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Abstract. Signaling network models are usually assembled from information in 

literature and expert knowledge or inferred from data. The goal of modeling is to gain 

mechanistic understanding of key signaling pathways and provide predictions on how 

perturbations affect large-scale processes such as disease progression. For glioblastoma 

multiforme (GBM), this task is critical, given the lack of effective treatments and pace 

of disease progression. Both manual and automated assembly of signaling networks 

from data or literature have drawbacks. Existing GBM networks, as well as networks 

assembled using state-of-the-art machine reading, fall short when judged by the quality 

and quantity of information, as well as certain attributes of the overall network structure. 

The contributions of this work are two-fold. First, we propose an automated 

methodology for verification of signaling networks. Next, we discuss automation of 

network assembly and extension that relies on methods and resources used for network 

verification, thus, implicitly including verification in these processes. In addition to these 

methods, we also present, and verify a comprehensive GBM network assembled with a 

hybrid of manual and automated methods. Finally, we demonstrate that, while an 

automated network assembly is fast, such networks still lack precision and realistic 

network topology.  

Keywords: Signaling networks, interaction databases, network validation, glioblastoma 

multiforme 

1 Introduction  

Understanding a disease at a mechanistic level is a complex task, requiring extensive 

knowledge of how affected genes influence disease progression. Signaling networks 

are studied to gain more comprehensive understanding of a disease, or to predict 

potential therapeutic targets [1-3]. The sheer size of the known human interactome [4] 

drives the need for automated methods for creating and understanding signaling 

networks. However, current state-of-the-art methods for automation of network 

assembly are fraught with obstacles that make accurate network assembly time-

consuming and labor-intensive [5-7].  
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Natural language processing (NLP) enables faster information retrieval, but at the 

price of reduced accuracy. Even manually extracted information may be inconsistent 

from one source to the next. Biologically accurate interactions are critical for 

assembling signaling networks, since even one misplaced interaction can have drastic 

consequences for understanding the true function and behavior of the network.  

Current approaches for quantifying signaling network accuracy include validating 

dynamic network outcomes against experimental data or verifying the individual 

interactions with experimental data or previous knowledge [8]. For static network 

models, validating dynamic behavior is not possible. Furthermore, dynamic network 

models can still match experimental outcomes while relying on interactions that do not 

happen in vivo. These interactions may have been incorrectly inferred from data or 

existing literature. An informative, effective signaling network consists of individual 

interactions that accurately depict the system being studied. To verify each individual 

interaction through experimental work is both tedious and time-consuming, and in 

many cases, completely redundant since a considerable portion of the human 

interactome has already been mapped [4]. Many publicly accessible databases collect 

data on supporting textual and experimental evidence that verify the existence of a 

putative interaction [9-11]. These databases are programmatically accessible and 

facilitate the creation of automated tools for network verification. 

In this work, we present a methodology for verifying cellular signaling and 

interaction networks, based on topological features as well as existing data on 

interactions from several databases. We also show that some of the verification steps 

can be used in the process of automated model assembly and extension. Using our 

proposed verification methodology, we evaluate a detailed manually assembled GBM 

stem cell signaling network, and we compare it with a network that is assembled in a 

fully automated manner, and with other previously published GBM networks. To this 

end, the main contributions of this work are: 

1. A methodology to verify causal network models of cellular signaling. 

2. A verified and comprehensive GBM stem cell network model. 

3. An evaluation of automated assembly of context-specific network models from 

literature. 

