ranges are 
based on the standard deviation of three independent experiments. 
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