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Abstract 
Assembly of bacterial genomes from long-read data (generated by Oxford Nanopore or Pacific 
Biosciences platforms) can often be complete: a single contig for each chromosome or plasmid in the 
genome. However, even complete bacterial genome assemblies constructed solely from long reads still 
contain a variety of errors, and different assemblies of the same genome often contain different errors. 
Here, we present Trycycler, a tool which produces a consensus assembly from multiple input assemblies 
of the same genome. Benchmarking using both simulated and real sequencing reads showed that 
Trycycler consensus assemblies contained fewer errors than any of those constructed with a single long-
read assembler. Post-assembly polishing with Medaka and Pilon further reduced errors and yielded the 
most accurate genome assemblies in our study. As Trycycler can require human judgement and manual 
intervention, its output is not deterministic, and different users can produce different Trycycler assemblies 
from the same input data. However, we demonstrated that multiple users with minimal training converge 
on similar assemblies that are consistently more accurate than those produced by automated assembly 
tools. We therefore recommend Trycycler+Medaka+Pilon as an ideal approach for generating high-
quality bacterial reference genomes. 

Data availability 
Supplementary figures, tables and code can be found at: github.com/rrwick/Trycycler-paper 

Reads, assemblies and reference sequences can be found at: 
bridges.monash.edu/articles/dataset/Trycycler_paper_dataset/14890734 

Introduction 
Long-read assembly is the process of reconstructing a genome from long sequencing reads (>10 kbp), 
such as those made by Oxford Nanopore Technologies (ONT) or Pacific Biosciences (PacBio) platforms. 
ONT’s long-read sequencing platforms are popular for bacterial sequencing due to their low cost per 
sample1,2. Since long reads can span larger genomic repeats than short reads (e.g. reads from Illumina 
sequencing platforms), long-read assembly can produce larger contigs than short-read assembly3–6. For 
bacterial genomes, it is often possible to produce a long-read-only assembly (an assembly made solely 
from long-read data) which is complete: one fully assembled contig for each replicon in the genome7,8. 
There are many long-read assemblers appropriate for use on bacterial genomes, including Canu9, Flye10, 
Raven11 and Redbean12. Each has advantages and disadvantages, but in a recent benchmarking study 
we found Flye to be the best-performing bacterial genome assembler in many metrics13. 

Since long-read assembly of bacterial genomes can reliably yield chromosome-scale contigs, it is 
sometimes considered to be a solved problem14, with much assembler tool development now focusing on 
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more challenging scenarios such as eukaryotic genomes and metagenomes15,16. However, long-read 
bacterial assemblies are not perfect. Small-scale errors (such as homopolymer-length errors) are 
commonly discussed and addressed7,17–19, but larger-scale errors (tens to hundreds of base pairs) also 
occur in most assemblies13. Even though most bacterial replicons are circular, long-read assemblers often 
fail to produce cleanly circularised contigs, where the last base in the contig is immediately followed by 
the first base. Spurious contigs are often present in assemblies (e.g. from contaminant sequences), and 
small plasmids can be omitted due to their underrepresentation in ONT read sets20. Hybrid assembly, 
which uses both short and long reads, can mitigate some of these problems, but hybrid assemblers also 
fail to produce error-free genome assemblies21, and can introduce confusion if short and long read 
libraries are not constructed from the same DNA extraction22. Long-read assembly of bacterial genomes 
is therefore not a completely solved problem, and there is still much room for improvement. 

As assembly is often the first step in bioinformatic pipelines, assembly errors can have negative 
implications for downstream analysis. Here we introduce Trycycler, a computational tool which enables 
high-quality long-read-only assemblies of bacterial genomes. It takes multiple assemblies of the same 
genome as input and produces a single consensus assembly. Trycycler exploits the fact that while long-
read assemblies almost always contain errors, different assemblies of the same genome typically have 
different errors13. Trycycler can therefore combine multiple input assemblies to produce a consensus 
assembly with fewer errors than any of its inputs. 

Approach and Implementation  

 
Figure 1: overview of the Trycycler long-read assembly pipeline. Before Trycycler is run, the user must 
generate multiple completed assemblies of the same genome, e.g. by assembling different subsets of the 
original long-read set. Trycycler then clusters contigs from different assemblies and produces a consensus 
contig for each cluster. These consensus contigs can then be polished (e.g. with Medaka) and combined into a 
final high-quality long-read-only assembly. 
 

The Trycycler pipeline consists of multiple steps which are run separately (overview in Figure 1, more 
detail in Figure S1). At the clustering and reconciliation steps, the user may need to make decisions and 
intervene. This means that Trycycler is not an automated process appropriate for high throughput 
assembly. Trycycler is implemented in Python and uses the NumPy, SciPy and edlib packages23–26. 

