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CRISPR-VAE: A Method for Explaining
CRISPR/Cas12a Predictions, and an

Efficiency-aware gRNA Sequence Generator
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Abstract—
Motivation: Sizeable research has been conducted to facilitate

the usage of CRISPR-Cas systems in genome editing, in which
deep learning-based methods among others have shown great
promise in the prediction of the gRNA efficiency. An accurate
prediction of gRNA efficiency helps practitioners optimize their
engineered gRNAs, maximizing the on-target efficiency, and min-
imizing the off-target effects. However, the black box prediction
of deep learning-based methods does not provide adequate ex-
planation to the factors that make a sequence efficient; rectifying
this issue can help promote the usage of CRISPR-Cas systems
in numerous domains.

Results: We put forward a framework for interpreting gRNA
efficiency prediction, dubbed CRISPR-VAE, and apply it to
CRISPR/Cpf1. We thus help open the door to a better inter-
pretability of the factors that make a certain gRNA efficient.
We further lay out a semantic articulation of such factors into
position-wise k-mer rules. The paradigm consists of building an
efficiency-aware gRNA sequence generator trained on available
real data, and using it to generate a large amount of synthetic
sequences with favorable traits, upon which the explanation of
the gRNA prediction is based. CRISPR-VAE can further be used
as a standalone sequence generator, where the user has access
to a low-level editing control. The framework can be readily
integrated with different CRISPR-Cas tools and datasets, and its
efficacy is confirmed in this paper.

Availability and implementation: The source code will be
shared publicly upon acceptance.

Contact: ahmad.obeid@ku.ac.ae

Index Terms—CRISPR, Explainable deep learning

I. INTRODUCTION

THE usage of CRISPR-Cas systems for genome editing
has been gaining much popularity recently due to the

many applications which the technology enables in various
domains such as gene therapy and agricultural engineering
[1]–[4]. Such popularity motivated an advancement in the re-
lated research, particularly including many works towards the
prediction of guide RNAs (gRNAs) efficiency. In CRSIPR-Cas
systems, gRNAs locate DNA targets for the endonuclease to
cleave. When the DNA strands are being repaired, the process
results in random insertions/deletions or precise gene editing
that can be exploited for gene knockins [5]. The efficacy of
said process is thus a function of the used gRNA; predicting
it is important for a safe usage of CRISPR-Cas systems, in
order to ensure high on-target indel efficacy, and minimum
off-target effects. Additionally, the discovery of Cas12a, also
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Fig. 1. The latent space obtained by CRISPR-VAE, showing the seeds of the
synthetic data (dark points) bridging sequence-related gaps left by publicly
available data (light points). The cross-marks indicate the quadrant centroid

known as CRISPR from Prevotella and Francisella1 (Cpf1) as
an alternative endonuclease to CRISPR associated protein 9
(Cas9) in the CRISPR systems is an important development,
and introduces many favorable features. For example, Cpf1 is
shorter in size, requires a smaller CRISPR Ribonucleic Acid
(RNA) to function, and facilitates the re-engineering of the
desired DNA as the target, with the Protospacer Adjacent
Motif (PAM) remaining unaffected [6]. Additionally, Cpf1 has
shown better specificity in human and plant cells than Cas9,
and enables the editing of Corynebacterium glutamicum and
Cyanobacteria, which was not possible with Cas9 [5].

The methods used for gRNA efficiency prediction can
be alignment-based, hypothesis-driven, or learning-based [7].
Alignment-based methods rely entirely on locating the PAM,
in order to align the gRNA in the genome. Hypothesis-
driven methods score the aligned gRNAs by other contextual
factors. Learning-based methods train a prediction model that
can extract many hidden sequence-related factors. With the
continuous advancement in the area of deep learning, learning-
based methods have been showing high accuracy and a
promising performance at gRNA efficacy prediction. However,
these methods are still inadequately interpreted, and provide
little explainability to their predictions. Said explainability
is crucial for a better understanding of CRISPR systems,
and to explore the factors that make certain gRNAs lead to
higher on-target activities, and lower off-target effects. This
enables practitioners design better sequences, and analysts
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better diagnose their models’ decisions, which promotes the
application of genome editing in different domains.

Previous attempts have touched upon this research direction
[5], [7]–[9], but were faced with the two challenges of deficient
and incomprehensive data. The deficiency in the data is
represented by having relatively few sequences that belong
to specific efficiency categories. This, in turn, disallows the
establishment of statistically significant factors. As for the
incomprehensiveness of the data, we are referring to the case
where available datasets consist of an incohesive collection of
sequences that exhibit many sequence-related features, where
no clear connection can be drawn. This scatters the effort
of finding the features that are responsible for high editing
efficiency. In this work, we develop a framework that tackles
both problems simultaneously, as illustrated in Fig.1. More
concretely, publicly available data of CRISPR/Cpf1 activity
leaves sequence and structure-related gaps in a certain analysis
space (to be explained later), which we place a magnifying lens
over; manifested in the development of a sequence generator
dubbed CRISPR-Variational Autoencoder (CRISPR-VAE).

