
 Page 1 of 15

Trycycler: consensus long-read assemblies
for bacterial genomes
Ryan R. Wick1*, Louise M. Judd1, Louise T. Cerdeira1, Jane Hawkey1, Guillaume Méric1,2,
Ben Vezina1, Kelly L. Wyres1 and Kathryn E. Holt1,3

1. Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
2. Cambridge Baker Systems Genomics Initiative, Baker Heart & Diabetes Institute, Melbourne, VIC, 3004, Australia
3. Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK

* rrwick@gmail.com

Abstract
Assembly of bacterial genomes from long-read data (generated by Oxford Nanopore or Pacific
Biosciences platforms) can often be complete: a single contig for each chromosome or plasmid in the
genome. However, even complete bacterial genome assemblies constructed solely from long reads still
contain a variety of errors, and different assemblies of the same genome often contain different errors.
Here, we present Trycycler, a tool which produces a consensus assembly from multiple input assemblies
of the same genome. Benchmarking using both simulated and real sequencing reads showed that
Trycycler consensus assemblies contained fewer errors than any of those constructed with a single long-
read assembler. Post-assembly polishing with Medaka and Pilon further reduced errors and yielded the
most accurate genome assemblies in our study. As Trycycler can require human judgement and manual
intervention, its output is not deterministic, and different users can produce different Trycycler assemblies
from the same input data. However, we demonstrated that multiple users with minimal training converge
on similar assemblies that are consistently more accurate than those produced by automated assembly
tools. We therefore recommend Trycycler+Medaka+Pilon as an ideal approach for generating high-
quality bacterial reference genomes.

Data availability
Supplementary figures, tables and code can be found at: github.com/rrwick/Trycycler-paper

Reads, assemblies and reference sequences can be found at:
bridges.monash.edu/articles/dataset/Trycycler_paper_dataset/14890734

Introduction
Long-read assembly is the process of reconstructing a genome from long sequencing reads (>10 kbp),
such as those made by Oxford Nanopore Technologies (ONT) or Pacific Biosciences (PacBio) platforms.
ONT’s long-read sequencing platforms are popular for bacterial sequencing due to their low cost per
sample1,2. Since long reads can span larger genomic repeats than short reads (e.g. reads from Illumina
sequencing platforms), long-read assembly can produce larger contigs than short-read assembly3–6. For
bacterial genomes, it is often possible to produce a long-read-only assembly (an assembly made solely
from long-read data) which is complete: one fully assembled contig for each replicon in the genome7,8.
There are many long-read assemblers appropriate for use on bacterial genomes, including Canu9, Flye10,
Raven11 and Redbean12. Each has advantages and disadvantages, but in a recent benchmarking study
we found Flye to be the best-performing bacterial genome assembler in many metrics13.

Since long-read assembly of bacterial genomes can reliably yield chromosome-scale contigs, it is
sometimes considered to be a solved problem14, with much assembler tool development now focusing on

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.04.451066doi: bioRxiv preprint

https://github.com/rrwick/Trycycler-paper
https://bridges.monash.edu/articles/dataset/Trycycler_paper_dataset/14890734
https://doi.org/10.1101/2021.07.04.451066
http://creativecommons.org/licenses/by/4.0/

 Page 2 of 15

more challenging scenarios such as eukaryotic genomes and metagenomes15,16. However, long-read
bacterial assemblies are not perfect. Small-scale errors (such as homopolymer-length errors) are
commonly discussed and addressed7,17–19, but larger-scale errors (tens to hundreds of base pairs) also
occur in most assemblies13. Even though most bacterial replicons are circular, long-read assemblers often
fail to produce cleanly circularised contigs, where the last base in the contig is immediately followed by
the first base. Spurious contigs are often present in assemblies (e.g. from contaminant sequences), and
small plasmids can be omitted due to their underrepresentation in ONT read sets20. Hybrid assembly,
which uses both short and long reads, can mitigate some of these problems, but hybrid assemblers also
fail to produce error-free genome assemblies21, and can introduce confusion if short and long read
libraries are not constructed from the same DNA extraction22. Long-read assembly of bacterial genomes
is therefore not a completely solved problem, and there is still much room for improvement.

As assembly is often the first step in bioinformatic pipelines, assembly errors can have negative
implications for downstream analysis. Here we introduce Trycycler, a computational tool which enables
high-quality long-read-only assemblies of bacterial genomes. It takes multiple assemblies of the same
genome as input and produces a single consensus assembly. Trycycler exploits the fact that while long-
read assemblies almost always contain errors, different assemblies of the same genome typically have
different errors13. Trycycler can therefore combine multiple input assemblies to produce a consensus
assembly with fewer errors than any of its inputs.

Approach and Implementation

Figure 1: overview of the Trycycler long-read assembly pipeline. Before Trycycler is run, the user must
generate multiple completed assemblies of the same genome, e.g. by assembling different subsets of the
original long-read set. Trycycler then clusters contigs from different assemblies and produces a consensus
contig for each cluster. These consensus contigs can then be polished (e.g. with Medaka) and combined into a
final high-quality long-read-only assembly.

The Trycycler pipeline consists of multiple steps which are run separately (overview in Figure 1, more
detail in Figure S1). At the clustering and reconciliation steps, the user may need to make decisions and
intervene. This means that Trycycler is not an automated process appropriate for high throughput
assembly. Trycycler is implemented in Python and uses the NumPy, SciPy and edlib packages23–26.

Before Trycycler is run, the user must generate multiple input assemblies of the same genome (Figure
S1A). The input assemblies should be complete: one contig per replicon. If complete assemblies are not
possible (e.g. due to insufficient read length) or read depth is shallow (e.g. <25× depth), then Trycycler
is not appropriate. We recommend users generate 12 independent input assemblies, but this value can
be adjusted down (to save computational time) or up (to improve robustness). It is desirable to maximise
the independence of the input assemblies, as this will reduce the chance that the same error will occur in
multiple assemblies. One way to achieve such independence is to use multiple assemblers, as different

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.04.451066doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.04.451066
http://creativecommons.org/licenses/by/4.0/

 Page 3 of 15

assembly algorithms can lead to different assembly errors13. For example, in the tests reported here we
used Flye10, Miniasm/Minipolish13, Raven11 and Redbean12. Random read subsampling can provide
further independence, where each assembly is generated from a different subsample of the full read set
(Trycycler v0.5.0 has a ‘subsample’ command to facilitate this). Deeper long-read sets are therefore
desirable, as they enable more independent subsets.