Before Trycycler is run, the user must generate multiple input assemblies of the same genome (Figure 
S1A). The input assemblies should be complete: one contig per replicon. If complete assemblies are not 
possible (e.g. due to insufficient read length) or read depth is shallow (e.g. <25× depth), then Trycycler 
is not appropriate. We recommend users generate 12 independent input assemblies, but this value can 
be adjusted down (to save computational time) or up (to improve robustness). It is desirable to maximise 
the independence of the input assemblies, as this will reduce the chance that the same error will occur in 
multiple assemblies. One way to achieve such independence is to use multiple assemblers, as different 
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assembly algorithms can lead to different assembly errors13. For example, in the tests reported here we 
used Flye10, Miniasm/Minipolish13, Raven11 and Redbean12. Random read subsampling can provide 
further independence, where each assembly is generated from a different subsample of the full read set 
(Trycycler v0.5.0 has a ‘subsample’ command to facilitate this). Deeper long-read sets are therefore 
desirable, as they enable more independent subsets. 

The first step in the Trycycler pipeline is contig clustering (Figure S1B). It aims to group contigs of the 
same replicon from different input assemblies, so subsequent steps can be carried out on a per-replicon 
basis. For example, if the genome in question had one chromosome and one plasmid, then Trycycler 
clustering should produce two clusters: one for the chromosomal contigs and one for the plasmid contigs. 
To make clusters, Trycycler conducts complete-linkage hierarchical clustering on all pairwise Mash 
distances between contigs27. To aid interpretation, a FastME tree is built using the pairwise distances28. 
After clustering is complete, the user must decide which clusters are valid (i.e. represent completely 
assembled replicons in the genome) and which are invalid (i.e. represent incomplete, misassembled or 
spurious sequences) – a key point of human judgement in the Trycycler process. 

The next step is to ‘reconcile’ each cluster’s contig sequences with each other (Figure S1C). This involves 
converting sequences to their reverse complement as necessary to ensure that all sequences in the cluster 
are in the same orientation. Most bacterial replicons are circular, so Trycycler aligns the start and end of 
each contig to the other contigs in the cluster to determine if bases need to be added or removed for clean 
circularisation (can be disabled for linear replicons by using the --linear option). It then rotates each 
sequence to begin at the same position. Some gene sequences (e.g. dnaA and repA) are often used as starting 
positions in complete genomes, so Trycycler contains a database of these genes and will preferentially 
use them as the contig starting position (see Methods). If no sequence from this database is found (with 
≥95% coverage and ≥95% identity), Trycycler will use a randomly chosen unique sequence instead. 

After reconciliation, each cluster’s sequences will have a consistent strand and starting position, making 
them appropriate for global multiple sequence alignment (Figure S1D). To improve computational 
performance, Trycycler partitions the sequences into smaller pieces, using 1 kbp pieces with each piece 
extended as necessary to ensure that the boundaries between pieces do not start/end in repetitive regions. 
It uses MUSCLE29 to produce a multiple sequence alignment for each piece, and then stitches the pieces 
together to produce a single multiple sequence alignment for the full cluster sequences. Trycycler then 
aligns the entire read set to each contig sequence so it can be assigned to a particular cluster (Figure 
S1E). 

The final step in Trycycler’s pipeline is the generation of a consensus sequence for each cluster (Figure 
S1F). It does this by dividing the multiple sequence alignment into regions where there is or is not any 
variation. For all regions where there is variation, Trycycler must choose which variant will go into the 
consensus. The best variant is defined as the one with the minimum total Hamming distance to the other 
variants, an approach which favours more common variants. In the event of a tie between two variants, 
Trycycler aligns the cluster’s reads to each possibility and chooses the one which produces the largest 
total alignment score – i.e. the variant which is in best agreement with the reads. The final Trycycler 
consensus sequence for the cluster is produced by taking the best variant for each region of variation in 
the multiple sequence alignment. 

After Trycycler finishes, it is recommended to perform long-read polishing on its consensus sequences 
(Figure S1G). Polishing is not incorporated into Trycycler, as that step can be specific to the long-read 
sequencing technologies used, e.g. Medaka30 polishing for ONT assemblies. If short reads are available, 
short-read polishing (e.g. with Pilon31) can also be performed to further improve assembly accuracy. 

The code and documentation for Trycycler v0.3.3 (the version used to generate the assemblies in this 
manuscript) are available at the DOI 10.5281/zenodo.3966493. The current version of Trycycler 
(v0.5.0) is available on GitHub (github.com/rrwick/Trycycler). 
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Results 
Performance on simulated reads 
In silico read simulation allows for a straightforward test of assembly accuracy against a ground truth: 
reads are generated from a reference genome, the reads are assembled, and the resulting assembly is 
compared back to the original reference sequence. For this analysis, we simulated short and long reads 
from 10 reference genomes which belong to the 10 most common bacterial species in RefSeq (Table 
S1). We assembled each genome with long-read-only approaches (Miniasm/Minipolish13, Raven11, 
Flye10 and Trycycler), long-read-first hybrid approaches (Pilon31 polishing of each long-read-only 
assembly) and a short-read-first hybrid approach (Unicycler21). We quantified the accuracy of each 
assembly’s chromosomal contig using two main metrics: mean identity and worst-100-bp identity (the 
minimum identity observed among 100-bp sliding windows). 

