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Abstract 
 

Predictive modeling studies have started to reveal brain measures underlying cognition; however, 
most studies are based on cross-sectional data (static ‘final’ brain measures acquired at one time 
point). Since brain development comprises of continuously ongoing events leading to cognitive 
development, predictive modeling studies need to consider ‘dynamic’ as opposed to static ‘final’ 
brain measures. Using longitudinal neuroimaging and cognitive data (global executive composite 
score, an index of executive function) from 82 individuals (aged 5-14 years, scanned 3 times), 
we built highly accurate prediction models (r=0.61, p=1.6e-09) of future cognition (assessed at 
visit 3) based on baseline developmental changes in cortical anatomy (from visit 1 to 2). More 
importantly, dynamic brain measures (change in cortical anatomy from visit 1 to 2) and not static 
brain measures (cortical anatomy at visit 1 and 2) were critical for predicting future cognition, 
suggesting the need for considering dynamic brain measures in predicting cognitive outcomes. 
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Introduction 
 

Understanding the neurobiology of cognition is the central tenet of cognitive neuroscience. Much 
of the previous efforts, however, have focused primarily on group-level studies that utilized 
univariate methods with structural and functional brain measures. Broadly, these studies have 
either focused on i) finding brain measures with significant group differences between healthy 
individuals and individuals with brain disorders using statistical inferences, and ii) determining 
relation between brain measures and behavior using correlational analysis. Although group-level 
studies provided important insights into the human brain, there may be considerable 
heterogeneity in brain measures and behavior within the group (1–4), information critical for 
understanding the neurobiology of cognition (5, 6). Further, univariate methods usually focus on 
finding cross-sectional associations between observed behavior and brain measures, instead of 
predicting behavior using brain measures (7). 
     Predictive modeling, on the other hand, utilizes machine-learning methods to assess 
individual variability in cognition using brain measures (5, 8–12). More specifically, predictive 
modeling has been used to achieve predictions of various cognitive measures, such as 
intelligence (13–16), attention (6), working memory (17–19), reading comprehension (20), 
inhibition control (12, 21), cognitive flexibility (12, 22, 23) and creativity (24, 25) using 
neuroimaging features of functional or structural connectivity, gray matter volume, cortical 
thickness, and fractional anisotropy.  
     Much of the predictive modeling studies so far are based on data that acquire brain measures 
and cognitive measures at the same time. Hence, the developmental time course of the 
associations remains unknown. However, the real scope of predictive modeling lies in predicting 
long-term cognitive outcomes based on baseline neuroimaging data (26, 27). A shortcoming in 
these studies is that they used static ‘final’ brain measures (read as brain measures acquired at 
one time point) to predict cognitive outcomes. Brain development is a continuously ongoing 
process leading to cognitive development. In fact, studies have shown the role of cortical 
trajectories in cognitive development (28). There is thus a need for considering trajectories as 
opposed to static ‘final’ brain measures. We therefore need to build prediction models which 
incorporate developmental changes in brain measures.  
     Thus, the aim of our study was to systematically compare the utility of static and dynamic 
brain measures in the prediction of cognitive outcome. To this end, we utilized longitudinal 
neuroimaging data, collected at 3 time points from individuals who also had concurrent measures 
of cognitive function. Specifically, in the present analyses, within-subject developmental 
changes in brain morphometry (computed as the change in cortical thickness from time point 1 to 
2) was used to build prediction models of executive function at time point 3. We chose executive 
function (EF) as our measure of cognition because EF is a vital cognitive domain which is 
adversely affected in several neurodevelopmental and psychiatric conditions (29). We 
hypothesized that incorporating within-subject developmental changes in brain measures will 
yield better predictive models of cognition compared to those with ‘static’ (read as, cross-
sectional) brain measures.   
 
 
Methods:  
Subjects: Longitudinal MRI scans were taken from the NIH MRI Study of Normal Brain 
Development (NIHPD) repository (30). The study sample was similar to our previous 
publication (31) and consisted of participants that were scanned at three separate times 
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approximately 2 years apart (n = 82, age (mean ± standard deviation) = 11.9 ± 2.9 years, 
males/females = 31/51, Figure 1). In terms of separate visits, the age of participants was 9.9 ± 
2.4 years for visit 1, 11.9 ± 2.5 years for visit 2 and 13.8 ± 2.4 years for visit 3.  
 
