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ABSTRACT 

Action-stopping in humans involves bursts of beta oscillations in prefrontal-basal ganglia 

regions. To determine the functional role of these beta bursts we took advantage of the Race 

Model framework describing action-stopping. We incorporated beta bursts in three race model 

variants, each implementing a different functional contribution of beta to action-stopping. In 

these variants, we hypothesized that a transient increase in beta could 1) modulate decision 

thresholds, 2) change stop accumulation rates, or 3) promote the interaction between the Stop 

and the Go process. We then tested the model predictions using EEG recordings in humans 

performing a Stop-signal task. We found that the model variant in which beta increased decision 

thresholds for a brief period of time best explained the empirical data. The model parameters 

fitted to the empirical data indicated that beta bursts involve a stronger decision threshold 

modulation for the Go process than for the Stop process. This suggests that prefrontal beta 

influences stopping by temporarily holding the response from execution. Our study further 

suggests that human action-stopping could be multi-staged with the beta acting as a pause, 

increasing the response threshold for the Stop process to modulate behavior successfully. Our 

novel approach of introducing transient oscillations into the race model and testing against 

human neurophysiological data allowed us to discover potential mechanisms of prefrontal beta, 

possibly generalizing its role in situations requiring executive control over actions. 
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INTRODUCTION 

Prefrontal beta oscillations occur during action-stopping in both human and non-human primates 

(Errington et al., 2020; Hannah et al., 2020; Jana et al., 2020; Swann et al., 2009; Wagner et al., 

2018). The Stop-signal task is widely used to assess action-stopping behavior in humans. The 

task mostly involves Go trials, in which subjects quickly respond to a Go cue. However, 

occasionally, on Stop trials, a Stop-signal is presented after the Go cue, instructing the subject to 

withhold responding. There are increases in prefrontal beta in these Stop trials, and these 

increases happen before the action is stopped, i.e. before the stop-signal reaction time (SSRT). It 

has been hypothesized that these beta oscillations (which occur as bursts at the single-trial level) 

could be a marker of a fast hyper-direct prefrontal STN pathway that gets recruited to stop 

motor-processes (Aron, 2011; Chen et al., 2020). Furthermore, the timing of beta bursts 

correlates with the time the action is cancelled (Hannah et al., 2020; Jana et al., 2020). Currently, 

the neural mechanisms by which prefrontal beta influences action-stopping are not clear. One 

possibility is that a beta burst reflects an active communication channel between prefrontal 

regions and the basal ganglia (c.f. (Fries, 2005)), e.g. as a form of top-down control biasing the 

current behavioral strategy towards stopping via STN to inhibit motor processes (Schmidt et al. 

(2019)). However, as there are other possibilities as well, it still remains unclear how beta relates 

to action-stopping.  

In the well-developed race model framework, a Go and a Stop process race against each other 

and whichever process reaches the decision threshold first determines the behavioral outcome 

(Go or Stop) (Logan and Cowan, 1984; Logan et al., 2014; Verbruggen and Logan, 2009). Here 

we developed and studied three different race model variants of how beta could modulate the Go 

and Stop processes by affecting decision thresholds, accumulation rates, and the interaction 
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between Go and Stop processes, respectively. For each model variant, we derived predictions for 

the relationship between beta and behavioral data, and then tested these predictions in two data 

sets of EEG recordings in humans performing a stop-signal task. We found that the human data 

is best described by a race model in which beta bursts transiently affect the decision threshold, 

providing a new functional role of prefrontal beta in human action-stopping. 

 

METHODS 

Dataset/Participants  

We analyzed data from existing data-sets. One was a reanalysis, (Dataset-1, N = 13, Jana et al. 

2020; Mean Age = 20 ± 0.5 years, eight females, all right-handed), and the other was 

unpublished (Dataset-2: N = 26, Mean Age = 21 ± 0.5 years, 16 females, all right-handed except 

one participant who was left-handed). All participants provided written informed consent 

according to a UCSD Institutional Review Board protocol and were compensated at $20/hr. One 

participant was removed from analysis in Dataset-1 due to misalignment of EEG markers and 

behavior. Three participants were removed in Dataset-2, two participants had noisy EEG data 

and one had estimated Stop-signal reaction time of <100ms. Thus, the final sample size was N = 

12 in Dataset-1 and N = 23 in Dataset-2. 

 

Stop-Signal Task 

Both datasets were acquired with the behavioral task run using MATLAB 2014b (Mathworks, 

USA) and Psychtoolbox (Brainard, 1997). The task was a visual stop-signal task where a trial 

began with a white square at the center of the screen for 500 ± 50ms. Following this a right or 

left white arrow appeared at the center. Participants pressed a button with either their right index 
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finger, when a left arrow appeared, or their right pinky (Dataset-1) or middle (Dataset-2) finger 

when a right arrow appeared. They were instructed to do this as fast and as accurately as possible 

(Go trials). The stimuli remained on the screen for 1 s. A warning ‘Too Slow’ was presented if 

the participants did not make a response within this time and the trial was aborted. On a minority 

of trials (25%), the arrow turned red after a Stop Signal Delay (SSD), and participants tried to 

stop the response (Stop trials). The SSD was adjusted using two independent staircases (for right 

and left directions), where the SSD increased and decreased by 50ms following a Successful 

Stop and Failed Stop, respectively. Each trial was followed by an inter trial interval and the 

entire duration of each trial including the inter trial interval was 2.5 s. There were in total 1920 

trials (1440 Go trials and 480 Stop trials) and 400 trials (300 Go trials and 100 Stop trials) per 

participant in Dataset-1 and Dataset-2 respectively. 

