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Abstract10

As humans spread throughout the world, they adapted to variation in many environmental factors,11

including climate, diet, and pathogens. Because many of these adaptations were likely mediated12

by multiple non-coding variants with small effects on gene regulation, it has been difficult to link13

genomic signals of selection to specific genes, and to describe the regulatory response to selection.14

To overcome this challenge, we adapted PrediXcan, a machine learning method for imputing gene15

regulation from genotype data, to analyze low-coverage ancient human DNA (aDNA). First, we16

used simulated genomes to benchmark strategies for adapting gene regulatory prediction to increase17

robustness to incomplete aDNA data. Applying the resulting models to 490 ancient Eurasians, we18

found that genes with the strongest divergent regulation among ancient populations with hunter-19

gatherer, pastoralist, and agricultural lifestyles are enriched for metabolic and immune functions.20

Next, we explored the contribution of divergent gene regulation to two traits with strong evidence of21

recent adaptation: dietary metabolism and skin pigmentation. We found enrichment for divergent22

regulation among genes previously proposed to be involved in diet-related local adaptation, and in23

many cases, the predicted effects on regulation provide explanations for previously observed signals of24

selection, e.g., at FADS1, GPX1, and LEPR. For skin pigmentation, we applied new models trained25

in melanocytes to a time series of 2999 ancient Europeans spanning ∼38,000 years BP. In contrast26

to diet, skin pigmentation genes show little regulatory change over time, suggesting that adaptation27

mainly involved large-effect coding variants. This work demonstrates how aDNA can be combined28

with present-day genomes to shed light on the biological differences among ancient populations, the29

role of gene regulation in adaptation, and the relationship between ancient genetic diversity and the30

present-day distribution of complex traits.31

Introduction32

In the last decade, the number of ancient DNA (aDNA) samples from anatomically modern humans33

(AMHs) has increased dramatically (Marciniak and Perry, 2017). These samples span the globe, and34

cover time periods from several hundred to tens of thousands of years ago. This is a rich data source35

for understanding genetic changes and adaptations that occurred as humans expanded across the globe.36

However, linking genetic differences in aDNA samples to phenotypes poses several challenges (Irving-37

Pease et al., 2021). First, while the samples are often paired with archaeological information, this is38

limited to what biological material has survived for thousands of years. Thus, most phenotypes of39
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interest are not directly measurable. Second, due the complexity of many phenotypes and gaps in our40

knowledge of the genetic architecture of most traits, drawing conclusions about most phenotypes of41

interest based on genetic information alone is challenging (Benton et al., 2021; Li et al., 2020).42

To date, most studies have focused on comparing aDNA from different geographical regions to map43

migrations and their relationship to archaeological changes (Skoglund and Mathieson, 2018). Shifts44

from a hunter-gatherer lifestyle to pastoral herding and agricultural farming have been of particular45

interest, because these changes had profound implications for multiple aspects of life. These include46

changes in day-to-day activities, population density, interactions with the environment, and substantial47

dietary shifts, such as increased reliance on domesticated grains (Goude and Fontugne, 2016; Olsson and48

Paik, 2016). These shifts likely modified selective pressures on populations as their lifestyles, diets, and49

pathogen exposures changed.50

Genomic scans in present-day populations have identified many loci with evidence of positive selection51

(Field et al., 2016; Grossman et al., 2013; Rees et al., 2020; Voight et al., 2006). In some cases, selection52

can be linked to changes in the coding sequence of specific genes (Grossman et al., 2013; Lamason et al.,53

2005). In others, it can be linked to changes in gene regulation. For example, selection at the FADS1 locus54

is linked to increased expression (Buckley et al., 2017; Mathieson and Mathieson, 2018; Ye et al., 2017).55

However in most cases, the molecular basis of signals of selection remains poorly understood, even when56

a specific gene can be implicated. For example, the leptin receptor (LEPR) is surrounded by a haplotype57

that has experienced recent positive selection (Voight et al., 2006), and protein-coding changes in LEPR58

have been implicated in increased cold tolerance (Hancock et al., 2008). However, altered expression59

of this gene is also associated with altered appetite regulation and metabolism (Kentish et al., 2013;60

Loos et al., 2006). Due to the difficulty in measuring environmental variables and disentangling LD61

patterns, it remains unclear whether selection is acting on coding variants, expression changes, or both,62

and which environmental variable is the source of the selective pressure (Luca et al., 2010). Even these63

examples are exceptional; most selection signals cannot even be confidently attributed to specific genes.64

Selection peaks often span many genes, with little indication of which might drive changes in fitness or65

the underlying molecular mechanisms. This motivated us to ask whether information about variants66

associated with gene expression, such as expression quantitative trait loci (eQTL), could help to identify67

genes under selection—analogous to the way in which eQTL data can inform variant-gene-phenotype68

mapping in genome-wide and transcriptome-wide association studies.69

We therefore developed an approach to identify genes whose regulation shifted in coordination with70

lifestyle changes in recent human history. These differences in regulation between ancient human groups71

in distinct environments suggest adaptation. To quantify gene regulation from aDNA samples, we72

adapted the PrediXcan-based approach we previously used to study gene regulation in archaic hominins73

(Colbran et al., 2019; Gamazon et al., 2015). Since available human aDNA have variable quality and74

coverage, we conducted simulations and control analyses to evaluate how models for imputing gene75

regulation perform when applied to low-coverage data, and how to ameliorate the effects of missing76

variants. These yielded heuristics for determining when regulation could be accurately modeled.77

Guided by these simulations, we applied PrediXcan models for thousands of genes to hundreds of78

ancient humans representing populations from hunter-gatherer, pastoral, and agricultural lifestyles. We79

found enrichment for metabolic and immune pathways among the genes most divergently regulated80

between lifestyle groups. This reflects both the altered metabolic requirements and immune pressures81

of lifestyle shifts and highlights specific genes and pathways involved. For example, divergent regulation82

of LEPR suggests that its functions in metabolism and appetite regulation were relevant for recent83

adaptation. We also analyzed the predicted regulation of 20 diet-related genes in genomic regions with84

evidence of recent local adaptation. Supporting the accuracy of our approach, we rediscover the FADS85

locus regulatory haplotype that has been previously shown to vary by lifestyle and is likely the target of86
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selection. We also identified divergent regulation between aDNA samples for selected genes involved in87

response to selenium (GPX1 ) and carnitine (SLC22A5 ) levels.88

Modeling gene regulation using aDNA also allows us to characterise the nature of selection on specific89

phenotypes. To illustrate this, we investigated changes in predicted regulation of genes involved in skin90

pigmentation—the phenotype that is most clearly under directional selection in these populations—91

using PrediXcan models trained on expression data from melanocytes. We find that skin pigmentation92

genes show no consistent change in regulation over time suggesting that, for this particular phenotype,93

evolutionary change was driven by coding variants rather than regulatory changes. Overall, this work94

provides an atlas of imputed regulation for hundreds of ancient humans across thousands of genes to95

facilitate future exploration of gene regulatory shifts in recent human evolution, and demonstrates the96

utility of combining molecular predictive models with ancient DNA to understand the evolution of97

complex traits.98

Results99

Gene regulatory patterns can be imputed using low-coverage aDNA data100

The genetically regulated component of gene expression can be predicted by machine learning models101

trained on gene expression. Previous approaches have applied these models to genome-wide common102

variant data from present-day humans (Fig. 1A), for example to perform transcriptome-wide association103

studies (Gamazon et al., 2015; Zhou et al., 2020; Zhu and Zhou, 2020), and to high-coverage archaic104

hominin genomes (Colbran et al., 2019). Here, we adapt this approach to enable application to low-105

coverage genotype data from ancient human individuals, considering the unique attributes of these data.106

In particular, aDNA data vary in coverage, depth, and quality. This creates a trade-off between number107

of individuals available for analysis and the genotype quality.108

To explore this trade-off and the feasibility of this approach on available aDNA data, we created109

simulated ancient genomes by removing variants from present-day individuals with whole-genome se-110

quencing from the 1000 Genomes Project (1kG) (The 1000 Genomes Project Consortium, 2015). (See111

the Supplementary Materials for detailed discussion.) First, we found that PrediXcan models trained112

using common variants identified from present-day whole genome sequencing data are robust to ran-113

dom patterns of missing data (Spearman ρ > 0.75 with up to 45% of variants missing; Supplementary114

Fig. 2A). However, nearly all aDNA samples used here were genotyped by targeted capture of ∼1240k115

variants (“1240k set”; Supplementary Fig. 1B) (Fu et al., 2015; Haak et al., 2015). Furthermore, many116

of the ancient samples have low genotyping coverage resulting in many missing variants (Supplementary117

Fig. 2B). Thus, we next matched the missing data to patterns observed in aDNA and compared the per-118

formance of different prediction models applied to full genomes vs. genomes with simulated missing data119

(Supplementary Fig. 1A). These models’ consistency decreased substantially when applied to genomes120

with missing data matched to that in ancient DNA samples (median Spearman ρ = 0.39; Fig. 1B).121

To address this, we trained prediction models using only variants from the 1240k set. The predictions122

of these models were correlated with those of the full models (median Spearman ρ = 0.67), as expected123

given the LD between variants in the 1240k set and those in the full models. We also identified a set of124

variants that were most frequently available in the highest quality ancient samples; this resulted in a set of125

the 600,000 most-informative variants from the 1240k set (“top600k set”). We then trained models using126

these variants targeted to the aDNA data (top600k) and evaluated their performance on full genomes and127

simulated ancient genomes (Methods). While predictions made by the 1240k and top600k models were128

largely consistent with those made by the Full models when applied to genomes with no missing data129