2 Background 

While the cell signaling models are typically used to study the dynamics, and they 

rely on either ODEs [12], reaction rules [13], or element update rules [14-16], in this 

work, we focus mainly on the underlying structure of these models, a graph 𝐺(𝑉, 𝐸) 
with a set of nodes 𝑉 and a set of edges 𝐸. The graph nodes represent biological system 

components such as genes, proteins, small molecules, miRNAs, and biological 

processes. We refer to these biomolecules and processes as “entities”. The graph edges 

represent physical or functional relationships between entities, which we refer to as 

“interactions”. Interactions with a known cause-effect relationship form a directed 

graph, while the interactions where the nodes are known to have a relationship, but the 

cause and effect is unknown, form an undirected graph. Depending on the available 

knowledge, modeled interactions between elements can be direct, commonly with 

known mechanisms of interaction (e.g., phosphorylation, binding, methylation), or 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 18, 2022. ; https://doi.org/10.1101/2021.07.04.451062doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.04.451062


3  

indirect (causal only), when we know that there is influence, but we do not have detailed 

knowledge about mechanisms of interactions. 

To create signaling network models, a manual assembly process outlined in Figure 

1 is commonly used. The first step is a selection of relevant biological system 

components, that have been shown to play a role in the disease of interest. These 

components are supplied by a number of sources, including expert knowledge or 

different publicly accessible databases. These databases may curate canonical signaling 

pathways, such as KEGG [17] or PANTHER [18], or they may collect data on 

individual interactions, such as STRING [9] or BioGRID [19].  

Interaction databases provide curated, often high-confidence data on signaling 

pathways in disease or normal cell conditions [20]. For a disease network, we can 

supplement our network with experimental data that is cell- or patient-specific, such as 

genes or proteins that have differential expression, somatic mutations, or altered 

signaling capacity. The final list of biological molecules composes the nodes of the 

network. The edges are created between nodes based on existing data from literature 

and interaction databases. 

3 Methodology  

In the following section, we describe our methodology for network verification, 

assembly, and extension.  

3.1 Automated network verification 

Our network verification method, outlined in Figure 1, utilizes the information from 

several databases to confirm the network structure, by retrieving information about 

network nodes, retrieving relevant literature, and providing support for interactions.  

As shown in Figure 1, the main input for the network verification method is a model 

network, that is, a list of all its entities and interactions. To use the databases, we first 

ground entities by finding their unique identifiers (IDs), and this process is dependent 

on entity type. For genes and proteins, our network verification method utilizes the 

UniProt API [21, 22] to automatically determine their standard IDs. Specifically, we 

ground gene and protein names by mapping to both the official gene symbol (OGS) and 

 
 
Figure 1. Workflow of the three automated approaches presented in this work, automated network verification, 

automated network extension, and automated network assembly, and the key sources for manual assembly 

approach. We illustrate sources of information (data, literature, pathways, interactions, networks) in the form 

of database (DB) blocks. 
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the Human Genome Nomenclature Committee (HGNC) identifier. These two ID types 

are very common and allow for comparison to many online resources. The automated 

ID mapping for genes and proteins allows for fully automated verification of gene 

regulatory networks, protein-protein interaction networks, and in general, many cell-

signaling networks. However, there is no API that would allow fully automated 

grounding of small molecules, biological processes, and miRNAs. Thus, finding 

standard IDs for these entities is done manually through database web interfaces such 

as miRbase [23], Chemical Entities of Biological Interest (CHEBI) [24], or Gene 

Ontology (GO) [25, 26]. Since proteins and genes tend to be the most common and 

well-studied endogenous biomolecules, most networks in model databases have fewer 

chemical, biological process, or mRNA entities. For example, STRING [9], one of the 

largest interaction databases, contains only genes and proteins. Likewise, BioGRID 

[19] contains over 2 million protein-protein or protein-gene interactions, while 

containing <30,000 chemical interactions. If an entity is not matched to a standardized 

ID from these databases, the plain text name is used instead. 