Cognitive measure: For cognitive measure, we used the Global executive composite (GEC) 
available with the Behavior Rating Inventory of Executive Functions (BRIEF) (32). The BRIEF 
is a well-known and well-validated measure assessing dimensions of executive function in 
children and adolescents as manifested in everyday life. The parent version of the questionnaire 
was administered. The BRIEF composes of three summary indices: Behavioral Regulation, 
Meta-cognition, and an overall score, the Global Executive Composite. T-scores are generated 
for each index. For the current analyses, we focused only on the overall index – the Global 
executive composite, henceforth referred as GEC. In terms of visits, the GEC scores ranged from 
33 to 61 (mean ± standard deviation = 45.9 ± 7.2) for visit 1, 33 to 66 (45.2 ± 7.7) for visit 2 and 
35 to 71 (46.2 ± 7.1). The scores were age-standardized, and hence did not change significantly 
between the three visits.       
 
Image pre-processing: The CIVET processing pipeline, 
(http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET) developed at the Montreal 
Neurological Institute, was used to compute cortical thickness measurements at 81,924 regions 
covering the entire cortex. A summary of the steps involved follows; the T1-weighted image is 
first non-uniformity corrected, and then linearly registered to the Talairach-like MNI152 
template (established with the ICBM152 dataset). The non-uniformity correction is then repeated 
using the template mask. The non-linear registration from the resultant volume to the MNI152 
template is then computed, and the transform used to provide priors to segment the image into 
GM, WM, and cerebrospinal fluid. Inner and outer GM surfaces are then extracted using the 
Constrained Laplacian-based Automated Segmentation with Proximities (CLASP) algorithm, 
and cortical thickness is measured in native space using the linked distance between the two 
surfaces at 81,924 vertices. Each subject’s cortical thickness map was blurred using a 30-
millimeter full width at half maximum surface-based diffusion smoothing kernel to impose a 
normal distribution on the corticometric data, and to increase the signal to noise ratio. Quality 
control (QC) of the data was performed by two independent reviewers, and only scans with 
consensus of the two reviewers were used. As a result of this process, data with motion artifacts, 
a low signal to noise ratio, artifacts due to hyperintensities from blood vessels, surface-surface 
intersections, or poor placement of the grey or white matter (GM and WM) surface for any 
reason were excluded.  
 
Univariate analysis: The association of static brain measures (cortical thickness at visit 1 and 2) 
and BRIEF scores at visit 3 was analyzed using a vertex-wise general linear model (GLM) and 
was quantified using t-statistics. Significant association was assessed with multiple comparison 
corrected p-statistics using random field theory (RFT) (33). Similar analysis was performed for 
the association of dynamic brain measures (slope of the change in cortical thickness from visit 1 
to 2) and BRIEF scores at visit 3. Age and sex were included as covariates. GLM analysis was 
performed using SurfStat (http://www.math.mcgill.ca/keith/surfstat/).  
 
Predictive model: BRIEF scores were predicted based on Random Forest regression analysis 
(34). Random (regression) forests are an ensemble supervised learning method for regression 
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that operate by constructing a multitude of regression trees at training time and outputting the 
mean prediction of the individual trees for given input. Regression trees are constructed utilizing 
bagging, random sampling (with replacement) of the training set to avoid overfitting to the 
training set. We utilized the TreeBagger implementation of Matlab (version 2019b) and set the 
number of trees in the ensemble to 1000. This number of trees provided clear convergence of the 
out-of-bag error (34, 35). Other parameters of the random forests were set to their default values 
in the TreeBagger implementation; in particular, the mtry-parameter was set to d/3, where d is 
the number of predictor variables. 
     Random forests were trained with different sets of predictor variables based on cortical 
thickness and behavioral data. However, all the predictor variables were from the time points t1 
and t2 to predict the behavior at t3. Cortical thickness was processed into slopes of cortical 
thickness as presented in Figure 2. Thereafter, we regressed out the age at t1, square of age at t1, 
gender as well as (gender × age) interaction. The so-formed residuals were z-transformed, and 
then entered into a principal component analysis. The scores of the principal components that 
explained more than 1.5% of variance were then used as cortical thickness predictors. The 
cortical thickness values at t1 and t2 went through the same processing, only the number of 
principal components was constrained to be the same (number of principal components = 14) as 
with the CT slopes.   
     We estimated the generalization error for the predictions via out-of-bag error. As explained 
more in detail in (34), for a sample (x,y), out-of-bag predictor aggregated predictions of those 
regression trees which were not trained using (x,y) due to bagging. Then, the prediction error was 
computed based on the out-of-bag predictions. These out-of-bag errors was computed at the 
training time, without the need for re-training as in cross-validation. It is to be noted that, out-of-
bag error estimates are equally or more accurate than the cross-validation or holdout error 
estimates (34–36). Moreover, as the out-of-bag prediction was done for each individual sample, 
this enabled us to use the permutation test developed in (37) to compare the regression models as 
well as to compute the mean absolute error and mean square error. 
 
