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Abstract 16 

Understanding how organisms adapt to the environment is a major goal of modern 17 

biology. Parallel evolution - the independent evolution of similar phenotypes in different 18 

populations - provides a powerful framework to explore this question. Here, we quantified the 19 

degree of gene expression and functional parallelism across replicated ecotype formation in 20 

Heliosperma pusillum (Caryophyllaceae) and gained insights into the architecture of adaptive 21 

traits. Population structure analyses and demographic modelling confirm the previously 22 

formulated hypothesis of parallel polytopic divergence of montane and alpine ecotypes. We 23 

detect a large proportion of differentially expressed genes (DEGs) underlying adaptation of 24 

each replicate ecotype pair, with a strikingly low amount of shared DEGs across pairs. 25 

Functional enrichment of DEGs reveals that the traits affected by divergent gene expression 26 

are the same across ecotype pairs, in strong contrast to the non-shared genetic basis. The 27 

remarkable redundancy of differential gene expression indicates that diverged adaptive traits 28 

are highly polygenic. We conclude that polygenic traits appear key to opening multiple routes 29 

for adaptation, widening the adaptive potential of organisms. 30 
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Introduction 33 

Independent instances of adaptation with similar phenotypic outcomes (i.e., parallel 34 

evolution) are powerful avenues for exploring the mechanisms and timescale of adaptation and 35 

divergence (Arendt and Reznick 2008; Turner et al. 2010; Agrawal 2017; Buckley et al. 2019; 36 

Knotek et al. 2020). Evolutionary replicates offer insight into the constraints on evolution and 37 

help disentangle the nonrandom or more “predictable” actions of natural selection from 38 

confounding stochastic effects such as drift and demography (Lee and Coop 2019). In 39 

particular, parallel formation of conspecific ecotypes (Nosil et al. 2009; Nosil et al. 2017), are 40 

pivotal to enhancing our understanding of the processes leading to adaptation in response to a 41 

changing environment. 42 

A number of studies have shown that parallel evolution can be driven by either standing 43 

genetic variation, possibly shared across lineages through pre- or post-divergence gene flow 44 

(Colosimo et al. 2005; Jones et al. 2012; Soria-Carrasco et al. 2014; Van Belleghem et al. 2018; 45 

Alves et al. 2019; Thompson et al. 2019; Louis et al. 2020), or, more rarely, by recurrent de 46 

novo mutations with large phenotypic effects (Hoekstra et al. 2006; Chan et al. 2010; Zhen et 47 

al. 2012; Projecto-Garcia et al. 2013; Tan et al. 2020). These sources of adaptive variation 48 

produce phenotypic similarities via the same genetic locus, regardless if it was acquired 49 

independently or present in the ancestral gene pool (Stern 2013). 50 

On the other hand, there is compelling evidence of phenotypic convergence resulting 51 

from non-parallel signatures of adaptation (Elmer et al. 2014; Yeaman et al. 2016; Rellstab et 52 

al. 2020), even among closely related populations (Wilkens and Strecker 2003; Steiner et al. 53 

2009; Fischer et al. 2021) and replicated laboratory evolution (Cooper et al. 2003; Barghi et al. 54 

2019). A typical example is the convergent evolution of a lighter coat pigmentation in beach 55 

mouse populations of the Gulf of Mexico and the Atlantic Coasts driven by different mutations 56 

(Steiner et al. 2009).  57 
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Such cases suggest that evolutionary replicates can follow diverse routes and relatively 58 

few molecular constraints exist in the evolution of adaptive traits (Arendt and Reznick 2008; 59 

Losos 2011). The degree of convergence during adaptation to similar selective pressures across 60 

taxa reveals that genomic signatures of adaptation are often redundant (Wilkens and Strecker 61 

2003; Mandic et al. 2018; Fischer et al. 2021). Parallel evolution can involve highly 62 

heterogeneous routes depending on variation in gene flow, strength of selection, effective 63 

population size, demographic history, and extent of habitat differentiation, leading to different 64 

degrees of parallelism. This complex range of processes including non-parallel to parallel 65 

trajectories have also been described using the more comprehensive term continuum of 66 

(non)parallel evolution (Stuart et al. 2017; Bolnick et al. 2018).  67 

Recently, a quantitative genetics view of the process of adaptation has gained attention 68 

among evolutionary biologists (Barghi et al. 2020), complementing existing models on 69 

adaptation via selective sweeps. Accordingly, selection can act on different combinations of 70 

loci, each of small effect, leading to shifts in the trait mean through changes in multiple loci 71 

within the same molecular pathway (Hermisson and Pennings 2017; Höllinger et al. 2019). 72 

Thus, a key feature of polygenic adaptation is that different combinations of adaptive alleles 73 

can contribute to the selected phenotype (Barghi et al. 2020). This heterogeneity among loci, 74 

termed genetic redundancy (Nowak et al. 1997; Barghi et al. 2019), can lead to non-parallel 75 

genomic changes in populations evolving under the same selective pressure. Footprints of 76 

selection acting on polygenic traits have been detected in a wide range of study systems, such 77 

as in fish (Therkildsen et al. 2019) and in cacao plants (Hämälä et al. 2020), which can also 78 

foster convergent adaptive responses and phenotypes during independent divergence events 79 

(Lim et al. 2019; Rougeux et al. 2019; Hämälä et al. 2020).  80 

A current major challenge is predicting adaptive responses of populations and species 81 

to environmental change. Despite several advances, it is still unclear which adaptive signatures 82 
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are expected to be consistent across evolutionary replicates, especially when selection acts on 83 

complex traits. An important aspect to investigate is the architecture of adaptive traits 84 

(simple/monogenic, oligogenic or polygenic). A polygenic architecture may facilitate 85 

alternative pathways leading to the same phenotypic innovation, enhancing the probability of 86 

parallel evolution (Boyle et al. 2017), and, as a consequence, the adaptive potential of 87 

populations. 88 

To date, only a handful of cases of parallel evolution have been extensively studied in 89 

plants (Roda et al. 2013; Yeaman et al. 2016; Trucchi et al. 2017; Konečná et al. 2019; James 90 

et al. 2020; Rellstab et al. 2020; Tan et al. 2020). Altitudinal ecotypes of Heliosperma pusillum 91 

s.l. (Waldst. and Kit.) Rchb. (Caryophyllaceae) offer a system to study this process. In the Alps, 92 

this species includes an alpine ecotype (1,400–2,300 m above sea level) widely distributed 93 

across the mountain ranges of southern and central Europe, and a montane ecotype (500–1,300 94 

m) endemic to the south-eastern Alps. The latter was previously described from scattered 95 

localities as H. veselskyi Janka, but the two ecotypes are highly interfertile (Bertel, Hülber, et 96 

al. 2016) and isolation-by-distance analyses confirmed their conspecificity (Trucchi et al. 97 