The first step in the Trycycler pipeline is contig clustering (Figure S1B). It aims to group contigs of the
same replicon from different input assemblies, so subsequent steps can be carried out on a per-replicon
basis. For example, if the genome in question had one chromosome and one plasmid, then Trycycler
clustering should produce two clusters: one for the chromosomal contigs and one for the plasmid contigs.
To make clusters, Trycycler conducts complete-linkage hierarchical clustering on all pairwise Mash
distances between contigs27. To aid interpretation, a FastME tree is built using the pairwise distances28.
After clustering is complete, the user must decide which clusters are valid (i.e. represent completely
assembled replicons in the genome) and which are invalid (i.e. represent incomplete, misassembled or
spurious sequences) – a key point of human judgement in the Trycycler process.

The next step is to ‘reconcile’ each cluster’s contig sequences with each other (Figure S1C). This involves
converting sequences to their reverse complement as necessary to ensure that all sequences in the cluster
are in the same orientation. Most bacterial replicons are circular, so Trycycler aligns the start and end of
each contig to the other contigs in the cluster to determine if bases need to be added or removed for clean
circularisation (can be disabled for linear replicons by using the --linear option). It then rotates each
sequence to begin at the same position. Some gene sequences (e.g. dnaA and repA) are often used as starting
positions in complete genomes, so Trycycler contains a database of these genes and will preferentially
use them as the contig starting position (see Methods). If no sequence from this database is found (with
≥95% coverage and ≥95% identity), Trycycler will use a randomly chosen unique sequence instead.

After reconciliation, each cluster’s sequences will have a consistent strand and starting position, making
them appropriate for global multiple sequence alignment (Figure S1D). To improve computational
performance, Trycycler partitions the sequences into smaller pieces, using 1 kbp pieces with each piece
extended as necessary to ensure that the boundaries between pieces do not start/end in repetitive regions.
It uses MUSCLE29 to produce a multiple sequence alignment for each piece, and then stitches the pieces
together to produce a single multiple sequence alignment for the full cluster sequences. Trycycler then
aligns the entire read set to each contig sequence so it can be assigned to a particular cluster (Figure
S1E).

The final step in Trycycler’s pipeline is the generation of a consensus sequence for each cluster (Figure
S1F). It does this by dividing the multiple sequence alignment into regions where there is or is not any
variation. For all regions where there is variation, Trycycler must choose which variant will go into the
consensus. The best variant is defined as the one with the minimum total Hamming distance to the other
variants, an approach which favours more common variants. In the event of a tie between two variants,
Trycycler aligns the cluster’s reads to each possibility and chooses the one which produces the largest
total alignment score – i.e. the variant which is in best agreement with the reads. The final Trycycler
consensus sequence for the cluster is produced by taking the best variant for each region of variation in
the multiple sequence alignment.

After Trycycler finishes, it is recommended to perform long-read polishing on its consensus sequences
(Figure S1G). Polishing is not incorporated into Trycycler, as that step can be specific to the long-read
sequencing technologies used, e.g. Medaka30 polishing for ONT assemblies. If short reads are available,
short-read polishing (e.g. with Pilon31) can also be performed to further improve assembly accuracy.

The code and documentation for Trycycler v0.3.3 (the version used to generate the assemblies in this
manuscript) are available at the DOI 10.5281/zenodo.3966493. The current version of Trycycler
(v0.5.0) is available on GitHub (github.com/rrwick/Trycycler).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.04.451066doi: bioRxiv preprint

https://doi.org/10.5281/zenodo.3966493
https://github.com/rrwick/Trycycler
https://doi.org/10.1101/2021.07.04.451066
http://creativecommons.org/licenses/by/4.0/

 Page 4 of 15

Results
Performance on simulated reads
In silico read simulation allows for a straightforward test of assembly accuracy against a ground truth:
reads are generated from a reference genome, the reads are assembled, and the resulting assembly is
compared back to the original reference sequence. For this analysis, we simulated short and long reads
from 10 reference genomes which belong to the 10 most common bacterial species in RefSeq (Table
S1). We assembled each genome with long-read-only approaches (Miniasm/Minipolish13, Raven11,
Flye10 and Trycycler), long-read-first hybrid approaches (Pilon31 polishing of each long-read-only
assembly) and a short-read-first hybrid approach (Unicycler21). We quantified the accuracy of each
assembly’s chromosomal contig using two main metrics: mean identity and worst-100-bp identity (the
minimum identity observed among 100-bp sliding windows).

Comparing only the long-read assemblers to each other (Flye, Miniasm/Minipolish and Raven), it was
clear that Flye performed best (Figure S2). This was true both before Pilon polishing with short reads
(mean identity Q41 vs Q38; mean worst-100-bp-identity 95.8% vs 50.8–90.9%) and after Pilon polishing
(mean identity Q57 vs Q42–Q55; mean worst-100-bp identity 96.1% vs 50.8–95.7%). Our main results
therefore exclude Miniasm/Minipolish and Raven, leaving only the best-performing long-read
assembler: Flye.

Figure 2 shows the mean assembly identities and worst-100-bp assembly identities from each approach,
using 10 simulated read sets. In both metrics, Trycycler reliably produced higher-quality assemblies than
Flye (mean identity Q51 vs Q41; mean worst-100-bp identity 99.5% vs 95.8%). This result also held true
for long-read-first hybrid assemblies, where Trycycler+Pilon outperformed Flye+Pilon (mean identity
Q74 vs Q57; mean worst-100-bp identity 99.9% vs 96.1%). Unicycler’s short-read-first hybrid assemblies
performed notably worse than the long-read-first hybrid approaches (mean identity Q25; mean worst-
100-bp identity 76.5%).