CRISPR-VAE is efficiency-aware, and is used to synthe-
size numerous sequences of high and low efficiencies. These
sequences are not arbitrary, but form a structured analysis
space that is meant to bridge said gaps left by the dataset,
and exhibits different sequence phenomena ordered in dif-
ferent locations in the space. As such, this produces more
comprehensive and plentiful data, upon which the discovery of
rules is based. Such a paradigm concentrates and magnifies the
search for efficiency-promoting factors. Finally, we predict the
efficiency of the synthetic sequences using the deep learning-
based predictor seq-DeepCpf1 which previously showed good
performance on the dataset [10]. As such, we establish an
agreement between two methodologically distinct frameworks:
a generative one and discriminative one, which increases the
confidence in the findings.

In summary, the contribution of our work is:
• putting forward a deep learning-based explainability

framework, which can be readily integrated with any
CRISPR-Cas dataset;

• developing methods that improve the statistical signifi-
cance of findings, and concentrates the search for them;

• semantically articulating the high-quality findings of the
mentioned methods in a suitable k-mer paradigm;

• developing the standalone sequence generator CRISPR-
VAE, which can generate sequences of high (or low)
efficiencies with low-level, position-wise features tailored
to the practitioner’s needs;

• demonstrating the correctness of findings by establishing
an agreement between a descriminative and a generative
method.

In the following, we will provide a literature review in
Section II for the related works in the themes of deep learning-
based prediction of gRNA efficiency and explainability. In
Section III, we will describe how a structured analysis space
is obtained, how an efficiency-aware gRNA generator is made,
and how the different sequence features are extracted. Finally,
we summarize the results of our experimentation, and mention
some concluding remarks in Sections IV and V.

II. RELATED WORK

The task of predicting a quantifiable quality assessment
of a gRNA sequence is realized through predicting its on-
target efficiency and off-target effects. In this vain, the ability
to flesh-out well-articulated rules that can be interpreted by
humans further helps practitioners decipher the genome code.
Consequently, researchers have been developing analytical
tools for the mentioned tasks, among which deep learning-
based tools have been showing special promise due to the
continuous advancement in the field [7], [10]–[14]. In spite of
that, the issue of interpretation in deep learning-based tools
towards the prediction of gRNA efficiency is still immature,
and such methods still lack strong explainability that can guide
the analysis in a meaningful fault-diagnosis direction.

In [10], the DeepCpf1 and seq-DeepCpf1 predictors have
been developed using Convolutional Neural Networks (CNNs)
and dense ones. Said predictors show an improved perfor-
mance in comparison to other classical methods. In [11], the
authors follow a similar path, but the support vector regression
(SVR) is used at the end to aid the CNN network, showing
some improvements in the performance. Nonetheless, both
proposed paradigms, which target the Cpf1 endonuclease, do
not provide any explainability for their prediction. Similarly,
the DeepCas9 [13] makes use of CNNs, DeepCRISPR [12]
aids them with an Autoencoder (AE) stage for unsupervised
representation learning, and the C-RNNCrispr [7] aids them
with a Recurrent Neural Network (RNN) for a better sequence
learning. All these methods and others have been developed for
the cas9 endonuclease. Moreover, DeepPE [14] was introduced
for the new tool of Prime Editing, also making use of CNNs.
Despite the versatility and prowess introduced to tackle the
task of gRNA efficiency prediction, most of such paradigms do
not tackle the issue of explainability, and deal with their pre-
dictors as black boxes. Additionally, there are various works
that employ deep learning for gRNA off-target prediction [15]–
[17], also suffering from the black-box behaviour of their
predictors.

On the other hand, the issue of explainability in deep
learning-based prediction of gRNA efficiency has been stud-
ied. For example, [7] studies an optimization of their model
score with respect to the inputted gRNA sequence, in order to
infer the most prominent features that maximize the efficiency.
A similar approach is also used in [18]. Contrariwise, some
works opt for classical machine learning tools that are easier
to explain [19], thus trading-off accuracy with explainablity.