 

Data analysis & computational modelling 

All analyses and simulations were performed using MATLAB R2016b. 

 

Electroencephalography (EEG) 

EEG data were recorded using 64 channel scalp EEG in the standard 10/20 configuration using 

an Easycap system (Easycap and BrainVision actiCHamp amplifier, Brain Products Gmbh, 

Gilching, Germany) for Dataset-1 and the ActiveTwo system (Biosemi Instrumentation, The 

Netherlands) for Dataset-2. The EEG signals were digitized at 1024 Hz and pre-processed using 

EEGLAB13 (Delorme and Makeig, 2004) and custom-made MATLAB scripts. The data were 

downsampled to 512 Hz and band-pass filtered between 2–100 Hz. A 60, 120 and 180 Hz FIR 

notch filter were applied to remove line noise and its harmonics. EEG data were then re-
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referenced to the average. The continuous data were visually inspected to remove bad channels 

and noisy stretches. 

 To look at prefrontal (or right frontal) beta, we used the ICA method and Time-

Frequency analysis to obtain a putative right frontal spatial filter (done exactly as in Jana et al. 

(2020)). After rejecting non-brain related independent components (ICs), identified from the 

frequency spectrum (increased power at high frequencies), scalp maps (activity outside the brain) 

and the residual variance of the dipole (greater than 15%), we selected a putative right frontal IC 

from the scalp maps (if not present then we used frontal topography). The channel data were then 

projected onto the corresponding right frontal IC. The right frontal IC was validated by 

evaluating the time-frequency plots for successful stop trials and confirming a beta power 

increase (13-30 Hz) between Stop-signal and Stop-signal reaction time (SSRT) in Successful 

Stop trials. To do so, we first epoched the data from -1500 to 1500ms for all trials type: 

Successful, Failed Stops and Correct Go trials (in relation to Stop-signal in Stop trials; and in 

relation to Go-cue in Correct Go trials). We then used Morlet wavelets for computing the time-

frequency plots (4-30Hz) in Successful Stop trials, with 3 cycles at low frequencies and linearly 

increasing by 0.5 for higher frequencies. The beta frequency having the maximal power within 

Stop-signal and SSRT in these trials was also estimated for each participant as their peak beta 

frequency. 

 

Beta burst extraction 

The beta burst extraction was also done as in Jana et al. (2020), which was adapted from Little et 

al. (2019). The epoched data were filtered at the peak beta frequency for each participant using a 

Gaussian window with full-width half maximum of 5Hz. From the resulting complex analytic 
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time-series, we obtained the power estimate by computing the absolute of the Hilbert transform 

of this time-series. In each participant, to define the burst threshold, the beta amplitude within a 

period of -1000 to -500 ms (i.e. prior to Stop-signal in the Stop trials, and prior to mean SSD in 

the Correct Go trials) was pooled across all trials. The threshold was set as the median + 1.5 SD 

of the beta amplitude distribution. Once the burst was detected, the burst width threshold was set 

as the median + 1 SD. Burst % was computed by binary-coding the time-points where the beta 

amplitude crossed the burst width-threshold. For each detected burst, the time of the peak beta 

amplitude was marked as the burst time. We also computed the times at which a beta burst 

ended, i.e. the beta amplitude fell beyond the burst width threshold and marked it as the burst 

offset time. 

 

Analyzing behavior in relation to beta bursts in Stop trials 

To analyze behavior in the Stop-signal task we obtained Go and Failed Stop reaction times. 

SSRTs were estimated using the integration method (Verbruggen et al., 2019). Using the 

extracted timing of the beta bursts (see above), we estimated the probability of responding to the 

Stop cue, P(Respond), as a function of the time relative to the burst. To obtain reliable estimates 

this was done across participants, as a fixed-effects analysis, considering the behavior of the 

population as one. We pooled all Stop trials with at least one beta burst between -100ms and the 

corresponding SSRT (in relation to Stop-signal). From the pooled data, we then included Stop 

trials from those SSDs for which we had at least 50 trials. We did so as this was a good tradeoff 

between having enough trials to estimate P(Respond) reliably and to eliminate the really short 

and long SSDs where firstly there were not many trials and secondly where the effect of beta 

burst time as predicted by the modelling analyses was the least (see Fig. 1d-f). Trials with more 
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than one burst in the selected time-window were split into several trials, each with a single 

corresponding burst time. P(Respond) was then estimated at different time points relative to the 

time of the Stop-signal with a moving 50ms-wide window centered ranging from -50ms to 

250ms in steps of 1ms. P(Respond) was then simply taken as the fraction of failed stop trials in 

that 50ms window. To determine whether a given P(Respond) significantly differed from chance 

level we used a permutation test (with 1000 permutations), in which the labels of Successful and 

Failed Stop trials were shuffled to yield surrogate P(Respond) distributions. Time points in 

which the empirical P(Respond) was smaller than (1-0.05/n)*100% of the surrogate values were 

considered significant at a p-value threshold of 0.05 with a Bonferroni correction for n= 5 

multiple comparisons (given that there are 5 non-overlapping windows in our time period of 

interest, i.e. 0 and 250ms).  

 

Analyzing behavior in relation to beta bursts in Go trials 

The relationship between beta bursts and Go RTs was examined by estimating the probability 

distribution of burst offset times for different Go RTs. As above, for the estimation of 

P(Respond), this required a large number of trials, so data was again pooled across participants. 