Figure 2: results for the tests using simulated reads. For 10 reference genome sequences, we simulated both
short and long reads. The read sets were then assembled with Unicycler (short-read-first hybrid assembly),
Flye (long-read-only assembly), Flye+Pilon (long-read-first hybrid assembly), Trycycler (long-read-only
assembly) and Trycycler+Pilon (long-read-first hybrid assembly).
Each assembled chromosome was aligned back to the reference chromosome to determine the mean assembly
identity (A) and the worst identity in 100-bp sliding windows (B). For long-read-only assembly, Trycycler
consistently achieved higher accuracy than Flye. Trycycler+Pilon (i.e. using Pilon to polish the Trycycler
assembly with short reads) achieved the highest accuracy and did better than alternative hybrid approaches
(Unicycler and Flye+Pilon).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.04.451066doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.04.451066
http://creativecommons.org/licenses/by/4.0/

 Page 5 of 15

Performance on real reads
Since simulated reads cannot perfectly emulate real sequencing32, we also tested assembly methods with
real read sets. We chose seven bacterial isolates for this study (Table S2), each belonging to a different
bacterial species with clinical relevance. The challenge with real reads is the absence of a clear ground
truth against which to compare assemblies. To circumvent this issue, we instead produced two
independent sets of long+short (ONT+Illumina) reads for each test organism. In brief, a single DNA
extraction from each organism was used to prepare two ONT libraries (one ligation, one rapid), and a
single Illumina library (the results of which were divided into two non-overlapping read sets); full details
are described in Methods. For each assembly method, we compared the assembly from read set A to
the assembly of read set B, differences between them indicating assembly errors. While this approach
could suffer from false negatives if both assemblies contained the same error, it cannot suffer from false
positives, as wherever two assemblies of the same genome differ, at least one of the two must be in error.

We tested the same assemblers as were used in the simulated-read tests but added an additional long-
read polishing step with Medaka, an ONT-specific polishing tool. We therefore produced unpolished
long-read-only assemblies (with Miniasm/Minipolish, Raven, Flye and Trycycler), polished long-read-
only assemblies (the same assemblers plus Medaka), long-read-first hybrid assemblies (the same
assemblers plus Medaka and short-read polishing with Pilon) and short-read-first hybrid assemblies (with
Unicycler). Each assembly approach was used on both read set A and read set B for each of the test
organisms.

Assembly accuracy was quantified using the metrics from the simulated-read tests: mean identity and
worst-100-bp identity. Instead of being based on an assembly-to-reference alignment (as was done for
the simulated-read tests), these metrics used an alignment of the read-set-A-assembled chromosome to
the read-set-B-assembled chromosome. For the Serratia marcescens genome, read set B failed to produce a
complete chromosome with most assembly methods (due to long genomic repeats and a short read N50,
see Table S2), so this genome was excluded, leaving six genomes in the analyses. As was the case for the
simulated-read tests, Flye assemblies were higher quality than Miniasm/Minipolish and Raven
assemblies at all polishing stages (Figure S3): unpolished (mean identity Q34 vs Q28–Q32; mean worst-
100-bp identity 81.8% vs 20.2–21.8%), Medaka-polished (mean identity Q40 vs Q30–Q35; mean worst-
100-bp identity 94.7% vs 28.2–38.0%) and Medaka+Pilon-polished (mean identity Q56 vs Q31–Q37;
mean worst-100-bp identity 94.7% vs 28.2–40.0%). Flye was also the only long-read assembler to
produce completed chromosomes for both read sets of all six genomes, so Miniasm/Minipolish and
Raven were excluded from our main results.

Since the mean identity and worst-100-bp identity metrics could fail to identify all assembly errors in the
real-read tests, we also used two other approaches for assessing the quality of de novo assemblies. The first
was ALE33, which uses short-read alignments to the assembled sequence to produce a likelihood score
for that assembly (higher scores being better), which we normalised for each genome to produce a z-score.
Mapping accuracy, evenness of read depth and evenness of insert size extracted from the short-read
alignments are all used by ALE to generate likelihood scores. The second de novo assessment approach
was IDEEL34,35, which compares the length of predicted proteins in the assembly to a database of known
proteins. Indel errors in the assembly cause frameshifts in coding sequences leading to truncations, so an
error-prone assembly will tend to have predicted proteins which are shorter than their best-matching
known proteins. We quantified the fraction of predicted proteins in each assembly which were ≥95% the
length of their best-matching known protein (higher fractions being better).

Figure 3 shows the real-read results: mean identity, worst-100-bp identity, ALE z-scores and IDEEL
full-length proteins. In the mean identity metric, Trycycler performed better than Flye at all levels of
polishing (Q37 vs Q34 before polishing; Q42 vs Q40 after Medaka polishing; Q62 vs Q56 after
Medaka+Pilon polishing). This advantage was also apparent in the worst-100-bp identity metric (96.7%
vs 81.8% before polishing; 97.0% vs 94.7% after Medaka polishing; 98.3% vs 94.7% after Medaka+Pilon
polishing). Both long-read-first hybrid approaches (Flye+Medaka+Pilon and Trycycler+Medaka+Pilon)
outperformed Unicycler’s short-read-first hybrid assemblies (mean identity Q34 and worst-100-bp
identity 23.5%). The ALE results are consistent with the identity metrics: Trycycler assemblies had higher
mean ALE z-scores than Flye assemblies at all polishing levels (–1.031 vs –1.873 before polishing; 0.419

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.04.451066doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.04.451066
http://creativecommons.org/licenses/by/4.0/

 Page 6 of 15

vs 0.235 after Medaka polishing; 0.828 vs 0.806 after Medaka+Pilon polishing) and long-read-first hybrid
assemblies were superior to Unicycler assemblies (mean ALE z-score of 0.617). IDEEL results showed
the same trend, with Trycycler assemblies having more full-length proteins than Flye assemblies (78.3%
vs 72.3% before polishing; 93.8% vs 91.8% after Medaka polishing), but all hybrid assemblies performed
equivalently in this metric (97.6%).