Other attempts that employ statistical analysis of the avail-
able data to infer position-wise base preference rules [5], [8],
[9] are relevant, although they do not employ deep learning-
based methods for their rule inference. However, the main
issue with such methods is that they base the analysis exclu-
sively on the available data, which exhibits a few limitations.
Firstly, the available data is limited in quantity (i.e. class-
wise), despite publishing large datasets for both cas9 and Cpf1
endonucleases. For example, the available data on Cpf1 has a
small number of sequences with efficiency ≥ 0.99 or ≤ 0.05,
although having a large number of such greatly polarized
sequences is important to infer the most prominent rules
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Fig. 2. CRISPR-VAE architecture, shown to integrate the efficiency information at two stages: end of encoder, and beginning of decoder

to a statistically significant degree [20], [21]. More gravely,
the available data suffers from qualitative limitation. In other
words, the available data is usually scattered in a sequence-
cohesion sense, exhibiting different and distinct sequence-
related features. Each one of these features is also obscurely
represented in the data, making it difficult to discover them.
Theoretically, a quantitative comprehensiveness cannot be re-
alistically achieved. Instead, we seek to meaningfully expand
the data to signify the different features both quantitatively and
qualitatively. In this work, we focus on building a framework
that is well embedded in the deep learning paradigm, and that
can be generically applied to any CRISPR-Cas system, while
tackling the mentioned difficulties in the available data.

III. MATERIALS AND METHODS

In this Section, we will describe the three main components
of our proposed framework, which starts with the proposed
generative framework CRISPR-VAE and its advantages, then
describes the subsequent feature extraction procedure.

A. VAE for a Structured Latent Space

We start by describing the general paradigm of VAE, which
enables establishing a structured latent space, and the benefit
of the latter.

The illustration in Fig.1 demonstrates the core of the anal-
ysis paradigm. In contrast to previous attempts, the proposed
work aims to accentuate and distinguish the existing sequence-
related phenomena, and explore possible ignored ones in
their neighborhood. This necessitates establishing a structured
analysis space, for which we employ the VAE paradigm. The
analysis space is composed of numerous synthetic sequences,
that share a resemblance with the training data, and that are
systematically distributed over the space.

The generative process of the VAE starts by generating
latent variable z from the prior distribution pθ(z). Then, x
is generated (reconstructed) from the generative distribution
pθ(x|z). In this framework, parameter estimation is difficult
due to the intractability of the posterior. Alternatively, the
lower-bound of the log likelihood is used:

log(pθ(x)) ≥ −DKL(qφ(z|x) || pθ(z)) + Eqφ(z|x)[log pθ(x|z)]
(1)

where qφ(z|x) is an approximation for the true posterior
pθ(z|x), and DKL(. || .) is the KL-divergence. In our imple-
mentation, we use CNNs and dense layers for the realization
of both models pθ(x|z) and qφ(z|x) i.e. the encoder and de-
coder models, respectively, as shown in figure 2. Furthermore,
assuming a Gaussian latent variable, the empirical loss of the
VAE can be written as:

L = −DKL(qφ(z|x) || pθ(z)) +
1

L

T∑
t=1

log(pθ(x|z(t))) (2)

where z(t) is a sample drawn from the generative model i.e.
z(t) = gφ(x, ε), and ε ∼ N (0, 1) is used for the so-called
reparametrization trick [22].

The encoder model learns to project the sequences into
the latent space, assimilating them into a normal distribution,
where different sequence-related features occupy different
locations of the space. Nevertheless, the projected sequences
of the training data exhibit a non-cohesive latent space, leaving
certain gaps for exploration. As such, a systematic and struc-
tured sampling from the latent space for decoding will result
in the synthesis of novel sequences that resemble the original
data, and that fill in the left gaps, which provides a continuous
and smooth bridging between the different sequence phenom-
ena.

The shown latent space in Fig. 1 is two-dimensional (2D),
but the analysis can be extended to higher dimensions, giving
more prowess to the VAE architecture, and thus obtaining a
higher quality of reconstruction and synthesis, and a larger
amount of synthetic data. This comes over the expense of
a more complex analysis and a demand of higher storage
capacity.

The benefit of having a structured latent space is two-fold.
Firstly, we ensure that all phenomena existing and scattered
in the original data are parsed and highlighted. Secondly,
it was empirically demonstrated that the structured space
systematically distributes the different sequence phenomena
in its different locations (e.g., quadrants in 2D space). This
eases the analysis and search for efficiency-promoting features.
Additionally, this gives the sequence generator a low-level
capability of editing, where specific position-wise base pref-
erences are translated to sampling from different quadrants.
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Fig. 3. Filter for generating heat maps, according to equation (3)

Moreover, without a structured latent space for analysis,
exploring ignored potential phenomena in a comprehensive
manner would be too wasteful and demanding of resources,
with an estimated upper-limit complexity in the search space
of O(314) (assuming gRNA sequences of length 34, with
a known PAM of TTTV), where the vast majority of such
sequences would have no connection to the available data,
rendering the validation impossible. Instead, the proposed
framework enables the synthesis to be confined to sequences
that resemble the available data. In our implementation, we
sampled 10, 000 latent codes arranged in a grid of 100x100
which are decoded to synthetic sequences for subsequent
analysis stages.