Here all correct Go trials with at least one beta burst occurring in the time window between -

100ms relative to the Go cue and that trial’s Go RT were included. As before, trials with more 

than one burst were split into multiple trials with the same Go RT but different beta burst times. 

We decided to look at RTs which fell in the range of 300-500ms (for Dataset-1) and 300-700ms 

(for Dataset-2) as they constituted the majority of the RT distribution across individuals. For 

each 50ms-wide Go RT bin we looked at the probability (or fraction) of the burst offset times 

occurring at each time-point between -50 to 500ms in relation to the Go cue (-50 to 700ms in 
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case of Dataset-2). This produced a probability distribution map of Go RTs and burst offset 

times. We also quantified this data in a different way by looking at the distribution of the 

difference between all Go RTs (not just the range selected for the probability map) and the burst 

offsets. We compared this to a null distribution, in which we assumed that the burst offset times 

were equiprobable at all times between -100ms to Go RT+100ms.  

 

The three race model variants 

We considered three race model variants describing the influence of beta on behavior. Each 

variant followed the standard race model differential equations governing the accumulation 

dynamics for both the Go and Stop decision-variables (Boucher et al., (2007)):    

𝑑𝑋# = 	
𝑑𝑡
𝜏
𝜇# − 𝑘. 𝑋# − 𝛽-./0123/(𝑡). 𝑋6 +

𝑑𝑡
𝜏
𝜉# 

𝑑𝑋6 = 	
𝑑𝑡
𝜏
(𝜇6 + 𝛽6900:(𝑡)) − 𝑘. 𝑋6 +

𝑑𝑡
𝜏
𝜉6 

𝑇ℎ𝑟𝑒𝑠ℎ#/6 =
𝑇ℎ𝑟𝑒𝑠ℎA2B0 + 𝛽#CD10BD(𝑡)
𝑇ℎ𝑟𝑒𝑠ℎA2B0 + 𝛽6CD10BD(𝑡)

 

In our simulations dt/τ was set as 0.001. The leakage term k for both processes was set to 0. µG 

and µS parameters are the average accumulation rate for the Go and Stop-process respectively, ξG 

and ξS are random variables representing the stochastic accumulation dynamics for the Go and 

Stop-process respectively, drawn from a normal distribution N(0, σG/S). Here σG and σS represent 

the standard deviation of the normally distributed noise term for the Go and Stop-process 

respectively. The baseline decision thresholds for both the Go and Stop processes were set to 1 

(ThreshBase). For the three different versions of the model (Interaction, Speed-Stop and Threshold 
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models), we added a time-varying β term (βInteract, βSpeed, βThresh) to introduce the influence of a 

beta burst in the corresponding model scenario. The beta burst was modelled as a step function 

with pulse duration as the length of the burst (βdur), where the center of the pulse corresponded to 

the simulated burst time (also see Fig. 1). 

𝛽(𝑡) = 	𝐴, 𝐵𝑢𝑟𝑠𝑡𝑇𝑖𝑚𝑒 ± 𝛽:L1/2
0,																											𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒  

Here A is the amplitude/strength of beta burst. In each model variant, the respective beta variable 

was varied whilst the other two beta parameters were set to zero. Usually, the outcome of the 

race was given by process reaching the threshold first. However, in the Threshold model, there 

were trials, in which the reset of threshold to the baseline value (i.e. when the beta burst ended) 

lead to both the Go and Stop processes being above the threshold. In such cases the process 

which had the larger activation was considered as the winner of the race. The model Go reaction 

times (Go RTs) and Stop-signal reaction times (or model SSRT) were estimated as the time the 

Go and Stop-process took to reach the threshold, respectively. 

 

Model parameters 

For the initial examination of the three race model variants, we used parameter settings that 

produced typical behavior data seen in Stop-signal tasks. By choosing the Go and Stop-process 

parameters to be µG = 2.5, σG = 0.006 and µS = 5, σS = 0.006 respectively, we obtained simulated 

Go RTs of ~400ms and SSRTs of ~200ms. In each trial of the model, the SSD was randomly 

selected from a range of 100-300ms with 50ms resolution. We then determined P(Respond) as a 

function of when a beta burst occurred similar to the method described above for the empirical 

data. However, in the models we could systematically vary the time of the beta bursts, and 

examined a range from -100ms to 250ms relative to the Stop-signal in 1ms steps. We then 
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computed P(Respond) for a particular burst time as the number of failed stop trials divided by the 

total number of stop trials for that particular SSD. We also varied the duration of the beta burst 

by setting the βdur parameter to 100, 150 and 200ms in different simulations.  

 After the general, initial examination of the three model variants (Fig. 1), the Threshold 

model was also fitted to individual participant data (Fig. 2). For each iteration of the fitting 

procedure 30,000 trials (15,000 Go trials and 15,000 Stop trials) were simulated. Since the 

incidence of beta bursts is generally low during stopping, ~20% (Errington et al., 2020; Hannah 

et al., 2020; Jana et al., 2020; Wessel, 2020), we simulated a beta burst in only 20% of all trials 

(total 6000 trials, 3000 Go and 3000 Stop trials). In each trial with a burst the time of the beta 

burst was drawn as a random time point in between the Go cue and the slowest RT of the 

corresponding participant with a resolution of 100 possible time points. The fitting then 

proceeded in two stages, starting with the parameters of the Go process (µG, σG and AG). The 

squared difference between experimental and simulated correct Go RT CDFs was used as the 

optimization function. In the second stage, we then fixed the parameters of the Go process to the 

best fit, and then fitted the stop parameters (µS, σS and AS), using the squared difference between 

experimental and simulated inhibition functions as the optimization function. For the 

experimental inhibition functions, we first fitted a cumulative Weibull function, which best 

captures the shape of inhibition function (Hanes et al., 1998), and then used that as the cost 

function for our parameter optimization. In each of the two stages of the fitting procedure 

initially a coarse grid search was performed, in which we provided a range of parameters for µ, σ 

and α and determined the top 20 best fits. These were then used as initial conditions for the 

Nelder-Mead Simplex algorithm (fminsearch function in MATLAB) with maximum function 

evaluation of 600 iterations. We compared the findings to a null model scenario where there was 
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no threshold modulation, i.e. simulating trials by setting the amplitude of the threshold parameter 

for both the go and stop-process as zero (AG/S = 0).  