Figure 3: results for the real-read tests. For six genomes, we produced two independent hybrid read sets from
the same DNA extraction. The read sets were then assembled with Unicycler (short-read-first hybrid
assembly), Flye (long-read-only assembly), Flye+Medaka (long-read-only assembly), Flye+Medaka+Pilon
(long-read-first hybrid assembly), Trycycler (long-read-only assembly), Trycycler+Medaka (long-read-only
assembly) and Trycycler+Pilon (long-read-first hybrid assembly).
For each genome and each assembly approach, we aligned the two independently assembled chromosomes to
each other to determine the mean assembly identity (A) and the worst identity in 100-bp sliding windows (B).
For long-read-only assembly, Trycycler consistently achieved higher accuracy than Flye (both before and after
Medaka polishing). Trycycler+Medaka+Pilon achieved the highest accuracy and did better than alternative
hybrid approaches (Unicycler and Flye+Medaka+Pilon).
We also assessed the accuracy of each of the 12 assembled chromosomes using ALE (C) and IDEEL (D). ALE
assigns a likelihood score (transformed into z-scores on a per-genome basis) to each assembly based on its
concordance with the Illumina read set. IDEEL identifies the proportion of predicted proteins which are ≥95%
the length of their best-matching known protein in a database.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.04.451066doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.04.451066
http://creativecommons.org/licenses/by/4.0/

 Page 7 of 15

Type and location of errors
Figure S4 shows the positions of errors in the assemblies of each of the 16 genomes (10 simulated and
six real), with repetitive regions of the genomes indicated. Errors in long-read-only assemblies (Flye,
Flye+Medaka, Trycycler and Trycycler+Medaka) were distributed across the genomes, occurring in
both repeat and non-repeat sequences. Long-read-first hybrid assemblies (Flye+Medaka+Pilon and
Trycycler+Medaka+Pilon) usually had higher error rates in repeat sequences, and in many cases, there
were no errors in the non-repeat sequences of the genome. Short-read-first hybrid assemblies (Unicycler)
often had clusters of errors which occurred in both repeat and non-repeat sequences. Indel errors were
more common than substitution errors for all assemblers: 44% of total errors were insertions, 47% were
deletions and 9% were substitutions. For the real reads, Flye assemblies sometimes had local spikes in
error rates (indicating a more serious error or a cluster of errors) before Medaka polishing, but these
spikes were not present after Medaka polishing. Trycycler assemblies did not suffer from this same
problem. Flye assemblies often had errors at the position corresponding to the original start/end of the
contig.

The Flye errors at the start/end of the contig were caused by imperfect circularisation: missing or
duplicated bases at the start/end of a circular contig, a phenomenon we described in greater detail in a
previous benchmarking study of long-read assemblers13. These errors were not corrected by Medaka or
Pilon because those tools are not aware of contig circularity, i.e. that the contig’s last base should
immediately precede its first base. Since our analysis involved normalising all assemblies to a consistent
starting position (required for global alignment), missing/duplicated bases at the start/end of a contig
registered as a middle-of-the-sequence indel error in our tests. These indel errors reduced the mean
identity and, if large enough, the worst-100-bp identity as well.

To assess the effect of circularisation errors on Flye accuracy, we manually fixed the circularisation of all
Flye assemblies using the original reference sequence (in the simulated-read tests) or the
Trycycler+Medaka+Pilon assembly (in the real-read tests). Of the 22 Flye assemblies (10 from simulated
reads, 12 from real reads), four had perfect circularisation, five had duplicated bases and 13 had missing
bases. The worst Flye circularisation error was a 13 bp deletion, and the mean magnitude of Flye
circularisation errors was 3.7 bp (Tables S1 and S2). We then reran our analyses using the fixed-
circularisation version of Flye assemblies, and the results are shown in Figure S5 for simulated reads
and Figure S6 for real reads. Flye performed better in these results, especially in the worst-100-bp
identity metric, indicating that in many cases, the circularisation error was the largest single error in the
Flye assembly. However, Trycycler still produced more accurate assemblies than Flye at each polishing
stage (unpolished, Medaka-polished and Pilon-polished).

Consistency of Trycycler results
Trycycler is not a fully automated pipeline – it requires human judgement and intervention. This raised
the question of how well it performs in the hands of different users. To answer this, we recruited five
researchers who were experienced in bioinformatics but not involved in Trycycler development. They
were given an ONT read set for each of the six genomes used in the real-read tests and tasked with
producing a Trycycler assembly without any assistance from the Trycycler developer (using only the
Trycycler documentation to guide them). We then compared the resulting assemblies, looking at both
presence/absence of contigs as well as chromosomal sequence identity (Figure 4).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.04.451066doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.04.451066
http://creativecommons.org/licenses/by/4.0/

 Page 8 of 15

Figure 4: results for the multi-user test which assessed the consistency of Trycycler assemblies when run by
different users. Results include assemblies from three different long-read assemblers (Miniasm/Minipolish,
Raven and Flye, all automated and deterministic for a given set of reads and parameters, i.e. independent of
user) and Trycycler assemblies from six different users (the developer of Trycycler and five testers).
A: Presence/absence matrix for the replicons in the test genomes. Each replicon was classified as either present
in the assembly, absent from the assembly, or present but with an error/misassembly (see Table S3 for more
detail). The number of additional contigs (e.g. spurious or contaminant sequences) is also indicated for each
assembly. All Trycycler assemblies contained an accurate chromosome, and only one Trycycler assembly
contained misassemblies. However, in many cases the Trycycler testers excluded a true plasmid (most
commonly a small plasmid) or included an additional plasmid (most commonly constructed from cross-
barcode contaminating reads).
B: Neighbour-joining trees of all available assemblies for each of the chromosomes, based on pairwise
alignment distances. Hybrid-polished (Medaka+Pilon) versions of the developer’s Trycycler assemblies were
included as reference sequences. The values indicate the number of single-bp differences per Mbp between
each assembly and the polished reference (values for Trycycler are the mean of all six Trycycler assemblies).
For each genome, the Trycycler assemblies cluster tightly and are closer to the polished reference than those
from other long-read assemblers.
C: Differences between each assembled chromosome and the hybrid-polished reference. Values are single-bp
differences per Mbp of sequence. Trycycler assemblies contain fewer differences, on average, compared to the
single-assembler assemblies.
D: Pairwise differences between Trycycler assemblies of each chromosome. Values are single-bp differences
per Mbp of sequence, and there are 90 values (6 genomes × 15 unique pairwise combinations per genome).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.04.451066doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.04.451066
http://creativecommons.org/licenses/by/4.0/