 

Results: 
 

For the study, we used longitudinal MRI of 82 individuals with age (mean ± standard deviation) 
= 11.9 ± 2.9 years, males/females = 31/51, Figure 1) who were scanned at three separate times 
approximately 2 years apart, taken from the NIH MRI Study of Normal Brain Development 
(NIHPD) repository (30).  
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Figure 1. Subject-age distribution and distribution of Global executive composite with age. 
Participants were scanned at ~ 2 years apart. Global executive composite (GEC) was age standardized. 
 
1. Correlation analysis of cognition at visit 3 using static brain measures (cortical thickness at 
visit 1 and 2): We first investigated correlation analyses using GLM to study the association 
between static brain measures (cortical thickness at visit 1 and 2) and GEC BRIEF scores at visit 
3. We did not observe any significant association between GEC at visit 3 and cortical thickness 
at visit 1 (Figure 2A) and visit 2 (Figure 2B). However, trend-level association was observed 
between GEC at visit 3 and cortical thickness at visit 2 in brain regions localized in sensory-
motor cortices (Figure 2B).  
 

   
 

Figure 2. Correlation analysis of cognitive measure at visit 3 and static brain measures. T-maps of 
association between GEC at visit 3 and cortical thickness at visit 1 (image on the left) and GEC at visit 3 
and cortical thickness at visit 2 (image on the right). None of the brain regions showed significant 
association after correction for multiple comparisons using random field theory, RFT. Note, GEC = 
Global executive composite. 
 
2. Correlation analysis of cognition at visit 3 using dynamic brain measures (slope of cortical 
thickness from visit 1 to 2): We observed significant association between GEC at visit 3 and 
dynamic brain measures (slope of the change in cortical thickness from visit 1 to 2) (Figure 3A). 
A significant association (random field theory, RFT-corrected for multiple comparisons) was 
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observed at one peak localized in the left-hemispheric postcentral gyrus. At this peak, the slope 
of the change in cortical thickness was significantly associated (T = 4.57, p < 0.01) with GEC at 
visit 3 (Figure 3B).  
 

 
 

Figure 3. Correlation analysis of cognitive measure at visit 3 and dynamic brain measures. T-map of 
association between GEC at visit 3 and slope of change in cortical thickness from visit 1 to 2 is shown on 
the left side. Significant association (RFT-corrected for multiple comparisons) was observed at one peak 
localized in the left-hemispheric postcentral gyrus. At this peak, the scatter plot for slope of change in 
cortical thickness vs GEC at visit 3 was plotted showing significant association (T = 4.57, p < 0.01). Note, 
GEC = Global executive composite, RFT = random field theory. 
 
 
3. Prediction of cognition at visit 3 using dynamic brain measures: We next performed random 
forest regression analysis for prediction of future cognition (Figure 5). We observed a significant 
correlation of r = 0.61, p = 1.6e-09 between the true and predicted GEC (at visit 3) scores 
(Figure 6A). Additionally, our analysis using principal components of the data input based on 
out-of-bag (OOB) permutation variable importance (34) revealed clusters localized in the 
prefrontal and parietal cortices as the top model predictors (Figure 6B).   
 

 
Figure 5. Schematic of the model for predicting cognition based on dynamic brain measures. Input 
data for the prediction model is dynamic brain measure, computed as the slope of the change in cortical 
thickness from visit 1 to 2. The prediction model is random forest regression model. The cognitive 
measure for prediction is the Global executive composite at visit 3. GEC = Global executive composite. 
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Figure 6. Prediction of cognitive measure at visit 3 using dynamic brain measures. Using dynamic 
brain measures (slope of the change in cortical thickness from visit 1 to 2) along with cognitive measures 
at visit 1 and 2, the random forest model predicted GEC at visit 3 with high accuracy (r = 0.61, p = 1.6e-
09 between the true and predicted scores). Out-of-Bag (OOB) variable importance analysis revealed the 
top predictors of the model in clusters localized in the prefrontal and parietal cortices. Note, GEC = 
Global executive composite, OOB = Out-of-Bag. 
 