2017). While the alpine ecotype has a relatively continuous distribution in moist screes above 98 

the timberline, the montane ecotype forms small populations (typically < 100 individuals) 99 

below overhanging rocks.  100 

Previous work (Bertel, Buchner, et al. 2016; Bertel et al. 2018) reported substantial 101 

abiotic differences between the habitats preferred by the two ecotypes. For example, 102 

differences in average temperature (montane: warm vs. alpine: cold ), temperature amplitude, 103 

the degree of humidity (montane: dry vs. alpine: humid) and light availability (montane: shade 104 

vs. alpine: full sunlight) were found between the two altitudinal sites. Moreover, metagenomics 105 

(Trucchi et al. 2017) showed evidence of distinct microbial communities in the respective 106 

phyllospheres. The two ecotypes also differ significantly in their physiological response to light 107 
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and humidity conditions in a common garden (Bertel, Buchner, et al. 2016). Finally, the 108 

montane ecotype is covered by a dense glandular indumentum, which is absent in the alpine 109 

populations (Frajman and Oxelman 2007; Bertel et al. 2017). Whether this phenotypic 110 

difference in trichome density confers differential adaptation in their respective environment 111 

is unclear.  112 

Both ecotypes show higher fitness at their native sites in reciprocal transplantation 113 

experiments (Bertel et al. 2018), confirming an adaptive component to their divergence. 114 

Common garden experiments across multiple generations further rejected the hypothesis of a 115 

solely plastic response shaping the phenotypic divergence observed (Bertel et al. 2017). Most 116 

importantly, population structure analyses based on genome-wide SNPs derived from 117 

restriction site-associated DNA (RAD-seq) markers (Trucchi et al. 2017) supported a scenario 118 

of five parallel divergence events across the six investigated ecotype pairs. Hereafter, we use 119 

the term “ecotype pairs” to indicate single instances of divergence between alpine and montane 120 

ecotypes across their range of co-occurrence. 121 

The combination of ecological, morphological, and demographic features outlined 122 

above renders H. pusillum a well-suited system to investigate the mechanisms driving local 123 

recurrent altitudinal adaptation in the Alps. Here, we quantify the magnitude of gene expression 124 

and functional parallelism across ecotype pairs, by means of RNA-seq analyses of wild plants 125 

grown in a common garden. We also investigate the independent evolution of ecotype pairs 126 

more in depth than previously. More specifically, this study asks (1) how shared are gene 127 

expression differences between ecotypes among evolutionary replicates or, in other words, is 128 

the adaptation to elevation driven by expression changes in specific genes or in different genes 129 

affecting similar traits, (2) how shared is the adaptive functional variation encoded by 130 

differentially expressed genes (DEGs) among evolutionary replicates, and (3) do we find 131 

consistent signatures of selection on coding sequence variation across evolutionary replicates? 132 

133 
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Results 134 

Our main aim was to test the repeatability of the molecular patterns and functions that 135 

distinguish the alpine from the montane ecotype in different ecotype pairs. To achieve this goal, 136 

we performed differential expression (DE) analyses of four ecotype pairs (4 pairs × 2 ecotypes 137 

× 3 replicates, i.e., 24 individuals in total; Fig. 1a and b, Table S1) grown in a common garden 138 

to remove any differential environmental effects that might confound gene expression in the 139 

samples. To identify genetic variants under selection we extended the sampling by including 140 

41 additional transcriptomes of individuals from a transplantation experiment (Szukala A et al. 141 

unpublished data; Table S1). Two alpine individuals of pair 3 (A3b and A3c, Table S1) were 142 

found highly introgressed with genes from the alpine population of pair 4 (Fig. S1a), and have 143 

been discarded from subsequent genetic analyses, retaining a total of 63 individuals for further 144 

analyses based on SNPs. This dataset was also used to test the hypothesis of parallel ecotype 145 

divergence in H. pusillum suggested by Trucchi et al (2017).  146 

Reference genome assembly and annotation. We first assembled de novo a draft 147 

genome for an individual of the alpine ecotype of H. pusillum (generated via artificial selfing 148 

over three generations) using 192.3 Gb (ca 148×) Illumina paired-end reads and 14.9 Gb (ca 149 

11.5×) PacBio single-molecule long reads. A hybrid assembly recovered a total length of 1.21 150 

Gb of scaffolds corresponding to 93% of the estimated genome size (1C = 1.3 pg, (Temsch et 151 

al. 2010)). The draft genome was split into 75,567 scaffolds with an N50 size of 41,610 bp. 152 

RepeatModeler v.1.0.11 (http://www.repeatmasker.org/RepeatModeler/) identified 1,021 153 

repeat families making up roughly 71% of the recovered genome. This high proportion of 154 

repetitive elements aligns well with observations in other plant genomes. 155 

Structural annotations (Stanke et al. 2006) identified 25,661 protein-coding genes with 156 

an average length of 4,570 bp (Fig. S2a and b). All protein-coding genes were found on 8,632 157 

scaffolds that belong to the longest tail of the contig length distribution (Fig. S2d). 158 
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Nevertheless, we also observe in our assembly comparatively long contigs that do not contain 159 

any gene models (Fig. S2d). Of this set of genes, 17,009 could be functionally annotated (Götz 160 

et al. 2008; Haas et al. 2013). We evaluated the completeness of the genome assembly by 161 

searching our gene models against the BUSCO v.3 embryophyta dataset (Simão et al. 2015). 162 

A total of 83.2% of the set of single-copy conserved BUSCO genes were found within our 163 

annotated genes (Fig. S2c).  164 

Genetic diversity and structure. To explore population diversity and structure we 165 

filtered a dataset of 7,107 putatively neutral SNPs at unlinked four-fold degenerate (FFD) sites 166 

from 63 individuals representing the four ecotype pairs (Fig. 1b, Table S1). Within-population 167 

allelic diversity (average pairwise nucleotide diversity, π, and Watterson’s theta, θw), Tajima’s 168 

D, as well as between-population differentiation (FST), are reported in Table S2. Average π 169 

showed similar values across alpine and montane populations, ranging from πA5 = 0.140 ± 0.12 170 

to πA1 = 0.173 ± 0.12 in the alpine ecotype, and from πM3 = 0.143 ± 0.12 to πM5 = 0.171 ± 0.13 171 

in the montane. Watterson’s theta ranged from θw-A5 = 0.130 ± 0.11 to θw-A4 = 0.136 ± 0.12 and 172 

from θw-M3 = 0.116 ± 0.08 to θw-M5 = 0.157 ± 0.11 in the alpine and montane ecotype, 173 

respectively. We did not observe a clear alpine versus montane distinction of within-population 174 

allelic diversity. Global Tajima’s D estimates were always positive, but close to 0 (Table S2, 175 