 Page 9 of 15

The main source of variation between different users’ Trycycler assemblies was the inclusion/exclusion
of plasmid contigs (Figure 4A). Small plasmids often pose problems for long-read assemblers, and this
caused them to sometimes be excluded by Trycycler users. Contaminant plasmid contigs (e.g. cross-
barcode contamination) were sometimes included in Trycycler assemblies. Replicons with a large-scale
error or misassembly occurred in many of the single-assembler assemblies (from Miniasm/Minipolish,
Raven and Flye). These errors included fragmented replicons (e.g. splitting one replicon sequence
between two contigs), doubling a replicon in a single contig (e.g. assembling a 6 kbp plasmid into a 12
kbp contig), large-scale circularisation problems (e.g. 80 kbp of start/end overlap), and redundant contigs
(e.g. producing five contigs for a single replicon). This type of error was very rare in the Trycycler
assemblies (present in only one case). Detailed descriptions of all such errors are in Table S3.

To assess the consistency of assembled sequences, we built a neighbour-joining tree (based on pairwise
alignment distances) of the assembled chromosomes for each of the six genomes (Figure 4B). The
developer’s Trycycler+Medaka+Pilon assembly was included as a reference sequence, as the real-read
test results (Figure 3) indicate these to be the most accurate representation of the genomes. For each test
isolate, the Trycycler assemblies generated by different users were closer to the reference sequence than
any of the (automated) single-assembler assemblies (Figure 4C), and there were comparatively few
differences between Trycycler assemblies from different users (Figure 4D). All differences between
Trycycler assemblies generated by different users were small-scale: most were only single-bp differences,
and the largest difference was a 4-bp indel in a tandem repeat (Table S3). The most common difference
was a 1-bp discrepancy in the length of a homopolymer sequence (accounted for 78.5% of all Trycycler-
vs-Trycycler sequence differences).

Discussion
By combining multiple input assemblies into a consensus sequence, Trycycler produced the most
accurate long-read-only assemblies in our study (Figures 2–4). Trycycler assemblies only contained
small-scale errors (i.e. their accuracy in a 100-bp sliding window remained high), while assemblies
produced by single assemblers often contained medium-to-large scale errors (Figures 2–3). Trycycler
also helped to guard against inexact circularisation, inclusion of spurious contigs and exclusion of genuine
contigs. However, Trycycler requires deeper long-read sets (to allow for multiple independent input
assemblies via read subsampling), more computational resources and more human input than single-
assembler assemblies.

Creating a Trycycler assembly often requires human judgement and manual intervention, particularly
after Trycycler’s clustering step where users must decide which contig clusters are valid (represent true
replicons in the genome) and which are invalid (spurious, misassembled or contaminant sequences). Our
multi-user consistency test showed that this step was a significant source of variability in Trycycler results,
manifesting as missing/extra replicons in the assembly, a problem exacerbated by cross-barcode
contamination and the fact that long-read assemblers often struggle with small plasmid sequences. This
demonstrates that user skill and experience is an important factor in producing an ideal Trycycler
assembly. To mitigate this concern, we have provided extensive documentation for Trycycler, with
sample data, example analyses and FAQs to guide users. Notably though, Trycycler chromosome
sequences generated by different users were more similar to one another than to any of the sequences
generated by the deterministic single assemblers (Figure 4B).

Polishing is a post-assembly processing step which aims to improve sequence accuracy, and it can be
carried out using either long or short reads. Our study showed that Medaka, a long-read polishing tool
for ONT reads, was able to fix approximately half of the errors in long-read assemblies. Medaka was also
effective at repairing many of the worst errors in a Flye assembly, making Flye+Medaka assemblies nearly
as accurate as Trycycler+Medaka assemblies. Subsequent short-read polishing with Pilon was able to
bring sequence identity close to 100%, with most of the remaining unfixed errors residing in genomic
repeats (where short-read alignment is unreliable). Our study also found short-read-first hybrid assembly
(short-read assembly followed by long-read scaffolding, as performed by Unicycler) to be less reliable
than long-read-first hybrid assembly (long-read assembly followed by short-read polishing). However, in

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.04.451066doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.04.451066
http://creativecommons.org/licenses/by/4.0/

 Page 10 of 15

cases where short reads are deep but long reads are shallow (not tested in this study), Unicycler is likely
to perform better, as this was the case it was designed for21.

The goal of any assembly approach is to produce a representation of the underlying genome with the
fewest errors. Assuming there is a single, unambiguous underlying genome (i.e. no genomic
heterogeneity), the ideal result is a base-for-base exact match of the genome: a perfect assembly. Our
study shows that for bacterial genomes, a Trycycler+Medaka+Pilon approach can deliver assemblies
which are very close to this goal: approximately one error per 2 Mbp, equivalent to two errors in an
E. coli genome. Future improvements in sequencing technologies, basecalling and assembly/polishing
algorithms may make perfect bacterial assemblies a reality, and only when this is reliably achievable can
we truly call bacterial genome assembly a ‘solved problem’.

Methods
Starting gene database
To generate Trycycler’s database of preferred contig-starting gene sequences, we produced consensus
sequences of common genes at the start of completed contigs on RefSeq. All completed bacterial genomes
on RefSeq were downloaded, and the name of the first gene in each contig was extracted. These names
were tallied and sorted to produce a list of common starting gene names, e.g. ‘Chromosomal replication
initiator protein DnaA’ and ‘Replication initiation protein’. The gene sequences with these names were
extracted and clustered using complete-linkage hierarchical clustering (coverage threshold of 100% and
sequence identity threshold of 95%). We then produced an ancestral state reconstruction consensus
sequence for each cluster using MUSCLE29, FastTree36 and TreeTime37 to generate the final set of 7171
contig starting sequences.

