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Abstract   15 

Speech comprehension entails the neural mapping of the acoustic speech signal onto learned linguistic 16 
units. This acousto-linguistic transformation is bi-directional, whereby higher-level linguistic processes 17 
(e.g., semantics) modulate the acoustic analysis of individual linguistic units. Here, we investigated the 18 
cortical topography and linguistic modulation of the most fundamental linguistic unit, the phoneme. We 19 
presented natural speech and ‘phoneme quilts’ (pseudo-randomly shuffled phonemes) in either a familiar 20 
(English) or unfamiliar (Korean) language to native English speakers while recording fMRI. This design 21 
dissociates the contribution of acoustic and linguistic processes towards phoneme analysis. We show 22 
that (1) the four main phoneme classes (vowels, nasals, plosives, fricatives) are differentially and 23 
topographically encoded in human auditory cortex, and that (2) their acoustic analysis is modulated by 24 
linguistic analysis. These results suggest that the linguistic modulation of cortical sensitivity to phoneme 25 
classes minimizes prediction error during natural speech perception, thereby aiding speech 26 
comprehension in challenging listening situations.  27 
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1 Introduction 28 

Speech comprehension relies on the neural mapping of the acoustic speech signal onto linguistic 29 
categories (Hickok and Poeppel, 2007; Kleinschmidt and Jaeger, 2015; Poeppel et al., 2008). As such, 30 
the acoustic speech waveform that reaches our ears is converted into a neural code in the inner ear, 31 
which is then processed along the ascending auditory system and subsequently matched to learned 32 
linguistic categories (Friederici, 2011; Hickok and Poeppel, 2007). However, while this acousto-linguistic 33 
transformation is the basis for successful speech comprehension, many aspects of it still remain unknown. 34 
Here, we asked (1) whether the acousto-linguistic transformation of the most fundamental linguistic unit, 35 
the phoneme, is organized topographically by phoneme class in human auditory cortex, and (2) whether 36 
this transformation is malleable to top-down linguistic information. 37 

The phoneme is the smallest perceptual unit capable of determining the meaning of a word (e.g., the 38 
words pin and chin differ only with respect to their initial phonemes) (Stevens, 2000). Of the upward of 39 
100 phonemes in use world-wide, approximately 44 phonemes make up the English language and these 40 
are categorized primarily based on articulatory features into four main classes: vowels, nasals and 41 
sonorants, plosives, fricatives and affricates (Ladefoged, 2001; Ladefoged and Johnstone, 2015). Each 42 
phoneme class has characteristic acoustic features; for example, while vowel sounds display a sustained 43 
period of harmonicity, plosives are characterized by a brief period of silence followed by a short 44 
broadband noise burst. Individual phonemes and the phoneme classes to which they belong have distinct 45 
temporal neural correlates: each phoneme class has a unique time-locked neural response, or phoneme-46 
related potential (PRP; Khalighinejad et al. (2017); Lee and Overath (in revision)). The phoneme-class-47 
specific PRPs likely reflect the neural analysis of their acoustic characteristics (e.g., timing of energy onset, 48 
harmonicity, etc.) in functionally separate parts of auditory cortex. While previous intracranial recording 49 
studies similarly revealed phonetic feature selectivity in the human superior temporal gyrus (Mesgarani et 50 
al., 2014; Yi et al., 2019), they found no topographical organization of phoneme classes. 51 

Of course, phonemes do not occur in isolation, but instead form sequences to create syllables and 52 
words. The order in which phonemes can occur is governed by phonotactics, and is unique to each 53 
language (Chomsky and Halle, 1965). Apart from learning to recognize the language-specific phonemes 54 
themselves (Cheour et al., 1998), phonotactics is one of the first sets of rules infants need to learn during 55 
language acquisition (Friederici and Wessels, 1993; Jusczyk et al., 1994; Mattys and Jusczyk, 2001). This 56 
may be achieved via learning the likelihood of phoneme transitions: for example, in English certain 57 
phoneme transition probabilities are statistically unlikely (or even non-existent, e.g., /dla/) while others 58 
are statistically more likely (e.g., /gla/). A similar principle is thought to be employed for syllable transitions, 59 
where statistically improbable syllable transitions can indicate between-word boundaries (Saffran et al., 60 
1996). 61 

Thus, while the initial analysis of phonemes is based on their acoustic features (Khalighinejad et al., 62 
2017; Lee and Overath, in revision; Mesgarani et al., 2014; Yi et al., 2019), subsequent processing stages 63 
are likely more linguistic in nature, such as those identifying language-specific phonemes or phonotactics, 64 
or even higher-level processes underlying the analysis of syntax, semantics, or lexical access (Friederici 65 
et al., 1993; Kocagoncu et al., 2017; Kutas and Hillyard, 1983). While decades of research have resulted 66 
in detailed speech/language models (Friederici, 2011; Hickok and Poeppel, 2007; Rauschecker and Scott, 67 
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2009), a clear demarcation between acoustic and linguistic analyses has largely remained elusive. One 68 
reason for this is that, in everyday listening situations, acoustic and linguistic analyses are difficult to 69 
separate and likely interact, e.g., via top-down modulation of acoustic feature analysis by linguistic 70 
processes (Anderson et al., 2003; Davis and Johnsrude, 2007; Díaz et al., 2008). In addition, previous 71 
studies that investigated phoneme processing in naturalistic contexts (Khalighinejad et al., 2017; 72 
Mesgarani et al., 2014), did so only in a familiar language: this approach is unable to dissociate the initial 73 
acoustic processes from the obligatory nature of linguistic processes that become engaged in a native, 74 
familiar language. 75 

In contrast, Lee and Overath (in revision) were recently able to dissociate the acoustic and linguistic 76 
processes underlying phoneme analysis by comparing PRPs in familiar vs. foreign languages. They used 77 
a variant of a novel sound quilting algorithm (Overath et al., 2015; Overath and Paik, 2021) to create 78 
speech-based quilts in which linguistic units (phoneme, syllable, word) were pseudo-randomly ‘stitched 79 
together’ to form a new stimulus. This paradigm allowed the comparison of an acoustic stimulus 80 
manipulation (speech-based quilting) in a familiar vs. foreign language: if the processing of phonemes is 81 
affected by the acoustic manipulation (increasing linguistic unit size of speech quilts) in a familiar language 82 
only, then this would suggest that linguistic analysis in the familiar language influenced the acoustic 83 
analysis of phonemes. Put differently, if no phonemic repertoire or phonotactic rules are available to a 84 
listener (as is the case in a foreign language), the encoding of phonemes themselves should be 85 
independent of their ordering (phonotactics) or linguistic unit size in which they appear. Using EEG to 86 
investigate the PRP for different phoneme classes (Khalighinejad et al., 2017), Lee and Overath (in revision) 87 
found that vowels in particular are amenable to such top-down linguistic modulation. However, the limited 88 
spatial resolution of EEG did not allow inferences as to where in the auditory cortex (or beyond) such top-89 
down modulation might originate, or act upon. 90 

Recent advances in fMRI time-series analysis have demonstrated that the neural activity to natural 91 
speech stimuli can be predicted from fast-paced acoustic (e.g., envelope, spectrum), phonological, and 92 
semantic features via linearized encoding modeling (De Heer et al., 2017; Huth et al., 2016). Inspired by 93 
this approach, the current study employed linearized encoding modeling of fMRI data in human speech 94 
cortex in an effort to reveal the separate encoding of acoustic and linguistic features of speech. 95 
Specifically, we used speech-based quilting (phoneme quilts vs. original speech) in familiar (English) vs. 96 
foreign (Korean) languages to dissociate the neural correlates of the acoustic and linguistic processes 97 
that contribute to the analysis of a fundamental linguistic unit, the phoneme. We show, for the first time, 98 
(1) that individual phoneme classes are differentially and topographically encoded in fMRI data, and (2) 99 
that their acoustic analysis is modulated by linguistic processes. 100 

2 Results 101 

Linearized encoding models with predictors for the four phoneme classes (i.e., vowels, nasals and 102 
approximants, plosives, fricatives and affricatives; “Phonemes”) and the cochleogram envelope 103 
(“Envelope”) were used to predict the fMRI time series acquired from native English speakers without any 104 
knowledge in Korean while listening to speech stimuli in four conditions (phoneme quilts or original 105 
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speech, in English or Korean). We used multiple ridge-regression models to infer the significance of the 106 
encoding contribution of a specific predictor or a condition from an increase in prediction accuracy (i.e., 107 
Pearson’s correlation coefficient) when adding the specific predictor or condition to a model (see Figure 108 
4 for an overview of the analysis). 109 

2.1 Encoding of phonemes and conditions 110 

We first investigated whether the acoustic envelope and linguistic phoneme classes are encoded 111 
differently in auditory cortex. The inclusion of the Envelope predictor yielded a marked increase in 112 
prediction accuracy in the primary auditory cortex, mid-STG, and planum temporale (max t(9) = 19.816; 113 
min cluster-P < 0.0001; max positive cluster size = 1649 vertices; max diff r = 0.0139, 95%CI = [0.012, 114 
0.015]; Figure 1a). Conversely, the addition of the Phoneme predictors revealed the strongest positive 115 
contribution in left STS (max t(9) = 5.540; min cluster-P = 0.032; max cluster size = 678 vertices; max diff 116 
r = 0.156 [0.076, 0.253]; Figure 1b). 117 