Comparing only the long-read assemblers to each other (Flye, Miniasm/Minipolish and Raven), it was 
clear that Flye performed best (Figure S2). This was true both before Pilon polishing with short reads 
(mean identity Q41 vs Q38; mean worst-100-bp-identity 95.8% vs 50.8–90.9%) and after Pilon polishing 
(mean identity Q57 vs Q42–Q55; mean worst-100-bp identity 96.1% vs 50.8–95.7%). Our main results 
therefore exclude Miniasm/Minipolish and Raven, leaving only the best-performing long-read 
assembler: Flye. 

Figure 2 shows the mean assembly identities and worst-100-bp assembly identities from each approach, 
using 10 simulated read sets. In both metrics, Trycycler reliably produced higher-quality assemblies than 
Flye (mean identity Q51 vs Q41; mean worst-100-bp identity 99.5% vs 95.8%). This result also held true 
for long-read-first hybrid assemblies, where Trycycler+Pilon outperformed Flye+Pilon (mean identity 
Q74 vs Q57; mean worst-100-bp identity 99.9% vs 96.1%). Unicycler’s short-read-first hybrid assemblies 
performed notably worse than the long-read-first hybrid approaches (mean identity Q25; mean worst-
100-bp identity 76.5%). 

 

 

Figure 2: results for the tests using simulated reads. For 10 reference genome sequences, we simulated both 
short and long reads. The read sets were then assembled with Unicycler (short-read-first hybrid assembly), 
Flye (long-read-only assembly), Flye+Pilon (long-read-first hybrid assembly), Trycycler (long-read-only 
assembly) and Trycycler+Pilon (long-read-first hybrid assembly). 
Each assembled chromosome was aligned back to the reference chromosome to determine the mean assembly 
identity (A) and the worst identity in 100-bp sliding windows (B). For long-read-only assembly, Trycycler 
consistently achieved higher accuracy than Flye. Trycycler+Pilon (i.e. using Pilon to polish the Trycycler 
assembly with short reads) achieved the highest accuracy and did better than alternative hybrid approaches 
(Unicycler and Flye+Pilon). 
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Performance on real reads 
Since simulated reads cannot perfectly emulate real sequencing32, we also tested assembly methods with 
real read sets. We chose seven bacterial isolates for this study (Table S2), each belonging to a different 
bacterial species with clinical relevance. The challenge with real reads is the absence of a clear ground 
truth against which to compare assemblies. To circumvent this issue, we instead produced two 
independent sets of long+short (ONT+Illumina) reads for each test organism. In brief, a single DNA 
extraction from each organism was used to prepare two ONT libraries (one ligation, one rapid), and a 
single Illumina library (the results of which were divided into two non-overlapping read sets); full details 
are described in Methods. For each assembly method, we compared the assembly from read set A to 
the assembly of read set B, differences between them indicating assembly errors. While this approach 
could suffer from false negatives if both assemblies contained the same error, it cannot suffer from false 
positives, as wherever two assemblies of the same genome differ, at least one of the two must be in error. 

We tested the same assemblers as were used in the simulated-read tests but added an additional long-
read polishing step with Medaka, an ONT-specific polishing tool. We therefore produced unpolished 
long-read-only assemblies (with Miniasm/Minipolish, Raven, Flye and Trycycler), polished long-read-
only assemblies (the same assemblers plus Medaka), long-read-first hybrid assemblies (the same 
assemblers plus Medaka and short-read polishing with Pilon) and short-read-first hybrid assemblies (with 
Unicycler). Each assembly approach was used on both read set A and read set B for each of the test 
organisms. 

Assembly accuracy was quantified using the metrics from the simulated-read tests: mean identity and 
worst-100-bp identity. Instead of being based on an assembly-to-reference alignment (as was done for 
the simulated-read tests), these metrics used an alignment of the read-set-A-assembled chromosome to 
the read-set-B-assembled chromosome. For the Serratia marcescens genome, read set B failed to produce a 
complete chromosome with most assembly methods (due to long genomic repeats and a short read N50, 
see Table S2), so this genome was excluded, leaving six genomes in the analyses. As was the case for the 
simulated-read tests, Flye assemblies were higher quality than Miniasm/Minipolish and Raven 
assemblies at all polishing stages (Figure S3): unpolished (mean identity Q34 vs Q28–Q32; mean worst-
100-bp identity 81.8% vs 20.2–21.8%), Medaka-polished (mean identity Q40 vs Q30–Q35; mean worst-
100-bp identity 94.7% vs 28.2–38.0%) and Medaka+Pilon-polished (mean identity Q56 vs Q31–Q37; 
mean worst-100-bp identity 94.7% vs 28.2–40.0%). Flye was also the only long-read assembler to 
produce completed chromosomes for both read sets of all six genomes, so Miniasm/Minipolish and 
Raven were excluded from our main results. 