Simulated-read tests
One reference genome was used from each of the 10 most common bacterial species in RefSeq: Escherichia
coli, Salmonella enterica, Staphylococcus aureus, Streptococcus pneumoniae, Klebsiella pneumoniae, Mycobacterium
tuberculosis, Pseudomonas aeruginosa, Listeria monocytogenes, Neisseria meningitidis and Campylobacter jejuni (Table
S1). Badread (v0.1.5) was used to simulate a long-read set for each genome32. The parameters (read
length, read accuracy, chimera rate, etc.) were varied between sets to test a variety of inputs. To ensure
assemblability, all read sets were 100× depth or greater and the mean read length was longer than the
longest repeat in the genome (as determined by a self-vs-self MUMmer alignment38). To simulate short
reads for each genome, we used ART (v2016-06-05) and the parameters (simulation profile, depth, read
length and fragment length) were varied between genomes39. Simulation parameters and summary
statistics for each simulated read set are in Table S1. Before assembly, we conducted quality-control
filtering using fastp v0.20.140 for short reads (using default parameters) and Filtlong41 v0.2.0 for long reads
(using a minimum read length of 1 kbp and a kept-base percentage of 95%). Simulated reads are available
in Supplementary data.

Unicycler21 (v0.4.8) assemblies were conducted on each hybrid (short and long) read set using
the --no_correct option to disable read error correction because the documentation for SPAdes42
(Unicycler’s underlying assembler) recommends disabling read error correction for high-depth whole
genome bacterial reads. Miniasm/Minipolish4 (v0.3/v0.1.3), Raven43 (v1.2.2) and Flye10 (v2.7.1)
assemblies were conducted on each long-read set using default parameters for each. Trycycler assemblies
were performed using default parameters and following the procedure outlined in the Trycycler
documentation (12 input assemblies made from subsampled read sets of 50× depth). Versions of Flye
assemblies with repaired start/end indels were produced by manually comparing the Flye sequence to
the reference genome sequence. All long-read-only assemblies were then polished with Bowtie244
(v2.3.4.1) and Pilon31 (v1.23). For Bowtie2 read alignment, we set min/max fragment lengths using values
from the Unicycler assembly log (1st and 99th fragment size percentiles). We conducted multiple rounds
of Bowtie2+Pilon polishing, stopping when it ceased to make any changes or at five rounds, whichever
came first. See Supplementary data for the exact assembly and polishing commands used. Complete
chromosomal assembly was assessed by a manual inspection of the assembly graphs and looking for an

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.04.451066doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.04.451066
http://creativecommons.org/licenses/by/4.0/

 Page 11 of 15

appropriately sized circular contig. All simulated read assemblies produced a single chromosomal contig
with one exception: the Unicycler assembly for the N. meningitidis genome. However, the Unicycler
assembly graph for N. meningitidis contained a single unbranching loop, so we merged the resulting contigs
to produce a single chromosomal sequence.

To quantify the accuracy of the assemblies, we manually extracted the chromosomal contig from each
assembly’s graph. We then made the contig consistent with the reference sequence by normalising the
strand (changing the sequence to its reverse complement if necessary) and starting position (moving bases
from the beginning of the contig to the end) to match the reference genome. The pairwise_align.py script
(available in Supplementary data) was then used to perform a global sequence alignment between
each contig and its reference sequence using the edlib library26. From this alignment, we produced two
metrics: the mean sequence identity (the number of matching bases divided by the full alignment length)
and the worst-100-bp identity (the minimum number of matching bases in a 100-bp sliding window over
the alignment). We then used the error_positions.py script (available in Supplementary data) to
identify the position, type and size of each assembly error, and quantify the accuracy in repeat and non-
repeat sequences.

Real-read tests
The seven bacterial isolates used in this study each belong to a different species: Acinetobacter baumannii,
Citrobacter koseri, Enterobacter kobei, an unnamed Haemophilus species (given the placeholder name
Haemophilus sp002998595 in GTDB R20245,46), Klebsiella oxytoca, Klebsiella variicola and Serratia marcescens.
Isolates were cultured overnight at 37°C in Luria-Bertani broth and DNA was extracted using GenFind
v3 according to the manufacturer’s instructions (Beckman Coulter). The same DNA extract was used to
sequence each isolate using three different approaches: ONT ligation, ONT rapid and Illumina. For
ONT ligation, we followed the protocol for the SQK-LSK109 ligation sequencing kit and EXP-NBD104
native barcoding expansion (Oxford Nanopore Technologies). For ONT rapid, we followed the protocol
for the SQK-RBK004 rapid barcoding kit (Oxford Nanopore Technologies). All ONT libraries were
sequenced on MinION R9.4.1 flow cells. For Illumina, we followed a modified Illumina DNA Prep
protocol (catalogue number 20018705), whereby the reaction volumes were quartered to conserve
reagents. Illumina libraries were sequenced on the NovaSeq 6000 using SP reagent kits v1.0 (300 cycles,
Illumina Inc.), producing 150 bp paired-end reads with a mean insert size of 331 bp. All ONT read sets
were basecalled and demultiplexed using Guppy v3.6.1. The resulting Illumina read pairs were shuffled
and evenly split into two separate read sets. We then produced two non-overlapping hybrid read sets (A
and B) for each genome. Read set A consisted of the ONT ligation reads plus half of the Illumina reads.
Read set B consisted of the ONT rapid reads plus the other half of the Illumina reads. All reads are
available in Supplementary data.

Read sets A and B for each isolate (14 total read sets) were subjected to the same read QC and assembly
methods as were used for the simulated read sets, to generate long-read-only and hybrid assemblies for
comparison. Versions of Flye assemblies with repaired start/end indels were produced by manually
comparing the Flye sequence to the Trycycler+Medaka+Pilon assembly. We separately polished each
contig from each long-read-only assembly using Medaka, using Trycycler-partitioned reads, the
r941_min_high_g360 model (to match the basecalling model used) and default parameters. We then
polished each long-read Medaka-polished assembly using Pilon as described above. See
Supplementary data for the exact assembly and polishing commands used.