 

RESULTS 

 

Three models of beta in stopping 

We considered three different models for how a beta burst at a specific time (burst time) could 

modulate the race between the Go and the Stop process. Firstly, in the Interaction model 

(Boucher et al., 2007) the Stop-process inhibited the Go-process during a beta burst for a 

duration βDur (Fig. 1a). This would slow the rate of accumulation in the Go-process, making it 

more likely for the Stop-process to win the race. Secondly, in the Speed-Stop model the 

occurrence of a beta burst increased the rate of accumulation in the Stop-process (Fig. 1b), 

making it more likely for it to reach decision threshold first. Finally, in the Threshold model a 

beta burst would increase the decision threshold of both the Go and Stop processes (Fig. 1c). 

Since the rate of accumulation is generally quicker in the Stop-process than in the Go-process, 

the threshold increase would buy more time for the Stop-process to reach the threshold first and 

win the race. 
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Figure 1. Race Model dynamics with transient bursts. Schematic of the model setup and the 

accumulation dynamics of the Go and Stop processes for the three race model variants: a) 

Interaction Model, b) Speed-Stop Model and c) Threshold model. The solid green and red lines 

represents the Go-process and Stop-process accumulation dynamics, respectively. The dotted 

green and red lines represent the dynamics of the Go and Stop-process without the presence of a 

beta burst for comparison. The dotted black line shows the threshold, which in case of the 

Threshold model increases whenever the burst is present. A beta burst (solid blue line) is 

parametrized by the time it occurs (Burst Time), its duration (βdur) and its amplitude (A).  d-f) 
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Corresponding predictions of each of the three model variants on how a beta burst after the stop 

cue affects the probability of the Go process to win the race (i.e. P(Respond)). For each model 

variant (arranged as in panel a, b and c), we show the probability to respond (P(Respond)) for 

varying time intervals between Stop cue and the center of the beta burst (x-axis). Longer beta 

burst durations (βdur = 100, 150 and 200ms) prolonged and strengthened the effect on 

P(Respond). We chose model parameters here to yield RTs and SSRTs in a range that is typical 

for this task (see Methods), and illustrate in the plots below the effect of different SSDs (for βdur 

= 100). The dotted black and cyan lines represent the time of the Stop cue and model SSRT 

respectively. 

 

While all three models implemented the hypothesis that beta decreases the probability of 

responding, we examined whether the predicted time course and extent of the modulation 

differed across models. Here, and in the analysis of the experimental data below, we looked at 

the probability of responding P(Respond) as a function of the time interval between the beta 

burst and the Stop-signal. For example, a P(Respond) of 0.6 at 0.3s would mean that 60% of the 

trials with a beta burst centered at 0.3s after stop cue were failed stop trials. We simulated each 

model by choosing parameters for the Go-process (µG = 2.5, σG = 0.006) and the Stop-process 

(µS = 5, σS = 0.006) that yielded mean go RTs of ~400ms and SSRTs of ~200ms, which are in 

the range of typical values for this task. We found that the pattern of modulation had a U-shaped 

profile in each of the three models, with larger amplitudes for longer burst durations (Fig. 1d-f). 

Furthermore, the modulation was strongest for intermediate SSDs (200ms) compared to longer 

or shorter ones. However, the fine time course and the relation to the SSRT, differed across the 

three models. For the Interaction model and the Speed-Stop model the trough of the U-profile 
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was seen well before the model SSRT. In contrast, in the Threshold model the modulation 

pattern was very different, with a sharper modulation in a narrower time window just before the 

model SSRT. Next, we then compared these model predictions with experimental data to see 

whether beta affects behavior in a similar way, and whether beta modulation can be best 

described by one of these model variants. 

 

Beta bursts affect going and stopping by modulating decision thresholds 

To test the model predictions, we employed two data sets of humans performing stop-signal 

tasks with simultaneously recorded EEG (see Methods). The behavioral data showed a pattern 

that is typical for stop-signal tasks with Go RTs being longer than Failed Stop RTs (Dataset-1: 

406 ± 6ms vs 373 ± 6ms, t1,11 = 14.7, p < 0.001; Dataset-2: 468 ± 16ms vs 411 ± 14ms, t1,22 = 

15.8, p < 0.001). The P(Respond) was also nearly 50% (Dataset-1: 49.6 ± 0.2%; Dataset-2: 51.7 

± 0.7%) suggesting that the staircase procedure worked well. The SSRT computed via the 

integration method was 219 ± 7ms and 222 ± 6ms for Dataset-1 and Dataset-2 respectively. 