After establishing that both Envelope and Phonemes have significant contributions (and should 118 
therefore be included in the full model), we investigated the effects of the factors Quilting and Language. 119 
We found a main effect of Quilting in the left STS and left IFG (max t(9) = 7.298; min cluster-P = 0.003; 120 
max cluster size = 1028 vertices; max diff r = 0.133 [0.091, 0.171]; Figure 1c), and a main effect of 121 
Language in a similar location in the left STS, but not in IFG (max t(9) = 8.086; min cluster-P = 0.005; max 122 
cluster size = 939 vertices; max diff r = 0.113 [0.061, 0.166]; Figure 1d). Left STS also revealed an 123 
interaction, where the prediction accuracy change by modeling the Original-vs-Quilting conditions was 124 
positive for English conditions and negative for Korean (max t(9) = 5.465; min cluster-P = 0.003; max 125 
cluster size = 517 vertices; max diff r = 0.181 [0.103, 0.276]; Figure 1e). 126 

A previous study from our group (Overath and Paik, 2021) used a similar paradigm to dissociate 127 
acoustic and linguistic processes by quilting speech (English vs. Korean) with various durations of 128 
temporal speech structure (set segment durations, e.g., 30 ms or 960 ms, as opposed to linguistic units 129 
with variable durations as in the current study); they found that activity in left IFG increased as a function 130 
of temporal speech structure only for English, but remained unaffected for increases in temporal speech 131 
structure in Korean. Since the acoustic manipulation of temporal speech structure was the same in both 132 
languages, this result was interpreted as evidence for an acousto-linguistic transformation in left IFG. We 133 
therefore tested for a similar interaction using anatomically defined ROIs of IFG (a combination of 134 
G_front_inf-Orbital and G_front_inf-Triangul in FreeSurfer’s Destrieux “a2009s” Atlas). The 135 
permutation test revealed an interaction in the left IFG that was due to a selective increase in prediction 136 
accuracy in the English conditions (t[9] = 3.63, P = 0.005; Figure 1f). 137 
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 138 

Figure 1. Encoding of features and conditions. t-statistic maps comparing prediction 139 
accuracies from models with vs. without (a) Envelope, (b) Phonemes, (c) Quilting, (d) 140 
Language, (e) and differences in Quilting encoding between languages (i.e., 141 
interaction). t-maps are truncated at |t| < 5 for visualization; thick contours in black 142 
mark areas with cluster-P < 0.05. Curvatures of the cortical surface are displayed in 143 
brighter (convex) and darker (concave) grays with an isocontour at the curvature of 144 
zero in black. Colored histograms of the t-values over the full range are displayed 145 
below each hemisphere. See Supplementary Figure S6 for effects at the subject-level. 146 
(f) Average prediction accuracies in the region-of-interest (ROI) in the left inferior 147 
frontal gyrus (IFG; marked in blue) are shown for English and Korean when modeling 148 
the quilting conditions (Quilt+) or not (Quilt-). Individual participants are marked as 149 
black dots and paired for identical participants. The means are marked by white 150 
circles and linked for comparison between models. Box plots mark the first three 151 
quartiles (top and bottom edges of a box and a shade) and the 1.5 interquartile range 152 
(whiskers).  153 
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2.2 Encoding of individual phoneme classes 154 

We further investigated the encoding of individual phoneme classes by comparing prediction accuracies 155 
between a full model and a reduced model without a specific phoneme class feature (Figure 2a–d). This 156 
analysis revealed significant increases in prediction accuracies when adding vowels in the bilateral HG 157 
and STG, when adding nasals in the bilateral PT and lateral HG, and when adding fricatives in the bilateral 158 
STS.  159 

 160 

Figure 2. Unique encoding of individual phoneme classes. t-statistic maps comparing 161 
the prediction accuracy of a full model with that of a reduced model without a specific 162 
phoneme feature: (a) vowels, (b) nasals, (c) plosives, or (d) fricatives. Thick contours in 163 
black mark areas for which cluster-P < 0.05.  164 

Since adding phoneme classes had significant effects in distinct spatial patterns, we constructed a 165 
winner-take-all map of phoneme classes (thresholded for cluster-P < 0.05 for any phoneme class; Figure 166 
3a). The effects of adding phoneme classes were largely symmetrical between hemispheres: vowels in 167 
HG and lateral STG, nasals in anterior Heschl’s sulcus (HS) and PT, and fricatives in lateral STG and STS 168 
(however, note the binary nature of the winner-take-all map; see Figure S7 for low-dimensional 169 
projections of the phoneme encoding vectors). Consequently, we tested whether phoneme classes were 170 
encoded differently as a function of Quilting, and whether this effect was more pronounced in English 171 
than in Korean; such an interaction would suggest that linguistic processes (which are available in a 172 
familiar, or native language only) modulate the processing of phonemes. We reasoned that this would be 173 
the case if the encoding of phoneme classes was affected by quilting more in English than in Korean; in 174 
other words, if, for a given vertex, the difference between the phoneme class vector of quilted vs. original 175 
speech was more dissimilar in English than in Korean (see Figure 5 for a schematic cartoon of the 176 
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multivariate analysis). Both Pearson and Euclidian distances between phoneme class vectors in quilted 177 
vs. original speech conditions were significantly greater in English than in Korean in the right STG 178 
(Pearson distance, cluster-P = 0.0469, Figure 3b; Euclidian distance, cluster-P = 0.0029, Figure 3c). 179 

 180 

Figure 3. Encoding patterns of phoneme classes. (a) Winner-take-all map for the four 181 
phoneme classes. Vertices were selected for significant encoding for any phoneme 182 
class (cluster-P < 0.05). The histograms denote the number of ‘winner’ vertices per 183 
phoneme class in the left and right hemisphere. (b-c) Multivariate distance metrics 184 
were greater in English than Korean in the right posterior lateral STG (cluster-P < 185 
0.05), when computed with respect to (b) Pearson distance and (c) Euclidean 186 
distance.  187 
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3 Discussion 188 

The phoneme is the fundamental linguistic unit that determines the meaning of words. We show that the 189 
four main phoneme classes are encoded in fMRI data recorded from continuous speech signals, revealing 190 
a distinct phoneme class topography in human auditory cortex. Moreover, the acoustic processes 191 
underlying this phoneme analysis are modulated by linguistic analysis, whereby the acoustic manipulation 192 
(phoneme quilts vs. original speech) affected phoneme encoding more in a familiar language than in a 193 
foreign language. The results also reveal relatively stronger neural correlates for lower-level acoustic 194 
attributes (e.g., speech envelope) of the speech signal in early auditory cortex, and for higher-level 195 
linguistic features (phoneme classes) in STS. 196 

3.1 Distinct encoding of individual phoneme classes 197 

To our knowledge, we present the first evidence for topographically organized phoneme-class sensitive 198 
responses in human auditory cortex using fMRI data measured from listening to continuous, natural 199 
speech signals. More specifically, while some previous studies investigated phoneme processing by 200 
presenting individual phonemes in isolation (e.g., Formisano et al. (2008); Obleser et al. (2010); see also 201 
review in DeWitt and Rauschecker (2012)), the power of the current approach rests on the fact that it 202 
delineates phoneme-class sensitive responses within a more ecologically valid environment of 203 
continuous speech (Hamilton and Huth, 2020). As such, the phoneme-class map can be regarded as the 204 
hemodynamic equivalent of the electrophysiological phoneme-related potential (Khalighinejad et al., 2017; 205 
Mesgarani et al., 2014). 206 

Figure 3a revealed a clear topography for different phoneme classes, which was remarkably 207 
homologous between the left and right hemispheres, down to the cluster for nasals in antero-medial HS. 208 
Vowels showed the strongest sensitivity in early auditory cortex in HG and parts of STG. Since one of the 209 
main features of vowels is their harmonicity, which is a defining characteristic of pitch (Plack et al., 2005), 210 
this matches well with studies that have shown pitch-sensitive responses in these early cortical areas 211 
(Bendor and Wang, 2005; Griffiths and Hall, 2012; Hall and Plack, 2009; Kim et al., in revision). Of the four 212 
phoneme classes, fricatives ‘won’ the majority of vertices, which were mostly located in non-primary 213 
cortex (STG and STS). While the large extent was a somewhat unexpected finding, its location in non-214 
primary cortex agrees with a previously proposed functional hierarchy in auditory cortex, whereby 215 
spectral filter width increases (e.g., from sinusoids via narrowband to broadband noise) from primary to 216 
non-primary auditory cortex (Carrasco and Lomber (2009); Chevillet et al. (2011); Pandya et al. (2007); 217 
Rauschecker and Tian (2004); Rauschecker et al. (1995); Wessinger et al. (2001) though see Overath et 218 
al. (2012); Wang et al. (2012)). Since high-frequency broadband noise is a defining characteristic of 219 
fricatives, the strong response in STG and STS could reflect such spectral sensitivity. Nasals revealed 220 
highest prediction accuracies in the non-primary auditory cortex (e.g., lateral HG, PP, and PT). These 221 
areas roughly correspond to regions that display sensitivity to slow temporal modulations (Baumann et 222 
al., 2015; Santoro et al., 2014). In particular, Schönwiesner and Zatorre (2009) revealed a preference for 223 
low spectral density (with slow temporal modulation rates) in these regions. Nasals are characterized by 224 
a 'murmur', related to the nasal resonances if the oral tract is closed, which effectively amounts to a low-225 
pass filter (Qi and Fox, 1992). An animal model (ferrets) showed that nasals tend to excite primary auditory 226 
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cells that are tuned for slow temporal modulations (Mesgarani et al., 2008). Thus, it is conceivable that 227 
the spectrotemporal modulation preference in the non-primary auditory cortex is reflected in the preferred 228 
encoding of the narrow-band filtered fluctuation of nasals. Finally, plosives, which are characterized by a 229 
complete occlusion followed a subsequent broadband burst, were the only phoneme class that did not 230 
reveal areas with maximal prediction accuracy compared to the other phoneme classes. As hinted in 231 
Figure 2c, there was a slight (subthreshold) increase in prediction accuracies in the left STS for plosives, 232 
which is similar to that of fricatives but at weaker magnitudes. This is in line with a similarity between 233 
responses to plosives and to fricatives (Khalighinejad et al., 2017), which suggests similar neural 234 
generators. Plosives and fricatives are both characterized by noise bursts; the brevity of the burst in 235 
plosives compared to the more sustained noise burst in fricatives might have resulted in an overall lower 236 
encoding prediction for plosives in similar regions as those encoding fricatives, which in turn might 237 
explain the absence of plosive phoneme class ‘winner’ regions in the current study. 238 