To test the structure of the latent space, distance heat maps
have been constructed through the following:

Mapkij =
1

L

L∑
l=1

H(âij , b̂l), {bl : D(∞)(aij , bl) = δk} (3)

where i and j denote each point in the heat map, k denotes the
specific heat map that corresponds to the used δ, â = gφ(a, ε),
b̂ = gφ(b, ε), H is the Hamming distance, and D(∞) is the
Minkowski distance of order ∞. L denotes the number of
seeds in the latent space that satisfy the Minskowski distance
condition. A structured space is expected to exhibit heat maps
with values growing proportional to δ. For simplicity, the
generation of each map can be described as a convolution with
the filter in Fig. 3, with the multiplication operation substituted
by the Hamming distance, as described in equation (3), and
zeros indicating no operation.

B. CVAE for efficiency-awareness

In our implementation, we specifically follow the condi-
tional VAE (CVAE) paradigm inspired by [22], where we
condition on the efficiency score of each sequence. In this
Section, we will describe the needed change that grants
CRISPR-VAE its efficiency-awareness.

More concretely, equation (2) becomes:

LC = −DKL(qφ(z|x,c) || pθ(z|c)) +
1

L

T∑
t=1

log(pθ(x|z(t), c))

(4)
where we are conditioning the encoding, the decoding, and
the prior distribution on the efficiency information c. This

means that we obtain a separate latent space for each efficiency
category. In our implementation, we convert the efficiency
scores in the public data to integers, resulting in a 100 classes
(0− 99). Theoretically, this results in up to 100 latent spaces,
each consisting of 100x100 grid of sequences. However, we
confined the synthesis to classes 0-efficiency and 99-efficiency
to synthesize the most polarized sequences, in order to focus
on the most prominent and distinct sequence-related features
that set the high-efficiency sequences apart from their low-
efficiency counterparts.

Integrating the CVAE paradigm has two benefits. Firstly,
the available data provides efficiency measurements which
represent useful information to improve the quality of syn-
thesis and reconstruction of the VAE. Indeed, experimentation
showed that exploiting the efficiency information improves
the performance of the VAE, as will be shown in Section
IV. Secondly, exploiting the efficiency information of the data
makes the VAE efficiency-aware, and makes the synthesis of
the data tailored to the needs of the user (e.g., focused on the
high-efficiency sequences). Moreover, this enables us to prob
the agreement between the CVAE and existing descriminative
methods. In Section IV, we show that CRISPR-VAE and the
seq-DeepCpf1 predictor [10] have a strong agreement, and
thus increasing the confidence in the findings, without the
need for laboratory testing. Herein, another benefit of having
a structured latent space is apparent, where we can enforce a
resemblance between the synthetic data and the original data,
making seq-DeepCpf1 familiar with the synthetic data.

A final trick was employed to improve the quality of
reconstruction of CRISPR-VAE. Particularly, the first three
loci in the PAM of all sequences were removed, as they are
constantly TTT. It was observed upon experimentation that
the model finds reconstructing such motif as an easy way to
score highly in the objective function; avoiding it motivated
the model to rely on learning more interesting sequence-related
features that improve the quality of reconstruction, which had
a direct impact on said quality.

Fig.2 illustrates the CVAE paradigm. The one-hot-encoded
efficiency information is fed to the network at two concatena-
tion stages. The first stage, which comes after the first dense
layer, allows the efficiency information to be blended and inte-
grated with the sequence information via the subsequent dense
layers, and into the embedding of the code layer, establishing
the latent space. The second stage, which comes after the
code layer, allows the decoder to be a standalone efficiency-
aware sequence generator. The sampling layer employs the
aforementioned reparametrization trick to convert µ and σ to
the latent codes.

C. Data usage

As efficiency scores are used, it is applicable to split our
data into training and testing sets to confirm the generality of
our findings. We use the data provided in [10], where high-
throughput experiments were used to generate sets HT1, HT2,
and HT3. We use set HT1 for training, which consists of
∼16300 sequences, while sets HT2 and HT3 were used for
testing. These sets do not share any sequences, which excludes
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Fig. 4. Different regions in gRNA, with an example of two overlapping mer
windows of size 3 in the trunk region

any possibility of data leakage. We also applied data aug-
mentation by causing small perturbations in the promiscuous
region of each sequence in HT1 such that the efficiency scores
are likely maintained according to [9], resulting in ∼85,000
sequences to train CRISPR-VAE.