We first examined in the experimental data whether stopping changes as a function of the 

time interval between the beta burst and the Stop-signal. To do so, we selected the subset of trials 

in which there was at least one beta burst in the time between 100ms before the stop cue and the 

SSRT (see Methods). Thereby, each trial provided a time point (given by the interval between 

the stop cue and the time of peak of the beta burst) and the outcome (respond or not). Pooling 

these trials over participants allowed us then to estimate the probability of responding, 

P(Respond), at each time point, as we did in our model investigations (Fig. 1d-f). In the 

experimental data, we found that P(Respond) was unchanged for beta bursts briefly after the stop 

cue, but then decreased closer towards the SSRT (Fig. 2a). To determine whether this 
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modulation in P(Respond) is a significant deviation from chance, we compared it to a null-

distribution estimated from shuffling the labels of successful and failed stop trials. We found a 

rather narrow time window with a significant modulation ~40-60ms before the SSRT (Fig. 2a). 

While the narrow time window of the modulation seemed to match the Threshold model, the 

timing of the peak modulation was also in the range suggested by the Interaction model (Fig. 1d). 

Furthermore, fitting the Threshold model parameters to the behavioral data in Dataset-1 (using 

βdur of 100ms) also generated a wider modulation window (Fig. 2d), similar to the other models 

(Fig. 1a-c). Therefore, we concluded that examining the beta modulation of P(Respond) is by 

itself not sufficient to distinguish between the three models (also see Supplementary Fig. S2a for 

the P(Respond) for other burst durations). 

 As an alternative way to test the different models, we made use of the fact that a unique 

aspect of the Threshold model is that it also predicts an effect of beta in Go trials. The other two 

models (Interaction and Speed-Stop) predict that there would be no influence of beta in Go trials 

because the Stop-process is not activated (or only very weak). Therefore, to distinguish the 

models further, we then examined a possible beta modulation of Go trials. 
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Figure 2. Beta bursts modulate decision thresholds. a) Probability of response as a function of 

time between Stop cue and beta burst in experimental data for Dataset-1 (see Methods). 

Horizontal lines indicate time points with significant differences between the observed and 

shuffled data (black line shows p<0.05; blue line with Bonferroni correction). b) The joint 

probability distribution between the timing of beta burst offsets and Go RTs. The diagonal dotted 

magenta line indicates when the Go RT is equal to the burst offset time. c) The normalized 

distribution of the difference between Go RTs and burst offset times, compared to a null-

distribution (solid blue line). d-f) Same as (a-c) but for the Threshold model. In d) the solid blue 

line represents the outcome of the model without any threshold modulation for comparison. The 
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grey triangle and error bar represents the mean and standard deviation of the SSRT from 

experimental data; the model SSRT lies within the standard deviation of the experimental data.  

g-i) Fitted mean slope µ (g), slope standard deviation σ (h), and threshold modulation A (i) 

parameters for go and stop-process.  

 

We first established the relationship between beta and Go RTs in the Threshold model. 

As the beta duration varied, we focused here on the offset of beta, rather than using the center of 

a beta burst as above. We found that in the Threshold model the beta-RT relation was governed 

by an intricate pattern (Fig. 2e). For short reaction times (~300ms) there was a rather uniform 

distribution of beta in the relevant time window from 0 to 300ms relative to the Go cue. In 

contrast, for longer RTs, the distribution of the beta time points became more skewed, with more 

beta offset time points occurring around the RT. This was visible as a diagonal stripe with high 

beta offset probabilities (Fig. 2e).  

This modulation pattern matched the intuition behind the Threshold model. For short 

RTs, the Go process is steep, and therefore a threshold modulation would not have a large effect 

at any time (thus the uniform distribution in Fig. 2e). However, for longer RTs, the Go process is 

less steep, and it would thus be more likely that the threshold modulation prolongs the RT. 

Furthermore, beta would not affect the RT if it occurred briefly after the Go cue because then the 

threshold modulation would have already ended by the time the Go process is close to the 

threshold. Instead, the beta offset would affect the RT if it occurred briefly before the RT, as a 

sudden drop in the threshold would then lead to a threshold crossing. We concluded that this 

intricate pattern of beta modulation in the Threshold model provided more specific predictions 

than the straightforward modulation of P(Respond).  
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Next, we tested the predictions of the Threshold model by looking at the correct Go trials 

pooled across all participants. As above we included only trials in which there was at least one 

beta burst in the time between the go cue and the response, and for each trial we estimated the 

time of the offset of the beta burst (see Methods). This allowed us to visualize the relation 

between Go RT and beta burst offset for the experimental data in the same way as we did for the 

Threshold model (Fig. 2b,e). Interestingly, for different Go RTs, there was a different 

distribution of the probability of beta burst offsets. For shorter RTs, beta burst offsets were 

approximately uniformly distributed over time. For longer RTs, the distribution became more 

skewed, with more beta offsets towards the corresponding RTs, yielding a diagonal stripe in the 

probability distribution (Fig. 2b). Even though this stripe was somewhat broader than in the 

Threshold model (see Discussion and also Supplementary Information Fig. S4), overall there was 

a striking resemblance to the quite specific predictions of how beta should affect Go RTs in the 

Threshold model.  