(median rho 0.82 and 0.79 respectively), only the 1240k models maintained consistency when applied to130
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incomplete genomes (Fig. 1C). We therefore concluded that the 1240k trained models strike a balance131

between accuracy and sample size when applied to ancient data, and thus we used these models for the132

rest of our analysis.133

Imputing gene regulatory differences between ancient human populations134

We collected ancient human samples with genetic data from a variety of sequencing and genotyping135

platforms (Methods). Based on the analyses in the previous section, we ranked individuals by the136

number of sites successfully genotyped, and took the top quartile of individuals (>771240 SNPs, or137

0.74x coverage), restricting to individuals from Eurasia due to sample density and genetic similarity to138

the training data (Fig. 2A). The samples ranged in date from 90 years before present (yBP) to 45,000139

yBP, with the majority between 2,500 and 6,000 yBP (Fig. 2B).140

We then assigned individuals to a lifestyle (hunter-gatherer, pastoralist, or agricultural) by literature141

review of the associated archaeological culture based on information from the original aDNA publications.142

In general, hunter-gatherers were from sites: 1) dated to times before any evidence of domestication143

or 2) with evidence only for foraging and meat consumption and no domesticated plants or animals.144

Agriculturalists were from sites with evidence for domesticated grains and animals. Pastoralists can145

be difficult to distinguish from agriculturists, and here refers to individuals from often semi-nomadic146

societies focused on domesticated animals (primarily the Yamnaya and similar groups). In addition, in147

some cases, the lifestyle distinction was based on genetic similarity to other groups, so the categories used148

here are based on a combination of genetics and archaeology. Because of these difficulties, we focused149

primarily on comparisons between hunter-gatherers and the other groups. This process resulted in 490150

ancient Eurasian individuals with an assigned lifestyle and aDNA for further study (Fig. 2C).151

We then applied the 210,800 “1240k” gene regulation prediction models described in the previous152

section to the 490 ancient samples, as well as to 503 present-day Europeans from the 1000 Genomes153

Project (The 1000 Genomes Project Consortium, 2015). This resulted in normalized expression pre-154

dictions in different tissues (“predicted regulation”) for 14,873 unique genes. The observed expression155

level of a gene in an tissue in an individual is a combination of genetically regulated and environmental156

factors. The output of our prediction model is not a direct proxy for the observed expression, but rather157

a quantification of the genetic component of gene regulation. Thus, differences in predicted regulation158

between individuals reflect potential differences in the inherited genetic component of expression, not159

environmentally driven differences.160

Divergently regulated genes are enriched for immune and metabolic functions161

To survey high-level differences among ancient individuals from the three lifestyle groups, we identified162

divergently regulated genes as those for which the P -value of a Kruskal-Wallis test passed a Bonfer-163

roni multiple testing correction (per-tissue). For example, GPR84 was among the most differences in164

predicted regulation between populations (Fig. 3A; Adrenal Gland predicted regulation of -0.0421 in165

agriculturalists vs. 0.197 in hunter-gatherers; K-W P -value ). Overall, 5759 unique genes showed evi-166

dence of divergent regulation between lifestyles in at least one tissue (median 2 tissues; Supplementary167

Fig. 6A), and an average of 9.8% of genes in each tissue were divergent (Supplementary Fig. 6B). How-168

ever, most divergent genes had relatively small changes in magnitude between groups (e.g. maximum169

1.17 magnitude difference between hunter-gatherers and agriculturalists in Subcutaneous Adipose) and170

the majority of these differences are likely attributable to genetic drift, rather than the effects of selection.171

We therefore imposed a genomic control (Methods) on the full distribution of 210,800 (genes × tissues)172

Kruskal-Wallis P -values (Fig. 3A). We focused on the 500 genes with the most evidence of divergent173

regulation (corrected P < 3.46 × 10−3, FDR = 0.586), which may be enriched for targets of selection.174
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We hypothesized that immune and metabolic traits were among those under the most selective pres-175

sure as populations transitioned between lifestyles. To identify systematic patterns in the 500 most di-176

vergently regulated genes, we conducted Gene Ontology (GO) over-representation analysis. The twenty177

most-enriched annotation terms (Fig. 3B) included immune-related (e.g.“antigen processing and pre-178

sentation”) as well as basic metabolic processes and cellular functions (e.g. “glycoprotein metabolic179

process”). In addition, the enrichments for some of the more general terms may be driven by genes180

with pleiotropic immune system effects. For example, the eight genes driving the enrichment of the181

”DNA-templated transcription, elongation” term included THOC5, which also functions in immunity182

and response to stimuli through cytokine-mediated pathways (Mancini et al., 2004; Tamura et al., 1999),183

ELP1, which has functions in proinflammatory signalling (Cohen et al., 1998), and AFF4, a component184

of the super elongation complex, which is recruited in response to HIV-1 infection (Chou et al., 2013; He185

et al., 2010).186

Many gene sets are likely to maintain similar regulatory patterns across populations, regardless of187

lifestyle, and these should not be enriched among the top divergently regulated genes. To test this, we188

quantified the enrichment of three such sets under strong functional constraint among the 500 most di-189

verged genes between lifestyle groups across tissues: 1) genes that have experienced stabilizing selection190

on their levels of expression across many species (Chen et al., 2018), 2) genes responsible for core house-191

keeping functions (Eisenberg and Levanon, 2013), and 3) genes that are intolerant to loss-of-function192

coding variation (“LOF-intolerant”) in present-day humans (Lek et al., 2016) (Methods). As expected,193

LOF-intolerant genes and those under long-term stabilizing selection are not enriched (Table 1). Surpris-194

ingly, housekeeping genes were slightly enriched (OR = 1.33, P = 0.0076). By definition, housekeeping195

genes have uniform and ubiquitous expression across tissues, so this pattern could partially be explained196

by increased power to model changes in their regulation in multiple tissues. However, many housekeeping197

genes are also involved in basic cellular metabolism (Eisenberg and Levanon, 2003), which could require198

fine tuning in response to changes in nutrient sources or other environmental shifts. We also tested for199

enrichment of genes that encode proteins that directly interact with viruses, since these genes are known200

to evolve rapidly (Enard et al., 2016), but we find no enrichment among the top 500 genes, suggesting201

that selection at these loci could be driven by coding rather than regulatory changes.202

Several of the top divergently regulated genes underlying the GO functional enrichments have been203

implicated in local adaptation, for example EP300 (Zheng et al., 2017) and several subunits of HLA-DQ204

(Catassi and Catassi, 2018; De Silvestri et al., 2018; Pierini and Lenz, 2018). In the next two sections,205

we explore the connection between sequence signatures of recent adaptive evolution and divergent gene206

regulation with a focus on diet and skin pigmentation.207

Changes in gene regulation contributed to adaptation to diet between ancient208

lifestyles209

Many regions of the human genome bear signatures of recent population-specific adaptive evolution.210

However, the phenotypic drivers and molecular mechanisms underlying these evolutionary signatures are211

largely unresolved. Since diet was one of the main factors that shifted with the change from hunting and212

gathering to farming, we hypothesized that gene regulatory changes between lifestyle groups might be213

the target of signals of selection at dietary genes.214

We compared the predicted regulation of 20 diet-related genes in regions with evidence of population-215

specific local adaptation (Rees et al., 2020) between ancient human groups with different lifestyles (Meth-216

ods). Models for the 20 genes tested were enriched for lower P -values (P = 1.19×10−14, K-S test), with217

4 unique genes among the top 500 most diverged genes by group (Supplementary Table 4).218

FADS1 showed the most consistent evidence for divergent regulation between agriculturalists, pas-219
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toralists, and hunter-gatherers, with nominally significant differences in 21 tissues (Supplementary Table220

2). In each tissue, hunter-gatherers had significantly lower FADS1 levels than in agriculturalists or221

present-day Europeans, as would be expected from a diet containing higher levels of long-chain plasma222

unsaturated fatty acids (Fig. 4B). We observed a similar trend among 32 ancient Africans, indicating that223

this is not necessarily specific to Eurasian populations (Supplementary Fig. 7A). The variants driving224

these regulatory differences are in linkage disequilibrium (LD) with the functional haplotype implicated225

in previous evolutionary studies (Supplementary Fig. 7A; Supplementary Table 3) (Ameur et al., 2012;226

Buckley et al., 2017; Mathieson and Mathieson, 2018; Ye et al., 2017). Overall, FADS1 predicted regu-227

lation is also negatively correlated with the date of the sample (Spearman ρ= –0.32, P = 1.95 × 10−20,228

which agrees with known allele frequency trajectories (Buckley et al., 2017; Mathieson and Mathieson,229

2018; Ye et al., 2017).230

Another gene in the FADS gene cluster, FADS2, functions in the same pathway as FADS1 and is231

also among the 500 most diverged genes. However it shows evidence for divergent regulation in fewer232

tissues than FADS1 (Supplementary Table 4), and the direction of effect is not consistent across tissues.233

Its presence therefore seems more likely to be due to overlap in regulatory variants with FADS1 than234

to selection on FADS2 regulation specifically. Our results further support the relevance of lifestyle235

differences between ancient populations in selection on the FADS locus and highlights the potential236

importance of regulatory changes of FADS1 in dietary adaptation in Eurasians.237

Among the putative diet adaptation genes, GPX1, an antitoxin selenoprotein, and SLC22A5, a238

transporter responsible for recycling and uptake of carnitine (Console et al., 2018).(Supplementary Table239