Fig. S3), suggesting that these populations are within neutral-equilibrium expectations, and that 176 

both alpine and montane populations were not affected by major changes in population size in 177 

the recent past.  178 

Averaged pairwise FST tended to be slightly higher between montane than between 179 

alpine populations (weighted FST = 0.28-0.56 in alpine, and weighted FST = 0.39-0.52 in 180 

montane; Table S2). Between-ecotype FST was lower than FST between pairs, except in the case 181 

of pair 4 (weighted FST = 0.48), consistent with overall high expression differentiation between 182 

ecotypes in this pair as described below.  183 
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We further investigated the population structure with principal component analyses 184 

(PCA) and an admixture plot, both based on genotype likelihoods computed in ANGSD 185 

v.0.931 (Korneliussen et al. 2014). In the PCA (Fig. 1c) the analyzed populations cluster by 186 

geography, in line with previous results (Trucchi et al. 2017). The first component (15.2% of 187 

explained variance, Fig. 1c) shows a clear east-west separation of the ecotype pairs. The second 188 

component (12.4% of explained variance, Fig. 1c) places ecotype pair 5 closer to pair 1 and 189 

most distant from pair 3 showing a north-south separation.  190 

We performed two rounds of population structure inference using NgsAdmix v.32 191 

(Skotte et al. 2013), to test the effects of uneven sample size on the inferred clusters. We 192 

compared the results inferred using the set of 63 accessions to those inferred when randomly 193 

subsampling all populations to three individuals (i.e., the minimum number of individuals per 194 

population in our dataset). With uneven sampling, we observed that the individuals from 195 

populations with reduced sampling size (i.e., ecotype pair 4) tended to be assigned to 196 

populations of higher sampling density (Fig. S1b), an otherwise known problem affecting 197 

population structure analyses (Puechmaille 2016; Meirmans 2019). Consistent with the 198 

clustering observed in the PCA, pair 5 was first separated from the rest pairs (K = 2, Fig. 1d). 199 

The best three Ks, as evaluated using the Evanno method (Evanno et al. 2005), were 2, 3 and 200 

7, in this order, confirming an enhanced separation of pair 5 from the rest, while the two 201 

ecotypes in this pair are the least diverged (K = 7, Fig. 1d), consistent with a lower degree of 202 

expression differentiation in this pair (Fig. 2). 203 

Demographic model selection, parallelism and gene flow. We tested two contrasting 204 

topologies for each combination of two ecotype pairs (Fig. 3): one model assuming a single 205 

origin (1-origin) of each ecotype, and one assuming independent between-ecotype divergence 206 

across geographic localities (2-origins). Additionally, for each topology two scenarios were 207 

evaluated: one in absence of migration between populations (strict isolation, SI) and one with 208 
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continuous migration between demes (isolation with migration, IM). In line with the results 209 

from the population structure analyses our expectation was to find higher migration rates 210 

between ecotypes within each ecotype pair (solid lines in Fig. 3). To evaluate which model 211 

better explains our data we used a composite-likelihood maximization method implemented in 212 

fastSimcoal2 v.2.6.0.3 (Excoffier et al. 2013). Delta Akaike information criteria (∆AIC) for 213 

each model tested are summarized in Table S3a and c.  214 

Our SI simulations showed that the 2-origins topology is always preferred. When pair 215 

3 and 4 were analyzed, the difference between the performance of the two models was small. 216 

In all cases, models allowing gene flow achieved a higher likelihood than SI models (Table 217 

S3a). The 2-origins scenario again achieved a better likelihood in 5 out of 6 ecotype pair 218 

comparisons. The 1-origin model was preferred when pairs 3-4 were simulated. For each 219 

parameter we took as a final estimate the 95% confidence intervals CI of the ten best model 220 

estimates. The CI of the times of divergence and effective population size (Ne) from the best 221 

model estimates are reported in Table S3b. We computed migration rate estimates for each 222 

model including both directions of migration for all combinations of ecotype populations from 223 

two pairs (Table S3d). We found migration rates to be generally higher between ecotypes in 224 

each pair, and low between different ecotype pairs (upper limit of the CI always below 0.002) 225 

across all comparisons and scenarios tested (Table S3d). 226 

Patterns of differential gene expression between ecotypes. We analyzed gene 227 

expression in a common garden to identify genes with divergent expression between ecotypes, 228 

as these are hypothesized to underlie phenotypic differentiation and adaptation to different 229 

altitudinal niches. After trimming genes with low mean expression counts per million (cpm) 230 

across samples we retained a dataset of 16,389 genes on which we performed DE analyses. 231 

A major proportion of DEGs were found to be unique to each pair (colored area of the 232 

bars in Fig. 2a and b). This pattern was particularly enhanced in pair 5, in which ca 85% of 233 
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DEGs were not shared with other pairs, while ca 65%, 70% and 80% of DEGs were unique to 234 

pairs 3, 1 and 4, respectively (Fig. 2, Fig. S4). Although the overlap of DEGs was significantly 235 

higher than chance expectations (p < 0.01) in several comparisons, our analyses recovered an 236 

overall low number of shared DEGs. In contrast to expectations, we found across all ecotype 237 

pairs that only two and zero genes were consistently over- and under-expressed in the montane 238 

compared to the alpine ecotype, respectively.  239 

The number of DEGs varied across ecotype pairs. DEGs were almost four times higher 240 

in pair 4 (highest degree of expression differentiation) compared to pair 5 (lowest degree of 241 

expression differentiation), while the difference in DEGs was less pronounced between pairs 1 242 

and 3. This result is consistent with the PCA of normalized read counts (Fig. S5a) and the 243 

multidimensional scaling plot of gene expression (Fig. S5b). Overall, the relative degree of 244 

expression differentiation between ecotypes at different geographic localities is consistent with 245 

their degree of genetic differentiation (FST, Table S2). The second component of the PCA of 246 

gene expression (13.8% of variance explained, Fig. S5a), as well as the second dimension of 247 

logFC of the multidimensional scaling analysis (Fig. S5b), tends to separate the two ecotypes. 248 

Interestingly, gene expression appears more uniform across the montane accessions compared 249 

to the alpine ones, even if the overall expression divergence between different populations was 250 

not significantly different between ecotypes (Wilcoxon signed rank test p = 0.56; Fig. S6 and 251 

Table S4).  252 

Parallel multilocus gene expression variation. We performed a conditioned (partial) 253 

redundancy analysis (cRDA) of gene expression to elucidate if a different analytical framework 254 

would have more power to detect common genes with opposite expression patterns between 255 

ecotypes across all evolutionary replicates. Redundancy analysis is thought to be a good 256 

approach to detect changes between conditions (in our case, ecotypes), even when such 257 

differences are subtle and possibly masked by other factors (Forester et al. 2018).  258 
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We found that 1.8% of total expression variation was explained by divergence between 259 

montane and alpine ecotypes across all ecotype pairs (Fig. 4), consistent with low overlap of 260 