 
4. Comparative analysis of predictive models of cognition at visit 3 using static and dynamic 
brain measures: Hypothesis testing was performed with respect to the predictions of the random 
forest (RF) model using GECt1 and GECt2. These tests were one-sided and were used to confirm 
whether a prediction model performed better than our baseline model RF model (GECt1 + 
GECt2). Using demographic data (age and sex) as input, the prediction model performed badly 
(Table 1), confirming that GECt3 contained no age- nor sex-related bias. Interestingly, we 
observed that the prediction models also performed badly if only brain measures (and no 
cognitive measures from visit 1 and 2) were used as input (Figure 7, Table 1). Using static brain 
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measures (Thickt1, Thickt2, Thickt1 + Thickt2) as input in addition to GECt1 and GECt2 improved 
the prediction over the baseline, e.g., MSE dropped from 39.07 to 36.69, but the improvement 
did not reach significance (p = 0.193). When we used dynamic brain measures (Slope), we 
observed that MSE dropped from 39.07 to 32.97. This improvement in MSE was significant (p = 
0.028, one-sided) for RF model (GECt1 + GECt2 + Slope) compared to RF model (GECt1 + 
GECt2).    
 
 

            
 

Figure 7. Comparison of prediction models of cognition at visit 3 using static and dynamic brain 
measures. Hypothesis testing was done with respect to the predictions of the random forest (RF) model 
using GEC at visit 1 and 2 (the baseline model). The prediction model performed poorly when 
demographic data (age and sex) or only brain measures were used as input data. Using static brain 
measures improved the prediction but was not significantly different from the baseline (p = 0.193), while 
using dynamic brain measures significantly improved the prediction (p = 0.028). Note, MSE = mean 
square error, * denotes p < 0.05 
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Model (Input data) MSE MAE p 
RF model (Age + Sex) 52.81 5.67 0.980 
RF model (Thickt1 + Thickt2) 52.27 5.70 0.981 
RF model (Slope) 44.82 5.38 0.859 
RF model (GECt1 + GECt2) 39.07 4.72 - 
RF model (GECt1 + GECt2 + Thickt1) 36.71 4.61 0.189 
RF model (GECt1 + GECt2 + Thickt2) 37.29 4.67 0.244 
RF model (GECt1 + GECt2 + Thickt1 + Thickt2) 36.69 4.59 0.193 
RF model (GECt1 + GECt2 + Slope) 32.97 4.51 0.028 

 

Table 1. Mean square errors (MSEs) of Random Forest (RF) models for predicting GECt3 based on static 
and dynamic brain measures. Hypothesis testing compared MSEs of other models to RF model (GECt1 + 
GECt2), which we considered to be our baseline model. Note, RF = Random Forest, GEC = Global 
Executive Composite, MSE = mean square error, MAE = mean absolute error.  
 