One interpretation of this pattern of beta modulation is that responses are harder to 

execute as long as a beta burst is present, and once it ends, or is close to ending, the response 

emerges. To have a closer look at this relation, we represented the same data as the distribution 

of the time interval between the Go RT and beta offset in each trial. In line with our 

interpretation above, we found that the distribution peaked at small positive values, meaning that 

in most trials responses occurred briefly after the offset of the beta burst. We compared this 

distribution to a null distribution, which was based on the assumption that beta burst offsets were 

uniformly distributed (i.e. beta does not affect RTs). We found that our data was significantly 

different from the null distribution, with more burst-offset-times close to the RTs (Fig. 2c, 

Kolmogorov-Smirnov test, KSstat = 0.15; p < 0.001). Furthermore, we confirmed that the 
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Threshold model exhibited a similar distribution (Fig. 2f), with a sharper peak reflecting the 

narrow diagonal stripe described above. To confirm the validity of our findings on the 

P(Respond) and on Go trials, we ran the same analyses on an independent dataset (Study 2, N = 

23) and observed the same effects (Supplementary Information, Fig. S1). Overall, the analyses 

relating the offset of beta bursts with Go RTs provide evidence that beta bursts modulate 

decision thresholds. 

 Finally, we examined the parameters that were obtained for the Threshold model fitted to 

the experimental data (Fig. 2d-f; see Methods). Both mean and standard deviation of the Stop 

process were significantly larger than those of the Go process (Fig. 2g, h). Furthermore, the beta 

modulation of the threshold was on average higher for the Go process than for the Stop process 

(Fig. 2i), in line with the intuition that the increased threshold buys more time for the Stop 

process to overtake the Go process. However, inspection of the fitted values for the modulation 

of the Stop process (AS) indicated differences across participants. For the majority of participants 

there was no modulation of the Stop threshold at all (in line with the intuition) or lower than the 

Go process, while for some participants the Stop threshold modulation was of similar magnitude 

as the Go process threshold modulation. However, given that the Stop process slopes were 

consistently steeper than the Go process slopes, even a similar modulation of Go and Stop 

thresholds would effectively increase the probability of the Stop process to win the race. While 

in our default simulations beta bursts were only present in 20% of the trials (similar to the 

experimental data), we further confirmed these findings in a model variant in which beta bursts 

were present in all trials (see Supplementary Information, Fig. S3). 
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Threshold modulation explains relationship between burst-time and stopping time 

Building on the evidence that beta bursts modulated decision thresholds, we next tested whether 

the Threshold model also accounts for further, single-trial properties of stopping. In recent work, 

we demonstrated that beta bursts are linked to single-trial SSRTs measured via EMG (Hannah et 

al., 2020). We examined this relation in successful stop trials, in which a beta burst occurred 

between the stop cue and the corresponding single-trial SSRT. Pooling data across participants, 

we determined the distribution of the time intervals between beta burst and single-trial SSRT, 

and found a peak in the histogram when the beta burst preceded correct stopping by 50ms (Fig. 

3a). This was in comparison to a null distribution, in which we assumed that a beta burst would 

occur randomly (uniformly distributed) anytime between the Stop cue and the trial’s SSRT. 

Applying the same analysis in the Threshold model, we saw that the distribution of time intervals 

between beta burst and single-trial SSRT was very similar. As in the experimental data there was 

a peak at 50ms in the model. The peak was even sharper in the model, probably due to the 

simplified, noise-free composition of the model (also see Supplementary Information, Fig. S4). 

The relation between beta and stopping occurred in the model even though the threshold 

modulation primarily affected the Go process. However, in successful stop trials a beta burst 

occurred with an increased probability ~50ms before stopping because in this time window the 

increase of the Go threshold affects the outcome of the race most. We conclude that the 

Threshold model accounts for several aspects of behavioral and electrophysiological data in both 

Go and Stop trials. 
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Fig. 3. Threshold modulation is most effective when it is close to the SSRT. The distribution 

of the difference between the single-trial SSRT and the beta burst in the experimental data (a) 

and the Threshold model (b). * shows significant difference (p < 0.05) between the observed and 

null data at 50ms using a Permutation test. 

 

Discussion 

To characterize how beta bursts might be involved in action-stopping, we studied three different 

race model variants; the Interaction model, the Speed-Stop model and the Threshold model. We 

derived predictions for each model variant on how beta affects behavior in the Stop-signal task. 

Then we tested these predictions using experimental data and found that the Threshold model 

best explained the effects of beta bursts in both stopping and going.  

While all three models made similar predictions for how the probability of responding is 

modulated by beta bursts, only the Threshold model could account for the effects seen in Go 

trials. In Go trials the offset of beta bursts was more likely to occur close to the Go RTs, 

especially for longer RTs. This similarity between the Threshold model and the experimental 

data is evidence for a functional role of beta in modulating decision thresholds. Furthermore, the 

parameters obtained from fitting the Threshold model to participant behavior showed that beta 
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increased Go thresholds more than Stop thresholds, indicating that the effect of beta on stopping 

can also be indirect by affecting going. Finally, the model correctly predicted the relationship 

between burst time and action cancellation time, measured as single-trial SSRTs (Hannah et al., 

2020), suggesting that for successful stopping the threshold modulation has to occur close and 

prior to it. 

 A main finding from our study was that the relationship between the offset of beta bursts 

and Go RTs showed that beta reflects a short-lived threshold increase, transiently holding the 

response from execution and thereby helping the Stop-process to win the race. However, as this 

relation was apparent during Go trials, and not just as a response to the stop cue, it suggests that 

frontal beta could also be recruited as a proactive mechanism. There is some support for this 

view from our previous study, in which we found that the beta burst probability increased even 

in Go trials around the time period when a Stop-signal might have occurred (Jana et al., 2020). 

Furthermore, for sensorimotor beta there is evidence that it can be proactively recruited 

(Muralidharan et al., 2019; Soh et al., 2021). Future studies could investigate whether beta 

increases decision thresholds more generally, or whether this function is adopted by the frontal 

beta machinery specifically as a preparation to stop if necessary.  