Since the mean identity and worst-100-bp identity metrics could fail to identify all assembly errors in the 
real-read tests, we also used two other approaches for assessing the quality of de novo assemblies. The first 
was ALE33, which uses short-read alignments to the assembled sequence to produce a likelihood score 
for that assembly (higher scores being better), which we normalised for each genome to produce a z-score. 
Mapping accuracy, evenness of read depth and evenness of insert size extracted from the short-read 
alignments are all used by ALE to generate likelihood scores. The second de novo assessment approach 
was IDEEL34,35, which compares the length of predicted proteins in the assembly to a database of known 
proteins. Indel errors in the assembly cause frameshifts in coding sequences leading to truncations, so an 
error-prone assembly will tend to have predicted proteins which are shorter than their best-matching 
known proteins. We quantified the fraction of predicted proteins in each assembly which were ≥95% the 
length of their best-matching known protein (higher fractions being better). 

Figure 3 shows the real-read results: mean identity, worst-100-bp identity, ALE z-scores and IDEEL 
full-length proteins. In the mean identity metric, Trycycler performed better than Flye at all levels of 
polishing (Q37 vs Q34 before polishing; Q42 vs Q40 after Medaka polishing; Q62 vs Q56 after 
Medaka+Pilon polishing). This advantage was also apparent in the worst-100-bp identity metric (96.7% 
vs 81.8% before polishing; 97.0% vs 94.7% after Medaka polishing; 98.3% vs 94.7% after Medaka+Pilon 
polishing). Both long-read-first hybrid approaches (Flye+Medaka+Pilon and Trycycler+Medaka+Pilon) 
outperformed Unicycler’s short-read-first hybrid assemblies (mean identity Q34 and worst-100-bp 
identity 23.5%). The ALE results are consistent with the identity metrics: Trycycler assemblies had higher 
mean ALE z-scores than Flye assemblies at all polishing levels (–1.031 vs –1.873 before polishing; 0.419 
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vs 0.235 after Medaka polishing; 0.828 vs 0.806 after Medaka+Pilon polishing) and long-read-first hybrid 
assemblies were superior to Unicycler assemblies (mean ALE z-score of 0.617). IDEEL results showed 
the same trend, with Trycycler assemblies having more full-length proteins than Flye assemblies (78.3% 
vs 72.3% before polishing; 93.8% vs 91.8% after Medaka polishing), but all hybrid assemblies performed 
equivalently in this metric (97.6%). 

 

 

 

Figure 3: results for the real-read tests. For six genomes, we produced two independent hybrid read sets from 
the same DNA extraction. The read sets were then assembled with Unicycler (short-read-first hybrid 
assembly), Flye (long-read-only assembly), Flye+Medaka (long-read-only assembly), Flye+Medaka+Pilon 
(long-read-first hybrid assembly), Trycycler (long-read-only assembly), Trycycler+Medaka (long-read-only 
assembly) and Trycycler+Pilon (long-read-first hybrid assembly). 
For each genome and each assembly approach, we aligned the two independently assembled chromosomes to 
each other to determine the mean assembly identity (A) and the worst identity in 100-bp sliding windows (B). 
For long-read-only assembly, Trycycler consistently achieved higher accuracy than Flye (both before and after 
Medaka polishing). Trycycler+Medaka+Pilon achieved the highest accuracy and did better than alternative 
hybrid approaches (Unicycler and Flye+Medaka+Pilon). 
We also assessed the accuracy of each of the 12 assembled chromosomes using ALE (C) and IDEEL (D). ALE 
assigns a likelihood score (transformed into z-scores on a per-genome basis) to each assembly based on its 
concordance with the Illumina read set. IDEEL identifies the proportion of predicted proteins which are ≥95% 
the length of their best-matching known protein in a database. 
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Type and location of errors 
Figure S4 shows the positions of errors in the assemblies of each of the 16 genomes (10 simulated and 
six real), with repetitive regions of the genomes indicated. Errors in long-read-only assemblies (Flye, 
Flye+Medaka, Trycycler and Trycycler+Medaka) were distributed across the genomes, occurring in 
both repeat and non-repeat sequences. Long-read-first hybrid assemblies (Flye+Medaka+Pilon and 
Trycycler+Medaka+Pilon) usually had higher error rates in repeat sequences, and in many cases, there 
were no errors in the non-repeat sequences of the genome. Short-read-first hybrid assemblies (Unicycler) 
often had clusters of errors which occurred in both repeat and non-repeat sequences. Indel errors were 
more common than substitution errors for all assemblers: 44% of total errors were insertions, 47% were 
deletions and 9% were substitutions. For the real reads, Flye assemblies sometimes had local spikes in 
error rates (indicating a more serious error or a cluster of errors) before Medaka polishing, but these 
spikes were not present after Medaka polishing. Trycycler assemblies did not suffer from this same 
problem. Flye assemblies often had errors at the position corresponding to the original start/end of the 
contig. 