Mesgarani et al. (2014) measured phoneme-related potentials from continuous speech using 239 
intracranial ECoG recordings from six epileptic patients undergoing pre-surgery evaluation, but did not 240 
find a consistent topographic organization of phoneme classes across patients. However, upon closer 241 
inspection, their Figure S6, which depicts electrodes in a winner-take-all manner along the STG for one 242 
patient, is compatible to the results we report here with fMRI: vowel-sensitive electrodes were located 243 
near lateral HG and adjacent STG, while fricative-sensitive electrodes were found over STS and posterior 244 
STG. Interestingly, plosive-sensitive electrodes were also located over STS and posterior STG. Four of 245 
the six nasal-sensitive electrodes were located on STG either anterior or posterior to HG, which generally 246 
matches the current topography. Given that the current results are based on ~160 minutes of stimuli per 247 
participant (see Methods), compared to ~17 minutes of stimuli in Mesgarani et al. (2014), it is conceivable 248 
that the collection of more ECoG data would have revealed a topography such as the one we report here 249 
(though the higher signal-to-noise ratio of ECoG data likely reduces this order of magnitude difference). 250 

While Figure 3a suggests clear topographic distinctions between phoneme classes, it is important to 251 
note that this is partly an artifact of winner-take-all maps and does not necessarily implicate that acoustic 252 
features of, for example, vowels are not processed beyond HG (just that their prediction accuracy was 253 
not maximal elsewhere). In fact, Figure S7b highlights the underlying high-dimensionality of responses 254 
at each vertex. 255 

3.2 Linguistic modulation of acoustic phoneme-class analysis 256 

One of our aims was to dissociate acoustic from linguistic processes, which would enable us to determine 257 
their interaction, i.e., whether linguistic processes modulate the acoustic analysis of phonemes. To this 258 
end, we found that the acoustic manipulation (phoneme quilts vs. natural speech) had a larger effect on 259 
phoneme processing in a familiar language (English) than in a foreign language (Korean): phoneme class 260 
encoding was more dissimilar between phoneme-quilt and natural speech conditions in English than in 261 
Korean. Since the acoustic manipulation was the same for each language, this suggests that the greater 262 
difference between acoustic contexts was due to linguistic processes becoming engaged in a familiar 263 
language. Linguistic processes such as phonotactic, syntactic, as well as semantic analyses might 264 
therefore modulate the acoustic processing of phonemes, e.g., via hierarchical predictive coding or 265 
minimizing top-down prediction errors (Friston and Kiebel, 2009; Rao and Ballard, 1999). To our 266 
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knowledge, this is the first demonstration of such linguistic modulation of a fundamental linguistic unit 267 
using fMRI. However, these results align with Lee and Overath (in revision), who found similar evidence 268 
for top-down linguistic modulation of phonemic analysis using a different recording modality (EEG). 269 

Perhaps the best-known example of the modulatory influence of linguistic information is that of 270 
phonemic restoration (Samuel, 1981; Warren, 1970). In phonemic restoration, a phoneme is still 271 
‘perceived’ even if it is masked or replaced completely by noise. This is often interpreted as an 272 
advantageous adaptation to speech perception in noisy environments, where it is common for 273 
interrupting or masking sounds to last only for a few tens or hundreds of milliseconds (i.e., on a temporal 274 
scale that is commensurate with that of phonemes). The top-down predictive nature of this phenomenon 275 
is further highlighted by the fact that, if the acoustic information is ambiguous, a ‘best guess’ phoneme 276 
is perceived (Leonard et al., 2016; Samuel, 1987). In fact, there is a wealth of evidence for such restorative 277 
processes in speech perception, for example from studies using noise-vocoded stimuli (Giraud et al., 278 
2004; Narain et al., 2003; Obleser et al., 2008; Scott et al., 2000; Shannon et al., 1995; Wild et al., 2012) 279 
or other methods to distort the speech signal (Davis et al., 2011; Eckert et al., 2016), while the most 280 
common explanation for restorative effects refers to top-down, predictive (Friston and Kiebel, 2009) 281 
linguistic processes. 282 

The locus of phonemic restoration, i.e. the region in which linguistic modulation is strongest, was 283 
recently shown to be situated in bilateral STG, likely due to receiving modulatory signals from left IFG 284 
(Leonard et al., 2016). This aligns remarkably well with the current study, where we found the strongest 285 
effect of linguistic modulation along right STG. Note that this region along STG touches upon areas of all 286 
three phoneme-class ‘winners’ (vowels, nasals, fricatives; cf. Figure 3a) and is therefore ideally situated 287 
to modulate the neural analysis of these phoneme classes. The apparent right-lateralization may in part 288 
be a consequence of the cluster-forming threshold, which penalizes or disregards smaller activation 289 
clusters, since similar but smaller peaks along left STG are also visible for both Pearson and Euclidean 290 
distance metrics (Error! Reference source not found.e-f). 291 

The STG is a reasonable locus for such linguistic modulation, since it represents an intermediary 292 
processing stage in the language network that receives bottom-up information from primary auditory 293 
cortex and PT, as well as top-down information from higher-order auditory and frontal regions (Friederici, 294 
2009, 2011; Hickok and Poeppel, 2007; Rauschecker and Scott, 2009). For example, the analysis of 295 
spectral shape (a necessary computation to differentiate between the formant structures of different 296 
vowels) relies on bottom-up changes in effective connectivity between HG to PT, as well as PT to 297 
STG/STS regions (Kumar et al., 2007; Warren et al., 2005). In contrast, top-down signals from frontal 298 
cortex (e.g., left IFG) have been shown to modulate speech processing in auditory cortex (Cope et al., 299 
2017; Overath and Paik, 2021; Park et al., 2015; Sohoglu et al., 2012). 300 

In the domain of electrophysiological measurements of speech perception, there is currently 301 
disagreement as to the extent that neural indices (such as speech-envelope entrainment, or phoneme 302 
encoding) can be interpreted as markers of linguistic processes that are necessary for speech 303 
comprehension (Di Liberto et al., 2015; Ding and Simon, 2013; Luo and Poeppel, 2007; Vanthornhout et 304 
al., 2018), or whether a more parsimonious explanation of these indices is that they reflect the analysis 305 
of characteristic acoustic properties of the speech signal (Baltzell et al., 2017; Daube et al., 2019; Howard 306 
and Poeppel, 2010; Millman et al., 2015; Verschueren et al., 2021). Our study is able to shed new light on 307 
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this controversy by directly comparing the encoding of acoustic properties of phonemes in either a 308 
familiar language or in a foreign language, in which no higher-level linguistic analysis takes place. Based 309 
on the current results, we suggest that both accounts have merit: an (initial) analysis is likely driven by 310 
the acoustic properties of phonemes, while a (subsequent) linguistic analysis modulates this acoustic 311 
analysis. 312 

We should note that the current study did not address or measure linguistic processes explicitly. For 313 
example, participants did not perform a linguistic task (e.g., speech comprehension), but were simply 314 
asked to detect a change in speaker, a task that is largely orthogonal to linguistic processing (see also 315 
Overath and Paik (2021) for a similar task). Therefore, we interpret the linguistic modulation of phoneme 316 
class analysis as obligatory linguistic processes that become engaged as soon as familiar linguistic 317 
templates (e.g., phonotactics, syntax, lexicon, semantics) are detected in the signal. Future studies will 318 
need to determine whether, and to what extent, these obligatory linguistic processes for phoneme 319 
analysis are malleable to various tasks that engage specific linguistic processes. For example, the neural 320 
processing of acoustic features in speech sounds has been shown to be enhanced or sharpened if they 321 
are task-relevant, attended to vs. ignored, or primed (Holdgraf et al., 2016; Leonard et al., 2016; 322 
Mesgarani and Chang, 2012; Rutten et al., 2019), and similar processes might become engaged for 323 
phoneme class encoding. 324 

3.3 Encoding of envelope and phoneme classes in the BOLD time series 325 

One of our preliminary aims was to confirm that rapid acoustic and phonetic features can be shown to 326 
be encoded in a hemodynamic response that is approximately two orders of magnitude slower (tens of 327 
milliseconds vs. seconds). Encoding of these features had previously been demonstrated using 328 
electrophysiological methods, which afford commensurate millisecond temporal resolution (Di Liberto et 329 
al., 2015; Khalighinejad et al., 2017; Mesgarani et al., 2014; Yi et al., 2019). Nevertheless, the novel use 330 
of linearized ridge-regression modeling of fMRI BOLD signal time series was recently employed to 331 
successfully (and separably) predict acoustic and phonetic features: De Heer et al. (2017) collected fMRI 332 
data while presenting continuous, natural speech, and were able to reveal that the acoustic speech 333 
envelope predicted the BOLD time series best in HG, whereas articulatory phonetic features were 334 
predicted most accurately in higher-level auditory cortex such as STG. The current study is in broad 335 
agreement with these findings: while areas in early auditory cortex best encoded the acoustic speech 336 
envelope, higher-level areas in STG and STS did so for phoneme classes. 337 