Once all network nodes are grounded, we use three online resources, the INDRA 

database [5], PCnet [20], and FLUTE [27], to verify the network edges. INDRA is a 

system that draws on natural language processing tools and structured databases to 

collect statements about mechanistic and causal entity interactions. INDRA relies on a 

number of machine readers (e.g., TRIPS [28], REACH [29], etc.) to extract these 

interactions from literature, and provides a belief score for each interaction in its 

database. The INDRA statements can include direction information where one entity 

influences the other (directed), or only indicate that entities are known to interact, but 

the direction is unknown (undirected). The statements may also include the sign of the 

influence on the downstream entity. The positive sign corresponds to an increase in 

activity or amount of the downstream entity, and the negative sign corresponds to a 

decrease in its activity or amount. The INDRA database also contains statements from 

papers that have already been processed, which reduces the amount of time required for 

extracting interactions from large text corpuses. In addition to statements obtained from 

machine readers, INDRA also provides statements extracted from interaction databases. 

Finally, the sheer size of the INDRA database (over 2 million statements), as well as its 

daily updates, make it a useful resource for model verification. 

Our network verification method automatically compares grounded model networks 

to INDRA statements. This step takes one input parameter, the type of network 

(directed or undirected). For directed networks, it iterates through all interactions in the 

network, and retrieves all statements that match the entity identifiers, as well as the 

direction and sign. For undirected networks, it retrieves statements that match the entity 

identifiers without checking direction or sign. The output of this step are INDRA 

statements that support interactions in the input network. We also assess the confidence 

of all interactions in the network using the INDRA belief score [5]. This score, 

calculated by INDRA, is based on the prevalence of similar statements in literature or 

observed databases. The belief score ranges from 0.0 (no supporting evidence) to 1.0 

(large amount of supporting evidence).  

The Parsimonious Composite Network (PCnet) [20] is a high-confidence network 

of protein-protein interactions. PCnet uses 21 different human interaction databases to 

inform the network, where each interaction must be found in at least two of the 21 

networks. This composite network excludes interactions that are not reproducible, and 
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therefore, it contains only high-confidence interactions. By comparing model 

interactions to PCnet interactions, we identify which interactions in the model have 

support from multiple curated signaling networks. While PCnet interactions are highly 

supported, they are undirected, and independent of context. This distinguishes PCnet 

from INDRA, which contains many interactions that are directed and contextual, but 

have lower confidence. 

Besides automatically comparing the input network with INDRA, our verification 

method also automatically compares the network to all interactions in PCnet. Here, we 

use a local copy of PCnet, stored as a plain text file, which is also freely accessible and 

available for download from nDex [11].The first step in this case is a conversion of the 

directed network to an undirected one, since PCnet contains only undirected 

interactions. Our method then iterates through all model interactions and compares 

them to all PCnet interactions. Finally, it outputs a list of all interactions within the 

signaling network that are verified by PCnet. We can verify a network using only PCnet, 

or we can use PCnet in addition to INDRA.   

The Filter for Understanding True Events (FLUTE) [27] tool utilizes existing 

interaction database resources to find support for machine-read interactions. The 

FLUTE database stores information from five interaction databases, including protein-

protein interactions (PPIs), protein-chemical interactions (PCIs), and protein biological 

process interactions (PBPIs). For PPIs and PCIs, FLUTE utilizes the STRING 

interaction score [9],  STITCH interaction score [30], or the GO Term annotation [25, 

26], to assess the confidence of the interaction, depending on the interaction type. The 

STRING and STITCH interaction scores are composed of several evidence types to 

support an interaction, such as experimental data, text mining, or database co-mentions. 

FLUTE is capable of selecting high confidence interactions and filtering out many 

incorrectly read interactions within a reading set. FLUTE encompasses several types of 

biological entities including proteins and genes, chemicals, and biological processes, 

while PCnet is composed of only proteins. FLUTE is also able to provide a score for 

the interaction confidence, unlike PCnet. In contrast to INDRA, the FLUTE database 

contains interactions with a high level of human oversight. FLUTE provides an extra 

level of scrutiny over INDRA, while still being less restrictive than PCnet. The FLUTE 

tool was specifically designed for interaction filtering, unlike PCnet, which is a 

network. In Table 1, we summarize the characteristics of the three sources, INDRA, 

PCnet, and FLUTE, that are used in our automated verification method. 