4; Supplementary Fig. 8) were also divergently regulated. The GPX1 locus has experienced selective240

sweeps related to environmental selenium levels (Engelken et al., 2016; White et al., 2015), and has been241

implicated in response to viral infections (Guillin et al., 2019). Carnitine plays an important role in the242

transport of certain long-chain fatty acids to the mitochondria for energy production; thus, modulation243

of its regulation could suggest a difference in metabolism related to variation in the energy demands of244

different lifestyles. Both selenium and carnitine levels differ in the likely primary diets of the ancient245

populations considered here (Flanagan et al., 2010; Mann, 2018), suggesting that both as potential246

targets of local adaptation.247

Though it was not on the list of putative diet-related adaptation genes, LEPR has been suggested as248

the driver of nearby signatures of selection due to its function in appetite and cold tolerance (Hancock249

et al., 2008; Luca et al., 2010; Voight et al., 2006). LEPR was divergently regulated between lifestyle250

groups in the cerebellum (Fig. 4B) (the only brain tissue with a model for LEPR), both adipose tissues,251

and several other tissues. It was consistently predicted to be downregulated in agriculturalists compared252

to the other two groups in each tissue (Supplementary Table 5). Leptin is a hormone produced by adipose253

cells that suppresses appetite (Barrios-Correa et al., 2018), so this supports a possible connection between254

appetite regulation and the observed signatures of selection. This is particularly relevant to modern255

populations given the association of decreased LEPR function with obesity and metabolic disorders256

(Dehghani et al., 2018; Farooqi et al., 2007).257

Overall, these analyses suggest that recent regulatory changes made a substantial contribution to258

adaption to diet. More broadly, they demonstrate the potential for this method to explain observed259

signals of selection and to disentangle its effects on nearby genes.260

Skin pigmentation evolution was not driven by changes in gene regulation261

We hypothesized that genes involved in complex phenotypes under selection in a population would262

exhibit systematic changes over time in their regulation. To test this, we focused on skin pigmentation,263

a trait that is known to have been under selection in humans in West Eurasia (Berg and Coop, 2014; Ju264
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and Mathieson, 2020; Wilde et al., 2014) and for which many of the genes involved are well-understood265

(Sturm and Duffy, 2012). We trained new PrediXcan models using genetic variants and gene expression266

in melanocytes from a diverse population (Zhang et al., 2017). We were able to model 17 genes known267

to be involved in the melanogenesis pathway (Sturm and Duffy, 2012). Because skin pigmentation-268

associated variants changed in frequency over time, we applied these models to a time series of 2999269

ancient Europeans dated between 38,052 yBP and 150 yBP, as well as 503 present-day Europeans from270

the 1000 Genomes Project and tested for systematic changes over time in predicted regulation.271

Skin pigmentation genes are not enriched for differential regulation compared to all 6923 genes mod-272

eled in melanocytes (K-S Test P = 0.53; Fig. 5A). Predicted regulation showed a nominally significant273

linear relationship with time for only four skin pigmentation genes (Table 1), and only one (TYR)274

remained significant after genomic control.275

We predict that TYR’s expression increased over time (Fig. 5B) and is higher in non-African (particu-276

larly European) populations compared to African populations (Fig. 5C), and in (more recent) agricultur-277

alist populations compared to hunter-gatherers (Fig. 5D). TYR encodes an enzyme important for one of278

the earliest steps of the melanogensis pathway and loss-of-function mutations cause albinism (Ghodsine-279

jad Kalahroudi et al., 2014; Norman et al., 2017). It is therefore surprising that increased expression280

would be driven by selection for decreased pigmentation. One possibility is that increased expression281

due to gene regulatory variants compensates for the increase in frequency in Europeans of an activity-282

reducing coding variant (rs1042602) in TYR (Wilde et al., 2014). Selection on pigmentation could favor283

the coding variant, while the maintenance of other functions of the gene could require increased expres-284

sion. Supporting this, rs1042602 has a positive weight in the fitted PrediXcan model showing that it in285

fact is associated with increased expression.286

Finally, we were unable to build accurate PrediXcan models for many known pigmentation genes,287

including those with known selected coding changes (Lamason et al., 2005; Soejima and Koda, 2007),288

mostly because there was not enough regulatory variation nearby the genes. Overall, our results suggest289

that, in contrast to diet, changes in gene regulation did not play a large role in the evolution of skin290

pigmentation in Europe. This is consistent with observations that selection signals for pigmentation-291

associated variants in Europe are mostly driven by a relatively small number large-effect, coding variants292

despite the polygenic nature of the phenotype Ju and Mathieson (2020).293

Gene β (All) (95%CI) P (all) β (<15ky) (95%CI) P (<15ky)

TYR -2.05e-6 (-3.1e-6 - 9.67-7) 0.00021 -4.7e-6 (-6.43e-6 - -2.97e-6) 1.08e-7

TRPM1 -9.93e-7 (-1.97e-6 - -2.05e-8) 0.045 -2.039e-6 (-3.59e-6 - -4.83e-7) 0.010

MITF 1.65e-6 (1.08e-7 - 3.2e-6) 0.036 2.80e-6 (3.34e-7 - 5.27e-6) 0.026

KIT -3.62e-7 (-7.56e-7 - 3.16e-8) 0.071 -7.08e-7 (-1.33e-6 - -8.10e-8) 0.027

Table 1: Skin pigmentation genes with nominally significant associations between ancient
sample age and regulation. Betas and P-values were calculated using a linear regression of the
predicted regulation on the date, including the first 10 ancestry principal components.

Discussion294

In this study, we adapted the PrediXcan approach for modeling the genetic component of tissue-specific295

gene regulation and applied it to hundreds of low-coverage ancient DNA samples from individuals from296

three different lifestyles and to a ∼38,000-year transect of ancient Europeans. Our simulations and297

evaluations suggest that models of gene regulation for thousands of genes retain utility even when variant298
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data are limited, as long as the models are trained for the specific application and their limitations299

properly taken into account. This is encouraging for the expansion of the PrediXcan approach to other300

contexts in which different variants were assayed than those used to train the original PrediXcan models.301

As more accurate methods are developed, it will be important to keep this aspect of their performance302

in mind.303

Here, we found that over 5,000 genes showed evidence for divergent regulation among ancient hunter-304

gatherers, pastoralists, and agriculturalists in at least one tissue. The 500 genes most divergently regu-305

lated between lifestyles were enriched for metabolic and immune processes, indicating that altered gene306

regulation has shaped these functions during recent human evolution. Focusing on genes involved in diet,307

we find enrichment for divergent regulation in genes with nearby signals of recent selection, suggesting308

that changes in gene regulation may play a substantial role in adaptation to changes in diet.309

Second, we trained new prediction models in melanocytes to analyze changes in the regulation of skin310

pigmentation genes in a time transect of ancient and present-day Europeans spanning 38,000 years. In311

contrast to genes associated with diet, we found that most genes we modeled show little to no systematic312

change in regulation over time, suggesting that selection on skin pigmentation mostly operated on a313

few large-effect coding variants. The exception, TYR, is predicted to have been up-regulated over time,314

which is contrary (with repsect to the trait) to the effects of a known coding variant in the gene and the315

predicted effects of gene expression on the trait itself (Chaki et al., 2011; Wilde et al., 2014). However,316

the increased expression in Europeans may be a response to the increase in frequency of a coding variant317

(rs1042602) that decreases activity. These results underscore the wide variety of adaptive mechanisms in318

recent human evolution, and the ability of ancient DNA to illuminate these mechanisms. The other skin319

pigmentation genes that show nominal changes in predicted regulation over time, MITF and TRPM1,320

are closely linked to TYR in the melanogenesis pathway, with MITF regulating both TYR and TRPM1321

(D’Mello et al., 2016). Further analysis of the predicted perturbations of those relationships is needed322

to better understand the phenotypic consequences of these changes.323

There are a several caveats to consider when interpreting these PrediXcan results. Previous work324

has demonstrated that, while there are some decreases in accuracy, the approach maintains utility when325

applied to non-European present-day populations and to archaic hominins (Colbran et al., 2019; Petty326

et al., 2019). Furthermore, the ancient Eurasian individuals considered here are less diverged from the327

GTEx cohort used for training than in these previous applications. However, due to the low coverage of328

the aDNA data and the focus on commonly assayed variants, there are many regulatory effects that these329

models do not capture. In addition, the models do not capture the effects of environment (both direct330

and indirect) on gene expression. Therefore, while differences in predicted regulation do not necessarily331

indicate a change in transcript expression levels, they do the identify change in the genetic architecture332

of a gene’s regulation. Our approach is therefore complementary to experimental assays of the regulatory333

effects of ancient genomic variants in present-day human cells (Weiss et al., 2021), and such approaches334

could be used to test our computational predictions. Another major limitation is that we are only able335

to draw conclusions about genes with sufficient expression and nearby present-day common variation.336