More broadly, our study confirms that neural responses to rapid speech features, which are temporally 338 
integrated over several hundreds of milliseconds in the BOLD time series, can be revealed using linearized 339 
encoding modeling. Such models take advantage of the spatially separated functional organization of 340 
auditory cortex, for example with respect to prominent acoustic features such as frequency, spectro-341 
temporal modulations, or spectral bandwidth (Baumann et al., 2015; Moerel et al., 2018; Rauschecker 342 
and Tian, 2004; Saenz and Langers, 2014; Santoro et al., 2014). This should encourage the future use of 343 
more naturalistic stimulus paradigms that allow the investigation of the complex dynamics of linguistic 344 
processes (Hamilton and Huth, 2020).  345 
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3.4 Modulation of acoustic and linguistic contexts 346 

The analyses of the two factors Quilting and Language were motivated by previous studies that 347 
investigated the processing of temporal speech structure using segment-based speech quilting. In 348 
particular, these studies showed sensitivity in STS to temporal speech structure in either only a foreign 349 
language (Overath et al., 2015), or both familiar and foreign languages (Overath and Paik, 2021), which is 350 
comparable to a main effect of Quilting here. In addition, activity in left IFG revealed an interaction 351 
between Quilting and Language and increased as a function of temporal speech structure only in the 352 
familiar language (Overath and Paik, 2021). In the current study, Quilting and Language both had greater 353 
prediction accuracies in left STS, while their interaction in the same area (as well as left IFG) was due to 354 
larger prediction accuracy differences between the two Quilting conditions in English than in Korean.  355 

For successful speech comprehension, the temporal dynamics of speech necessitate analyses at 356 
multiple scales that are commensurate with the average durations of phonemes, syllables, words, 357 
sentences, etc. This temporal hierarchy is thought to be reflected in a cortical processing hierarchy in 358 
which the neuronal temporal window of integration (Theunissen and Miller, 1995) increases from primary 359 
auditory cortex via non-primary auditory cortex to frontal cortex (e.g., Lerner et al. (2011); Norman-360 
Haignere et al. (2020); though see Blank and Fedorenko (2020) for a recent counterargument against the 361 
hierarchy). The current results of greater prediction accuracy in STS as a function of Quilting largely 362 
support this view. A novel finding is the left-hemispheric lateralization. However, it is possible that this 363 
was driven by the interaction between Quilting and Language. 364 

It is important to note that the segment-based quilting in previous studies disrupted the speech signal 365 
to a larger degree than the speech-based quilting employed here. The shortest segment length (30 ms) 366 
used in the previous studies, together with their placement irrespective of linguistic units, likely resulted 367 
in no phonemes being left intact in the resulting speech quilt. In contrast, the current speech-based 368 
quilting procedure preserved the phonemes (though likely still disrupted co-articulation cues). 369 

3.5 Future directions 370 

The current study makes a number of predictions for future studies investigating the acousto-linguistic 371 
transformation of speech. We show evidence for linguistic modulation of a fundamental linguistic unit, 372 
the phoneme, in native English speakers when listening to English speech, but not when listening to a 373 
foreign language for which participants had no linguistic repertoire. Therefore, while it is unlikely that the 374 
current results are specific to English phonemes, future studies should confirm this interaction in native 375 
Korean participants who have no knowledge of English. Similarly, people who are perfectly bilingual in 376 
English and Korean should show evidence for linguistic modulation in both languages as a function of 377 
quilting, while those for whom both languages are foreign should not. 378 

In addition, the fact that the linguistic modulation of the acoustic speech signal operates at such an 379 
early stage of linguistic analysis likely reflects its significance: if linguistic modulation starts at the level of 380 
phonemes, its ability to impact a later word processing stage is conceivably greater than if linguistic 381 
modulation only started at the word processing stage. Given the highly predictive nature of speech 382 
processing (see Section 3.2 above), such modulation might be particularly helpful in situations in which 383 
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the speech signal is compromised (e.g., in noisy conditions such as in a restaurant or bar). People with 384 
hearing loss (e.g., presbycusis) are a clinical population that is known to struggle in such situations, even 385 
with the help of hearing aids (Moore, 1996; Shinn-Cunningham and Best, 2008). It is therefore possible 386 
that (at least) one reason for their exacerbated speech comprehension difficulties in noisy situations is 387 
that the linguistic modulation of phonemes has deteriorated, thereby reducing the effectiveness of 388 
predictive speech processes. A similar argument might be made for people suffering from ‘hidden hearing 389 
loss’: i.e., hearing difficulties without detectable deficits in routine audiometry tests (Kujawa and Liberman, 390 
2009; Ruggles et al., 2011). We predict that linguistic modulation of phoneme analysis is reduced in these 391 
populations (particularly in situations with background noise) and might thus serve as a clinical marker. 392 

On a more technical note: we investigated the relative contributions of several predictors in our models. 393 
However, it is possible that the addition of predictors leads to a decrease in prediction accuracy, which 394 
can be explained by over-penalization originating from using a single regularizing parameter for all 395 
features. During optimization, introducing irrelevant features into the model could require greater 396 
regularization to minimize prediction errors. This would shrink predictions from “well-predicting” 397 
predictors, resulting in an overall decrease in prediction accuracy. In such instances, banded ridge 398 
regression, where independent regularization parameters for multiple groups of features are optimized 399 
together, has recently been proposed as a solution to avoid over-penalization (Nunez-Elizalde et al., 2019). 400 
Future studies will need to explore the benefits of such an approach in paradigms that attempt to explain 401 
multiple features from fMRI data. 402 

3.6 Conclusions 403 

In conclusion, the current study demonstrates for the first time that individual phoneme classes derived 404 
from continuous speech signals are encoded differentially in the BOLD signal time series. The phoneme 405 
class topography reflects the processing of the different acoustic features that characterize the four 406 
phoneme classes. As such, it represents a significant step in our understanding of the functional 407 
organization of human auditory cortex. Moreover, by using a design that dissociates acoustic from 408 
linguistic processes, we show that the acoustic processing of a fundamental linguistic unit, the phoneme, 409 
is modulated by linguistic analysis. The fact that this modulation already operates at such an early stage 410 
likely enhances its ability to impact subsequent, higher-level processing stages, and as such might 411 
represent an important mechanism that facilitates speech comprehension in challenging listening 412 
situations. 413 

4 Methods 414 

4.1 Participants 415 

Ten native English speakers without any knowledge or experience in Korean participated in the current 416 
study (mean age = 24.0 ± 2.2 years; 6 females). Eight participants volunteered in three sessions consisting 417 
of 8 runs each on separate days (intervals in days: mean = 8.5, standard deviation = 16.6, min = 1, max 418 
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= 70) and two other participants in a single session each (6 runs and 8 runs, respectively), resulting in a 419 
total of 24 scanning sessions. This is on par with similar approaches that maximize intra-subject reliability 420 
over intra-subject variability in the data (Breedlove et al., 2020; Huth et al., 2016; Kay et al., 2008; Moerel 421 
et al., 2013; Naselaris et al., 2015; Norman-Haignere et al., 2015; Santoro et al., 2017). 422 

All participants were recruited via the Brain Imaging and Analysis Center (BIAC) at Duke University 423 
Medical Center, NC, USA after safety screening for MRI (e.g., free of metal implants and claustrophobia). 424 
All reported to have normal hearing and no history or presence of neurological or psychiatric disorders. 425 
Informed written consent was obtained from all participants prior to the study in compliance with the 426 
protocols approved by the Duke University Health System Institutional Review Board. 427 

4.2 Stimuli 428 

Speech stimuli were created from recordings (44,100 Hz sampling rate, 16-bit precision) of four female 429 
bilingual (Korean and English) speakers reading textbooks in either language as in previous studies (Lee 430 
and Overath, in revision; Overath and Paik, 2021). Native English and Korean speakers judged the 431 
recordings as coming from native English and Korean speakers, respectively. Korean was chosen 432 
because of its dissimilarity to English: it shares no etymological roots with English and has different 433 
syntactic and phonetic structures (Sohn, 2001). 434 

We used a modified version of the quilting algorithm (Lee and Overath, in revision; Overath et al., 2015) 435 
where we pseudorandomized the order of phonemes (instead of set segment lengths). First, phonemes 436 
were extracted from the recordings and corresponding transcripts using the Penn Phonetic Lab Forced 437 
Aligner1 (Yuan and Liberman, 2008) for English speech and the Korean Phonetic Aligner2 (Yoon and Kang, 438 
2013) for Korean speech. The phoneme segmentation output was a Praat TextGrid, which was then 439 
imported to MATLAB3 via the mPraat toolbox (Bořil and Skarnitzl, 2016). The alignment was manually 440 
validated by a native English and Korean speaker, respectively (Lee and Overath, in revision; Overath and 441 
Paik, 2021). The durations of phonemes in the recordings of natural speech in milliseconds were as 442 
follows (see Supplementary Figure S1 for histograms): min = 4.3, max = 396.2, mean = 72.8, median = 443 
63.8, standard deviation = 41.7, skewness = 1.2 in English (N = 10,514); min = 8.9, max = 308.3, mean = 444 
71.9, median = 63.7, standard deviation = 36.0, skewness = 1.3 in Korean (N = 10,894). The average 445 
durations were similar between languages (0.9 ms longer in English, t[21406] = 1.67, P = 0.094) while the 446 
distributions were slightly different for that English had more instances of short (e.g., < 20 ms) phonemes 447 
(Kolmogorov-Smirnov statistic = 0.1413, P = 10-93). 448 

The phoneme segments were pseudorandomly rearranged to create novel phoneme quilts. For each 449 
stimulus, a random initial phoneme was chosen; subsequent phonemes were selected such that the 450 
acoustic change at the boundary was as close as possible to the acoustic change in the original source 451 
signal (using the L2-norm metric of an ERB-spaced cochleogram; see (Overath et al., 2015)). In addition, 452 
we applied the following exclusion criteria: (a) the phoneme duration needed to be at least 20 ms, (b) two 453 