 Our study also adds more evidence to models involving multiple stages of stopping, such 

as the pause-then-cancel model (Schmidt and Berke, 2017; Tatz et al., 2021). In the Threshold 

model beta effectively pauses both decision processes, buying time for the stop process to catch 

up. This is similar to what we had previously suggested as a potential role for fast stop responses 

in rat STN neurons (Mallet et al., 2016; Schmidt et al., 2013), which indicates a possible 

functional connection between sensory responses in basal ganglia neurons and frontal beta. 

However, in both rodent (Leventhal et al., 2012) and human studies (Jana et al., 2020) there 
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seems to be a longer time gap between the stop cue and the beta burst (120ms in humans) 

compared to the fast STN responses (~15ms in rats; Schmidt et al., 2013). Therefore, the putative 

"pause" signal carried by the beta burst here, would instead be in close proximity to the single-

trial SSRT measured in the EMG around 160ms. While this could just reflect species differences, 

it could also be an indication for multiple "pause" systems operating on different, fast and slow, 

timescales. Importantly, in the Threshold model the beta-mediated pause signal was not triggered 

by the Stop signal, but instead just occurred randomly. Nevertheless, in the Threshold model we 

observed that the beta-driven threshold increase occurred close to the SSRT. This was a result of 

the beta bursts being short-lived, so that the threshold increase only matters if the stop-process is 

able to catch up with the Go process during the burst. This is exactly the case for beta bursts 

occurring close to the SSRT because at that time, changes in the threshold matter for the 

outcome of the race between Go and Stop. While this demonstrates that beta bursts at random 

time points can lead to temporally specific effects on stopping, it does not preclude that the 

probability of beta bursts could also be modulated e.g. by sensory events. If our interpretation is 

correct, a late pause process that occurs close to the SSRT would then overlap in time with any 

cancelation processes. Therefore, it might be difficult to dissociate them in a standard Stop-

signal paradigm. 

Even though race models may be considered primarily as phenomenological models 

addressing behavior, several studies have shown that race models also connect mechanistically to 

neurophysiology (Hanes and Schall, 1996; Schmidt et al., 2013). In addition, neurophysiological 

correlates of parameters in rise-to-threshold models have been proposed. For instance, Cavanagh 

et al. (2011) used drift diffusion models to show that EEG theta oscillations are linked to 

decision thresholds in a conflict paradigm. Furthermore, the behavioral effects of 
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pharmacological manipulations of striatal dopamine levels could be accounted for by adjusting 

threshold and accumulation rates (Leventhal et al., 2014). Similarly, in this work we investigated 

whether some of the functional roles of beta oscillations could be captured in the race model to 

explain action-stopping. This further supports the wide-applicability of the race model 

framework to not only account for behavioral data, but to also capture some aspects of the 

underlying neural processes. However, how beta in the end affects the activity of individual 

neurons remains a major open question. 

Our findings have implications for functions of frontal beta beyond action-stopping. For 

instance, prefrontal beta has been associated with the executive control of thoughts and 

memories (Castiglione et al., 2019; Lundqvist et al., 2018; Lundqvist et al., 2016). During 

thought control, there is increased prefrontal beta in trials, in which participants are successfully 

preventing the thought from coming to mind (Castiglione et al., 2019). If cognitive inhibition of 

thought employs mechanisms overlapping with action-stopping, then beta bursts could also 

reflect a transient threshold increase that helps preventing the thought from reaching 

consciousness. Furthermore, prefrontal beta has also been shown to play a role in working 

memory, especially in protecting the current contents of working memory (Lundqvist et al., 

2018). A similar mechanism could be at play here where a threshold increase could stop other 

task-irrelevant stimuli from entering working memory, in line with the classic "status-quo" 

hypothesis (Engel and Fries, 2010). 

 In summary, we proposed several models introducing the influence of beta (bursts) into 

the race framework. We demonstrated that experimental data fitted best to the predictions made 

by the model that had beta bursts increasing decision thresholds, aiding the stop-process to win 
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the race. Our results provide a clear function role of frontal beta in decision making and the 

underlying neural mechanisms. 
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Supplementary Information 

Beta bursts relationship to going and stopping in Dataset-2 

We reproduced our main findings in a second dataset (Dataset-2). First, we validated our beta 

burst results in this dataset, by looking in a right frontal IC (Fig. S1a) for the percentage of beta 

bursts (burst %) during successful, failed stops and go trials (Fig. S1b). Our results corroborated 

with previous studies (Hannah et al., 2020; Jana et al., 2020), where burst % increased during 

Successful stops in the period of interest (Stop-signal to SSRT) compared to a baseline window 

prior to stop. Moreover, the burst % in successful stop trials were greater than in go trials. We 

also replicated our previous results on the relation between beta burst timing and stopping, i.e. 

the average burst time related to SSRT across participants (Fig. S1c, r = 0.56, p = 0.006, since 

we did not record EMG in this dataset, we looked at SSRT instead of our EMG metric 

CancelTime). Next, we looked at the P(Respond) at each burst bin (burst time ± 25ms) and 

observed the same effect as in Dataset-1. There was a decrease in P(Respond) just before and 

around SSRT (Fig. S1d, permutation test followed by Bonferroni correction), just as predicted by 

the threshold model. The joint probability distribution between the Go RTs and burst offset times 

was also similar to Dataset-1 with more bursts ending closer to the RT, specifically for longer 

RTs (Fi. S1e). Furthermore, the difference between the Go RTs and burst offsets was skewed 

towards zero and small positive values for the data compared to a null distribution where bursts 
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were considered to be uniformly distributed for a given RT (Fig. S1f, Kolmogorov-Smirnov test, 

KSstat = 0.11; p < 0.001)). These results reproduce our main findings from Dataset-1 and 

support that beta bursts modulate decision thresholds. 