Finally, we have not developed a formal test for selection on gene regulation. While we have in some337

cases been able to link regulatory variation to signals of selection based on genomic data, most of the338

differences we observe were likely the result of genetic drift. Developing tests for selection on gene339

regulation that consider aDNA remains an important area for future work.340

Despite these limitations, we demonstrate the utility of considering regulatory effects of variants in341

combination in ancient individuals. In particular, we show that changes in gene regulation were essential342

to many, but not all, recent human adaptations. The frequent occurrence of metabolic and immune genes343

among the most divergently regulated genes between ancient lifestyles underscores the contribution of344

gene regulation to adaptation to the substantial changes in lifestyle that the shift from nomadic hunting345
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and gathering to stationary farming had on humans. Our targeted analysis of diet genes with evidence346

of results adaptive evolution further suggests that adapting to diets with different nutrient and fat347

compositions required population-level shifts in the regulation of many metabolic genes. In contrast, the348

lack of consistent gene regulatory changes in skin pigmentation genes suggests that adaptation in this349

trait was mainly mediated by coding variants.350

Lifestyle and sun exposure are not the only variables that differ among the ancient humans with351

genetic information, and more diverse aDNA data are rapidly becoming available. Therefore, extending352

this analysis to ancient individuals across other evolutionary shifts will promising. It will also be infor-353

mative to expand studies into non-European populations, both ancient and present-day, to learn when354

gene regulatory shifts are unique to specific populations or shared.355

Overall, this study demonstrates the power of focusing evolutionary analyses on combinations of356

variants with established relationships to molecular phenotypes. Our approach is well-positioned to357

use the increasing availability of present-day and ancient genome data to provide both mechanistic358

explanations of selection signals and to generate hypothesis about phenotypic differences between ancient359

and present-day groups. While this study focused on gene regulatory shifts in response to changes in360

lifestyle and temporal shifts in regulation of skin pigmentation genes, similar methods could be applied361

in many other questions and sets of ancient samples. Given the importance of gene regulation in recent362

evolution, this is a necessary step in identifying and interpreting candidate regions that have been shaped363

by recent human evolution. Further analyses using this approach will contribute to understanding the364

genome’s response to large-scale environmental changes and the influence of these changes on humans365

today.366

Methods367

Ancient genotype and lifestyle data368

For the lifestyle analyses, we obtained ancient human genotypes from a set compiled and analyzed by369

the Allen Ancient DNA Resource (v42.4; accessed March 1, 2020), then lifted them over the Genome370

Build hg38 using liftOverPlink. We filtered out samples that did not pass their QC procedure and ranked371

remaining samples by genotype count (i.e., the number of variants with a genotype call). We also filtered372

samples by their continent of origin, and primarily focused on 490 ancient Eurasians. (A FADS1 analysis373

additionally considered 32 ancient Africans.) For a present-day comparison, we used genome for 503374

European samples from the 1000 Genomes Project (The 1000 Genomes Project Consortium, 2015).375

We manually assigned ancient samples to lifestyle groups by literature review based on archaeological376

information about the site and previous research about the associated culture. More specifically, we377

used lifestyles as assigned by the original publication of the sample where available. We then propagated378

those lifestyle labels to other samples based on the associated culture (again, as assigned by the original379

publication), then conducted a further literature review to match any unassigned cultures to a lifestyle380

based on similarity to those already matched. Samples were removed from consideration when there was381

not enough lifestyle-related evidence to make a call. The distinction between pastoral and agricultural382

groups was often difficult, and when there was ambiguity the groups were preferentially assigned to the383

agricultural category (Supplemental File S1).384
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Adapting PrediXcan for aDNA385

Final models for aDNA-based gene regulation prediction386

The set of models used for all lifestyle analyses were trained on whole genome sequencing and RNA-seq387

data from GTEx v8 for 49 tissues using 1̃,240,000 variants that were genotyped by first enriching for388

the targeted variants (“1240k set”) (Fu et al., 2015; Haak et al., 2015). For each tissue, we considered389

only models that explained a significant amount of variance (FDR < 0.05, r2 > 0.01). In addition, we390

further required that each 1240k-trained model maintain high correlations with the original GTEx model391

(r > 0.5) over all 2504 1kG individuals. All LD calculations for variants in all 1kG Populations were392

made using LDLink (Machiela and Chanock, 2015).393

The set of models used to study skin pigmentation were trained on genotype and RNA-seq data394

collected from melanocytes from 106 male skin samples (Zhang et al., 2017). We imputed all genotypes395

to 1000 Genomes using the NIH TOPMed server (Das et al., 2016) with the following settings: ref:396

1kG Phase 3 v5; pop = other/mixed; rsq filter 0.001; phasing = eagle v2.4. We filtered genes to those397

with measured expression in at least 10 samples, with RSEM > 0.5 and > 6 reads, then each gene was398

inverse quantile normalized to a standard normal distribution across samples. We then corrected for399

ancestry using the first 3 principle components and 10 PEER factors. We trained the PrediXcan models400

using only ∼1,240,000 SNPs that were genotyped by first enriching for those targeted SNPs (“1240k401

set”) (Fu et al., 2015; Haak et al., 2015), and included any gene for which the model was able to explain402

a nominally significant amount of variance in the observed expression (P < 0.05). We focused on a set of403

17 genes (Sturm and Duffy, 2012) involved in skin pigmentation for which we were able to build models.404

We abbreviate the 49 GTEx tissues considered as follows: Adipose - Subcutaneous: ADPS, Adipose405

- Visceral Omentum: ABPV, Adrenal Gland: ADRNLG, Artery - Aorta: ARTA, Artery - Coronary:406

ARTC, Artery - Tibial: ARTT, Brain - Amygdala: BRNAMY, Brain - Anterior Cingulate Cortex:407

BRNACC, Brain - Caudate: BRNCDT, Brain - Cerebellar Hemisphere: BRNCHB, Brain - Cerebel-408

lum: BRNCHA, Brain - Cortex: BRNCTX, Brain - Frontal Cortex: BRNFCTX, Brain - Hippocampus:409

BRNHPP, Brain - Hypothalamus: BRNHPT, Brain - Nucleus Accumbens basal ganglia: BRNNCC,410

Brain - putamen basal ganglia: BRNPTM, Brain- Spinal Cord Cervical C-1: BRNSPN, Brain- Substan-411

tia Nigra: BRNSN, Breast: BREAST, Cells - Transformed Fibroblasts: FIBS, Colon - Sigmoid: CLNS,412

Colon - Transverse: CLNT, Esophagus - Gastroesophageal Junction: ESPGJ, Esophagus - Mucosa:413

ESPMC, Esophagus - Muscularis: ESPMS, Heart - Atrial Appendage: HRTAA, Heart - Left Ventri-414

cle: HRTLV, Kidney Cortex: KDNY, Liver: LIVER, Lung: LUNG, Minor Salivary Gland: MNRSG,415

Cells- EBV-transformed Lymphocytes: LYMPH, Ovary: OVARY, Pancreas: PNCS, Pituitary: PTTY,416

Prostate: PRSTT, Skeletal Muscle: MSCSK, Skin - Not sun-exposed: SKINNS, Skin - Sun-exposed:417

SKINS, Small Intestine: SMINT, Spleen: SPLEEN, Stomach: STMCH, Testis: TESTIS, Thyroid: THY-418

ROID, Tibial Nerve: NERVET, Uterus: UTERUS, Vagina: VAGINA, Whole Blood: WHLBLD.419

Evaluating strategies for applying PrediXcan to aDNA420

To evaluate the performance of different strategies for training PrediXcan regulation prediction mod-421

els and applying them to aDNA, we carried out several simulations. In the random simulations, for422

each percentage missing threshold, we randomly selected 20 European individuals from 1kG (The 1000423

Genomes Project Consortium, 2015), then randomly removed that percentage of genotype calls from424

their genomes before applying PrediXcan models to the simulated genomes (Supplementary Fig. 1). For425

each downsampled genome, we calculated a Spearman correlation between the predicted regulation of426

each gene in four tissues for the downsampled vs. the full genome. Thus, each box in Supplementary427

Fig. 2A has 80 (20× 4) points. We then calculated the Spearman correlation between the median corre-428
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lation between downsampled and full model predictions for each threshold and the percentage of variants429

missing at that threshold.430

We also simulated missing data by matching patterns of missing variants from aDNA samples (Sup-431

plementary Fig. 1B). We used 3383 ancient human samples compiled and made available by the Allen432

Ancient DNA Resource on March 1, 2020 (v42.4). We selected three random Europeans from 1kG,433

then for each ancient sample we created three matching masked genomes that were missing exactly the434

same variants. For each masked genome, we calculated the Spearman correlation between the predicted435

regulation of each gene in all four tissues for the masked vs. the full genome (i.e. one correlation per436

individual).437

We also evaluated three different sets of variants for training PrediXcan models. The “full set”438

consisted of all variable sites identified in GTEx v8 (this included both single nucleotide variants and439

short indels in hg38 coordinates). The “1240k set” was formed by intersecting the full set with the variants440

genotyped on the 1240k chip, which totalled 714,959 variants after lifting them over to hg38. Lastly, we441

assembled the “top600k set” of variants, which is a subset of the 1240k set with high “support”. We442

calculated the “support” for each variant over N aDNA samples as
∑N

n=1NumV arsn, where NumV ars443

is the number of variants successfully called in sample n. In other words, support for a variant is444

the number of samples in which that variant was successfully genotyped, weighted by the quality (i.e.,445

number of genotyped variants) of the sample. A variant can therefore obtain a high support either by446

being genotyped in many low-quality samples, or in fewer high-quality samples. We ranked the variants447

by their support. We identified the top 600k variants, and for the purposes of simulating the behaviour448

of models when applied to incomplete data, we also considered the top 500k variants with the highest449

support (“top500k”; N = 499,666). For each set of variants, we trained a set of models and created a450

set of 1kG genomes masked to only include those variants (Fig. 1A). We assessed the performance of451

combinations of models and genomes by calculating the correlation of predictions made by each model-452

genome pair with predictions made by the Full models on the Full 1kG Genomes (i.e. one correlation453

was calculated per individual 1kG sample for each pair).454

Identifying divergent gene regulation between ancient lifestyles455

To identify genes with evidence for divergence in predicted gene regulation between the three lifestyle456

groups, we applied a Kruskal-Wallis test for the predictions of each gene model over individuals from457

each group. We accounted for multiple testing with a Bonferroni correction within each tissue. Genes458

passing the correction in at least one tissue are said to show evidence for a significant difference in459

regulation. To further isolate the genes that are the most likely to be diverged due to selection rather460

than drift, used genomic control to correct for population stratification by calculating an inflation factor461