DEGs across evolutionary replicates in DE analyses. Also consistent with the low number of 261 

shared DEGs, the ANOVA test of the full model was not significant (F = 1.39, p = 0.18), 262 

confirming that most expression differences between ecotypes in our dataset do not follow 263 

consistent routes across ecotype pairs. We further searched for cRDA outliers to identify genes 264 

with consistent, albeit subtle, changes in expression across ecotypes. The transcript score was 265 

transformed into a z-score with a distribution ranging from -3.55 to 3.43 (Fig. S7). We 266 

identified 115 (p < 0.01) and 739 (p < 0.05) outlier genes with consistently opposite expression 267 

direction between ecotypes across all ecotype pairs.  268 

Ecological and biological significance of DEGs. In stark contrast to the low overlap 269 

at the level of individual genes affected by DE, we observed evidence of convergence in the 270 

enriched biological functions across DEG lists of each ecotype pair. Gene ontologies (GO) 271 

terms enriched (adjusted p < 0.05) in genes that tended to be underexpressed in the montane 272 

ecotype across ecotype pairs included photosynthesis, oxidation-reduction processes - 273 

potentially related to acclimation responses related to photosynthesis, protein phosphorylation 274 

and responses to biotic stress (Fig. 5, Table S5). By contrast, GO terms enriched in genes 275 

overexpressed in the montane ecotype comprise transmembrane transport activity and 276 

regulation of water content, probably involved in response to water deficit and drought (Fig. 5, 277 

Table S5). The overall degree of over- and underexpression of genes underlying convergent 278 

GO terms across pairs varied, depending on the specific function of the genes affecting the 279 

same molecular pathway. We also analyzed enriched biological processes in cRDA gene 280 

outliers, since these genes possibly underlie biologically and ecologically relevant adaptive 281 

traits. Consistent with the DE results, cRDA outlier genes were significantly enriched for 282 

photosynthesis-related functions and response to water deprivation.  283 
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In the GO enrichment analysis of the DEG lists we did not find significantly enriched 284 

GO terms related to trichome development, despite the obvious morphological difference 285 

between the two ecotypes, given that multicellular glandular trichomes are present in montane 286 

plants but not in alpine. We observed that some genes known to be involved in trichome 287 

formation and found to be expressed in our transcriptomes were significantly differentially 288 

expressed in some of the ecotype pairs but not in others or showed consistent changes in 289 

expression between ecotypes even if not significant after FDR correction (examples shown in 290 

Fig. 6). As opposed to the DE analysis, in the cRDA analysis we found a significant enrichment 291 

for the term root hair elongation (GO:0048767), a GO term that shares functionality with the 292 

multicellular trichome development pathway (Benítez et al. 2007). We subsequently identified 293 

gene candidates underlying this trait, as they show subtle gene expression differences between 294 

ecotypes that were consistent across all four comparisons analyzed. IBR3, a Indole-3-butyric 295 

acid response gene, known to promote hair elongation (Strader et al. 2010; Velasquez et al. 296 

2016) was always overexpressed in the montane ecotype (Fig. 6). This same gene was also 297 

significantly differentially expressed in three out of four ecotype pairs in previous DEG 298 

analyses before correction of p-values for multiple testing (Fig. 6). Another candidate, the PID 299 

(PIDox) gene, a positive regulator of auxin efflux known to suppress root hair growth when 300 

overexpressed (Lee and Cho 2006), was found to be underexpressed in the montane ecotype in 301 

pairs 1, 4 and 5. Overall, our analyses found low overlap of expression changes in genes 302 

controlling trichome formation across ecotype pairs of H. pusillum. 303 

(Non-)Shared adaptive outlier loci. To identify possible candidate genes under 304 

divergent selection in independent divergence events, we searched for coding genomic regions 305 

with pronounced allelic divergence between ecotypes in pairs 1 and 3. We excluded ecotype 306 

pairs 4 and 5 from this analysis because of the low number of individuals available from each 307 

population. To detect SNPs with genotype divergence between ecotypes we used the method 308 
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implemented in pcadapt (Luu et al. 2017) which is based on principal component analysis. We 309 

then searched for genes containing outlier SNPs that are shared by ecotype pairs 1 and 3.  310 

After variant calling and filtering we retained a dataset with 116,075 and 86,900 311 

variable biallelic sites in pair 1 and 3, respectively, identified across 8,051 genes. Principal 312 

component analysis of each pair shows that genetic variation well separates the two ecotypes 313 

(PC1 = 5.8% and 14.3% in pairs 1 and 3, respectively, Fig. S8). In both ecotype pairs, the alpine 314 

ecotype shows a higher genotypic variance (Fig. S8), which is consistent with higher variance 315 

of gene expression in this ecotype compared to the montane (Fig. S5). In pair 1 we found 445 316 

outlier SNPs distributed across a total of 141 genes. In pair 3 we found 444 outlier SNPs 317 

distributed across a total of 123 genes. Eighty-seven SNPs and 19 genes containing outlier 318 

SNPs were shared by both pairs, a number significantly higher than expected by chance (p < 319 

0.0001 for both genes and SNPs). Our results also show that the majority of outlier genes is not 320 

shared by different ecotype pairs, consistent with a mostly independent divergence history of 321 

each ecotype pair and very low overlap of DEGs. Functional annotations of the 19 shared genes 322 

containing outlier SNPs are reported in Table S6. Among those candidate genes, we found 323 

genes involved in response to drought and salt stress (APUM5, AHA4, PYL8), oxidation-324 

reduction processes (POA2, NADPH-cytochrome P450 reductase, CCR1), light signal 325 

transduction (PIA2 and a putative LOV domain containing protein) and flavonoid biosynthesis 326 

(HIDH). Genes containing outliers were not differentially expressed.  327 

 328 

Discussion 329 

 Parallel evolution has long been recognised as a powerful process to study adaptation, 330 

overcoming intrinsic limitations of studies on natural populations that often miss replication 331 

(Elmer and Meyer 2011). In this work, we aimed to investigate the genetic basis of adaptation 332 
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to different elevations in the plant Heliosperma pusillum. We asked in particular to what extent 333 

different ecotype pairs show signatures of parallel evolution in this system.  334 

Our genetic structure analyses and coalescence-based demographic modelling were in 335 

line with a scenario of parallel, polytopic ecotype divergence, as suggested previously by a 336 

marked dissimilarity of the genomic landscape of differentiation between ecotype pairs 337 

revealed by RAD-seq data (Trucchi et al. 2017). In our demographic investigations, parallel 338 

divergence always obtained greater support under a strict isolation model. Still, models 339 

including low amounts of gene flow were shown to be more likely. Additionally, in one 340 

comparison (i.e., including ecotype pairs 3 and 4) the single origin IM scenario aligned more 341 

closely with the data than the two origins IM. This result is consistent with greater co-ancestry 342 

observed for these two pairs with respect to other comparisons (Fig. 1c and d). Nevertheless, 343 

the estimates of migration rates between different ecotype pairs were overall extremely low 344 

(i.e., always lower than 1.2e-03), indicating that each ecotype pair diverged in isolation from 345 

other pairs, even when it is not straightforward to distinguish between the different models (i.e. 346 