The Flye errors at the start/end of the contig were caused by imperfect circularisation: missing or 
duplicated bases at the start/end of a circular contig, a phenomenon we described in greater detail in a 
previous benchmarking study of long-read assemblers13. These errors were not corrected by Medaka or 
Pilon because those tools are not aware of contig circularity, i.e. that the contig’s last base should 
immediately precede its first base. Since our analysis involved normalising all assemblies to a consistent 
starting position (required for global alignment), missing/duplicated bases at the start/end of a contig 
registered as a middle-of-the-sequence indel error in our tests. These indel errors reduced the mean 
identity and, if large enough, the worst-100-bp identity as well. 

To assess the effect of circularisation errors on Flye accuracy, we manually fixed the circularisation of all 
Flye assemblies using the original reference sequence (in the simulated-read tests) or the 
Trycycler+Medaka+Pilon assembly (in the real-read tests). Of the 22 Flye assemblies (10 from simulated 
reads, 12 from real reads), four had perfect circularisation, five had duplicated bases and 13 had missing 
bases. The worst Flye circularisation error was a 13 bp deletion, and the mean magnitude of Flye 
circularisation errors was 3.7 bp (Tables S1 and S2). We then reran our analyses using the fixed-
circularisation version of Flye assemblies, and the results are shown in Figure S5 for simulated reads 
and Figure S6 for real reads. Flye performed better in these results, especially in the worst-100-bp 
identity metric, indicating that in many cases, the circularisation error was the largest single error in the 
Flye assembly. However, Trycycler still produced more accurate assemblies than Flye at each polishing 
stage (unpolished, Medaka-polished and Pilon-polished). 

Consistency of Trycycler results 
Trycycler is not a fully automated pipeline – it requires human judgement and intervention. This raised 
the question of how well it performs in the hands of different users. To answer this, we recruited five 
researchers who were experienced in bioinformatics but not involved in Trycycler development. They 
were given an ONT read set for each of the six genomes used in the real-read tests and tasked with 
producing a Trycycler assembly without any assistance from the Trycycler developer (using only the 
Trycycler documentation to guide them). We then compared the resulting assemblies, looking at both 
presence/absence of contigs as well as chromosomal sequence identity (Figure 4). 
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Figure 4: results for the multi-user test which assessed the consistency of Trycycler assemblies when run by 
different users. Results include assemblies from three different long-read assemblers (Miniasm/Minipolish, 
Raven and Flye, all automated and deterministic for a given set of reads and parameters, i.e. independent of 
user) and Trycycler assemblies from six different users (the developer of Trycycler and five testers). 
A: Presence/absence matrix for the replicons in the test genomes. Each replicon was classified as either present 
in the assembly, absent from the assembly, or present but with an error/misassembly (see Table S3 for more 
detail). The number of additional contigs (e.g. spurious or contaminant sequences) is also indicated for each 
assembly. All Trycycler assemblies contained an accurate chromosome, and only one Trycycler assembly 
contained misassemblies. However, in many cases the Trycycler testers excluded a true plasmid (most 
commonly a small plasmid) or included an additional plasmid (most commonly constructed from cross-
barcode contaminating reads). 
B: Neighbour-joining trees of all available assemblies for each of the chromosomes, based on pairwise 
alignment distances. Hybrid-polished (Medaka+Pilon) versions of the developer’s Trycycler assemblies were 
included as reference sequences. The values indicate the number of single-bp differences per Mbp between 
each assembly and the polished reference (values for Trycycler are the mean of all six Trycycler assemblies). 
For each genome, the Trycycler assemblies cluster tightly and are closer to the polished reference than those 
from other long-read assemblers. 
C: Differences between each assembled chromosome and the hybrid-polished reference. Values are single-bp 
differences per Mbp of sequence. Trycycler assemblies contain fewer differences, on average, compared to the 
single-assembler assemblies. 
D: Pairwise differences between Trycycler assemblies of each chromosome. Values are single-bp differences 
per Mbp of sequence, and there are 90 values (6 genomes × 15 unique pairwise combinations per genome). 
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The main source of variation between different users’ Trycycler assemblies was the inclusion/exclusion 
of plasmid contigs (Figure 4A). Small plasmids often pose problems for long-read assemblers, and this 
caused them to sometimes be excluded by Trycycler users. Contaminant plasmid contigs (e.g. cross-
barcode contamination) were sometimes included in Trycycler assemblies. Replicons with a large-scale 
error or misassembly occurred in many of the single-assembler assemblies (from Miniasm/Minipolish, 
Raven and Flye). These errors included fragmented replicons (e.g. splitting one replicon sequence 
between two contigs), doubling a replicon in a single contig (e.g. assembling a 6 kbp plasmid into a 12 
kbp contig), large-scale circularisation problems (e.g. 80 kbp of start/end overlap), and redundant contigs 
(e.g. producing five contigs for a single replicon). This type of error was very rare in the Trycycler 
assemblies (present in only one case). Detailed descriptions of all such errors are in Table S3. 