 

Fig. S1. Beta bursts and behavior for Dataset-2. a) Average right frontal independent 

component and average dipole location (green dot) of the right frontal ICs, show a right 

lateralized frontal topography for the selected ICs. b) Burst % in successful stop (red bar), failed 

stop (yellow bar) and go trials (green bar) in the period between Stop-signal and SSRT compared 

to a baseline prior to stop (corresponding grey bar). The burst % increases in successful stop 

trials compared to its baseline and also this increase is significantly higher compared to that of go 

trials. c) Linear relationship between burst time and SSRT across participants. d) Probability of 

response as a function of burst-time bins in experimental data for Dataset-2. The probability 

estimate is for each burst-bin which represents bursts in the time window burst time±25ms. The 

solid black line and pale blue line above denote the uncorrected and Bonferroni corrected p 
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values respectively, showing time periods of significant decreases in probability of response w.r.t 

to the null distribution (solid blue line, obtained by shuffling the labels of success and failures) 

using a permutation test. e) The joint probability distribution between the burst offset times and 

Go RT bins. The burst offsets are defined in relation to the Go cue. Like in panel (d) the 

probability estimate at each pixel/bin is obtained from reaction times and burst offset times in a 

time window ±25ms around the particular RT and burst offset. The diagonal dotted magenta line 

represents the line where RT is equal to burst offset. f) The normalized distribution of the 

difference between Go RTs and burst offset time, compared to a null-distribution (solid blue 

line). 

 

Varying beta burst duration in the Threshold model 

For Dataset-1, we fitted the parameters for βdur = 100ms and simulated the Threshold model 

using different durations of a burst (βdur = 125ms and 150ms). The pattern of modulation of the 

probability of response was similar across the different burst durations, which decreased close to 

SSRT, although the decrease was a bit pronounced for longer βdur (Fig. S2a).  The relationship 

between the simulated Go RTs and burst offset times were also similar across all the three burst 

durations, with an increase in the probability of bursts ending close to the RTs (Fig. S2b). 
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Fig. S2. Varying burst durations in the Threshold model. a) Probability of response across 

burst bins for different burst durations (100ms, 125ms and 150ms). b) Normalized distribution of 

the difference between simulated Go RTs and burst offset times for different burst durations. 

 

Threshold Model parameters for different number of trials with bursts 

The model parameters of the beta bursts (Fig. 2g-i) were obtained from simulations in which beta 

bursts occurred in 20% of the trials, similar to the experimental data. To see whether the 

percentage of trials with beta bursts affects the model fit and parameters, we also performed a 

model fit in which beta bursts occurred on every trial (Fig. S3). The model reaction time 

distributions and inhibition functions were similar irrespective of the percentage of trials with 

beta, and both provided a good fit with the experimental behavioral data (Fig. S3a-c). 

Furthermore, the model with beta bursts in every trial exhibited the same pattern of the beta burst 

parameters (Fig. S3d-f) as the 20% model (Fig. 2g-i).  
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Fig. S3. Threshold Model Parameters with different bursts percentage. a-c) Comparison of 

reaction time distributions and inhibition functions between experimental and model data. The 

solid black line shows the average of the experimental data and the dotted black lines show 

individual participants from Dataset-1. Shown are Correct Go RT CDFs (a), Failed Stop RT 

CDFs (b), and Inhibition function (c) for both model scenarios, i.e. 20% of trials having a burst 

(dashed brown line) and all trials having a burst (dotted purple line). d-f) Fitted parameters for 

the model with all trials having a burst, i.e. mean slope µ (d), slope standard deviation σ (e), and 

threshold modulation A (f) for the go and stop process. 
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Threshold model: Relationship between Go RTs and burst offsets with noise 

The effect of threshold modulation during the Go trials in the experimental data was observed as 

a diagonal pattern in the beta burst offset and Go RT probability distribution (Fig. 2b). However, 

the pattern of modulation seen in the threshold model was much sharper than in the experimental 

data (Fig. 2e, f). We suspected that noise in estimation of the burst offset could contribute to the 

wider diagonal pattern seen in the experimental data. To test this idea, we added jittered the burst 

offset times in the model by adding a normally distributed random number to the burst offset 

time in each trial. We examined two scenarios, with the standard deviation of the noise being 

either 25ms or 50ms. We then recomputed the joint probability distribution with these two 

different noise factors and observed that indeed the sharp diagonal stripe became broader upon 

adding noise (Fig. S4b, c, e, and f), increasing the similarity between the model and the empirical 

data. This supports our idea that the differences between the model and the empirical data with 

respect to the width of the pattern in the joint probability distribution can indeed be explained by 

the fact that the offset of a beta oscillation can only be estimated in the empirical data. 
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Fig. S4. The relation between Go RTs and Burst Offsets in the threshold model with noise. a-

c) The joint probability distribution between the burst offset times and Go RTs for different noise 

ranges added to the burst offset times; no noise (a), uniformly random noise from -50 to 50ms (b) 

and -100 to 100ms (c). d-f) The normalized distribution of the difference between Go RTs and 

burst offset time, compared to a null-distribution (solid blue line) for different noise factors; no 

noise (d), uniformly random noise from -50 to 50ms (e) and -100 to 100ms (f). The diagonal 

modulation becomes broader with increasing noise range. 
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