1-origin vs 2-origins).  347 

Our results from selection scans showed that only few diverged genes, likely under 348 

selection during adaptation to different elevations, were shared between the two ecotype pairs 349 

analyzed (i.e., pair 1 and 3), while ca 85% of putatively adaptive loci were unique to each pair. 350 

This high degree of unique outliers, consistent with a previous investigation (Trucchi et al. 351 

2017), supports a scenario of mainly independent evolutionary history of different ecotype 352 

pairs. However, we cannot exclude the possibility that a few shared loci, likely from standing 353 

genetic variation, might have played a role in shaping the ecotype divergence of different 354 

evolutionary replicates in our system. 355 

Global Tajima’s D estimates were close to 0, suggesting that the recent past of all these 356 

populations was not affected by major bottlenecks or population expansions. Consistently, 357 
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within-population diversity was similar across montane and alpine ecotypes, likely reflecting 358 

ancestral variation before altitudinal divergence. Due to the low number of individuals 359 

available for ecotype pairs 4 (three individuals per ecotype) and 5 (four individuals per 360 

ecotype), these estimates should be considered with caution. However, previous work using an 361 

RNA-seq-derived dataset of synonymous variants similar to ours (Fraïsse et al. 2018) showed 362 

that model selection based on the joint site frequency spectrum is robust to the numbers of 363 

individuals and loci. Nevertheless, future analyses should aim for enlarged sampling sizes. 364 

We further asked how consistent across divergence events are the molecular processes 365 

underlying ecotype formation. We screened the expression profiles of four ecotype pairs grown 366 

in a common garden to shed light on the genetic architecture of the adaptive traits involved in 367 

parallel adaptation to divergent elevations as well as to warmer/dry vs. colder/humid 368 

conditions. Our analyses showed that gene expression changes between ecotypes is genetically 369 

determined and not a plastic response due to environmental differences. We found strikingly 370 

few DEGs shared across all four ecotype pairs, with most DEGs unique to one ecotype pair, 371 

suggesting that convergent phenotypes do not consistently rely on changes in expression of 372 

specific genes. This pattern was most pronounced in ecotype pair 5, which we also showed to 373 

bear a lower degree of shared ancestry with the other pairs in genetic structure analyses (Fig. 374 

1c-d). Given that ecotype pair 5 is the most eastern in terms of geographic distribution, it can 375 

be hypothesized that this pair represents a more distinct lineage, as break zones in the 376 

distribution of genetic diversity and distribution of biota have been identified to the West of 377 

this area of the Alps (Thiel-Egenter et al. 2011). Our sampling was not appropriate to further 378 

test hypotheses of biogeographic nature. Even so, our results suggest that parallel evolution is 379 

analyzed at different levels of coancestry in our dataset. This implies that parallel signatures of 380 

ecotype evolution can decrease significantly, even within a relatively small geographic range. 381 

This view is in line with previous findings of unexpectedly heterogeneous differentiation 382 
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between freshwater and marine sticklebacks across the globe, including more distant lineages 383 

(Fang et al. 2020). 384 

Despite the low parallelism in gene activity, we identified across the ecotype pairs a 385 

high reproducibility of the biological processes related to ecological divergence (i.e., different 386 

water and light availability, and biotic stress) at the two elevations. Functional enrichment of 387 

responses to biotic stress are consistent with the biotic divergence between the two habitat 388 

types, featuring distinct potentially pathogenic microbiomes (Trucchi et al. 2017). The 389 

dichotomy of convergence in enriched GO terms, but a low amount of shared DEGs, indicates 390 

that different redundant genes likely concur to shape similar phenotypic differentiation, as 391 

expected under polygenic adaptation (Barghi et al. 2020).  392 

The presence (montane ecotype) or absence (alpine ecotype) of multicellular glandular 393 

hairs on the plants represents a striking morphological difference in our system. Trichome 394 

formation has been studied extensively in Brassicaceae, especially in Arabidopsis, where this 395 

trait is controlled by a relatively simple regulatory pathway shared across the family (Hülskamp 396 

et al. 1994; Hülskamp 2004; Hilscher et al. 2009; Pesch and Hülskamp 2009; Tominaga-Wada 397 

et al. 2011; Chopra et al. 2019). Still, a certain degree of genetic redundancy has been shown 398 

to underlie trichome formation in Arabidopsis (Khosla et al. 2014). Studies on other plant 399 

lineages, such as cotton (Machado et al. 2009), snapdragons (Tan et al. 2020), Artemisia (Shi 400 

et al. 2018) and tomato (Chang et al. 2018), highlighted that the genetic basis of multicellular 401 

glandular trichomes formation does not always involve the same loci as in Arabidopsis. 402 

Trichome formation outside of the Brassicaceae family likely involves convergent changes in 403 

different genetic components (Serna and Martin 2006; Tan et al. 2020) and has been reported 404 

to be initiated even as an epigenetic response to herbivory in Mimulus guttatus (Scoville et al. 405 

2011).  406 
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We expected to find evidence of specific genes controlling trichome development in 407 

our transcriptome dataset. However, we did not observe a consistent change in regulation of 408 

particular genes underlying trichome initiation and elongation across ecotype pairs. This can 409 

be caused by sampling only one ontogenetic stage during leaf development, which might not 410 

be the most informative for a specific trait. Nonetheless, it is interesting to see that some genes 411 

known to underlie hair initiation, elongation and malformation in other plant species were 412 

differentially expressed in some ecotype pairs, but not in all of them. 413 

Analyses of replicated evolution in laboratory experiments on bacteria (Cooper et al. 414 

2003; Fong et al. 2005), yeast (Nguyen Ba et al. 2019) and Drosophila (Barghi et al. 2019) 415 

have provided insights about adaptation, showing that redundant trajectories can lead to the 416 

same phenotypic optimum, when selection acts on polygenic traits. In line with other studies 417 

on diverse organisms including whitefish (Rougeux et al. 2019), hummingbirds (Lim et al. 418 

2019), snails (Ravinet et al. 2016) and frogs (Sun et al. 2018), our results suggest that 419 

convergent phenotypes can be achieved via changes in different genes affecting the same 420 

molecular pathway and, ultimately, adaptive trait, and that this polygenic basis might facilitate 421 

repeated adaptation to different elevations via alternative routes.  422 

In conclusion, this study adds evidence to recent findings showing that polygenic traits 423 

and genetic redundancy open multiple threads for adaptation, providing the substrate for 424 

reproducible outcomes in convergent divergence events. Future studies using transcriptomics 425 

as well as genomic approaches should focus on genotype-by-environment interactions, e.g., in 426 

reciprocal transplantation experiments, to further deepen our understanding of the process of 427 

adaptation in H. pusillum. 428 

  429 
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Materials and methods 430 

Sampling, library preparation and sequencing. We performed DE analyses on 24 431 

plants grown in common garden settings at the Botanical Garden of the University of 432 