Table 1. A comparison of the characteristics of INDRA, PCnet, and FLUTE. *The presence or absence 

of an interaction in PCnet can be used as a binary score. 
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3.2 Automated network assembly 

Our automated network assembly method has two main steps, literature search in 

PubMed [31], followed by the use of INDRA API to retrieve all statements. To 

assemble a network that includes relevant, commonly affected pathways for a given 

context (e.g., disease, cell type, tissue, or a biological state), we use a query as an input 

to the network assembly method. This query has two parts connected with logical AND, 

and each part is a list of terms connected by logical OR operator. One list of terms leads 

to the retrieval of papers from the desired context (e.g., “‘Type 1 diabetes’ OR ‘juvenile 

diabetes’ OR ‘insulin-dependent diabetes’”), and the other list of terms refers to 

relevant signaling networks and pathways (e.g., “signaling OR network OR pathway 

OR cascade OR interaction OR regulation”). We note here that other logical 

expressions are possible [32], and could be supported by our proposed workflow; 

however, this is beyond the scope of the work presented here. For well-studied contexts 

or broad queries that return a large number of papers (in the order of 10,000+), we select 

the most relevant papers, as determined by the PubMed’s Best Match feature [33]. The 

second step of our automated assembly method takes as input the standardized paper 

identifiers for the set of context-specific papers found in the first step and searches the 

INDRA database using its API to find all statements (i.e., interactions) in this paper set.  

We limit the returned statements to those that have only two distinct entities. This 

eliminates statements that represent an edge joining more than two nodes, such as a 

statement describing complex formation. We restrict the number of entities in a 

statement in order to be able to compare all statements to PCnet and other existing 

networks, which represent steps in a signaling pathway as one-to-one interactions. As 

a result, the automatically assembled network is composed entirely of INDRA 

statements, where the entities are the nodes, and the interactions stored in the INDRA 

statement are edges.  

To improve the quality of the assembled network, we added several filters to the 

automated assembly method, including those that we used in our network verification 

approach. These filters are based on the information included in each INDRA statement. 

First, the belief score can be applied as a cut-off, since it is determined with respect to 

the amount of evidence to support the interaction; an interaction with a higher belief 

score is less likely to be a false positive (an invalid or non-existent relationship between 

two entities). To filter by belief score, we used the cut-off for a high confidence 

interaction as described in [5], which is 0.85, and discarded all interactions below that 

score. Next, we can also filter by interaction type, that is, direct or indirect, as stated by 

INDRA. For some interactions, INDRA contains evidence on whether an interaction is 

direct or indirect. Other statements do not contain any evidence on the interaction type. 

By selecting for only direct interactions or those with high belief scores, the final 

network contains fewer low-confidence interactions.  

3.3 Automated network extension 

The methods used for automated network verification can also be utilized in the 

process of network extension, thus providing verified interactions by construction. In 

cases where an existing (baseline) model, i.e., its underlying network, fails to capture 

the full detail of the studied system, an automated extension method retrieves new 

interactions (extensions) to improve network scope. Our goal is to explore whether our 
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proposed methods can help identify these new important entities and interactions to be 

included in the baseline network.  

To select potential network extensions, we again utilize the INDRA DB. First, we 

take the list of all baseline network nodes, with standardized IDs, and call the INDRA 

API for each node. When only one entity name is used in the API call, this retrieves all 

INDRA statements where the entity is mentioned. This gives us a list of extensions, 

which can either add new nodes to the network or provide edges between unconnected 

nodes in the baseline network. 

Here, we use two different extension approaches. First, we use a simple approach 

that adds to the baseline network those interactions output by INDRA with at least one 

entity already in the baseline network. Thus, we know that these extensions will all 

connect to the network. We also use the TopX extension method, where X refers to the 

number of extensions added to the network. In general, the extensions can be ranked 

with respect to any metric of interest. In this work, we will be adding extensions based 

on their INDRA belief score. The TopX method has two benefits over simple extension. 