 
1 https://babel.ling.upenn.edu/phonetics/old_website_2015/p2fa/index.html 
2 https://korean.utsc.utoronto.ca/kpa/ 
3 https://github.com/bbTomas/mPraat 
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identical phonemes could not occur next to each other, (c) for a given phoneme, its subsequent phoneme 454 
could not be the same as in the original source signal. We used the pitch-synchronous overlap-add 455 
(PSOLA) algorithm (Moulines and Charpentier, 1990) to further minimize abrupt changes in pitch at 456 
phoneme boundaries. Overall alterations due to the quilting algorithm were quantified by the Kullback-457 
Leibler divergence (DKL ) between L2-norm acoustic change distributions in the original source and the 458 
created phoneme quilt (median DKL = 0.6873 bits for English, 0.6004 bits for Korean; Wilcoxon rank sum 459 
equal median test: Z = 0.5913, P = 0.5543). In the phoneme quilts, the durations of phonemes in 460 
milliseconds were as follows (see Supplementary Figure S1 for histograms): min = 20.0, max = 351.0, 461 
mean = 72.3, median = 63.0, standard deviation = 39.4, skewness = 1.4 in English (N = 10,467); min = 462 
20.0, max = 383.0, mean = 69.7, median = 60.0, standard deviation = 36.3, skewness = 1.5 in Korean (N 463 
= 11,213). There were slight differences between languages in means (2.6 ms longer in English, t[21678] 464 
= 5.08, P = 10-7) and distributions (KS-stat = 0.0657, P = 10-21), however, the mean difference of 2.6 ms 465 
is much shorter than the modeled cochlear integration time-window of 20 ms. 466 

For both languages (English and Korean), the 33-s long stimuli in the two experimental conditions 467 
(Original and Phoneme Quilts) were created by concatenating six 5.5-s stimuli (24 unique exemplars per 468 
condition and language). Subsequent 5.5-s stimuli were either from the same or a different speaker 469 
(participants were asked to detect changes in the speaker, see Section 4.3). The overall sound intensity 470 
was normalized by equalizing the root-mean-square (RMS) signal intensity across stimuli. At the 471 
beginning and the end of the 33-s stimuli, 10-ms cosine ramps were applied to avoid abrupt intensity 472 
changes. 473 

4.3 Experimental procedure 474 

Functional MRI data were acquired while participants listened to the speech stimuli (either Original or 475 
Phoneme Quilts in either language) and performed a task to maintain attention to the stimuli. A 33-s trial 476 
consisted of six 5.5-s stimuli of multiple speakers in a given condition. Silent inter-stimulus intervals (ISIs) 477 
were uniformly varied between 5.6 s and 10.4 s (mean = 8 s). One run consisted of twelve 33-s trials, and 478 
one session consisted of eight 8.5-min runs (except for one participant, who only completed six runs). 479 
For one of the eight participants with three sessions, one run was prematurely terminated after 9 of the 480 
12 trials due to technical difficulties (the intact 9 trials from the run were still used in the analysis). In total, 481 
fMRI data corresponding to ~203 min/participant were obtained for the 8 participants with 3 full sessions 482 
(average of ~174 min/participant for all 10 participants); this corresponds to ~158 minutes of stimuli 483 
(excluding the ISI) per participant with 3 full sessions (average of ~137 min/participant for all 10 484 
participants). 485 

The stimulus presentation timing was controlled via the Psychophysics Toolbox (v3.0.114). Each run 486 
was triggered by the TTL signal from the MRI scanner mediated by a counter. Digital auditory signals at 487 
44,100 Hz sampling rate and 16-bit precision from a Windows desktop were converted to analog signals 488 
by an external digital amplifier (Sony, Tokyo, Japan) and delivered to participants via MRI-compatible 489 

 
4 http://psychtoolbox.org/ 
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insert earphones (S14, Sensimetrics, MA, USA) at a comfortable listening level (~75 dB SPL). Participants 490 
wore protective earmuffs on top of the earphones to further reduce acoustic noise from the MRI scanner. 491 

The task was to indicate a change in speaker (i.e., a 5.5. s stimulus of one speaker followed by a 492 
different speaker) via a button press on an MRI-compatible four-button pad (average speaker changes 493 
per trial = 3.5, between 1 and 4). The performance was assessed via d-prime 𝑑′ = Φ!"(Pr(𝑌|𝑠)) 	−494 
	Φ!"(Pr(𝑌|𝑛)) where Pr(𝑌|𝑠) is the hit rate in “signal” trials and Pr(𝑌|𝑛) is the false alarm rate in “noise” 495 
trials and Φ!"(∙) is the inverse cumulative distribution function of the zero-mean, unit-variance Gaussian 496 
distribution (Macmillan and Kaplan, 1985). Responses were classified as a hit if they occurred within 3 s 497 
following a change in speaker (and otherwise classified as false alarm). In the case of multiple responses 498 
within one 5.5-s stimulus segment, only the first response was counted. For extreme values of hit/false 499 
alarm rates (i.e., 0 or 1), an adjustment (i.e., adding 0.5/n to zero or subtracting 0.5/n from one for n trials) 500 
was made to avoid infinite values of d’ (Macmillan and Kaplan, 1985). 501 

After each 33-s trial, participants received visual feedback about their performance (𝐷′	 = 	𝑑′ 𝑚𝑎𝑥	𝑑′⁄  502 
where max d’ is a d’ for a perfect performance, ranging between [-100%, 100%]) with a description 503 
(“POOR” for D’ < 0, “FAIR” for 0 ≤ D’ < 50%, “GOOD” for 50% ≤ D’ < 100%, “PERFECT!” for D’ = 100%) 504 
to encourage continued attention. While multiple button presses were discarded from computing d’, an 505 
alerting message was presented to the participants (“NO KEY PRESSED!” or “TOO MANY KEYS 506 
PRESSED!”) instead of the performance feedback when the button presses were too many (> 5) or none 507 
(2.5% of total 2,397 trials from 9 participants; participant 1 was excluded from the d-prime analysis due 508 
to a technical fault of the in-scanner response device). The average D’ was 61.1% ± 38.4% points (d’ = 509 
1.14 ± 0.72), without a significant difference between languages (repeated-measures ANOVA, 𝜂#$ = 0.43, 510 
F[1,7] = 5.46, P = 0.21), but between original speech and phoneme quilts (𝜂#$ = 0.70, F[1,7] = 16.37, P = 511 
0.02). [NO INTERACTION TOO?] 512 

4.4 Image acquisition 513 

All images were acquired using a GE MR 750 3.0 Tesla scanner (General Electric, Milwaukee, WI, USA) 514 
with a 32-channel head coil system at the Duke University Hospital, NC, USA. For blood-oxygen-level-515 
dependent (BOLD) contrast, gradient-echo echo-planar imaging (GE-EPI) with a simultaneous multi-slice 516 
(SMS) acceleration factor of 3 (i.e., 3 slices acquired in parallel with aliasing of FOV/3 shifts) was used (in-517 
plane pixel size = 2 × 2 mm2, slice thickness = 2 mm, FOV = 256 mm, matrix size = 128 × 128, TE = 30 518 
ms, flip angle = 73°, TR = 1200 ms, phase-encoding direction = posterior-to-anterior). A total of 39 slices 519 
were acquired for each volume (13 slices per band) in an interleaved ascending sequence. At the 520 
beginning of a run, the volume was centered on the supratemporal plane, covering from the inferior 521 
colliculus to the inferior frontal gyrus. To correct for magnetic inhomogeneity artifacts, an additional GE-522 
EPI image of 3 volumes with a reversed phase encoding direction (posterior-to-anterior) was acquired 523 
after each run except for the first participant. 524 

For T1-weighted contrast, a magnetization prepared rapid gradient echo (MP-RAGE) scan covering 525 
the whole-brain (in-plane pixel size = 1 × 1 mm2, slice thickness = 1 mm, FOV = 256 mm, matrix size = 526 
256 × 256, TE = 3.2 ms, flip angle = 8°, TR = 2264 ms, number of slices = 156) was acquired at the end 527 
of each session. 528 
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4.5 Image processing 529 

4.5.1 Anatomical images  530 

T1-weighted images were segmented using SPM (SPM12; v74875) to obtain tissue probability maps 531 
(spm.spatial.preproc), which were used for anatomical CompCor regressors (Behzadi et al., 2007). 532 
High-resolution cortical surfaces were fully automatically constructed using FreeSurfer (v6.0.06 ) for 533 
surface-based analysis. 534 

4.5.2 Functional images 535 

The displacement due to inhomogeneity in the B0 field (i.e., susceptibility artifacts) was corrected using 536 
topup in FSL (v5.0.117) with the reversed phase-encoding images. The first 6 volumes (i.e., “dummy 537 
scans”) were subsequently discarded from the analyses. Temporal and spatial realignments were 538 
achieved using SPM: the slices were first temporally aligned to the center of the TR using sinc-539 
interpolation (spm.temporal.st), and then the volumes were spatially aligned to the mean volume using 540 
4-th degree B-spline interpolation (spm.spatial.realignunwarp). Since we used a multiband sequence 541 
(i.e., 3 slices were acquired simultaneously), slice acquisition time and reference time were provided 542 
(instead of slice order) for slice-timing correction. 543 

Anatomical CompCor regressors were extracted from realigned EPI volumes. On concatenated time 544 
series from voxels with > 99% probability for white matter and cerebrospinal fluid, principal component 545 
analysis (PCA) was applied to extract principal components. Six components with highest eigenvalues 546 
were used as “CompCor” regressors in the GLM denoising procedure (see Section 4.5.3). 547 