To quantify the accuracy of the resulting assemblies, we manually extracted the chromosomal contig
from each, where possible. The Serratia marcescens 17-147-1671 read set B assemblies usually failed to
produce a complete chromosomal contig (only Unicycler succeeded), so that genome was excluded from
further analyses. For the six remaining genomes, we normalised all chromosomes to the same strand and
starting position, then used the pairwise_align.py script (available in Supplementary data) to perform
a global sequence alignment between read set A and read set B chromosomes using the edlib library26.
From this alignment, we produced the same metrics as were used in the simulated-read tests: mean
sequence identity and worst-100-bp identity. We then used the error_positions.py script (available in
Supplementary data) to identify the position, type and size of each assembly error, and quantify the
accuracy in repeat and non-repeat sequences.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.04.451066doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.04.451066
http://creativecommons.org/licenses/by/4.0/

 Page 12 of 15

To produce ALE scores, we aligned the full short-read set (i.e. before it was split into read sets A and B)
to each assembled chromosome using Bowtie244 (v2.3.4.1). The alignments were then given to ALE to
produce a single likelihood score33. ALE analyses were done on each assembly, so generated 12 values
(read sets A and B for each of the six genomes) for each assembly method. ALE scores are not an absolute
metric of assembly quality, only a relative metric for comparing different assemblies of the same genome.
We therefore normalised the ALE scores using the mean and standard deviation for each genome to
produce ALE z-scores.

IDEEL analysis of genomes requires a protein database, so we download all UniProt/TrEMBL47 release
2020_05 sequences. From this we built a Diamond48 (v2.0.4) index which was used by IDEEL34.
Predicted proteins in the assembly were classified as full-length if IDEEL found them to be ≥95% the
length of the best-matching known protein in the database. IDEEL analyses were done on each assembly
and generated 12 values (read sets A and B for each of the six genomes) for each assembly method.

Multi-user consistency tests
Each of the five Trycycler testers were given the ONT rapid read set for the six genomes used in the real-
read tests (all real genomes excluding Serratia marcescens 17-147-1671) and produced one Trycycler
assembly (without Medaka or Pilon polishing) for each. The number of input assemblies and which
assemblers were used are available in Table S3. We then compared the assemblies produced by single
tools (Flye, Raven and Miniasm/Minipolish), by Trycycler (from the developer and the five testers), and
a hybrid-assembled reference (the developer’s Trycycler+Medaka+Pilon assembly).

For each genome, we clustered the contigs from all assemblies (using Trycycler cluster), and using the
developer’s Trycycler assembly as the reference, we classified the genome replicons for each assembly as
either present, present with misassemblies or absent (Table S3). Each chromosome was rotated to a
consistent starting position and a multiple sequence alignment was performed (using Trycycler MSA).
We then extracted pairwise distances from the alignment (using the msa_to_distance_matrix.py script,
available in Supplementary data) and built a FastME28 tree from the distances. The distances were
then normalised to the genome size (using the normalise_distance_matrix_to_mbp.py script, available in
Supplementary data) to quantify the differences between each assembled chromosome for each of
the genomes.

Funding information
This work was supported, in whole or in part, by the Bill & Melinda Gates Foundation [OPP1175797].
Under the grant conditions of the Foundation, a Creative Commons Attribution 4.0 Generic License has
already been assigned to the Author Accepted Manuscript version that might arise from this submission.
This work was also supported by an Australian Government Research Training Program Scholarship,
and KEH is supported by a Senior Medical Research Fellowship from the Viertel Foundation of Victoria.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Conflicts of interest
The authors declare that there are no conflicts of interest.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.04.451066doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.04.451066
http://creativecommons.org/licenses/by/4.0/

 Page 13 of 15

References
1. Taylor TL, Volkening JD, DeJesus E, Simmons M, Dimitrov KM, Tillman GE, et al. Rapid,

multiplexed, whole genome and plasmid sequencing of foodborne pathogens using long-read
nanopore technology. Scientific Reports. 2019;9(1):1–11. doi:10.1038/s41598-019-52424-x.

2. Elliott I, Batty EM, Ming D, Robinson MT, Nawtaisong P, De Cesare M, et al. Oxford nanopore
MinION sequencing enables rapid whole genome assembly of Rickettsia typhi in a resource-limited
setting. American Journal of Tropical Medicine and Hygiene. 2020;102(2):408–14.
doi:10.4269/ajtmh.19-0383.

3. Myers EW. The fragment assembly string graph. Bioinformatics. 2005;21(Suppl. 2):79–85.
doi:10.1093/bioinformatics/bti1114.

4. Li H. Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences.
Bioinformatics. 2016;32(14):2103–10. doi:10.1093/bioinformatics/btw152.

5. Jung H, Winefield C, Bombarely A, Prentis P, Waterhouse P. Tools and strategies for long-read
sequencing and de novo assembly of plant genomes. Trends in Plant Science. 2019;24(8):700–24.
doi:10.1016/j.tplants.2019.05.003.

6. Eisenstein M. Closing in on a complete human genome. Nature. 2021;590:679–81.
doi:10.1038/d41586-021-00462-9.

7. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only
nanopore sequencing data. Nature Methods. 2015;12(8):733–5. doi:10.1038/nmeth.3444.

8. Koren S, Phillippy AM. One chromosome, one contig: Complete microbial genomes from long-
read sequencing and assembly. Current Opinion in Microbiology. 2015;23:110–20.
doi:10.1016/j.mib.2014.11.014.

9. Koren S, Walenz BP, Berlin K, Miller JR, Phillippy AM. Canu: Scalable and accurate long-read
assembly via adaptive k-mer weighting and repeat separation. Genome Research. 2017;27:722–
36. doi:10.1101/gr.215087.116.

10. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat
graphs. Nature Biotechnology. 2019;37(5):540–6. doi:10.1038/s41587-019-0072-8.

11. Vaser R, Šikić M. Yet another de novo genome assembler. 11th International Symposium on Image
and Signal Processing and Analysis (ISPA). 2019;147–51. doi:10.1109/ISPA.2019.8868909.

12. Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nature Methods.
2020;17(2):155–8. doi:10.1038/s41592-019-0669-3.

13. Wick RR, Holt KE. Benchmarking of long-read assemblers for prokaryote whole genome
sequencing. F1000Research. 2019;8(2138). doi:10.12688/f1000research.21782.1.