First, the number of extensions added can be tailored to the size of the network. This 

ensures that the characteristics of the original network are kept and not overshadowed 

by the sheer number of extensions added. Secondly, when interaction confidence or a 

belief score is the criteria used for interaction ranking, the TopX method selects and 

adds only high confidence interactions.  

4 Results 

Here, we first describe a manually created and carefully curated network of GBM 

stem cell signaling. We will verify the interactions in this network with our proposed 

automated verification approach. Furthermore, we will compare this manually created 

network with GBM networks that are automatically assembled using existing databases. 
We will also use our automated network verification methodology to compare this 

Table 2. Statistics for all studied networks. The clustering coefficient is the average clustering coefficient for 

all nodes in the network. We calculate the number of hub nodes as those with >7 edges, as well as the relative 

frequency of hub nodes in each network. 
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network with other previously published networks. Finally, we will discuss further 

extensions of this network that are found using our automated network extension 

approach. 

4.1 GBM stem cell network 

We assembled the GBMexpert network manually, using several different sources. We 

started building a small initial network by including the key GBM pathways identified 

from the TCGA mutation data, as well as the key pathways that were found to play 

important roles in apoptosis, cell proliferation, and DNA damage, in particular, the 

Rb/CDK [34], PI3K/Akt [35], JAK/STAT [36], Raf-MEK-ERK [37], EGFR [38], p53 

[39, 40] Hedgehog [41], and Notch [2] pathways. To encompass a wider selection of 

cancer-associated pathways and individual elements (oncogenes, tumor suppressors, 

etc.), we obtained more information from the GBM stem-cell specific literature and 

added new entities and interactions to the small initial network. The GBMexpert network 

is generic with respect to different GBM stem cell lines, and it includes 134 elements, 

and 279 interactions between these elements (Supplemental Table 1). Finally, from the 

GBMexpert network, we also created the GBMexpert
PCnet network, which contains only 

interactions that are supported by PCnet. The sizes of both networks are listed in Table 

2.  

4.2 Verification of GBMexpert  

Using our automated network verification method described in Section 3.1, we 

verified the GBMexpert network. In Figure 2a, we show the overlap between the INDRA 

DB, GBMexpert network, and PCnet, the intersection between each two of them, as well 

as the intersection between all three (GBMexpert
PCnet). Each of the 279 interactions in the 

GBMexpert network is found in INDRA, confirming the existence of these interactions, 

as well as their direction and sign. Consequently, all model interactions in GBMexpert 

that are supported by PCnet are also present in INDRA, and they form GBMexpert
PCnet. 

Thus, the set of 208 interactions in GBMexpert
PCnet confirmed by PCnet and INDRA, 

indicates that the majority of interactions in GBMexpert are both high-confidence and 

have a supported mechanism.  

As described in Section 3.1, besides finding the existence of the GBMexpert network 

interactions in literature and databases, our verification method also measures the 

amount of supporting information for individual interactions in the GBMexpert network 

using the INDRA belief score. We show the distribution of INDRA belief scores for 

each interaction in GBMexpert, as well as for interactions in GBMexpert
PCnet in Figure 2b. 

It is important to note that the minimum belief score, if the corresponding statement can 

be found in the INDRA database, is 0.65. While an interaction that is not in the INDRA 

database would be assigned a belief score of 0.00, all interactions in GBMexpert are found 

in INDRA. Intuitively, when we remove interactions that are not found in PCnet, the 

average INDRA belief score increases. This can be attributed to the fact that interactions 

in PCnet have at least two independent networks supporting each interaction.  

We also explore properties of the network, independent of node and edge identity. 

While these numbers alone cannot verify our network, they can provide us with a 

measure of how useful the network is, and whether it resembles a signaling network. In 

Figure 2c (left), we show the GBMexpert network figure, as well as the network diameter. 
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GBMexpert is one connected component (Table 2), with a network diameter of 20. These 

numbers confirm that our preliminary baseline network is well connected, without any 

disconnected nodes or isolated clusters. The network nodes form long paths, typical for 

signaling networks, instead of star-like clusters. 