D. Feature Extraction

Having built CRISPR-VAE, one can synthesize numerous
sequences that exhibit the two main characteristics missing
from the original data: comprehensiveness and plentifulness.
What remains is to extract the sequnce-related features that
are responsible for the disparity in the sequences that belong
to 0-efficiency and 99-efficiency classes. To that end, two
methods were used to extract and articulate the most prominent
features explored in the synthetic data. The first one consists
of k-mer histogramming analysis to build Mer Significance
Maps (MSMs), and the second consists of visualizing class
activation maps (CAMs) [23] produced by a binary classifier
that distinguishes the high-efficiency from the low-efficiency
sequences.

Firstly, following [10], we define the three regions of seed,
trunk, and promiscuous, in addition to PAM, pre-PAM, and
post-seq regions, as shown in figure 4. In the first method, we
employ a moving overlapping window encapsulating k-mers
to segregate the feature extraction based on the position in the
gRNA sequence. This confers the analysis with the needed
contextual specificity. We chose the step size to be 1 base,
resulting in L−k+1 sub-regions for each parent region, where
L is the length of the region (e.g., Ltrunk = 12), and k is the
mer size. In this paper, we constricted the experimentation
to k = 3, but other options can be easily realized. Also,
we split the latent space into equal-sized locations (e.g., 4
quadrants in 2D space), where the histogramming takes place
independently. This is to highlight certain phenomena that may
otherwise be overshadowed by more prominent ones. It was
indeed observed that different sequence features are prominent
in different locations in the latent space.

After pooling in all possible features, we filtered them by
firstly setting an empirical significance threshold (η) where
features with frequency below this threshold are discarded
of. The threshold is chosen as m% (typically 7∼10%) of
the number of possible mers, multiplied by the number of
sequences under analysis (N ), as shown in equation (5).
N can refer to the whole set of generated sequences, or
only sequences in a specific quadrant. η is defined for each
quadrant, for each region in the gRNA, and for high-efficiency
and low-efficiency sequences, separately, albeit with a constant
m% throughout. Secondly, we discarded of features that are
simultaneously above the low-efficiency and high-efficiency

significance thresholds i.e. the common features between the
two classes. Moreover, we highlight some novel features that
are obscure in the training data, but are discovered due to
the mentioned benefits introduced by the synthetic data, and
are later found to exist in the testing data. In other words,
these features would have likely been ignored if the analysis
did not involve synthesizing sequences (i.e. similar to [5]),
alluding to the added generality conferred by the proposed
framework. We can thus point out the differences between
the proposed paradigm and that of [5] as introducing more
specificity by exploiting the hidden cohesion in the training
data, more sensitivity by highlighting possibly overshadowed
features, and more generality by discovering the neighborhood
of the real sequences.

η =
m

100
(L−K + 1) ∗N (5)

In the second method, we trained a binary classifier on
the synthetic data, and visualized the CAMs [23] for each
quadrant separately. Said CAMs are obtained by maximizing
the score of the binary efficiency classifier with respect to
the first convolutional layer. This results in attention maps
that visually describe the reason for the decision of the
classifier. We obtained such maps for the decision of all 99-
efficiency sequences, and averaged them. Such features can
be easily compared with their counterparts from the first
method, thus enabling testing the agreement between both
methods. Moreover, the two methods are complementary to
each other. The first method has a finer granularity in terms
of the location of the prominent features, while the second
is an automatic method that directly explains the decision
of the binary classifier. By looking at the results of both
methods, numerous features can be extracted, and a better
understanding of the composition of an efficient sequence
can be made. Finally, we use Welch’s t-test to evaluate the
statistical significance of the explored features. As such, we
include the p-values of observing a high-efficiency sequence,
exhibiting each of the explored features.

The full code of the methodology, including all filtering
stages, and all generated results is shared publicly.1

IV. RESULTS

We split the Results Section into two parts. In the first one,
we show results that confirm the efficacy of the proposed
paradigm. Secondly, we summarize the inferred sequence-
related features from the two methods mentioned in III-D.
Finally, we explain how CRISPR-VAE can be used as a
sequence generator, and the method by which users can control
the nucleotide content of their synthetic sequences from the
99-efficiency class.