To assess the consistency of assembled sequences, we built a neighbour-joining tree (based on pairwise 
alignment distances) of the assembled chromosomes for each of the six genomes (Figure 4B). The 
developer’s Trycycler+Medaka+Pilon assembly was included as a reference sequence, as the real-read 
test results (Figure 3) indicate these to be the most accurate representation of the genomes. For each test 
isolate, the Trycycler assemblies generated by different users were closer to the reference sequence than 
any of the (automated) single-assembler assemblies (Figure 4C), and there were comparatively few 
differences between Trycycler assemblies from different users (Figure 4D). All differences between 
Trycycler assemblies generated by different users were small-scale: most were only single-bp differences, 
and the largest difference was a 4-bp indel in a tandem repeat (Table S3). The most common difference 
was a 1-bp discrepancy in the length of a homopolymer sequence (accounted for 78.5% of all Trycycler-
vs-Trycycler sequence differences). 

Discussion 
By combining multiple input assemblies into a consensus sequence, Trycycler produced the most 
accurate long-read-only assemblies in our study (Figures 2–4). Trycycler assemblies only contained 
small-scale errors (i.e. their accuracy in a 100-bp sliding window remained high), while assemblies 
produced by single assemblers often contained medium-to-large scale errors (Figures 2–3). Trycycler 
also helped to guard against inexact circularisation, inclusion of spurious contigs and exclusion of genuine 
contigs. However, Trycycler requires deeper long-read sets (to allow for multiple independent input 
assemblies via read subsampling), more computational resources and more human input than single-
assembler assemblies. 

Creating a Trycycler assembly often requires human judgement and manual intervention, particularly 
after Trycycler’s clustering step where users must decide which contig clusters are valid (represent true 
replicons in the genome) and which are invalid (spurious, misassembled or contaminant sequences). Our 
multi-user consistency test showed that this step was a significant source of variability in Trycycler results, 
manifesting as missing/extra replicons in the assembly, a problem exacerbated by cross-barcode 
contamination and the fact that long-read assemblers often struggle with small plasmid sequences. This 
demonstrates that user skill and experience is an important factor in producing an ideal Trycycler 
assembly. To mitigate this concern, we have provided extensive documentation for Trycycler, with 
sample data, example analyses and FAQs to guide users. Notably though, Trycycler chromosome 
sequences generated by different users were more similar to one another than to any of the sequences 
generated by the deterministic single assemblers (Figure 4B). 

Polishing is a post-assembly processing step which aims to improve sequence accuracy, and it can be 
carried out using either long or short reads. Our study showed that Medaka, a long-read polishing tool 
for ONT reads, was able to fix approximately half of the errors in long-read assemblies. Medaka was also 
effective at repairing many of the worst errors in a Flye assembly, making Flye+Medaka assemblies nearly 
as accurate as Trycycler+Medaka assemblies. Subsequent short-read polishing with Pilon was able to 
bring sequence identity close to 100%, with most of the remaining unfixed errors residing in genomic 
repeats (where short-read alignment is unreliable). Our study also found short-read-first hybrid assembly 
(short-read assembly followed by long-read scaffolding, as performed by Unicycler) to be less reliable 
than long-read-first hybrid assembly (long-read assembly followed by short-read polishing). However, in 
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cases where short reads are deep but long reads are shallow (not tested in this study), Unicycler is likely 
to perform better, as this was the case it was designed for21. 

The goal of any assembly approach is to produce a representation of the underlying genome with the 
fewest errors. Assuming there is a single, unambiguous underlying genome (i.e. no genomic 
heterogeneity), the ideal result is a base-for-base exact match of the genome: a perfect assembly. Our 
study shows that for bacterial genomes, a Trycycler+Medaka+Pilon approach can deliver assemblies 
which are very close to this goal: approximately one error per 2 Mbp, equivalent to two errors in an 
E. coli genome. Future improvements in sequencing technologies, basecalling and assembly/polishing 
algorithms may make perfect bacterial assemblies a reality, and only when this is reliably achievable can 
we truly call bacterial genome assembly a ‘solved problem’. 