We also list in Table 2 the average clustering coefficient, and the number and 

frequency of hub nodes for the GBMexpert and the GBMexpert
PCnet networks. The 

clustering coefficient is a metric of the connectedness of each node within a network 

[42]. The clustering coefficient for both networks is more indicative of a network that 

describes a real-world phenomenon than a randomly generated one [43]. Cancer 

signaling networks depend on the existence of hub nodes, which are highly susceptible 

to chemical inhibition. We define a hub as a node with >7 edges, which includes both 

incoming and outgoing edges. Both manually assembled networks show a hub node 

frequency of approximately 1 in 10 (9-13%).  
We also evaluate the node degree distribution in  

Figure 2d. Biological signaling networks are thought to be weakly scale-free, where 

the node degree distribution conforms to a power law. Most nodes will have few 

interactions, but there are also hub nodes with many in- or out-going edges. We find 

that our manual baseline network shows scale-free properties. Overall, our verification 

method and graph-based analysis highlight that our manually created context-specific 

network is not only composed of high-confidence interactions, but it also conforms to 

known graph topological characteristics of biological signaling networks.  

4.3 Automated network assembly 

In contrast to the manually created and curated GBMexpert network, our fully 

automated assembly method (described in Section 3.2) created another context-specific 

GBM network, GBMquery. To compile a relevant literature set, we performed a targeted 

search of GBM literature in PubMed, and retrieved the top 600 most relevant papers 

(according to the PubMed Best Match algorithm [33]), using the following query:  

(glioblastoma or gbm) and (signaling or network or pathway or cascade or 

interaction or regulation)  (1) 

 
 

Figure 2. Edge overlap between PCnet, INDRA, GBMexpert (maroon), and GBMquery (green) (a), the 

distribution of INDRA belief scores for all manual and automated networks (b), the network diameter for 

GBMexpert (left), and GBMquery (right) (c), node degree distribution for GBMexpert (maroon), and GBMquery 

(green) (d), and the effect of different filters on network size (e). 
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We chose the second term to limit the frequency of clinical or morphological GBM 

studies, and to retrieve only papers on cell pathways and signaling in GBM. Our 

automated method obtained all associated INDRA statements from these papers, as 

described in Section 3.2, and automatically assembled the GBMquery network.  

To explore whether additional automated filtering methods could help select a 

useful and reliable GBM network, we analyzed not only the baseline GBMquery network, 

but also its subnetworks. In particular, we explored several subnetworks of the 

GBMquery network that contain more supported or higher confidence interactions. We 

automatically created these four subnetworks of the GBMquery network using three 

interaction metrics - interaction type (direct or indirect), INDRA belief score, and PCnet 

overlap (Table 2). It is important to note that unlike GBMquery, we did not create 

GBMexpert subnetworks filtered by belief score or interaction type due to the high 

average belief score, as well as the absence of indirect or nonspecific interactions. 

We used the interaction type attribute included in INDRA statements, to select only 

direct interactions within GBMquery, forming GBMquery
d. The reason behind selecting 

direct interactions is that usually there exists more evidence about them and their 

mechanisms in literature. However, due to the scarcity of direct interactions in machine 

reading output, we also created a subnetwork GBMquery
d,u, which includes both direct 

and “unspecified” (when interaction type is not listed in INDRA) interactions from 

GBMquery. We created two more networks from the GBMquery network by either 

selecting only those interactions that are present in PCnet to create the GBMquery
PCnet 

network, or by selecting those interactions with INDRA belief score larger than 0.85 to 

create GBMquery
0.85. We list in Table 2 the size, clustering coefficient, the number of 

connected components, and the number of hub nodes for the GBMquery network and its 

four subnetworks.   