λ and recalculating p-values based on the distribution of χ2/λ (Devlin and Roeder, 1999). To focus our462

discussion on the genes with the strongest evidence for divergence, we sorted all models by GC-corrected463

P -value and identified the top 500 unique genes (corresponding to 1236 models), which corresponded to464

those with at least one model with a GC-corrected P < 3.46 × 10−3 and FDR=0.586.465

Gene set enrichment among diverged genes466

To conduct functional enrichment analyses on the top 500 most diverged genes, we tested for GO anno-467

tation over-representation using WebGestalt with default parameters (Liao et al., 2019) Specifically, we468

compared the biological process GO terms among the 500 most diverged genes versus all genes with a469

model in at least one tissue. We also tested for enrichment of several other gene sets of interest: 1) genes470

whose expression in particular tissues is under stabilizing selection across 17 mammalian species (Chen471

et al., 2018); genes that are intolerant to loss-of-function variants in their protein products (called if472
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the upper bound of the 95% confidence interval of the observed/expected ratio is lower than 0.35) (Lek473

et al., 2016); 3) housekeeping genes that show consistent expression across tissues (Eisenberg and Lev-474

anon, 2013); and 4) a set genes encoding virus interacting proteins (Enard et al., 2016). We calculated475

an odds ratio for each, and used a Fisher’s exact test to determine significance. For the genes under476

stabilizing selection on gene expression, we considered only those tested in that study before calculating477

statistics.478

Skin pigmentation time series data and analysis479

We obtained ancient human genome data from the Allen Ancient DNA Resource (v44.3; accessed Febru-480

ary 8, 2021). We filtered for individual human samples from Europe (west of 59◦ East), and in the case481

of duplicate individuals chose the sample with the highest average coverage. We filled in missing dosages482

using the mean dosage across the other samples. This resulted in 2999 ancient Europeans, to which we483

added 503 European samples from the 1000 Genomes Project (The 1000 Genomes Project Consortium,484

2015) to construct a time series ranging from 38,052 yBP to present (31 samples were older than 15,000485

yBP).486

To identify genes which showed a systematic change in regulation over time, we obtained predicted487

regulation values for each gene in each individual using the melanocyte PrediXcan models. We then re-488

gressed the predicted regulation on the date of the sample using a linear regression framework, including489

the first 10 principle components to correct for ancestry. We further controlled for population strati-490

fication using genomic control (Devlin and Roeder, 1999), and identified the skin pigmentation genes491

for which the effect size of date was significant (corrected P < 0.05). We additionally compared the492

predicted regulation of TYR in all 2504 individuals from the 1000 Genomes Project (The 1000 Genomes493

Project Consortium, 2015), separated by continental ancestry.494

Data and Code Availability495

All data and scripts are available on Github at https://github.com/colbrall/ancient human predixcan496

and https://github.com/colbrall/skin pigmentation regulation497
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White, L., Romagné, F., Müller, E., Erlebach, E., Weihmann, A., Parra, G., Andrés, A. M., and703

Castellano, S. 2015. Genetic Adaptation to Levels of Dietary Selenium in Recent Human History.704

Molecular Biology and Evolution, 32(6): 1507–1518.705

17

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.05.451164doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.451164
http://creativecommons.org/licenses/by-nc-nd/4.0/


Wilde, S., Timpson, A., Kirsanow, K., Kaiser, E., Kayser, M., Unterländer, M., Hollfelder, N., Potekhina,706

I. D., Schier, W., Thomas, M. G., and Burger, J. 2014. Direct evidence for positive selection of skin,707

hair, and eye pigmentation in Europeans during the last 5,000 y. Proceedings of the National Academy708

of Sciences, page 201316513.709

Ye, K., Gao, F., Wang, D., Bar-Yosef, O., and Keinan, A. 2017. Dietary adaptation of FADS genes in710

Europe varied across time and geography. Nature Ecology & Evolution, 1(7): 167.711

Zhang, T., Choi, J., Kovacs, M., Shi, J., Xu, M., Goldstein, A., Iles, M., Duffy, D., MacGregor, S.,712

Amundadottir, L., Law, M., Loftus, S., Pavan, W., and Brown, K. 2017. Cell-type specific eQTL713

of primary melanocytes facilitates identification of melanoma susceptibility genes. Cell-type-specific714

eQTL of primary melanocytes facilitates identification of melanoma susceptibility genes, page 231423.715

Zheng, W.-S., He, Y.-X., Cui, C.-Y., Ouzhu, L., Deji, Q., Peng, Y., Bai, C.-J., Duoji, Z., Gongga, L.,716

Bian, B., Baima, K., Pan, Y.-Y., Qu, L., Kang, M., Ciren, Y., Baima, Y., Guo, W., Yang, L., Zhang,717

H., Zhang, X.-M., Guo, Y.-B., Xu, S.-H., Chen, H., Zhao, S.-G., Cai, Y., Liu, S.-M., Wu, T.-Y., Qi,718

X.-B., and Su, B. 2017. EP300 contributes to high-altitude adaptation in Tibetans by regulating nitric719

oxide production. Zoological research, 38(3): 163–170.720

Zhou, D., Jiang, Y., Zhong, X., Cox, N. J., Liu, C., and Gamazon, E. R. 2020. A unified framework for721

joint-tissue transcriptome-wide association and Mendelian randomization analysis. Nature genetics.722

Zhu, H. and Zhou, X. 2020. Transcriptome-wide association studies: a view from Mendelian randomiza-723

tion. Quantitative Biology .724

18

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.05.451164doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.451164
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B

PrediXcan Framework: Gene regulation models

Expr(genei) = w1V1
+ w2V2 + .... + wNVN

genei

V1 j n

Gene Regulatory Region

2V V V

TRAIN PREDICT
Genotypes

Tissue-specific
RNA-seq

Genotypes+

Variant used by modelsVariant in training setw: weight
V: variant

masked
variantX

+

Predicted
Regulation

gene
Full Set:

1240k Set:

Predicted Expr(gene) = w2V2

top600k Set:
Predicted Expr(gene) = N/A (no model)

Predicted Expr(gene) = w1V1 + w2V2 + w3V3

V1 V2 V3

Only variants in genotypes can be included in models.

Simulation 1
gene

Full 1kG Genome:

Downsampled 1kG genome:

gene

gene

1240k Variants:

Downsampled 1kG genome:

gene

gene

top600k Variants:

X XXX

X X X X X X
Missing variants will change what the model predicts.

Simulation 2

C

0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
e
n
si

ty

Rho (aDNA-matched vs Full)

Ovary

Skeletal Muscle
Whole Blood

Liver

R
h
o

(v
s.

 F
u
ll 

m
o
d

e
ls

, 
A

ll 
S

N
P
s)

Full
1240k

Models:
SNPs:

1240k
All

1240k
top600k

top600k
All

top600k
top500k

Figure 1: Gene regulatory prediction models can be trained for application to low-coverage
ancient DNA. (a) Schematic of the framework for training and testing PrediXcan models. PrediXcan
consists of statistical models for imputing genetic regulation of gene expression that are trained on genetic
variants and normalized transcriptomes from diverse tissues collected as part of the GTEx Project. For
each gene, PrediXcan considers genetic variants within 1 Mb of the gene (grey box) and uses elastic
net regression to learn a combination of variants and weights to predict variance in its expression across
individuals. Variants included in the final model are illustrated by red vertical lines. (b) To evaluate the
potential for gene regulatory prediction using aDNA, we performed several analyses. First, we evaluated
the effects of using three different variants for model training: Full (all common variants in GTEx), 1240k
(all variants in the aDNA 1240k capture set), and top600k (the 600k most representative variants from
the 1240k capture set; see Methods). We also simulated the presence of missing data in the prediction
phase by masking variants from genomes from the 1000 Genomes project such that only variants from
each of the 3 sets (Full, 1240k, top600k) were available for use in prediction. (c) Distribution of Spearman
ρ between predictions per individual in four tissues (Skeletal Muscle, Whole Blood, Liver, Ovary) when
considering the complete genome vs. 1240k-matched simulated ancient genomes. (d) Spearman ρ between
predictions from a range of targeted models on down-sampled genomes to the Full PrediXcan models
applied to all variants available for 1kG individuals. Models were trained on different variant subsets
(x-axis, top row: All, 1240k, top600k) and applied to complete or downsampled 1kG genomes (x-axis,
bottom row: All, 1240k, top600k). There is one point per individual sample.
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Figure 2: Attributes of ancient humans considered in this study. (a) Distribution of the number
of variants with genotype call in the aDNA samples. The maximum is 1,233,013, the number of SNPs
on the 1240k genotyping chip. We analyzed individuals in the 3rd quartile or above (red line, 771,029
SNPs). (b) Distribution of the age of 490 Eurasian samples analyzed in years before present (yBP). (c)
We assigned ancient Eurasians with sufficient genetic data to three lifestyles: Green = agriculturalist,
Blue = pastoralist, Yellow = hunter-gatherer.
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Figure 3: Immune and metabolic genes are among the most diverged between ancient
lifestyle groups. (a) QQ plot for all gene regulation models in all tissues. Observed P -values are
calculated after GC correction. The 500 most divergently regulated genes have at least 1 model above
the red line. Inset: Predicted Regulation of GPR84 in Adrenal Gland. (b) The most-enriched Gene
Ontology (GO) terms among the 500 most diverged genes. Point size scales with number of diverged
genes in each category (range 3-24).
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Figure 4: Ancient humans from different lifestyles had significant differences in regulation
of key diet genes (a) FADS1 shows divergence in predicted regulation in Subcutaneous Adipose tissue
between lifestyles (Kruskal-Wallis P = 5.7×10−24), as well as in eight other tissues. (b) LEPR regulation
in Cerebellum is divergent across lifestyles (Kruskal-Wallis P = 3.6 × 10−17). Plotted with 503 present-
day Europeans for comparison. Purple = Present-day Europeans, Green = agriculturalists, Blue =
pastoralists, Yellow = hunter-gatherers.
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Figure 5: Most skin pigmentation genes show little change in regulation in the last 38,000
years in Europeans (a) QQ plot with P -values from linear regressions of date vs. predicted regulation
for all modeled genes in melanocytes (Methods). The 17 skin pigmentation are highlighted in blue. (b)
Predicted regulation of TYR increases over time in Europeans. The red line shows a regression calculated
over all individuals, and the black regression line was calculated only over individuals <15,000 yBP. (c)
TYR predicted regulation in present-day 1kG populations, separated by continent of ancestry. (d) TYR
predicted regulation in ancient Eurasians, split by lifestyle. Green = agriculturalists, Blue = pastoralists,
Yellow = hunter-gatherers.
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Supplementary Materials725