Innsbruck, Austria. Wild seeds were collected from four alpine/montane ecotype pairs in the 433 

south-eastern Alps (Fig. 1b, Table S1). The numbering of localities is consistent with that used 434 

in Bertel et al. (2018) and the acronyms corresponding to Trucchi et al. (2017) are added in 435 

Table S1. All seeds were germinated on the same day and the seedlings were grown in uniform 436 

conditions. One week before RNA fixation, the plants were brought to a climate chamber 437 

(Percival PGC6L set to 16 h 25 °C three lamps/8 h 15 °C no lamps). Then, 400 mg of green 438 

fresh stalk-leaf material, sampled at a similar developmental stage for all individuals, was fixed 439 

in RNAlater in the same morning and kept at -80 °C until extraction. Total RNA was extracted 440 

from ca 90 mg leaves using the mirVana miRNA Isolation Kit (Ambion) following the 441 

manufacturer’s instructions. Residual DNA has been digested with the RNase-Free DNase Set 442 

(Qiagen); the abundant ribosomal RNA was depleted by using the Ribo-Zero rRNA Removal 443 

Kit (Illumina). RNA was then quantified with a NanoDrop2000 spectrophotometer (Thermo 444 

Scientific), and quality assessed using a 2100 Bioanalyzer (Agilent). Strand-specific libraries 445 

were prepared with the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New 446 

England Biolabs). Two individual RNA-seq libraries were pooled and sequenced per Illumina 447 

HiSeq 2500 lane with single-end reads (100 bp) at the NGS Facility at the Vienna BioCenter 448 

Core Facilities (VBCF; https://www.viennabiocenter.org/). Two samples (A1a and A4b) were 449 

sequenced with paired-end reads (150 bp) with the initial aim of assembling reference 450 

transcriptomes.  451 

The population genetic analyses (i.e., SNP-based) were performed on a larger dataset 452 

including in total 63 individuals from the four population pairs (Supporting information Table 453 

S1). For this we added RNA-seq samples from ecotype pairs 1 and 3 (Fig. 1b), which were 454 
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sampled within a different experiment. The procedure used to prepare the RNA-seq libraries 455 

was the same as described above, except that 21 individual samples have been pooled and 456 

sequenced together with single-end reads (100 bp) on Illumina NovaSeq S1 at the Vienna 457 

BioCenter Core Facilities.  458 

Genomic DNA extraction and sequencing. A reference genome was assembled using 459 

short and long read technologies from an alpine individual that descended from population 1, 460 

from a selfed line over three generations. DNA was extracted from leaves using a CTAB 461 

protocol adapted from Cota-Sánchez et al. (2006). DNA for long reads was extracted from 462 

etiolated tissue after keeping the plant for one week under no light conditions. Illumina libraries 463 

were prepared with IlluminaTruSeq DNA PCR-free kits (Illumina) and sequenced as 150 bp 464 

paired-end reads on Illumina HiSeq X Ten by Macrogen Inc. (Korea). PacBio library 465 

preparation and sequencing of four SMRT cells on a Sequel I instrument was done at the 466 

sequencing facility of the Vienna BioCenter Core Facilities.  467 

Reference genome assembly and annotation. We performed a hybrid de novo 468 

genome assembly using ca 120x paired-end Illumina and ca 15x PacBio reads with MaSuRCA 469 

v.3.2.5 (Zimin et al. 2013). The assembled genome was structurally annotated ab initio using 470 

Augustus (Stanke et al. 2006) and GeneMark-ET (Lomsadze et al. 2014), as implemented in 471 

BRAKER1 v.2.1.0 (Hoff et al. 2016) with the options --softmasking=1 --filterOutShort. 472 

Mapped RNA-seq data from three different samples was used to improve de novo gene finding.  473 

A transcriptome was assembled using Trinity v.2.4.0 (Haas et al. 2013) to be used in 474 

MAKER-P annotation as expressed sequence tag (EST). We used as additional evidence the 475 

transcriptome of the closely related Silene vulgaris (Sloan et al. 2011). The annotation was 476 

further improved using MAKER-P v.2.31.10 (Campbell et al. 2014) supplying gene models 477 

identified using BRAKER1 and after generating a custom repeat library for masking using 478 

RepeatModeler v.1.0.11 (http://www.repeatmasker.org/RepeatModeler/) as implemented in 479 
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MAKER-P. Gene models identified by both BRAKER1 and MAKER-P were functionally 480 

annotated using Blast2GO (Götz et al. 2008; Haas et al. 2013). BUSCO v.2.0 (Simão et al. 481 

2015) was used for quality assessment of the assembled genome and annotated gene models. 482 

Genetic diversity and structure. RNA-seq data was demultiplexed using 483 

BamIndexDecoder v.1.03 (http://wtsi-npg.github.io/illumina2bam/#BamIndexDecoder) and 484 

raw sequencing reads were cleaned to remove adaptors and quality filtered using trimmomatic 485 

v.0.36 (Bolger et al. 2014). Individual reads were aligned to the reference genome using STAR 486 

v.2.6.0c (Dobin et al. 2013). Mapped files were sorted according to the mapping position and 487 

duplicates were marked and removed using Picard v.2.9.2 488 

(https://broadinstitute.github.io/picard/). Subsequently, we used a pipeline implemented in 489 

ANGSD v.0.931 (Korneliussen et al. 2014) to estimate genotype likelihoods. The latter might 490 

be more reliable than genotype calling for low coverage segments (Korneliussen et al. 2014), 491 

in particular when handling data with strongly varying sequencing depth among regions and 492 

individuals such as RNA-seq. Briefly, after mapping and removing duplicates, individual bam 493 

files were processed using GATK v.3.7.0 function IndelRealigner to locally improve read 494 

alignments around indels. Subsequently, ANGSD was run to compute posterior probabilities 495 

for the three possible genotypes at each variant locus (considering only bi-allelic SNPs), taking 496 

into account the observed allelic state in each read, the sequencing depth and the Phred-scaled 497 

quality scores. ANGSD was run with the options -GL 2 -doMajorMinor 1 -doMaf 1 -SNP_pval 498 

2e-6 -minMapQ 20 -minQ 20 -minInd 12 -minMaf 0.045 -doGlf 2. A significant portion of 499 

RNA-seq data includes protein coding regions expected to be under selection. To investigate 500 

genetic structure and demography the SNPs dataset was further filtered to keep FFD sites using 501 

the Bioconductor package VariantAnnotation in R (Obenchain et al. 2014). 502 

A covariance matrix computed from the genotype likelihoods of FFD SNPs at unlinked 503 

positions (i.e., one per 10 Kb windows) was used for principal component analysis using 504 
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PCAngsd (Meisner and Albrechtsen 2018). To test for admixture, we run NgsAdmix (Skotte 505 

et al. 2013) on genotype likelihoods at FFD unlinked sites. The number of clusters tested for 506 

the admixture analysis ranged from K = 1 to K = 9. The seed for initializing the EM algorithm 507 

was set to values ranging from 10 to 50 to test for convergence. Finally, the K best explaining 508 

the variance observed in the data was evaluated using the Evanno method (Evanno et al. 2005) 509 

in CLUMPAK (http://clumpak.tau.ac.il/bestK.html). Result plotting was performed using R.  510 