4.4 Evaluation of automatically generated networks 

Although the five automatically generated networks were assembled using the 

information from INDRA, the INDRA belief scores of the interactions in those 

networks can vary significantly (Figure 2b). Compared to GBMexpert, GBMquery has 

much lower average belief score. Even by restricting interactions from GBMquery to 

belief score >0.85, which excludes interactions found in a single paper, their average 

belief score is still lower than for GBMexpert (0.89 vs. 0.94). 

Furthermore, when compared to its subnetwork GBMquery
PCnet (Figure 2a), we found 

that out of 2388 interactions in the GBMquery network, only 412 are represented in 

PCnet. In other words, PCnet considers over 75% of the GBMquery interactions as low-

confidence interactions. Furthermore, we find that the network is composed of 20 

connected components (Table 2). This suggests that the automated network assembly 

may not be optimal in terms of interaction quality. However, we analyzed the scale-

freeness of GBMquery by its node degree distribution (Figure 2d), and the node degree 

distribution strongly conforms to a scale-free distribution, indicating that GBMquery has 

a network structure typically seen in biological networks. We find that the node degree 

distribution more closely resembles a power law distribution than a normal distribution, 

which would be expected for a randomly generated network [44]. We see that the most 

common node degree in GBMquery is k=1, which is a degree of input and output nodes. 

We also compared the size of manually and automatically created networks. As 
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expected, GBMexpert is much smaller than GBMquery. Due to the importance of hub nodes 

in cancer signaling, we identified hub nodes in all networks (node degree >7). While 

GBMexpert has less hub nodes than GBMquery, the proportion of hub nodes is comparable 

given the size of both networks (13.41% and 16.13%, respectively). Any filtering, for 

either manually or automatically created network, results in a decrease in the proportion 

of hub nodes in the filtered network. For instance, selecting only interactions supported 

by PCnet decreases hub node proportion to 5.31% in GBMexpert
PCnet and 5.58% in 

GBMquery
PCnet. Compounding the effort to improve the networks is the increase in 

number of disconnected components after filtering. By adding a filter to increase 

interaction support, we increase the disconnect between network modules. For example, 

after filtering indirect interactions out of GBMquery, we are left with 37 distinct, 

unconnected modules.  

Finally, we compare the effect of different verification techniques on the number of 

edges of GBMquery and GBMexpert (Figure 2e). GBMquery, which is much larger than 

GBMexpert, is the most affected by filtering. Using either PCnet or FLUTE to filter 

GBMquery reduces the size of the network by more than 1500 edges. However, for 

GBMexpert, filtering eliminates at most 75 interactions. FLUTE is the least stringent filter 

for both networks, while PCnet filters out the most interactions from both networks.  

4.5 Existing GBM network verification   

We compared the literature support of the GBMexpert network versus other published 

GBM networks. We examined two networks publicly accessible from literature, 

JeanQuart20 (Jean-Quartier et al. [45]) Tunc16 (Tuncbag et al [46]), and two networks 

from databases GBMKEGG (KEGG[17]) and GBMSIGNOR (SIGNOR [47]). Additionally, 

we retrieved from nDex [11] a TCGA RNA-miRNA interaction network, TCGAmiRNA. 

It should be noted that TCGAmiRNA is not a mechanistic signaling network like the 

others; rather, it is a correlation network derived from gene expression data. Similar to 

other networks, we summarized in Table 2 the characteristics of these five existing 

GBM disease networks. 

In Figure 3a-d, we show the INDRA, PCnet, and GBMexpert overlap with 

JeanQuart20, Tunc16, GBMKEGG and GBMSIGNOR, respectively. We find that, while 

GBMexpert outperforms existing GBM networks in terms of INDRA representation, 

PCnet representation is more comparable. JeanQuart20 has the highest percentage of 

interactions represented in PCnet. TCGAmiRNA is again, the least supported, since it is a 

correlation network of gene-miRNA interactions, which has no presence in PCnet, and 

only infrequent mentions in INDRA.  