A. Confirming the Validity of the Proposed Framework

We start by confirming that the constructed latent space
is structured. A structured latent space exhibits smooth tran-
sitioning between the different sequences, placing similar
sequences in each others’ vicinity. As such, when varying

1will be published upon acceptance
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Fig. 5. Results of heat maps generation by equation (3), with δ = {3, 11, 29}

δ (equation (3), a structured latent space should give heat
maps with values growing proportional to it. In Fig. 5,
δ = {3, 11, 29} in order to compare sequences with small,
medium and large separations. The shown heat maps are
for the class 99-efficiency sequences. Indeed, the heat maps
behave as expected from a structured space, with the smallest
values observed with δ = 3, and the largest with δ = 29.

Afterwards, in table I, we show that the utilization of the
efficiency scores is beneficial to the reconstruction quality of
the CRISPR-VAE. Eventually, this quality is reflected in the
synthesis of high-quality and reliable sequences upon which
the different rules are inferred. The quality of reconstruction
is measured as a percentage of the number of reconstructed
sequences with a certain number of reconstruction errors
in the different regions to the total number of sequences,
and the average number of reconstruction mistakes. It is
clear that including the efficiency information increased the
reconstruction quality, and decreased the average number of
reconstruction mistakes. Nevertheless, there is on average
13.54 reconstruction mistakes in the sequences of length 34.
This is a source of some error, which can be analysed in the
following results.

More concretely, Fig. 6 provides a pictorial agreement
assessment between the generative CRISPR-VAE and the
descriminative seq-deepCpf1 predictor. The figure shows the
prediction of the seq-deepCpf1 method on synthetic data
claimed to belong to classes 0-efficiency and 99-efficiency by
CRISPR-VAE. Ideally, the figure should exhibit two disjoint
peaks located at the two extremes of 0 and 99. The figure
indeed shows a tendency towards such behaviour, which can be
quantified by a Spearman’s correlation coefficient of ∼ 0.79.
In other words, according to seq-deepCpf1, most sequences
claimed for class 99-efficiency have higher efficiencies than
most sequences claimed for class 0-efficiency, which enables
the identification of the most prominent features that set the
two types of sequences apart. It is worth pointing out that the
reconstruction mistakes observed in table I are responsible for
the small divergence from the ideal case as described.

B. High-efficiency Features

Herein, we include Fig. 7 for a holistic summary of the
sequence-related features in different sequence regions and
quadrants in the latent space. Said features pass the filtering
stages and are significantly prominent in the sequences of class

TABLE I
COMPARISON BETWEEN CVAE AND VAE QUALITY OF RECONSTRUCTION

mistakes ≤ 2 in
the seed region

mistakes ≤ 10
overall

Average recon.
mistakes

CVAE 64% 19% 13.54
VAE 50% 0.2% 16.86

Fig. 6. seq-deepCpf1 [10] prediction on the synthetic data of efficiencies 0
(left) & 99 (right)

99-efficiency in contrast to sequences of class 0-efficiency.
Filtering with the significance threshold results in focusing on
the prominent features, and consequently having some empty
sub-regions in Fig. (7,c). The MSMs consist of cocentric
significance circles, whose radii are proportional to their
significance. The different regions are color-coded as per the
legend in Fig. (7,a). The discovered mers are scattered in the
MSMs based on their significance and position in the gRNA;
the larger the angle at which the mer is located, the more
down the gRNA stream the mer feature exists. For clarity, we
also segregated each region into three sub-regions separated
by dash lines. These sub-regions describe the beginning, the
middle, and the end of each region. In Fig. (7,c), we highlight
the significant features found in the synthetic data which are
obscure in the training data HT1, but are confirmed by the
testing data HT2 and HT3 by circling them.

Fig. 7 also provides a pictorial summary of the distinguish-
ing trends that set the two types of sequences apart using CAM
via a specialized classifier. The classifier learns to classify
the synthetic data to a near-perfect degree with only few
epochs (accuracy ∼95%, with 5 epochs), alluding to how
distinct the features in both categories are. We also include
Fig. (7,b) to show the benefit of segregating the analysis to
different quadrants in the latent space. Otherwise, the analysis
reveals an averaged version where only the globally prominent
features are highlighted while ignoring many other valid ones.
For example, the averaged summary in Fig. (7,b) reveals a
disfavoring of Thymine right after the PAM, which agrees
with the existing findings [5], but does not reveal much more
than that.