For each population we estimated the average global Watterson’s theta (θw) and average 511 

pairwise nucleotide diversity (π), whereas to test for departures from mutation/drift equilibrium 512 

we computed Tajima’s D (Tajima 1989). Global average estimates of these statistics were 513 

computed using ANGSD and custom bash scripts, implementing a sliding window approach 514 

with windows of 50 Kb and a step of size 10 Kb. 515 

We estimated between-population differentiation as FST for all pairs of populations at 516 

high and low elevation respectively, as well as for pairs of ecotypes across localities. FST 517 

statistics were carried out in ANGSD using the folded joint site frequency spectra (jSFS) for 518 

all population pairs as summary statistics. Given that no suitable outgroup sequence was 519 

available, the ancestral state was unknown. As a consequence, we observed a deviation from 520 

the expected SFS for some populations (i.e. a high frequency of sites with fixed derived alleles) 521 

when polarizing toward the major allele throughout the alpine populations. Therefore, we 522 

produced site allele frequency likelihoods using ANGSD settings -dosaf 1 -GL 2 -minQ 20 -P 523 

8 -skipTriallelic 1 -doMajorMinor 1 - anc reference.genome.fasta, limiting the analysis to the 524 

set of FFD sites using the -sites option. Finally, we used the -fold option to fold the spectra 525 

when using realSFS (for further analyses in ANGSD) or using a custom R script to fold the 526 

spectra into fastsimcoal2 format (for coalescent simulations in fastsimcoal2). 527 

Testing alternative demographic scenarios. We evaluated which demographic 528 

scenario (1-origin vs 2-origins) explains our data using fastSimcoal2 v.2.6.0.3 (Excoffier et al. 529 
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2013). We tested four populations at a time, i.e. with two ecotype pairs in each simulation, 530 

using for each analysis the jSFS for all six combinations of populations as summary statistics. 531 

For all models we let the algorithm estimate the effective population size (N), the mutation rate 532 

(μ) and the time of each split (T1, T2 and T3, Fig. 3). Although N, μ and the time of split 533 

between ecotypes in each pair have been previously estimated by Trucchi et al (2017), we 534 

started with broad search ranges for the parameters to not constrain a priori the model. The 535 

final priors of the simulations were set for a mutation rate between 1e-8 and 1e-10, the effective 536 

population size between 50 and 50,000 (alpine populations) and 50 and 5,000 (montane 537 

populations), and for the time of each split between 1,000 and 100,000 generations ago. We 538 

forced T1 to predate T2 and T3, and performed separate simulations setting T2 > T3 and T3 > 539 

T2, respectively. For the models including gene flow, migration rate (m) between any pair of 540 

demes was initially set to a range between 10e-10 and two.  541 

The generation time in H. pusillum was reported to be 1 year (Flatscher et al. 2012; 542 

Trucchi et al. 2017). While most populations in the montane zone flower during the first year 543 

after germination, this is not the case in the alpine environment, where plants usually start to 544 

flower in the second year after germination. Therefore, 1 year is most likely an underestimation 545 

of the intergeneration interval, which is more realistically around 3 years. While this parameter 546 

does not affect the overall results in terms of topology, it should be considered carefully in 547 

terms of divergence times between ecotypes that were previously hypothesized to be post-548 

glacial (Flatscher et al. 2012; Trucchi et al. 2017). 549 

FastSimcoal2 was run excluding monomorphic sites (-0 option). We performed 550 

200,000 simulations and ran up to 50 optimizations (ECM) cycles to estimate the parameters. 551 

To find the global optimum of the best combination of parameter estimates, we performed 60 552 

replicates of each simulation run. The MaxEstLhood is the maximum estimated likelihood 553 

across all replicate runs, while the MaxObsLhood is the maximum possible value for the 554 
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likelihood if there was a perfect fit of the expected to the observed site frequency spectrum. 555 

We report the difference between these two estimates (∆L) for each model and ∆AIC scores 556 

(i.e., the difference between the AIC for the best possible model and the tested model) to 557 

compare models with different numbers of parameters. Finally, the parameter estimations of 558 

the best run were used to simulate the expected jSFS and test the goodness of fit of the topology 559 

plus parameter estimates to the observed data.  560 

Differential gene expression analysis. Only unique read alignments were considered 561 

to produce a table of counts using FeatureCounts v.1.6.3 (Liao et al. 2014) with the option -t 562 

gene to count only reads mapping to genes. DE analyses were performed using the 563 

Bioconductor package EdgeR v.3.24.3 (Robinson et al. 2010). The count matrix was filtered, 564 

keeping only genes with mean counts per million (cpm) higher than 1. Data normalization to 565 

account for library depth and RNA composition was performed using the weighted trimmed 566 

mean of M-values (TMM) method. The estimateDisp() function of edgeR was used to estimate 567 

the trended dispersion coefficients across all expressed tags by supplying a design matrix with 568 

ecotype pair and ecotype information for each sample. We implemented a generalized linear 569 

model (glm) to find gene expression differences between low and high elevation ecotypes by 570 

taking into account the effects of the covariates ecotype and ecotype pair on gene expression. 571 

A likelihood ratio test (lrt) was used to test for DE genes between ecotypes in each pair. The 572 

level of significance was adjusted using Benjamini-Hochberg correction of p-values to account 573 

for multiple testing (threshold of FDR < 0.05). The statistical significance of the overlaps 574 

between lists of DEGs was tested using a hypergeometric test implemented in the Bioconductor 575 

package SuperExactTest (Wang et al. 2015). 576 

Functional interpretation of DEG. We performed separate GO terms enrichment 577 

analysis for each ecotype pair and gave special attention to functions that were shared among 578 

lists of DEG. Fisher test statistics implemented in the Bioconductor package topGO v.2.34.0 579 
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(https://bioconductor.org/packages/release/bioc/html/topGO.html) were run with the algorithm 580 

“weight01” to test for over-representation of specific functions conditioned on neighbouring 581 

terms. Multiple testing correction of p-values (FDR correction) was applied and significance 582 

was assessed below a threshold of 0.05. DEG were also explicitly searched for protein coding 583 

genes and transcription factors underlying the formation of trichomes and visually checked 584 

using R.  585 

Detection of multilocus gene expression variation. To detect gene expression 586 

changes underlying adaptive traits with a strongly polygenic basis we performed a cRDA of 587 

the gene expression data using the R Package vegan v.2.5-6 (Oksanen et al. 2019). The cRDA 588 

approach is well suited to identify groups of genes showing expression changes that covary 589 

with the “ecotype” variable while controlling for population structure (Bourret et al. 2014; 590 