Additionally, we compared the overlap between each pair of GBM networks in 

terms of shared interactions (Figure 3e). While all five networks are intended to address 

the same disease signaling network, we find that there is very small overlap. For 

example, the maximum overlap is between GBMexpert and JeanQuart20, and even this 

overlap is only 28 interactions, making it 10.04% of the GBMexpert network and 3.07% 

of the JeanQuart20 network. This disparity is most likely due to differences in 

represented pathways. 

Using our automated network verification approach (Section 3.1), we evaluated 

individual interactions within networks (Figure 3f). Again, we find that our proposed 

GBM network, GBMexpert, has much higher literature support than other networks, even 
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compared to other manually assembled networks. GBMexpert is the only manually 

created network with all statements supported by the INDRA database, and has a higher 

average belief score than any other studied network. This is independent of the curation 

source (i.e., literature or database). These results indicate that the GBMexpert network 

may be less likely to contain interactions that are false positives.  

Similar to the networks discussed in previous sections, we calculated the node 

degree distribution for each of the published networks (Figure 3g). We find that all 

networks display some degree of scale-freeness. However, TCGAmiRNA does not – the 

most common node degree is 10, which does not conform to the expected power law 

distribution. This can be explained by the fact that this a correlation network, and so 

each node is at least weakly connected to many other nodes, which is common for 

correlation networks [42]. 

4.6 Automated extension of GBMexpert 

Using the methods described in Section 3.3, we retrieved 116,535 edges that can be 

used to extend GBMexpert. Using the simple extension method, the manually created 

baseline model was extended to include approximately 8,000 nodes, which is 

approximately a 60-fold increase compared to the original network. While this extended 

network includes many new interactions, it overshadows the original GBMexpert 

network, and is likely populated with interactions and pathways not relevant to GBM. 

By construction, this extended network includes interactions that are connected with 

the original GBMexpert network, and therefore, it does not suffer from the issue that the 

GBMquery network has – this extended network has only one connected component and 

a high average INDRA belief score (0.91). While the extensions have a high average 

belief score, not all are relevant to GBM. For a GBM model that is both high-confidence 

and GBM-specific, manual selection of retrieved extensions can improve model 

relevancy. 

We also obtained results for extension of GBMexpert using the TopX extension 

Figure 3. INDRA, PCnet, and GBMexpert overlap with JeanQuart20 (a), Tunc16 (b), GBMKEGG (c) and 
GBMSIGNOR (d). The edge overlap between manually created networks (e), INDRA belief score distribution 

(f), and node degree distribution for GBM networks (g). 
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method. For X=25, the new interactions prior to model extension were hanging nodes, 

i.e., an edge between one node in the network and one or two new nodes. For X=50, 

the extensions are grouped into star-like clusters (4-6 nodes), where a single new node 

connects to several nodes already in the network. Thus, using automated methods for 

network extension, we can create high confidence networks that retain structural 

characteristics of typical biological networks.  

5 Conclusion 

Verification of disease network models is an important component of modeling in 

systems biology. Publicly available databases are a valuable resource for both model 

creation and verification, and in this work we focus on automating the use of these 

databases. We propose a workflow that relies on publicly available resources and 

includes steps for automated network verification, as well as methods that utilize those 

steps and resources to automate network assembly and extension. As such, our 

workflow not only enables more efficient creation of high confidence disease models, 

but also contributes to systematic reuse and reproducibility of existing information. 

Additionally, we present and verify a manually created network model of GBM stem 

cells and compare it with an automatically assembled network. We find that, while both 

manually and automatically created networks replicate some characteristics of 

biological networks (i.e., scale-freeness, hub node frequency, etc.), the manually 

created network has higher-confidence interactions. Using FLUTE, INDRA, and PCnet 

to verify network interactions, we show that our manually created GBMexpert network is 

composed of well-known, mechanistic interactions. Our analysis holds up, even when 

comparing our manually created GBM network to other previously published GBM 

networks. We find that the interactions within our network are supported by more 

literature and database sources, on average, than the other existing networks. 
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