Many sequence-related features that result in high-efficiency
sequences can be inferred by looking at Fig. 7. We focus
especially on the features that are agreed upon by the two
methods of CAMs and MSMs. Firstly, Adenine is preferred
mainly in the promiscuous region, as shown in quadrants1
and 3 (Q1 and Q3), as shown in the CAMs, and confirmed by
some mers in the MSMs. Adenine therein especially prefers to
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Fig. 7. Summary of high-efficiency sequence-related features as MSMs and CAMs, showing the benefit of a quadrant-based analysis (c), as compared to
non-quadrant-based (b). The sequence regions are color-coded according to the legend in (a), and separated into three sub-regions (beginning→mid→end)
going counter-clockwise; the circled mers in (c) can be exclusively found from the synthetic data, and not the training data, alluding to the added generality
conferred by the proposed paradigm. In the MSMs, more significant features are closer to the center. Only the last nucleotide in the PAM is shown in the
CAMs.

TABLE II
THE P-VALUES OF OBSERVING A SEQUENCE OF CLASS 99-EFFICIENCY; CALCULATED FROM A BINOMIAL DISTRIBUTION WITH BASE PROBABILITY OF

0.253 .

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4
3-mer p-value 3-mer p-value 3-mer p-value 3-mer p-value

S-beg: GGT 1.35E-25 S-mid: CTG 2.14E-59 S-beg: CCA 1.37E-43 S-beg: GCC 1.81E-38
S-mid: ATG 2.32E-30 S-mid: ATG 1.07E-38 S-mid: CAT 5.72E-19 S-beg: GGG 5.86E-28
S-mid: GTG 1.06E-29 S-mid: TGC 2.13E-60 S-mid: GAG 1.35E-25 T-mid: CTT 8.41E-31
S-mid: TTG 2.84E-23 T-mid: CTC 3.04E-31 S-end: AGC 5.87E-53 T-end: CTG 2.84E-35
S-mid: TGT 5.80E-100 T-mid: GAT 9.56E-25 S-end: GCA 2.84E-23 T-end: GGT 1.89E-26
S-end: GTG 3.09E-66 T-mid: ATG 1.19E-60 T-beg: GCA 3.56E-28 P-beg: CTC 3.79E-60
S-end: GGG 5.86E-28 T-mid: TCA 9.65E-28 T-beg: ATG 5.72E-19 P-beg: CCC 3.76E-47
T-beg: AGG 5.06E-26 T-mid: TGC 2.28E-34 T-mid: CTC 9.65E-28 P-end: CGC 7.92E-29
T-beg: GCT 1.80E-33 T-end: CTG 2.57E-40 T-mid: TGA 8.94E-20
T-mid: CCT 5.06E-31 T-end: GTG 3.56E-28 T-mid: TCC 1.75E-29
T-end: CTT 3.85E-30 T-end: TGC 8.28E-26 T-mid: CCT 3.94E-32
T-end: TTC 4.11E-24 T-end: TGT 5.86E-46 T-end: CTA 4.11E-24
T-end: TCT 5.16E-41 T-end: TGG 8.28E-26 T-end: TAG 8.28E-26
P-beg: AAA 3.70E-56 T-end: GTT 6.57E-32 T-end: AGA 1.80E-33
P-beg: ACT 1.75E-23 P-beg: GGC 2.32E-30 P-beg: ACA 3.54E-95
P-mid: AAG 1.37E-48 P-beg: CCC 1.89E-26 P-beg: CCA 4.59E-23
P-end: AGC 5.02E-22 P-mid: GCG 2.16E-28 P-beg: TCA 1.44E-18

P-end: CGC 1.16E-55 P-mid: CAG 5.24E-67
P-mid: CAA 2.16E-28
P-end: AGC 5.57E-52
P-end: ATC 1.20E-22
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combine with Cytosine or Guanine in said region (e.g., AAA
and AAG in Q1, ACA and CAA in Q3).

As for Cytosine, it can be positioned everywhere in the
gRNA, albeit in different combinations depending on the
region, as revealed looking at the different quadrants. More
concretely, for Cytosine in to be in the seed region, it prefers
to combine with the TG pair (e.g., TGC and CTG in Q2), or
preceded by Guanine (e.g., AGC, GCA in Q3), or followed
by Adenine (e.g., GCA, CCA, CAT in Q3). As such, one
can conclude that a motif of TGCA is observed in the seed
region of efficient sequences. For Cytosine to be in the
middle towards the end of the trunk region, it prefers to
be combined with Thymine as observed in different mers in
various quadrants. As for the promiscuous region, Cytosine
prefers to either combine with Guanine (e.g., CGC, GCG in
Q2) or be followed by Adenine (e.g., ACA, CAG, CAA, CCA,
TCA in Q3).

As for Guanine, it can be placed at the beginning of the
seed region if followed by Cytosine as revealed in Q4 (e.g.,
GCC), or anywhere in the seed region if preceded by Thymine
or Adenine (e.g., TGT, TTG, GTG, ATG), or in the beginning
of the trunk region (e.g., AGG), as revealed in Q1.