Evaluating the robustness of gene regulation prediction models to missing726

data727

There are several challenges involved in adapting PrediXcan to be applied to ancient DNA. First, ancient728

individuals may be genetically diverged from the populations used to train the prediction models. Recent729

evaluations of the portability of these models across modern human populations have shown that while730

their accuracy decreases when applied across human populations, most models maintain substantial731

predictive ability that enables the discovery of meaningful biological associationsOkoro et al. (2021);732

Petty et al. (2019). We have also demonstrated that this approach can be applied to archaic hominin733

genomesColbran et al. (2019). The ancient Eurasian individuals we analyze here are less genetically734

diverged from the training population than modern African-ancestry individuals or archaic hominins. In735

addition, we stress that these models do not aim to predict gene expression itself, but rather to quantify736

the common variant mediated component of gene regulation, and thus, they provide an means to detect737

shifts in regulatory architecture.738

Second, available aDNA data varies in coverage, depth, and quality. This creates a trade-off between739

number of individuals available for analysis and the quality of their genotyping. In addition, many other740

potential applications of PrediXcan involve populations that differ from the training populations. In741

these situations, even if the populations are of similar ancestry, all the variants the models use to predict742

gene expression may not be assayed in the population of interest. Therefore it is of great interest to743

understand how PrediXcan behaves under these conditions with varying levels of missing variant data,744

and develop ways to optimize its performance in such cases.745

To better understand and quantify these patterns, we first trained PrediXcan models on expression746

data and all available variants in GTEx v8 (“Full models”). We then applied these prediction models747

to all variants and downsampled sets of variants from individuals with whole-genome sequencing from748

the 1000 Genomes Project (1kG)The 1000 Genomes Project Consortium (2015). This enabled us to749

evaluate how predictions change with missing variant data. We selected nine thresholds for percentage750

of missing SNPs (5%-45% missing) and downsampled 20 random European individuals per threshold751

(Supplementary Fig. 1A). The agreement between the predictions on downsampled genomes and full752

genomes was strongly correlated with the percentage of SNPs missing (Supplementary Fig. 2B). However,753

Spearman correlations were above 0.75 for all comparisons, even when genomes were missing as many as754

45% of their SNPs. This suggests that model accuracy can be maintained even at relatively high rates755

of missingness, likely due to LD between variants.756

While this is encouraging, missing SNPs may not be randomly distributed throughout the genome in757

some applications. To evaluate how biases in missingness across the genome could affect these results,758

we repeated the comparison described above. However, instead of randomly downsampling SNPs, we759

matched the patterns of missingness to the dataset (Fig. 1B) of particular interest to us: 3383 aDNA760

samples, with widely varying numbers of missing SNPs (Supplementary Fig. 2C). Overall, the correla-761

tions were much lower (median Spearman ρ=0.39; Fig. 1B). This is unsurprising given that the aDNA762

samples were obtained using targeted capture, while the model training data was based on whole genome763

sequencing. At most, the aDNA samples had 714,959 SNPs, while the training data had over 5 million764

(i.e. 87% missing). This indicates that, while models can tolerate a fair amount of missing data, the765

missingness caused by a mismatch between genotyped SNPs and training SNPs is likely to substantially766

decrease prediction accuracy.767

We next evaluated whether imputation performance could be improved in our aDNA application by768

customizing the training data to contain only variants that will be available in the application data. This769
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step ensures that any variants used that are not assayed in the application data are not used in model770

training. Thus, we retrained PrediXcan models using GTEx v8, but only considered the SNPs present771

in the 1240k capture set that is commonly used in aDNA studies (“1240k set”; Supplementary Fig. 1B).772

This resulted in 714,959 variants for model training (the number that were successfully lifted over to773

the hg38 genome build), as opposed to the 5,310,489 variants available for the full models based on774

whole genomes. Because most of the genotyped aDNA samples tend to be low-coverage (Supplementary775

Fig. 2C), we also tested the use-case where we chose the SNPs in the dataset most likely to provide776

information. To do this, we ranked SNPs by the number of samples in the 3383 ancient samples used777

above with genotype calls, and weighted that count by the overall coverage of those samples. We then778

chose the 600,000 SNPs with the best ranking (“top600k set”), thereby prioritizing SNPs that were779

frequently present in the best-quality samples.780

Training models on fewer SNPs resulted in a small decrease in the variance explained in gene expres-781

sion for some genes (Fig. 3), and fewer significant models were constructed in each tissue (7184, 6587,782

and 5196 significant models for Full, 1240k, and top600k respectively in Whole Blood). This also resulted783

in inconsistent predictions when models were applied to the same individuals (Fig. 4). This behaviour784

is caused by the decrease in available SNPs for modelling, which is reflected in the smaller models built785

in the 1240k and top600k sets (Fig. 5A,C). While many genes continued to be successfully modelled by786

the targeted models, restricting to fewer SNPs resulted in a loss of genes for which the Full models had787

a lower r2.788

While these results demonstrate that using more SNPs during training results in more numerous789

and accurate models, this does not take into account the presence of missing data in the genomes that790

will be used for predictions. Therefore the outstanding question is whether model performance is more791

consistent when trained on fewer SNPs without a large missing data percentage, or if it is better to792

include more SNPs during training, but allow more missing data during application. To answer this, we793

applied our targeted models described above to 1kG genomes downsampled to match the various sets of794

SNPs used during model training and compared their agreement with the full models applied to the full795

genomes. For the top600k models, we further downsampled the application set to 500k SNPs using the796

same methodology.797

In line with our initial findings, we found that all models lost consistency when applied to genomes798

with missing SNPs (Fig. 1C). The 1240k models maintained the highest agreement with the Full mod-799

els when applied to incomplete data (median ρ=0.78, vs 0.58 and 0.41 for Full and top600k models,800

respectively), though they also had a larger variance in agreement. The Full models likely did worse801

because there was a much larger drop in the number of SNPs available compared to training, while802

the top600k models’ reliance on fewer SNPs may have increased their susceptibility to missing SNPs.803

This suggests that a balance between targeting model training for the dataset in question and allowing804

some missingness is the best course of action. For analyses presented in this paper, we therefore applied805

models targeted to the 1240k variant set to ancient individuals with relatively high coverage (above the806

3rd quartile among all samples available).807

Supplementary Figures808
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Full 1kG Genome:

Random 1
(25% missing):

Random 2
(25% missing):

X X

X X

Random Simulations:

Matched Sample:

Ancient Sample:

X X X X

Matched Simulations:

Matched Sample:

Ancient Sample:

X X X X

Full 1kG Genome:

Variant used by modelsVariant in set
w: weight
V: variant

Figure 1: Schematic of process for generating random and matched simulated genomes.
Starting from a complete genome from 1kG, for the random simulations we mask a random number
of variants corresponding to the specified missing percentage. For the matched simulations, we pair a
complete modern genome and an ancient genome, and mask any variants in the modern genome that
are not present in the ancient one. (b) Schematic of creating targeted variants sets to train PrediXcan
models.
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Figure 2: Missing variants affect PrediXcan performance. (a) The Spearman ρ between pre-
dictions in four tissues calculated for the complete genome vs. random simulations decreases as the
percentage of missing variants increases, but remains high even with 45% of variants masked. (c) Dis-
tribution of the proportion of missing variants in the aDNA data compared to all variants included in
1kG.
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Figure 3: Models trained on fewer SNPs explain less variance in gene expression. Scatterplots
of training r2 for (a) 1240k models and (b) top600k models vs. Full models in Whole Blood. Other
tissues tested matched trends. r2 is calculated over observed vs. predicted expression.
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Figure 4: Targeted models predict consistent gene regulatory patterns. (a) Pearson r by model
between Full model 1kG predictions and (a) 1240k and (b) top600k models for all genes in 4 tissues-
Liver, Ovary, Whole Blood, Skeletal Muscle. Pearson correlation calculated for each model between
predictions made on all 1kG individuals using Full models vs. 1240k or top600k models.