Next, the EPI volumes were projected onto individual cortical surfaces (~150,000 vertices per 548 
hemisphere) at the middle depth of cortices by averaging samples at the 40%, 50%, and 60% of cortical 549 
thickness to avoid aliasing (mri_vol2surf in FreeSurfer). Surface-mapped functional data were 550 
normalized to ‘fsaverage6’ surfaces (40,962 vertices per hemisphere) via spherical surface registration, 551 
and then smoothed with a 2-D Gaussian kernel with the full-width-at-half-maximum (FWHM) of 6 mm (i.e., 552 
3 pixels of the EPI slices) via iterative nearest-neighbor averaging (mri_surf2surf in FreeSurfer). 553 

4.5.3 Surface-based GLM denoising 554 

We applied a model-based denoising technique for task-based fMRI data (“GLMdenoise” v1.48) to the 555 
surface-mapped data (Kay et al., 2013). The algorithm extracts ‘noise’ regressors from the data that would 556 
increase prediction accuracy in leave-one-run-out-cross-validation. This is achieved by first defining 557 
‘noise pool’ voxels with negative R2 values for a given design matrix (i.e., voxels that are irrelevant to the 558 
task of interest), extracting principal components from the noise pool, and then determining an optimal 559 

 
5 https://www.fil.ion.ucl.ac.uk/spm/ 
6 http://freesurfer.net/ 
7 https://fsl.fmrib.ox.ac.uk/ 
8 https://kendrickkay.net/GLMdenoise/ 
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number of components to remove as a minimal number where the improvement in cross-validation 560 
prediction decays. We used box-car functions to represent the four conditions in the design matrix. On 561 
average, 4.5 ± 2.1 noise regressors were regressed out. These improved reliability in estimation (mean 562 
over standard errors ratio of coefficients estimates across CV folds: median increase = 0.82; mean 563 
increase = 1.12) but only slightly increased predication accuracy (cross-validation R2: median increase = 564 
0.25% points; mean increase = 0.56% points). In addition to the noise regressors, the 4-th order 565 
polynomial fits to slow drifts in BOLD time series, the six CompCor regressors, and the button-press 566 
regressors convoluted with a canonical HRF were regressed out from the residuals (i.e., prediction from 567 
the design matrix subtracted from the data). 568 

4.6 Voxel-wise linearized encoding analysis 569 

We predicted BOLD time series at each voxel in response to speech sounds using a linearized encoding 570 
model based on finite-impulse response (FIR) functions. Multiple lags were used to model the variable 571 
hemodynamic responses in different cortical areas (De Heer et al., 2017; Huth et al., 2016). In order to 572 
account for the collinearity of predictors representing acoustic and phonetic information, we used ridge 573 
regression to fit the model (i.e., FIR weights) and evaluated the prediction via cross-validation. The 574 
procedures are explained in detail in the following subsections. 575 

 576 

Figure 4. Linearized encoding analysis overview. Functional MRI data was acquired 577 
from 10 human participants while listening to unmanipulated, or phoneme-scrambled 578 
speech stimuli in either English or Korean. From the speech waveform, cochleogram 579 
envelope and the duration of phoneme classes were extracted and down-sampled at 580 
the fMRI sampling rate (1/1.2 Hz). After preprocessing, surface-mapped BOLD time 581 
series was predicted using a linear method (finite impulse response modeling with 582 
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ridge regression). The prediction accuracy was measured by Pearson correlation 583 
between actual and predicted BOLD time series.  584 

4.6.1 Vertex selection 585 

For our interest in auditory and linguistic processing, we restricted our analysis to vertices in cortical 586 
regions that are previously known to be involved in speech processing so as to avoid unnecessary 587 
computations. Specifically, from the automatic parcellation based on the Desikan-Killiany cortical atlas 588 
(Desikan et al., 2006), the following 19 labels were included: 'bankssts', 'caudalmiddlefrontal', 589 
'inferiorparietal', 'inferiortemporal', 'lateralorbitofrontal', 'middletemporal', 'parsopercularis', 590 
'parsorbitalis', 'parstriangularis', 'postcentral', 'precentral', 'rostralmiddlefrontal', 'superiorparietal', 591 
'superiortemporal', 'supramarginal', 'frontalpole', 'temporalpole', 'transversetemporal', 'insula'. Selected 592 
regions are visualized in Supplementary Figure S2. Vertices with BOLD time series varied across 593 
participants due to the variability of head sizes, individual acquisition volumes at each session, and 594 
movements across runs during sessions. Supplementary Figure S3 shows the overlap of selected 595 
vertices across participants. On average, 28,297 ± 3,748 vertices were selected per participant. 596 

4.6.2 Predictors 597 

We included as predictors (i) the durations of phoneme classes (vowels, nasals and approximants, 598 
plosives, fricatives and affricatives; Vo, Na, Pl, Fr, respectively), and (ii) the speech envelope (En). For (i), 599 
the onset time and duration of each phoneme were determined and then grouped according to phoneme 600 
class (Ladefoged and Johnstone, 2015; Shin, 2015) (see Supplementary Table S1). Bigram transition 601 
probabilities between phoneme classes (Supplementary Figure S4) were effectively altered by the 602 
quilting algorithm (Hotelling’s T2 between Original and Phoneme-quilts = 1563, P < 10-6 for English; 603 
Hotelling’s T2 = 1258, P < 10-6 for Korean). The durations of phoneme classes were modelled as box-car 604 
functions at the audio sampling rate (44.1 kHz) and were then down-sampled to 1/TR (1/1.2 = 0.833 Hz) 605 
following anti-aliasing low-pass filtering. To align with the slice timing correction applied to the BOLD 606 
time series, the resampled time points were also at the center of the TR. For (ii), the speech envelope was 607 
computed from a cochleogram (30 filters from 20 to 10,000 Hz, equally spaced on an equivalent 608 
rectangular bandwidth [ERB] scale) by raising the Hilbert envelope of the resulting cochleogram to a 609 
power of 0.3 to simulate cochlear compression and summing energy across all 30 ERB channels 610 
(McDermott and Simoncelli, 2011; Overath et al., 2015). The speech envelope was then down-sampled 611 
as for the phoneme class durations. 612 

The down-sampled predictors showed strong collinearity; the square root of the maximum eigenvalue 613 
divided by the minimum eigenvalue of the design matrix (i.e., the “condition index”) was 35, which is 614 
higher than a “diagnostic” criterion (> 30) for a “moderate” multicollinearity (Belsley, 1991). This was due 615 
to the high dependency between the vowel and the envelope predictors; the proportions of explained 616 
variance by the corresponding eigenvector (i.e., variance decomposition proportion; VDP) were 0.93 and 617 
0.99 for the vowels and the envelope, respectively. The collinearity patterns were similar across 618 
conditions (Supplementary Figure S5). The existence of multicollinearity motivated the use of a 619 
penalized regression. 620 
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4.6.3 Finite-impulse response modelling 621 

A FIR model was used to predict the BOLD time series at each voxel. In this approach, we modelled the 622 
neural response as a convolution of the predictors and a linear FIR filter, which is a commonly used 623 
approach in receptive field mapping of neural populations (Ringach et al., 1997; Wu et al., 2006). 624 

Consider a linear model for t time points and p predictors, 625 

𝐲	 = 𝐗𝛃	 + 𝛆, (1) 

where 𝐗 is a (𝑡 × 𝑝) design matrix (i.e., a FIR model), 𝐲 is a (𝑡 × 1) data vector (i.e., BOLD time series at 626 
a certain voxel), 𝛃 is a (𝑡 × 𝑝) unknown coefficient vector, and 𝛆 is a noise vector from a zero-mean 627 
Gaussian distribution with a serial correlation ε~𝒩(𝟎, 𝜎$𝛀) where 𝛀 is a (𝑡 × 𝑡) unknown covariance 628 
matrix and 𝜎$ is a scale factor. For the FIR modeling, the design matrix X consists of matrices of delayed 629 
features as: 630 

𝐗	 = 	 [𝑓! 𝑓" ⋯ 𝑓#] ∗ 𝐇(n), 631 

for p features and n delays as implemented in a convolutional kernel 𝐇(n) , while ∗  denotes the 632 
convolution operation. The actual features tested are explained in Model Comparison (Section 4.6.6). A 633 
Toeplitz matrix can be constructed for delayed features between time point 𝑡"	and 𝑡$ with n delays for the 634 
i-th feature as: 635 

𝑓$(𝑡1, 𝑡2) ∗ 𝐇(𝑛) 	= 	 6

𝑓$(𝑡!) 𝑓$(𝑡! − 1)
𝑓$(𝑡! + 1) 𝑓$(𝑡!)