Methods 
Starting gene database 
To generate Trycycler’s database of preferred contig-starting gene sequences, we produced consensus 
sequences of common genes at the start of completed contigs on RefSeq. All completed bacterial genomes 
on RefSeq were downloaded, and the name of the first gene in each contig was extracted. These names 
were tallied and sorted to produce a list of common starting gene names, e.g. ‘Chromosomal replication 
initiator protein DnaA’ and ‘Replication initiation protein’. The gene sequences with these names were 
extracted and clustered using complete-linkage hierarchical clustering (coverage threshold of 100% and 
sequence identity threshold of 95%). We then produced an ancestral state reconstruction consensus 
sequence for each cluster using MUSCLE29, FastTree36 and TreeTime37 to generate the final set of 7171 
contig starting sequences. 

Simulated-read tests 
One reference genome was used from each of the 10 most common bacterial species in RefSeq: Escherichia 
coli, Salmonella enterica, Staphylococcus aureus, Streptococcus pneumoniae, Klebsiella pneumoniae, Mycobacterium 
tuberculosis, Pseudomonas aeruginosa, Listeria monocytogenes, Neisseria meningitidis and Campylobacter jejuni (Table 
S1). Badread (v0.1.5) was used to simulate a long-read set for each genome32. The parameters (read 
length, read accuracy, chimera rate, etc.) were varied between sets to test a variety of inputs. To ensure 
assemblability, all read sets were 100× depth or greater and the mean read length was longer than the 
longest repeat in the genome (as determined by a self-vs-self MUMmer alignment38). To simulate short 
reads for each genome, we used ART (v2016-06-05) and the parameters (simulation profile, depth, read 
length and fragment length) were varied between genomes39. Simulation parameters and summary 
statistics for each simulated read set are in Table S1. Before assembly, we conducted quality-control 
filtering using fastp v0.20.140 for short reads (using default parameters) and Filtlong41 v0.2.0 for long reads 
(using a minimum read length of 1 kbp and a kept-base percentage of 95%). Simulated reads are available 
in Supplementary data. 

Unicycler21 (v0.4.8) assemblies were conducted on each hybrid (short and long) read set using 
the --no_correct option to disable read error correction because the documentation for SPAdes42 
(Unicycler’s underlying assembler) recommends disabling read error correction for high-depth whole 
genome bacterial reads. Miniasm/Minipolish4 (v0.3/v0.1.3), Raven43 (v1.2.2) and Flye10 (v2.7.1) 
assemblies were conducted on each long-read set using default parameters for each. Trycycler assemblies 
were performed using default parameters and following the procedure outlined in the Trycycler 
documentation (12 input assemblies made from subsampled read sets of 50× depth). Versions of Flye 
assemblies with repaired start/end indels were produced by manually comparing the Flye sequence to 
the reference genome sequence. All long-read-only assemblies were then polished with Bowtie244 
(v2.3.4.1) and Pilon31 (v1.23). For Bowtie2 read alignment, we set min/max fragment lengths using values 
from the Unicycler assembly log (1st and 99th fragment size percentiles). We conducted multiple rounds 
of Bowtie2+Pilon polishing, stopping when it ceased to make any changes or at five rounds, whichever 
came first. See Supplementary data for the exact assembly and polishing commands used. Complete 
chromosomal assembly was assessed by a manual inspection of the assembly graphs and looking for an 
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appropriately sized circular contig. All simulated read assemblies produced a single chromosomal contig 
with one exception: the Unicycler assembly for the N. meningitidis genome. However, the Unicycler 
assembly graph for N. meningitidis contained a single unbranching loop, so we merged the resulting contigs 
to produce a single chromosomal sequence. 

To quantify the accuracy of the assemblies, we manually extracted the chromosomal contig from each 
assembly’s graph. We then made the contig consistent with the reference sequence by normalising the 
strand (changing the sequence to its reverse complement if necessary) and starting position (moving bases 
from the beginning of the contig to the end) to match the reference genome. The pairwise_align.py script 
(available in Supplementary data) was then used to perform a global sequence alignment between 
each contig and its reference sequence using the edlib library26. From this alignment, we produced two 
metrics: the mean sequence identity (the number of matching bases divided by the full alignment length) 
and the worst-100-bp identity (the minimum number of matching bases in a 100-bp sliding window over 
the alignment). We then used the error_positions.py script (available in Supplementary data) to 
identify the position, type and size of each assembly error, and quantify the accuracy in repeat and non-
repeat sequences. 