Thymine makes an appearance in various places. It prefers
to combine with Cytosine in the middle towards the end of
the trunk region as revealed in Q1, Q3, and Q4. For Thymine
to be in the beginning towards the middle of the trunk region,
it prefers to be followed by Guanine (e.g., TGT, TGG, TGC,
GTG) as shown in Q2. Thymine is disfavored in the seed and
promiscuous regions, except as auxiliary bases in a few cases.

The aforementioned features and many others can be in-
ferred and summarized, particularly those that have been
revealed exclusively by the synthetic data. In the MSMs,
multiple such features are included, such as the TGT mer in the
seed region, ACT, CCC, and ACA in the promiscuous region,
and many other ones in the trunk region across the different
quadrants. These features exist in the testing data HT2 and
HT3, but are obscurely observed in the training data HT1.
This showcases the direct benefit of the suggested paradigm,
where it is possible to discover obscure features that lie in the
neighborhood of the prominent ones of the training data.

Moreover, table II provides the results of testing the statisti-
cal significance of the mers using Welch’s t-test. Naturally, the
table agrees with the MSMs, showing larger values for mers
closer to the center. Also, all features demonstrate extremely
small numbers (p-value � 0.05), since the suggested signifi-
cance threshold in (5) is more stringent than the threshold on
the randomness assumption in the hypothesis testing.

C. Controlled Sequence Generation
Finally, an additional benefit of the quadrant-based analysis

is that it enables low-level editing control in the sequence
generation. More concretely, the decoder shown in Fig. 2 is
a standalone, efficiency-aware sequence generator. The user
inputs in the efficiency score channel the desired efficiency,
and feeds in the latent code channel a 2D code from the
quadrant which exhibits certain wanted features.

For example, latent codes sampled from the right side of the
latent space (Q1, and Q4) exhibit more Guanine content in the

Fig. 8. The coordinates of the centroid of each quadrant decoded into a gRNA
sequence

seed region. Traversing to the left (Q2), the Guanine content in
the seed region decreases, and the Cytosine content increases.
Between Q1 and Q4, the former should be sampled from for a
seed region that has Guanine and Thymine, and the latter for
one that has Guanine and Cytosine. To control the beginning
of the trunk region, the maps in Fig. 7 reveal that Guanine
and Cytosine contents can be controlled as per the following.
For sequences with Guanine-rich in the beginning of the trunk
region, Q1 must be sampled from. Traversing downwards (Q4)
is the direction of the most increase in Cytosine and decrease
in Guanine; traversing left (Q2) has a similar effect but in a
lesser magnitude. As for the middle of the trunk region, codes
must be taken from Q4 for more Cytosine and Thymine, and
from Q2, for less Cytosine and more Guanine. Additionally,
more Adenine in the end of the trunk region can be obtained by
inputting codes from Q3. In the same region (trunk-end), the
Thymine content can be increased by sampling from Q1 (and
to a lesser degree from Q4), and the Thymine-Guanine pair can
be increased by sampling from Q2. Lastly, for more Adenine in
the promiscuous region, Q1 or Q3 must be sampled; the latter
emphasizes the Cytosine combination with Adenine. For more
Guanine-Cytosine in the promiscuous region, codes must be
taken from Q2.

In Fig. 8, we show the generated sequences that correspond
to 4 latent codes, each collected from a quadrant; specifically,
the coordinates of the centroid of each quadrant, as shown
in Fig. 1. In our analysis, the codes sampled from the latent
space are normally distributed, expanding from (-1.64, -1.64)
to (1.64, 1.64). Many of the above-mentioned traits can be
conspicuously seen in such sequences. This confirms the
low-level control capability of CRISPR-VAE as a sequence
generator.

V. CONCLUSIONS

In this paper, we developed a complete paradigm towards
improving the explainability of deep learning-based models
in the application of gRNA sequence efficiency prediction
in CRISPR systems. The paradigm consists of building a
generative framework where synthetic data is generated that
resembles labeled training data, and fills in the sequence-
related gaps in it. The agreement between the proposed genera-
tive framework and the descriminative seq-DeepCpf1 increases
the confidence in the findings, and also provides explainability
for the decision of the descriminative method. Two analysis
methods were used to infer and summarize the most prominent
features from the synthetic data. The first is a manual his-
togramming method, and the second is automatic, using class
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activation maps. Many features have been thus discovered
and highlighted, including particularly obscure ones that are
confirmed to be in the testing data. Lastly, we showcased the
capability of the proposed framework in generating gRNA
sequences, with a low-level editing control, by altering the
latent code. We further mapped out the relationship between
the position of the latent code and the expected features in the
generated sequence.
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