Gene Set N Modeled N in top 500 OR [95% CI] Fisher’s Exact P

Stabilizing Selection 4519 167 0.99 [0.53, 2.05] 1.0

Housekeeping 3127 130 1.33 [1.08, 1.64] 0.0076

LoF-Intolerant 2195 67 0.891 [0.675, 1.16] 0.42

Virus Interacting 1022 37 1.0 [0.75, 1.53] 0.21

Table 1: Enrichment for four gene sets of interest in the 500 most diverged genes. The odds
ratio was calculated as the odds of a gene’s presence in the category given it is in the top 500 divergently
regulated genes. The analysis only includes genes that were both considered for inclusion in the set
and had at least one PrediXcan model. For example, genes not tested for stabilizing selection on gene
expression were not considered.
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Figure 5: Targeted models use fewer SNPs and and succeed in modelling fewer genes.
(a) Number of SNPs in each set of models for Whole Blood. (b) r2 between predicted and observed
expression for each model in Whole Blood. By definition, significant models had to have r2 > 0.01
and have a within-tissue FDR < 0.05. (c) Number of SNPs and (d) r2 in models shared (identified as
significant) in both the Full set and either the 1240k or top600k Set (metrics plotted are those from the
Full set). Full set replotted on all plots for comparison. Other tissues tested showed similar trends.
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Figure 6: Thousands of genes are divergently regulated between lifestyle groups.
(A) Distribution of the number of tissues in which each gene (N = 5760) is signifi-
cantly different between groups. (B) The proportion of significant models out of all
models in a tissue. Tissues are in alphabetical order: Adipose Subcutaneous, Adi-
pose Visceral Omentum, Adrenal Gland, Artery Aorta, Artery Coronary, Artery Tibial,
Brain Amygdala, Brain Anterior cingulate cortex, Brain Caudate basal ganglia,
Brain Cerebellar Hemisphere, Brain Cerebellum, Brain Cortex, Brain Frontal Cortex,
Brain Hippocampus, Brain Hypothalamus, Brain Nucleus accumbens basal ganglia,
Brain Putamen basal ganglia, Brain Spinal cord cervical c-1, Brain Substantia nigra,
Breast Mammary Tissue, Cells Cultured fibroblasts, Cells EBV-transformed lymphocytes,
Colon Sigmoid, Colon Transverse, Esophagus Gastroesophageal Junction, Esophagus Mucosa,
Esophagus Muscularis, Heart Atrial Appendage, Heart Left Ventricle, Kidney Cortex, Liver,
Lung, Minor Salivary Gland, Muscle Skeletal, Nerve Tibial, Ovary, Pancreas, Pituitary, Prostate,
Skin Not Sun Exposed Suprapubic, Skin Sun Exposed Lower leg, Small Intestine Terminal Ileum,
Spleen, Stomach, Testis, Thyroid, Uterus, Vagina, Whole Blood.
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Figure 7: FADS1 model variants tag a selected haplotype. (a) 27 ancient Africans follow a similar
trend in expression differences to that seen in ancient Eurasian populations. (b) Breakdown of the 8
SNPs in the model of FADS1 in Adipose Subcutaneous tissue and their presence in representative ancient
Eurasians across a range of predicted normalized expression values. Cells are coloured by the weight
that SNP contributed to the prediction, while the circles indicate the alleles present in that individual
(filled = homozygous effect, empty = homozygous reference). A grey square indicates the SNP was
ungenotyped in that individual. The vast majority of ancient samples appear homozygous due to being
extremely low-coverage, such that many sites are represented by only a single read.
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Figure 8: Divergently regulated genes include (A) GPX1 in Transverse Colon and (B) SLC22A5 in
Sigmoid Colon. Plotted with 503 modern Europeans for comparison in purple. Green = Agriculturalists,
Blue = Pastoralists, Yellow = Hunter-Gatherers.

Tissue Agri. Past. HG Corrected P

Adipose Subcutaneous** –0.183 –0.259 –0.480 8.28 × 10−6

Adipose Visceral Omentum –0.132 –0.158 –0.158 0.0554

Brain Cerebellar Hemisphere** –0.882 –1.228 –1.422 1.11 × 10−4

Brain Cerebellum** –0.887 –1.184 –1.716 5.76 × 10−5

Brain Frontal Cortex** –0.391 –0.602 –0.690 2.59 × 10−9

Brain Putamen basal ganglia –0.360 –0.469 –0.530 0.0596

Cells Cultured fibroblasts –0.712 –0.768 –1.024 0.0168

Colon Sigmoid** –0.360 –0.456 –0.859 2.69 × 10−5

Esophagus Gastroesophageal Junction** –0.378 –0.426 –0.579 3.06 × 10−5

Esophagus Mucosa –0.620 –0.769 –0.836 9.2 × 10−3

Esophagus Muscularis –0.319 –0.409 –0.506 0.117

Heart Atrial Appendage –0.225 –0.281 –0.382 0.016

Heart Left Ventricle** –0.169 –0.330 –0.924 2.53 × 10−6

Lung** –0.106 –0.154 –0.237 4.2 × 10−6

Muscle Skeletal** –0.410 –0.674 –0.787 9.77 × 10−7

Nerve Tibial –0.560 –0.748 –0.868 0.0135

Pancreas** –0.452 –0.882 –1.414 1.6 × 10−4

Stomach** –0.401 –0.641 –0.872 1.97 × 10−6

Testis** –0.610 –0.774 –0.862 1.46 × 10−3

Thyroid** –0.295 –0.483 –0.649 2.7 × 10−5

Whole Blood 0.0914 0.108 0.132 0.0759

Table 2: FADS1 models with divergent regulation by lifestyle. Median predicted regulation for
each groupP -value is calculated from Kruskal-Wallis test, after GC-correction. FADS1 was modeled in
an additional 9 tissues. **model P -value is below that corresponding to the top 500 unique genes.
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Model SNP rsID Weight Haplotype Tag SNP r2

rs2072114 –0.111 B rs174546 0.340

rs2072114 –0.111 C rs102274 0.329

rs2072114 –0.111 D rs174576 0.421

rs174549 –0.0914 B rs174546 0.918

rs174549 –0.0914 C rs102274 0.892

rs174549 –0.0914 D rs174576 0.673

rs174556 –0.0380 B rs174546 0.914

rs174556 –0.0380 C rs102274 0.889

rs174556 –0.0380 D rs174576 0.675

Table 3: FADS1 model SNPs LD with established haplotype. The 3 highest-weight SNPs from
Subcutaneous Adipose. Haplotype labels correspond to those in Mathieson & Mathieson (2018)Math-
ieson and Mathieson (2018).
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Gene Tissue Agri. Past. HG P

HFE Brain Nucleus accumbens basal ganglia -0.538 -0.426 -0.280 0.0523

TRIP4 Brain Cerebellar Hemisphere -0.030 -0.067 -0.203 0.0458
Brain Frontal Cortex -0.046 -0.053 -0.098 0.0868

Skin Not Sun Exposed Suprapubic -0.537 -0.621 -0.684 0.054

FADS2 Breast Mammary Tissue -0.046 0.020 0.087 0.0332
Esophagus Muscularis 0.255 0.416 0.454 0.0714

Pancreas 0.155 0.204 0.011 0.0187
Skin Not Sun Exposed Suprapubic 0.239 0.266 0.266 0.0433

Testis** 0.414 0.457 0.459 2.49e-3

SLC22A4 Cells Cultured fibroblasts 0.304 0.360 0.304 0.0656
Thyroid -0.037 -0.036 -0.141 0.0329

SLC22A5 Adipose Subcutaneous** 0.253 0.253 0.315 1.94e-3
Adipose Visceral Omentum 0.054 0.054 0.054 0.0232

Artery Tibial 0.602 0.736 0.746 0.0337
Cells Cultured fibroblasts** 0.644 0.705 0.832 0.0019

Cells EBV-transformed lymphocytes 0.182 0.326 0.366 0.00352
Colon Sigmoid** 0.113 0.230 0.348 0.00324

Esophagus Gastroesophageal Junction -0.139 -0.039 0.174 0.00498
Esophagus Muscularis 0.180 0.255 0.421 0.00413
Minor Salivary Gland 0.228 0.253 0.262 0.0935

Nerve Tibial 0.655 0.688 0.781 0.0307
Pancreas -0.099 -0.074 0.024 0.0112
Thyroid 0.320 0.385 0.398 0.0368

Whole Blood 0.781 0.910 1.043 0.0115

DI2 Nerve Tibial -0.239 -0.312 -0.389 0.0644

AS3MT Adipose Visceral Omentum -0.143 -0.097 -0.495 0.0738
Brain Hypothalamus -0.328 -0.206 -0.688 0.0923

Heart Atrial Appendage -0.243 -0.046 -0.449 0.0769

GPX1 Adrenal Gland -0.469 -0.529 -0.835 0.0105
Cells Cultured fibroblasts -0.691 -0.625 -1.115 0.0199

Colon Transverse** -0.597 -0.597 -1.016 0.00271
Esophagus Mucosa -0.372 -0.374 -0.663 4.8e-3

Prostate -0.317 -0.317 -0.572 0.00541
Skin Not Sun Exposed Suprapubic -0.379 -0.432 -0.712 0.00429

Skin Sun Exposed Lower leg -0.475 -0.444 -0.741 0.00913
Small Intestine Terminal Ileum 0.054 0.054 -0.100 0.0573

Thyroid -0.705 -0.774 -0.836 0.0335

Table 4: Dietary gene models with divergent regulation by lifestyle. Median predicted regulation
for each group. P -value is calculated from Kruskal-Wallis test, after GC-correction. FADS1 models in
Table 2 also belong in this table, but are not reprinted to avoid redundancy. **model P -value is below
that corresponding to the top 500 unique genes.
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Tissue Agri. Past. HG Corrected P

Adipose Subcutaneous –0.504 –0.374 –0.325 0.0151

Adipose Visceral Omentum** –0.251 –0.0661 –0.0555 6.61 × 10−4

Brain Cerebellar Hemisphere** 0.00454 0.199 0.317 4.68 × 10−4

Brain Cerebellum** –0.191 0.0699 0.0395 2.54 × 10−4

Esophagus Gastroesophageal Junction** –0.0109 0.0443 0.174 1.92 × 10−3

Heart Atrial Appendage** –0.136 –0.0663 –0.0537 4.48 × 10−4

Testis** –0.246 –0.0970 –0.0659 4.8 × 10−5

Whole Blood 0.0559 0.211 0.178 0.0725

Table 5: LEPR models with divergent regulation by lifestyle. Median predicted regulation for
each groupP -value is calculated from Kruskal-Wallis test, after GC-correction. LEPR was modeled in
an additional 11 tissues. **model P -value is below that corresponding to the top 500 unique genes.