Real-read tests 
The seven bacterial isolates used in this study each belong to a different species: Acinetobacter baumannii, 
Citrobacter koseri, Enterobacter kobei, an unnamed Haemophilus species (given the placeholder name 
Haemophilus sp002998595 in GTDB R20245,46), Klebsiella oxytoca, Klebsiella variicola and Serratia marcescens. 
Isolates were cultured overnight at 37°C in Luria-Bertani broth and DNA was extracted using GenFind 
v3 according to the manufacturer’s instructions (Beckman Coulter). The same DNA extract was used to 
sequence each isolate using three different approaches: ONT ligation, ONT rapid and Illumina. For 
ONT ligation, we followed the protocol for the SQK-LSK109 ligation sequencing kit and EXP-NBD104 
native barcoding expansion (Oxford Nanopore Technologies). For ONT rapid, we followed the protocol 
for the SQK-RBK004 rapid barcoding kit (Oxford Nanopore Technologies). All ONT libraries were 
sequenced on MinION R9.4.1 flow cells. For Illumina, we followed a modified Illumina DNA Prep 
protocol (catalogue number 20018705), whereby the reaction volumes were quartered to conserve 
reagents. Illumina libraries were sequenced on the NovaSeq 6000 using SP reagent kits v1.0 (300 cycles, 
Illumina Inc.), producing 150 bp paired-end reads with a mean insert size of 331 bp. All ONT read sets 
were basecalled and demultiplexed using Guppy v3.6.1. The resulting Illumina read pairs were shuffled 
and evenly split into two separate read sets. We then produced two non-overlapping hybrid read sets (A 
and B) for each genome. Read set A consisted of the ONT ligation reads plus half of the Illumina reads. 
Read set B consisted of the ONT rapid reads plus the other half of the Illumina reads. All reads are 
available in Supplementary data. 

Read sets A and B for each isolate (14 total read sets) were subjected to the same read QC and assembly 
methods as were used for the simulated read sets, to generate long-read-only and hybrid assemblies for 
comparison. Versions of Flye assemblies with repaired start/end indels were produced by manually 
comparing the Flye sequence to the Trycycler+Medaka+Pilon assembly. We separately polished each 
contig from each long-read-only assembly using Medaka, using Trycycler-partitioned reads, the 
r941_min_high_g360 model (to match the basecalling model used) and default parameters. We then 
polished each long-read Medaka-polished assembly using Pilon as described above. See 
Supplementary data for the exact assembly and polishing commands used. 

To quantify the accuracy of the resulting assemblies, we manually extracted the chromosomal contig 
from each, where possible. The Serratia marcescens 17-147-1671 read set B assemblies usually failed to 
produce a complete chromosomal contig (only Unicycler succeeded), so that genome was excluded from 
further analyses. For the six remaining genomes, we normalised all chromosomes to the same strand and 
starting position, then used the pairwise_align.py script (available in Supplementary data) to perform 
a global sequence alignment between read set A and read set B chromosomes using the edlib library26. 
From this alignment, we produced the same metrics as were used in the simulated-read tests: mean 
sequence identity and worst-100-bp identity. We then used the error_positions.py script (available in 
Supplementary data) to identify the position, type and size of each assembly error, and quantify the 
accuracy in repeat and non-repeat sequences. 
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To produce ALE scores, we aligned the full short-read set (i.e. before it was split into read sets A and B) 
to each assembled chromosome using Bowtie244 (v2.3.4.1). The alignments were then given to ALE to 
produce a single likelihood score33. ALE analyses were done on each assembly, so generated 12 values 
(read sets A and B for each of the six genomes) for each assembly method. ALE scores are not an absolute 
metric of assembly quality, only a relative metric for comparing different assemblies of the same genome. 
We therefore normalised the ALE scores using the mean and standard deviation for each genome to 
produce ALE z-scores. 

IDEEL analysis of genomes requires a protein database, so we download all UniProt/TrEMBL47 release 
2020_05 sequences. From this we built a Diamond48 (v2.0.4) index which was used by IDEEL34. 
Predicted proteins in the assembly were classified as full-length if IDEEL found them to be ≥95% the 
length of the best-matching known protein in the database. IDEEL analyses were done on each assembly 
and generated 12 values (read sets A and B for each of the six genomes) for each assembly method. 

Multi-user consistency tests 
Each of the five Trycycler testers were given the ONT rapid read set for the six genomes used in the real-
read tests (all real genomes excluding Serratia marcescens 17-147-1671) and produced one Trycycler 
assembly (without Medaka or Pilon polishing) for each. The number of input assemblies and which 
assemblers were used are available in Table S3. We then compared the assemblies produced by single 
tools (Flye, Raven and Miniasm/Minipolish), by Trycycler (from the developer and the five testers), and 
a hybrid-assembled reference (the developer’s Trycycler+Medaka+Pilon assembly). 

For each genome, we clustered the contigs from all assemblies (using Trycycler cluster), and using the 
developer’s Trycycler assembly as the reference, we classified the genome replicons for each assembly as 
either present, present with misassemblies or absent (Table S3). Each chromosome was rotated to a 
consistent starting position and a multiple sequence alignment was performed (using Trycycler MSA). 
We then extracted pairwise distances from the alignment (using the msa_to_distance_matrix.py script, 
available in Supplementary data) and built a FastME28 tree from the distances. The distances were 
then normalised to the genome size (using the normalise_distance_matrix_to_mbp.py script, available in 
Supplementary data) to quantify the differences between each assembled chromosome for each of 
the genomes. 
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