 
Discussion: 
In this paper, using longitudinal MRI data from 82 participants (scanned 3 times at ~2 years 
apart with concurrent measures of cognition), we built prediction models of future cognition (i.e. 
executive function at visit 3) using baseline developmental changes in cortical anatomy 
(measured as slope of the change in cortical thickness from visit 1 to 2). Our random forest 
model predicted future cognition (Global executive composite, an indicator of executive function 
at visit 3) with high accuracy (r = 0.61, p = 1.6e-09 between the true and predicted scores). The 
best predictors of the model were localized in clusters localized in the prefrontal and parietal 
cortices, regions that have been consistently shown associated with measures of executive 
function Comparative analysis revealed that the model using dynamic brain measures (but not 
static brain measures) significantly improved the prediction compared to the model which used 
only baseline cognitive measures (at visit 1 and 2).  
     The quest for understanding the neurobiology of cognitive development has relied on 
univariate methods that have revealed relationships between brain and cognitive measures (38–
42). In line with previous studies, our univariate analysis also showed association of brain 
measures and future cognition (Figure 2, 3). Interestingly, a significant association of future 
cognition was observed with dynamic brain measures (Figure 3) but not with the static brain 
measures (Figure 2), indicating the relative importance of dynamic over static brain measures in 
the understanding of cognitive development. Although the univariate method elucidated the 
relationship between dynamic brain measures and future cognition, the full scope of dynamic 
brain measures in understanding cognitive development lies in predictive modeling of long-term 
cognitive outcomes based on baseline dynamic brain measures (26, 27).      
     With this motivation, we built prediction models (random forest models) of future cognition 
(Global executive composite, GEC at visit 3) using baseline brain and cognitive measures (at 
visit 1 and 2) as input data. Our findings revealed a highly accurate prediction model (r = 0.61, p 
= 1.6e-09 between true and predicted scores) using baseline dynamic brain measures (slope of 
change of cortical thickness from visit 1 to 2) and baseline cognitive measures (GEC at visit 1 
and 2) (Figure 6). Not surprisingly, baseline cognitive measures (GEC at visit 1 and 2) in 
addition to distinct brain regions were observed as the top predictors of the model (Figure 6B). 
This finding was expected as the cognitive measure at visit 3 significantly correlated with that of 
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visit 1 (r = 0.48, p < 0.001) as well as that of visit 2 (r = 0.56, p < 0.001). Findings of our 
comparative analyses further showed the importance of baseline cognitive measures in the 
prediction of future cognition. Prediction models performed worse if only brain measures 
(without the baseline cognitive measures) were used as input (Table 1, Figure 7). The models 
improved in performance when brain measures along with the baseline cognitive measures were 
used as input. However, it was inclusion of the dynamic (and not the static) brain measures that 
significantly improved model performance (Table 1, Figure 7), suggesting the relative 
importance of dynamic over static brain measures in predicting future cognition. Our findings 
can be interpreted in the light of previous trajectory-based studies (28, 43–48). Brain 
development comprises of sequence of events that continuously shape the structure and function 
of the brain (49–56). More importantly, trajectories of brain development have been shown to be 
critical for cognitive maturation (28, 43, 57), with deviations in normative trajectories linked 
with neurodevelopmental disorders (45, 58, 59). In light of this, it is possible that prediction 
models of cognition which incorporate developmental changes in brain measures would perform 
better than those with static brain measures.   
     In terms of brain regions, top predictors of the model were observed in clusters localized in 
the prefrontal and parietal cortices (Figure 6B), regions that have been consistently shown 
associated with measures of executive function (42, 60, 61). A systematic review of different 
clinical populations observed the frontal, parietal and cerebellar lobes as consistent neuroimaging 
correlates of executive function (61). Brain regions identified in our study are also part of the 
frontoparietal network (FPN), a flexible system that supports cognitive control (62–65). 
Interestingly, one meta-analysis of neuroimaging studies has shown that the frontoparietal 
network supporting cognitive control also supports a broad range of executive functions (29). 
Taken together, in consistent with previous studies, our findings highlight the critical role of a 
frontoparietal network in the maturation of executive function.  
     Some limitations of our study need to be mentioned. First, our study sample comprised of 
longitudinal neuroimaging data of 82 individuals (with a total of 246 scans) which is a relatively 
small sample size for brain-cognition association studies. Small-sample sized studies may lead to 
increased statistical errors such as false negatives, inflation undermining reproducibility (66). 
However, in spite of the relatively small sample size, our study utilized machine-learning based 
predictive modeling which has been shown to improve reproducibility of brain-cognition 
associations (66). Future studies will use large-scale, longitudinal data such as the Adolescent 
Brain Cognitive Development, ABCD database (67) to further validate and improve our 
methodology. Second, using principal component analysis, we reduced the high-dimensional 
neuroimaging data (81,924 vertices) to 14 principal components for model input. This raised the 
question of the optimal number of principal components. However, our supplementary analysis 
revealed that the performance of the prediction model stabilized after the inclusion of principal 
component 5 (Supplementary Figure S1) and remained stable thereafter, indicating the stability 
of our model. Lastly, we showed the scope of our prediction model using global executive 
composite, GEC (an indicator of executive function). Future studies will investigate other 
cognitive measures to determine the extent to which the findings of the present study can be 
generalized to other measures of cognitive function.  
     In conclusion, findings of our study revealed that dynamic brain measures (and not static 
brain measures) are important for predicting future cognition. Our findings also highlighted the 
scope of machine-learning based prediction models (as compared to traditional univariate 
methods) in understanding the neurobiology of cognitive development. 
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Supplementary Figure 1: 
 
 
 

            
 
 
 
Supplementary Figure 1. Model performance vs number of PCA components. The performance 
of the prediction model (as indexed by MSE) stabilized after inclusion of principal component 5 
and remained stable thereafter, indicating the stability of our model. Note, PCA = principal 
component analysis, MSE = mean square error. 
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