GO term Num. Genes Enrichment P

platelet morphogenesis 3 5.04 0.020

response to mitochondrial depolarisation 3 5.04 0.020

protein hydroxylation 4 4.40 0.012

peptidyl-proline modification 6 4.18 0.0028

oligosaccharide metabolic process 5 3.86 0.0089

response to interleukin-4 4 3.69 0.022

ruffle organization 5 3.25 0.018

response to antineoplastic agent 8 2.97 0.0053

DNA-templated transcription, elongation 8 2.72 0.0090

cytokine metabolic process 7 2.60 0.018

type I interferon production 8 2.51 0.014

regulation of mitochondrion organization 12 2.32 0.0057

antigen processing and presentation 11 2.30 0.0086

regulation of inflammatory response 22 2.10 8.6e-4

carbohydrate derivative catabolic process 11 2.07 0.018

cellular modified amino acid metabolic process 12 2.07 0.014

positive regulation of response to external stimulus 16 1.93 0.0092

glycoprotein metabolic process 20 1.83 0.0070

positive regulation of cytokine production 20 1.72 0.012

negative regulation of intracellular signal transduction 24 1.63 0.013

Table 6: Top 20 enriched GO terms among the 500 genes most diverged between lifestyles.
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AllentoftNature2015 14 0 59 10.1038/nature14507

AmorimNatureCommunications2018 0 0 63 10.1038/s41467-018-06024-4

AntonioGaoMootsScience2019 69 0 131 10.1126/science.aay6826

BraceDiekmannNatureEcologyEvolution2019 10 0 22 10.1038/s41559-019-0871-9

BroushakiScience2016 3 0 0 10.1126/science.aaf7943

BrunelPNAS2020 0 0 58 10.1073/pnas.1918034117

CassidyNature2020 0 0 44 10.1038/s41586-020-2378-6

CassidyPNAS2016 2 0 4 10.1073/pnas.1518445113

DamgaardNature2018 27 0 27 10.1038/s41586-018-0094-2

DamgaardScience2018 18 0 1 10.1126/science.aar7711

EbenesersdottirScience2018 0 0 27 10.1126/science.aar2625

FeldmanNatureCommunications2019 2 0 0 10.1126/sciadv.aax0061

FernandesNatureEcologyEvolution2020 0 0 62 10.1038/s41559-020-1102-0

FernandesScientificReports2018 7 0 17 10.1038/s41598-018-33067-w

FernandesSirakNature2020 0 0 2 0.1038/s41586-020-03053-2

FlegontovNature2019 2 0 19 10.1038/s41586-019-1251-y

FregelPNAS2018 0 0 4 10.1073/pnas.1800851115

FuNature2014 1 0 0 10.0.4.14/nature13810

FuNature2015 0 0 1 10.1038/nature14558

FuNature2016 4 0 34 10.1038/nature17993

FurtwanglerNatureCommunications2020 0 0 96 10.1038/s41467-020-15560-x

GambaNatureCommunications2014 4 0 3 10.1038/ncomms6257

GonzalesFortesCurrentBiology2017 2 0 6 10.1016/j.cub.2017.05.023

GonzalesFortesProcRoyalSocB2019 0 0 4 10.1098/rspb.2018.2288

GuntherPLoSBiology2018 4 0 7 10.1371/journal.pbio.2003703

GuntherPNAS2015 3 0 5 10.1073/pnas.1509851112

HaberAJHG2017 3 0 0 10.1016/j.ajhg.2017.06.013

HofmanovaPNAS2016 4 0 3 10.1073/pnas.1523951113

JarveCurrentBiology2019 0 0 258 10.1016/j.cub.2019.06.019

JeongNatureEcologyEvolution2019 1 0 0 10.1038/s41559-019-0878-2

JeongPNAS2018 3 0 0 10.1073/pnas.1813608115

JonesCurrentBiology2017 1 0 3 10.1016/j.cub.2016.12.060

JonesNatureCommunications2015 3 0 1 10.1038/ncomms9912

KellerNatureCommunications2012 0 0 1 10.1038/ncomms1701

KilincCurrentBiology2016 1 0 0 10.1016/j.cub.2016.07.057

KrzewinskaCurrentBiology2018 6 0 23 10.1016/j.cub.2018.06.053

KrzewinskaScienceAdvances2018 3 0 35 10.1126/sciadv.aat4457

LamnidisNatureCommunications2018 0 0 15 10.1038/s41467-018-07483-5

LazaridisNature2014 3 0 2 10.1038/nature13673
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LazaridisNature2016 8 0 0 10.1038/nature19310

LazaridisNature2017 3 0 16 10.1038/nature23310

LinderholmNatureScientificReports2020 0 0 19 10.1038/s41598-020-63138-w

LipsonNature2017 16 0 135 10.1038/nature24476

LipsonNature2020 0 6 0 10.1038/s41586-020-1929-1

MalmstromProcBiolSci2019 3 0 11 10.1098/rspb.2019.1528

MarcusNatureCommunications2020 0 0 70 10.1038/s41467-020-14523-6

MargaryanWillerslevNature2020 0 0 414 10.1038/s41586-020-2688-8

MartinianoNatureCommunications2016 5 0 9 http://10.0.4.14/ncomms10326

MartinianoPLoSGenetics2017 0 0 14 10.1371/journal.pgen.1006852

MathiesonNature2015 44 0 67 10.1038/nature16152

MathiesonNature2018 52 0 219 10.1101/135616

McCollScience2018 1 0 0 10.1126/science.aat3628

MittnikNatureCommunications2018 6 0 37 10.1038/s41467-018-02825-9

MittnikScience2019 2 0 89 10.1126/science.aax6219

NarasimhanPattersonScience2019 69 0 29 10.1126/science.aat7487

NikitinScientificReports2019 0 0 2 10.1038/s41598-019-56029-2

OlaldeNature2014 1 0 0 10.0.4.14/nature12960

OlaldeMBE2015 0 0 1 10.1093/molbev/msv181

OlaldeNature2018 43 0 388 10.1038/nature25738

OlaldeScience2019 4 0 275 10.1126/science.aav4040

PrendergastLipsonSawchukScience2019 0 10 0 10.1126/science.aaw6275

Pruefer2017 2 0 0 10.1126/science.aao1887

RivollatScienceAdvance2020 0 0 101 10.1126/sciadv.aaz5344

SaagCurrentBiology2017 2 0 7 10.1016/j.cub.2017.06.022

SaagCurrentBiology2019 0 0 43 10.1016/j.cub.2019.04.026

SanchezQuintoPNAS2019 6 0 23 10.1073/pnas.1818037116

SchiffelsNatureCommunications 7 0 10 10.1038/ncomms10408

SchlebuschScience2017 0 4 0 10.1126/science.aao6266

SchroederPNAS2019 0 0 24 10.1073/pnas.1820210116

Seguin-OrlandoScience2014 1 0 0 10.1126/science.aaa0114

SikoraNature2019 5 0 9 10.1038/s41586-019-1279-z

SikoraScience2017 5 0 5 10.1126/science.aao1807

SkoglundScience2014 1 0 11 10.1126/science.1253448

SkoglundCell2017 0 3 0 10.1016/j.cell.2017.08.049

SullivanScienceAdvances2018 0 0 8 10.1126/sciadv.aao1262

TeschlerNicolaCommunicationsBiology2020 0 0 2 10.1038/s42003-020-01372-8

UnterlanderNatureCommunications2017 2 0 2 10.1038/ncomms14615

ValdioseraPNAS2018 3 0 11 10.1073/pnas.1717762115

vandeLoosdrechtScience2018 0 4 0 10.1126/science.aar8380

33

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.05.451164doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.451164
http://creativecommons.org/licenses/by-nc-nd/4.0/


Publication Eur. LS Afr. LS Skin Pig. DOI

VeeramahPNAS2018 0 0 40 10.1073/pnas.1719880115

VillalbaMoucoCurrentBiology2019 1 0 10 10.1016/j.cub.2019.02.006

WangNatureCommunications2019 3 0 47 10.1038/s41467-018-08220-8

ZallouaScientificReports2018 0 0 1 10.1038/s41598-018-35667-y

Table 7: Original publications for samples used in each analysis. Publications are identified by First
author name, year, and journal, with the doi provided. Also given are the number of samples from that
publication used in each analysis (Eurasian Lifestyle, African FADS1 Lifestyle, Skin Pigmentation). Specific
samples used can be found in Supplemental File S1
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