… 𝑓$(𝑡! − (𝑛 − 1))
… 𝑓$(𝑡! − 𝑛)

⋮ ⋮
𝑓$(𝑡") 𝑓$(𝑡" − 1)

… ⋮
… 𝑓$(𝑡" − (𝑛 − 1))

:, 636 

where 𝑓%(𝑡) is the scalar value of the i-th predictor at time point t. In the current study, we delayed the 637 
predictors by 0, 1, …, 20 TRs (0, 1.2, …, 24 s). Once unknown coefficients (or weights) are estimated, an 638 
inner product 𝐗𝛃; is effectively a convolution of the i-th feature and the estimated filter. 639 

4.6.4 Model estimation 640 

While it is standard to pre-whiten the data when modeling autocorrelated noise for a Generalized Least 641 
Squares (GLS) solution (Aitken, 1936), here we did not pre-whiten the model. This is because even with 642 
autocorrelated noise, an Ordinary Least Squares (OLS) solution is still an unbiased estimator (only its 643 
efficiency is suboptimal) and because our goal was to estimate (predict) responses, not to infer 644 
significance. In particular, for the current data, GLS often yielded worse cross-validation prediction than 645 
OLS. Therefore, we empirically determined not to pre-whiten the model. 646 

As we detected a strong collinearity among the predictors, we applied L2-norm regularization to the 647 
OLS estimation of Equation (1), which is known as a ridge solution (Hoerl and Kennard, 1970): 648 

𝛃;(𝜆)  =  >𝐗𝐓 𝐗 + 𝜆𝐈@&𝟏 𝐗𝐓𝐲, (2) 

where 𝛃I(𝝀) is a vector of penalized estimates, 𝐈 is an identity matrix, and 𝜆 is a ridge penalty term. Note 649 
that predictors and responses were standardized (i.e., Z-scored) prior to fitting so that estimated weights 650 
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(betas) could be compared across models with different lambdas (Santoro et al., 2014). For the 651 
optimization of the hyperparameter 𝜆, we used a method called “ridge trace” (Hoerl and Kennard, 1970), 652 
which finds the smallest 𝜆 that returns “stabilized” normalized coefficients so that the bias introduced by 653 
𝜆 can be minimized (i.e., an optimal point in bias-variance tradeoff). To define stability, we used a criterion 654 
from Santoro et al. (2014). That is, for a given equation with p coefficients 𝛃	 = 	 M𝛽", 	𝛽$, . . ., 𝛽#P

& , we 655 
determined an optimal lambda 𝜆∗ from a set of non-zero, incremental lambdas {𝜆", 	𝜆$, . . . , 	𝜆(} as the 656 
smallest 𝜆 such that an increment of 𝜆 results in changes in all coefficient 𝛽S)(𝜆) smaller than 20% of their 657 
initial values 𝛽S)(𝜆") for all p coefficients: 658 

𝜆∗ = 𝜆:				∆𝛽D)(𝜆)/𝛽D)(𝜆!) < 0.2						∀𝜆 ≥ 𝜆∗, ∀𝑖 ∈ {1, 2, . . . , 𝑝}. (3) 

Since we used five features for four conditions and 21 lags, the total number of predictors p was 420 659 
in the current study. We used a range of lambdas from 100.5 to 1011 with multiplicative increment of 101/3, 660 
scaled by the number of predictors for the ridge trace method. 661 

4.6.5 Model validation 662 

We assessed the predictive performance of vertex-wise linearized encoding models via cross-validation 663 
(CV). The runs per session were split into a training set and a test set. Then the coefficients (betas) in 664 
Equation (2) and the hyperparameters (lambdas) in Equation (3) were estimated with the training set. We 665 
predicted the test set with the predictor weights estimated from the training set as: 666 

𝐲P*+ = 𝐗,-𝛃;,.(𝜆) (4) 

where subscripts ‘tr’ and ‘te’ indicate the training set and test set, respectively.  667 

We avoided leave-one-out-CV because of concerns regarding high variance due to the under-668 
representativeness of test sets (Hastie et al., 2009; Poldrack et al., 2020). Instead, we used 2-fold CV 669 
(odd runs and even runs were training and test sets in one fold, and vice versa in another fold). For each 670 
fold, training and test sets consisted of about 4,000 time points (12 runs for each), except participants 1 671 
and 8, whose runs were a total of 6 and 8, respectively. Time points between trials were excluded. We 672 
used Pearson’s correlation (r) between the predicted and measured BOLD time series as the performance 673 
metric. 674 

4.6.6 Model comparison 675 

Our first objective was to demonstrate that phoneme class information is encoded in the BOLD time 676 
series. This was achieved by comparing the prediction accuracies of models with and without phoneme 677 
classes. The design matrix of the full model with phoneme classes (Phon) and envelope (Env) while 678 
encoding all four conditions can be written as: 679 

𝐗/0123425,7 = [𝐂⊗ 𝐅/012-3425] ∗ 𝐇(n), (5) 

where C is a (𝑡 × 4) matrix of dummy predictors of four conditions as 𝐂 = [𝒄*+ 𝒄*, 𝒄-+ 𝒄-,], ⨂ is the 680 
Kronecker product operator, F is a (𝑡 × 5)  matrix of predictors of five features as 𝐅𝑷𝑬 =681 
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[𝒇01 𝒇23 𝒇+4 𝒇56 𝒇78], and 𝐇(n) is a kernel that imposes n delays. The subscripts denote the four 682 
experimental conditions (EP, English-Phoneme quilt; EO, English-Original; KP, Korean-Phoneme quilt; 683 
KO, Korean-Original) and features (Vo, vowels; Na, nasals and approximants; Pl, plosives; Fr, fricatives 684 
and affricatives; En, envelope). The Kronecker product with dummy predictors for conditions creates 685 
condition-specific predictors (5 features in each of four conditions, 20 in total), and the convolution 686 
produces a total of 420 predictors (20 predictors x 21 lags). 687 

For model comparisons, we created a reduced model without the Phoneme predictors and only with 688 
the Envelope predictor (84 predictors = 1 feature × 4 conditions × 21 lags) by replacing the feature matrix 689 
F in Eq. (5), which can then be written as: 690 

𝐗425,7 	= 	 [𝐂⊗ 𝐅425] ∗ 𝐇(n),  

where 𝐅𝐸𝑛𝑣 = T𝒇𝐸𝑛U. The null and alternative hypotheses for the encoding of phonemes can be formulated 691 
as: 692 

V
𝐻8: 𝔼(𝑟/0123425,73) ≤ 𝔼(𝑟425,7)
𝐻9: 𝔼(𝑟/0123425,73) > 𝔼(𝑟425,7)

,  

where 𝔼  is the expectation and r is the model performance with respect to Pearson’s correlation 693 
coefficient. In other words, H0 would be rejected if the prediction accuracy is greater in the full model 694 
than in the reduced model without phonemes, since this indicates that the addition of phonemes in the 695 
full model improves model performance. Otherwise, H0 can not be rejected. 696 

Similarly, we constructed another reduced model without the Envelope predictor and only with the 697 
Phoneme predictors (336 predictors = 4 features × 4 conditions × 21 lags) by replacing the feature matrix 698 
F in Eq. (5): 699 

𝐗/012,: 	= 	 [𝐂⊗ 𝐅/012] ∗ 𝐇(𝐧),  

where 𝐅<=>8 = [𝑓01 𝑓23 𝑓<? 𝑓@A]. The hypotheses for the encoding of the speech envelope can then 700 
be formulated similarly as outlined above. Note that in cross-validation, since the noise in the training and 701 
test sets is independent, an increase in model complexity by additional predictors does not necessarily 702 
lead to an increase of r (unlike overfitting to noise in the training set), unless the newly added predictors 703 
capture certain activity that is common to both training and test data sets (Hastie et al., 2009; Kriegeskorte 704 
et al., 2009; Varoquaux et al., 2017). 705 

Our second objective was to test the contributions of the Language (English, Korean) and Quilting 706 
(Phoneme quilt, Original) factors. This was again achieved by comparing the prediction accuracy r of a 707 
full model with a reduced model. As for the main effect of Language, we would need to compare the full 708 
model with a reduced model that does not capture the effect of language (i.e., the main effect of Language 709 
= (Language + Quilting) - (Quilting) = Language). Specifically, a reduced model only with quilting-specific 710 
predictors (“Quilting-only” model) was created by replacing the condition matrix C in Eq. (5) as: 711 

𝐗/0123425,; = T𝐂; ⊗𝐅/0123425U ∗ 𝐇(𝐧),  
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where 𝐂B = [𝒄+ 𝒄,] with dummy predictors for Phoneme quilt (𝒄+) and Original (𝒄,). Note that in 𝐂B, the 712 
English-Phoneme and Korean-Phoneme conditions would be modeled by a single dummy variable 𝒄+, 713 
and the English-Original and Korean-Original would be collapsed into 𝒄,. Similarly, for the main effect of 714 
Quilting, a reduced model only with language-specific predictors (“Language-only” model) was 715 
constructed by replacing the condition matrix C in Eq. (5) as: 716 

𝐗/0123425,< = [𝐂< ⊗𝐅/0123425] ∗ 𝐇(𝐧),  

where 𝐂C = [𝒄* 𝒄-] with dummy predictors for English (𝒄*) and Korean (𝒄-). The logic is again that, if the 717 
full model performs better than an alternative reduced model (e.g., Language-ignored model), the 718 
improvement in information encoding can be attributed to the ignored factor (e.g., Language). More 719 
specifically, if the true FIR kernel for the phoneme class vowels was different when listening to Korean vs. 720 
English, modeling them together with a common predictor would result in the loss of predictive power. 721 
Therefore, the difference between the full model and the Language-ignored model can be interpreted as 722 
a main effect of Language, while the difference between the full model and the Quilting-ignored model 723 
can be interpreted as a main effect of Quilting. We further estimated the interaction between Language 724 
and Quilting by comparing the effect of Quilting estimated from subsets of the data: English conditions 725 
and Korean conditions, separately. 726 