14. Eisenstein M. An ace in the hole for DNA sequencing. Nature. 2017;550(7675):285–8.
doi:10.1038/550285a.

15. Koren S, Rhie A, Walenz BP, Dilthey AT, Bickhart DM, Kingan SB, et al. De novo assembly of
haplotype-resolved genomes with trio binning. Nature Biotechnology. 2018;36(12):1174–82.
doi:10.1038/nbt.4277.

16. Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, et al. metaFlye:
Scalable long-read metagenome assembly using repeat graphs. Nature Methods.
2020;17(11):1103–10. doi:10.1038/s41592-020-00971-x.

17. Goodwin S, McPherson JD, McCombie WR. Coming of age: Ten years of next-generation
sequencing technologies. Nature Reviews Genetics. 2016;17(6):333–51. doi:10.1038/nrg.2016.49.

18. Jain M, Koren S, Quick J, Rand AC, Sasani TA, Tyson JR, et al. Nanopore sequencing and
assembly of a human genome with ultra-long reads. Nature Biotechnology. 2018;36:338–345.
doi:10.1038/nbt.4060.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.04.451066doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.04.451066
http://creativecommons.org/licenses/by/4.0/

 Page 14 of 15

19. Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford
Nanopore sequencing. Genome Biology. 2019;20(1):129. doi:10.1186/s13059-019-1727-y.

20. Wick RR, Judd LM, Wyres KL, Holt KE. Recovery of small plasmid sequences via Oxford
Nanopore sequencing. bioRxiv. 2021;2021.02.21.432182.

21. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from
short and long sequencing reads. PLOS Computational Biology. 2017;13(6):e1005595.
doi:10.1371/journal.pcbi.1005595.

22. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with
multiplex MinION sequencing. Microbial Genomics. 2017;3(10):1–7.
doi:10.1099/mgen.0.000132.

23. Van Rossum G, Drake FL. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace; 2009.

24. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array
programming with NumPy. Nature. 2020;585(7825):357–62. doi:10.1038/s41586-020-2649-2.

25. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0:
fundamental algorithms for scientific computing in Python. Nature Methods. 2020;17(3):261–72.
doi:10.1038/s41592-019-0686-2.

26. Šošić M, Šikić M. Edlib: A C/C ++ library for fast, exact sequence alignment using edit distance.
Bioinformatics. 2017;33(9):1394–5. doi:10.1093/bioinformatics/btw753.

27. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: Fast
genome and metagenome distance estimation using MinHash. Genome Biology. 2016;17(1):1–14.
doi:10.1186/s13059-016-0997-x.

28. Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based
phylogeny inference program. Molecular Biology and Evolution. 2015;32(10):2798–800.
doi:10.1093/molbev/msv150.

29. Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Research. 2004;32(5):1792–7. doi:10.1093/nar/gkh340.

30. Wright C, Wykes M. Medaka [Internet]. GitHub. 2020.

31. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An integrated
tool for comprehensive microbial variant detection and genome assembly improvement. PLOS
ONE. 2014;9(11). doi:10.1371/journal.pone.0112963.

32. Wick RR. Badread: Simulation of error-prone long reads. Journal of Open Source Software.
2019;4(36):1316. doi:10.21105/joss.01316.

33. Clark SC, Egan R, Frazier PI, Wang Z. ALE: A generic assembly likelihood evaluation framework
for assessing the accuracy of genome and metagenome assemblies. Bioinformatics.
2013;29(4):435–43. doi:10.1093/bioinformatics/bts723.

34. Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. Compendium of 4,941
rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery.
Nature Biotechnology. 2019;37(8):953–61. doi:10.1038/s41587-019-0202-3.

35. Watson M, Warr A. Errors in long-read assemblies can critically affect protein prediction. Nature
Biotechnology. 2019;37(2):124–6. doi:10.1038/s41587-018-0004-z.

36. Price MN, Dehal PS, Arkin AP. FastTree 2 – Approximately maximum-likelihood trees for large
alignments. PLoS ONE. 2010;5(3). doi:10.1371/journal.pone.0009490.

37. Sagulenko P, Puller V, Neher RA. TreeTime: Maximum-likelihood phylodynamic analysis. Virus
Evolution. 2018;4(1):1–9. doi:10.1093/ve/vex042.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.04.451066doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.04.451066
http://creativecommons.org/licenses/by/4.0/

 Page 15 of 15

38. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open
software for comparing large genomes. Genome Biology. 2004;5(2):R12. doi:10.1186/gb-2004-5-
2-r12.

39. Huang W, Li L, Myers JR, Marth GT. ART: A next-generation sequencing read simulator.
Bioinformatics. 2012;28(4):593–4. doi:10.1093/bioinformatics/btr708.

40. Chen S, Zhou Y, Chen Y, Gu J. Fastp: An ultra-fast all-in-one FASTQ preprocessor.
Bioinformatics. 2018;34(17):i884–90. doi:10.1093/bioinformatics/bty560.

41. Wick RR. Filtlong [Internet]. GitHub. 2018.

42. Bankevich A, Nurk S, Antipov D, Gurevich A a., Dvorkin M, Kulikov AS, et al. SPAdes: A new
genome assembly algorithm and its applications to single-cell sequencing. Journal of
Computational Biology. 2012;19(5):455–77. doi:10.1089/cmb.2012.0021.

43. Vaser R, Mile Š, Šikić M. Raven: A de novo genome assembler for long reads. bioRxiv. 2020;
doi:10.1101/2020.08.07.242461.

44. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods.
2012;9(4):357–9. doi:10.1038/nmeth.1923.

45. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: A toolkit to classify genomes with
the genome taxonomy database. Bioinformatics. 2020;36(6):1925–7.
doi:10.1093/bioinformatics/btz848.

46. Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete
domain-to-species taxonomy for Bacteria and Archaea. Nature Biotechnology. 2020;
doi:10.1038/s41587-020-0501-8.

47. The UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids
Research. 2019;47(D1):D506–15. doi:10.1093/nar/gky1049.

48. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nature
Methods. 2015;12(1). doi:10.1038/nmeth.3176.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.04.451066doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.04.451066
http://creativecommons.org/licenses/by/4.0/