Forester et al. 2018). As a table of response variables in the cRDA we used the matrix of read 591 

counts after filtering using mean cpm higher than 1 as in the DE analysis. First, the cRDA 592 

includes a multiple regression step of gene expression on the explanatory variable “ecotype”. 593 

In our case, the RDA was conditioned to remove the effects of the geographic ecotype pair 594 

using the formula “~ ecotype + Condition(pair)”. In the second step, a principal component 595 

analysis (PCA) of the fitted values from the multiple regression is performed to produce 596 

canonical axes, based on which an ordination in the space of the explanatory variable is 597 

performed. The first axis of the cRDA therefore shows the variance explained by the 598 

constrained variable “ecotype”, while the second axis is the first component of the PCA nested 599 

into the RDA, representing the main axis of unconstrained variance. The significance of the 600 

cRDA was tested with ANOVA and 1,000 permutations. Each gene was assigned a cRDA 601 

score that is a measure of the degree of association between the expression level of a gene and 602 

the variable “ecotype”. Outliers were defined as genes with scores above the significance 603 
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thresholds of ± 2 and, respectively, ± 2.6 standard deviations from the mean score of the 604 

constrained axis, corresponding to p‐value thresholds of 0.05 and 0.01, respectively.  605 

SNPs calling and detection of selection outliers. In order to perform selection scans, 606 

we performed variants calling following best standard practices implemented in GATK 607 

v.4.1.8.1 (Van der Auwera and O'Connor 2020). Briefly, after sorting mapped files and 608 

duplicates removal (see above), we used the split'N'trim function to split reads with Ns in the 609 

CIGAR string and trim overhangs. We called variants using HaplotypeCaller with the option -610 

ERC GVCF and merged multiple samples in gvcf format using the GenomicsDBImport utility 611 

with the -L option to operate in parallel on multiple genomic intervals. Finally, we used 612 

GenotypeGVCFs to perform joint genotyping. The resulting vcf file was processed using the 613 

vcfallelicprimitives modality implemented in vcflib v.1.0.2 (https://github.com/vcflib/vcflib) 614 

with the options --keep-info --keep-geno to split indels into multiple SNPs. Filtering was 615 

performed using vcftools v.0.1.16 (Danecek et al. 2011) with the options --max-alleles 2 --min-616 

alleles 2 --minDP 4 --minGQ 20 --minQ 30 --remove-indels --max-missing 0.5. 617 

Selection outliers analyses were carried out on ecotype pairs 1 and 3, for which we had 618 

a minimum of 10 individuals in each population analyzed. To detect outlier SNPs potentially 619 

under divergent selection during ecotype adaptation to different elevations we followed the 620 

method implemented in the R package pcadapt based on Principal Component Analysis (Luu 621 

et al. 2017). After filtering the vcf file, we used vcftools to obtain two separate vcf files for pair 622 

1 and 3 and retained loci with a minimum minor allele frequency 0.1. Plink (Purcell et al. 2007) 623 

was used to convert vcf files into the plink binary bed format. We used the pcadapt() function 624 

of pcadapt with the LD.clumping option to perform thinning using a window size of 200 SNPs 625 

and a r2 = 0.1 (default parameters). Outlier SNPs for ecotype divergence were defined as loci 626 

showing a strong correlation with the first principal component, which in both pairs separates 627 
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the ecotypes (Fig. S8). P-values were corrected using the Bonferroni method and a threshold 628 

of adjusted p < 0.05 was chosen to assess significance. 629 

Data accessibility. Scripts used to perform the analyses can be found under this gitHub 630 

repository https://github.com/aglaszuk.  631 
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Figures 

 

Figure 1. Study system, sampling setup, and genetic variation among four montane (M) - 

alpine (A) ecotype pairs of Heliosperma pusillum. Color coding of populations is consistent 

across panels. The numbering of the ecotype pairs is consistent with a previous publication on 

the same system (Bertel et al. 2018). (a) Graphic description of the main ecological and 

morphological differences between the ecotypes. (b) Geographic map showing the location of 

the analyzed populations in the southeastern Alps. (c) Clustering of individuals along the first 

two vectors of a principal component analysis. (d) Bar plot showing the assignment of 

individuals to the clusters identified by NgsAdmix for K = 2 through 8. 
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Figure 2. Differentially expressed genes (DEGs) at each ecotype pair show low overlap 

across different pairs. Colors represent the ecotype pair as in Fig. 1. Histograms show the 

number of DEGs (FDR < 0.05) underexpressed (a) and overexpressed (b) in the montane 

ecotype compared to the alpine in each pair. Colored and black areas of the bars show the 

amount of DEGs unique to each ecotype pair and, respectively, shared with at least one other 

pair. Numbers reported on top of the bars show the total amount of DEGs between ecotypes 

per pair and category. Numbers on the black areas show the amount of DEGs shared with at 

least one other pair. Linked dots below bars show the amount of shared DEGs between at least 

three pairs. Stars indicate that the overlap is significantly higher than chance expectations 

(hypergeometric test, p < 0.01).  
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Figure 3. Alternative topologies tested using Fastsimcoal2 for all combinations of two 

ecotype pairs. Strict isolation (SI, upper panels) and isolation with migration (IM, lower 

panels) were modeled. Solid arrows in the IM models indicate higher migration rates expected 

between ecotypes at each locality according to population structure results. Divergence times 

T2 and T3 were allowed to vary (i.e., T2 > T3 but also T3 > T2 were modeled), whereas T1 

was always the oldest event. Triangles and circles represent populations of the alpine (A) and 

the montane (M) ecotype, respectively. Filled and empty symbols represent different ecotype 

pairs. 
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Figure 4. Expression divergence between accessions of the alpine and the montane 

ecotypes captured with conditioned redundancy analysis (cRDA). Colors represent the 

populations as in Fig. 1. Grey and black clusters correspond to montane and alpine ecotypes, 

respectively. The ANOVA test of the full model was not significant (p = 0.18), confirming that 

most expression differences between ecotypes in our dataset do not follow consistent routes 

across ecotype pairs. 
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Figure 5. Functional enrichment of differentially expressed genes (DEGs) showing that 

across ecotype pairs similar biological processes are linked to adaptation to the different 

elevations. Height of the bars shows the significance of the enriched GO terms (Fisher’s test). 

Numbers left of the bars show the number of DEGs underlying the corresponding GO term. 

Descriptions of GO terms were shortened for visual clarity. The ecotype pair in which a certain 

term is found to be enriched is specified on the left side of the plot. The z-score (color scale of 

the bars) was computed based on the log fold-change of gene expression, whereas positive and 

negative values show over- and underexpression in the montane ecotype respectively.  
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Figure 6. Examples of expression of genes known to be related to trichome formation and 

elongation in plants. Colors represent the populations as in Fig. 1. Stars indicate significant 

differential expression (p < 0.05) before false discovery rate (FDR) correction. Non-significant 

differences are marked with ns. 
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