Statistical inference was computed via a non-parametric paired t-test using a cluster-based 727 
permutation test at group-level (Maris and Oostenveld, 2007). Specifically, r values of both models were 728 
calculated for each participant (N = 10), and then the difference between two models at each vertex was 729 
calculated. Next, the signs of differences across participants were flipped over all possible permutations 730 
(210 = 1,024) to form a null distribution. One-tailed P-values were computed from the null distribution as 731 
we would regard a decrease of prediction accuracy as a non-significant encoding of the information as 732 
well as non-significant changes of prediction accuracy. Note that the inference was computed at the 733 
group-level, not the subject-level. Even with overlapping models in nested models, it is possible that the 734 
prediction could worsen due to the penalization introduced by additional variables. Bootstrapped 95% 735 
confidence intervals were computed for r differences (10,000 bootstrapping). Vertex-wise multiple 736 
comparisons correction was applied via a cluster-based permutation test as implemented in 737 
ft_statistics_montecarlo.m in FieldTrip (v20180903)9 with a custom modification of clusterstat.m 738 
for a faster cluster identification through parallelization. In an earlier fMRI methodological study (Eklund 739 
et al., 2016), it was shown that a liberal cluster-forming threshold (CFT) in a cluster-level inference based 740 
on the random field theory resulted in a severely inflated family-wise error rate (FWER), whereas the 741 
permutation test showed a consistent, proper control of the FWER regardless of the choice of a CFT. A 742 
recent study formally showed that a CFT in permutation tests does not affect the FWER, but only the 743 
sensitivity (Maris, 2019). Thus, in the current study, clusters were defined by an arbitrary threshold of the 744 
alpha-level of 0.05 (for vertex-wise P-values) to improve the sensitivity, and the cluster-wise P-values are 745 
thresholded at the alpha-level of 0.05 to control the FWER at 0.05. 746 

4.6.7 Phoneme-class-specific effects 747 

 
9 http://www.fieldtriptoolbox.org/ 
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We further investigated the specific contribution of each phoneme class by comparing a full model with 748 
all phoneme classes (Eq. 5) with reduced models without a particular phoneme class. For example, a 749 
model without nasals would be 𝐗<=>8𝑵𝒂#D78E,GD = M𝐂⊗ 𝐅<=>8𝑵𝒂#D78EP ∗ 𝐇(𝐧) , where 𝐅<=>8𝑵𝒂#D78E =750 
[𝒇H> 𝒇<? 𝒇56 𝒇78]. From such comparisons, we constructed a (1 × 4) vector (“phoneme encoding 751 
vector”) of the changes of prediction accuracies for the four phoneme classes 𝒅	 =752 
	[∆𝑟H> ∆𝑟<? ∆𝑟IJ ∆𝑟56] at each vertex. From these vertex-wise vectors, a winner-take-all phoneme 753 
class map was created (at each vector with a significant prediction accuracy increase [cluster-P < 0.05] 754 
for at least one phoneme class). 755 

Subsequently, we tested whether the phoneme encoding vectors were modulated differentially by 756 
Language (English, Korean) and Quilting (Phoneme-quilt, Original). Specifically, for an interaction between 757 
Language and Quilting, we expected that a multivariate dissimilarity of phoneme encoding patterns 758 
between English-Original and English-Phoneme levels would be greater than that between Korean-759 
Original and Korean-Phoneme levels. Put differently, we expected the phoneme encoding patterns to be 760 
more similar (i.e., constant) between the Korean pairs than the English pairs. The corresponding null and 761 
alternative hypotheses can be expressed formally as: 762 

V
𝐻8: 𝔼(𝜉(𝒅4/ , 𝒅4=)) ≤ 𝔼(𝜉(𝒅>/ , 𝒅>=))
𝐻9: 𝔼(𝜉(𝒅4/ , 𝒅4=)) > 𝔼(𝜉(𝒅>/ , 𝒅>=))

  

where 𝔼 is the expectation and 𝜉 is a non-directional distance measure, either Pearson distance (1-r) or 763 
Euclidian distance (see Figure 5 for a schematic cartoon). Pearson distance is sensitive to (normalized) 764 
relative patterns of the vectors, but insensitive to absolute magnitudes. We therefore incorporated the 765 
Euclidian distance metric to characterize differences in magnitudes as well. We tested the difference 766 
between Language pairs via one-sample t-tests using the cluster-based permutation test as described 767 
above (Section 4.6.6). 768 

 769 

Figure 5. Schematic of the multivariate analysis on phoneme-class encoding vectors. 770 
(a) For each vertex, its [1x4] phoneme-class encoding vector was defined by the 771 
prediction accuracy changes when adding a particular phoneme class to the model 772 
for each of four conditions (two languages x two quilting conditions). (b) Distance 773 
metrics (Pearson or Euclidian) were computed within each language between the 774 
Original and Phoneme quilt conditions. (c) The difference in this distance metric 775 
between languages (English-minus-Korean; i.e., the interaction of Quilting and 776 
Language) was mapped back to the corresponding vertex (see Figure 3b-c). 777 
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 778 

For visualization, the 4-D phoneme encoding vectors were projected to a 3-D eigenspace using 779 
principal component analysis (PCA). The first three principal component scores (i.e., eigenvariates) were 780 
re-scaled between zero and one and mapped to RGB values, respectively. The vertex-mapped RGB 781 
values were interpolated on the triangular faces of the cortical meshes using MALTAB’s patch function. 782 
Note that the visualization is intended as an intuitive representation only; the actual comparisons were 783 
made on the scalar distance values comparing 4-D vectors. 784 

4.7 Data availability 785 

The data that support the findings of this study are available from the corresponding authors upon 786 
reasonable request.  787 

4.8 Code availability 788 

The computer code that was used for this study is available on the Open Science Framework repository10. 789 
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7 Supplementary materials 1077 

7.1 Supplementary figures 1078 

 1079 

Figure S1. Histograms of phoneme durations. The distributions of phoneme durations 1080 
in the Original natural speech (left) and the Phoneme quilts (right) are shown for 1081 
English (light blue) and Korean (lime green) in histograms (top) and smoothed density 1082 
functions (bottom). Non-linguistic segments (e.g., short pauses) and the last segment 1083 
of each stimulus file (could have been cropped to equalize durations of stimuli) were 1084 
discarded from calculation.  1085 

 1086 

 1087 

Figure S2. Regions of interest. From the automatic parcellation based on the Desikan-1088 
Killiany cortical atlas (Desikan et al., 2006) in FreeSurfer, the following 19 labels were 1089 
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included: 'bankssts', 'caudalmiddlefrontal', 'inferiorparietal', 'inferiortemporal', 1090 
'lateralorbitofrontal', 'middletemporal', 'parsopercularis', 'parsorbitalis', 1091 
'parstriangularis', 'postcentral', 'precentral', 'rostralmiddlefrontal', 'superiorparietal', 1092 
'superiortemporal', 'supramarginal', 'frontalpole', 'temporalpole', 1093 
'transversetemporal', 'insula'.  1094 

 1095 

 1096 

Figure S3. Overlap of selected vertices across participants (N = 10). The colored 1097 
histograms below display the number of vertices over the number of participants.  1098 

 1099 

 1100 

Figure S4. Transition probability between phoneme classes. Phoneme transitions 1101 
were counted as consecutive occurrences of four phoneme classes without taking 1102 
word boundaries into account, and cumulated over all stimuli for visualization. 1103 
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Transition probabilities are displayed from the i-th phoneme class (Vo, vowel; Na, 1104 
nasal; Pl, plosive; Fr, fricative) in rows to the j-th phoneme class in columns for the 1105 
four main conditions (𝐏𝐫(𝒋|𝒊) 	= 	𝑻𝒊,𝒋 ∑ 𝑻𝒊,𝒋𝒋⁄  where Ti,j is the number of transitions from i 1106 
to j).  1107 

 1108 

 1109 

Figure S5. Collinearity of predictors. Variance decomposition proportion (VDP, upper) 1110 
and pair-wise Pearson correlation (corr, lower) between predictive variables (Vo, 1111 
vowel; Na, nasal; Pl, plosive; Fr, fricative; En, envelope) are shown for all conditions 1112 
together (left-most column) and for each condition (EP, English-Phoneme; EO, 1113 
English-Original, KP, Korean-Phoneme; KO, Korean-Original) with conditional indices 1114 
(CI).  1115 

 1116 
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 1117 

Figure S6. Encoding of features and conditions in individual participants. 1118 
Unthresholded effect size maps (differences in Pearson correlation) are shown for (a) 1119 
Envelope, (b) Phonemes, (c) Quilting, (d) Language, and (e) the interaction of Quilting 1120 
and Language.  1121 
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 1122 

Figure S7. Low dimensional projection (3-D; RGB) of the phoneme-class encoding 1123 
vectors (4-D) using principal component analysis (PCA). (a) Eigenvectors (left) and the 1124 
explained variance (right) of the principal components. The first three components 1125 
explained >98% of the variance. (b) RGB visualization of the distribution of the first 1126 
three eigenvariates (i.e., factor loadings) in the 3-D eigenspace (left; each circle 1127 
represents a vertex) and the anatomical space (right). Eigenvariates were scaled from 1128 
0 to 1 to enable the use of RGB values for visualization. Vertices were selected for 1129 
significant encoding for any phoneme class (cluster-P < 0.05). (d-f) RGB visualization 1130 
of the distribution of the first three eigenvariates (i.e., factor loadings) phoneme-class 1131 
encoding vectors in each of the four conditions: (c) English-Original, (d) English-1132 
Phoneme quilt, (e) Korean-Original, (f) Korean-Phoneme quilt.  1133 

  1134 
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7.2 Supplementary tables 1135 
 Vowel Nasal/Approximant Plosive Fricative 

English AA, AE, AH, AO, 
AW, AY, EH, ER, 
EY, IH, IY, OY, 
OW, UH, UW 

L, M, N, NG, R, W, Y B, D, G, K, P, 
T  

CH, DH, F, JH, 
S, SH, TH, V, Z 

Korean A, AE, E, EO, EU, 
I, O, OE, U, WA, 
WAE, WE, WEO, 
WI, YA, YAE, YE, 
YEO, YI, YO, YU 

L, M, N, NG, R B, BB, D, 
DD, G, GG, 
K, P, T 

C, H, J, JJ, S, SS 

Table S1. Individual phonemes included in analysis for each articulatory phoneme 1136 
class. 1137 

 1138 
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