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Abstract 

The last quarter century of cognitive neuroscience has revealed numerous cortical regions in humans 

with distinct, often highly specialized functions, from recognizing faces to understanding language to 

thinking about what other people are thinking. But it remains unclear why the cortex exhibits this high 

degree of functional specialization in the first place. Here, we consider the case of face perception, using 

artificial neural networks to test the hypothesis that functional segregation of face recognition in the brain 

reflects the computational requirements of the task. We find that networks trained on generic object 

recognition perform poorly on face recognition and vice versa, and further that networks optimized for 

both tasks spontaneously segregate themselves into separate systems for faces and objects. Thus, 

generic visual features that suffice for object recognition are apparently suboptimal for face recognition 

and vice versa. We then show functional segregation to varying degrees for other visual categories, 

revealing a widespread tendency for optimization (without built-in task-specific inductive biases) to lead 

to functional specialization in machines and, we conjecture, also brains.  
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Introduction 

Although controversial for centuries1, the idea of localization of function in the human brain is now 

supported by overwhelming evidence. Many regions of cortex are selectively activated by a specific 

perceptual or cognitive task, and when disrupted produce selective impairment of that same task2–5. But 

it remains unknown, and indeed largely unasked, why the brain exhibits this high degree of functional 

specialization. One possibility is that functional specialization in the cortex is an accident of evolution, 

which can more easily add modules to solve new problems, than redesign an entire system from scratch. 

Another possibility is that functional specialization allows mental processes to be selectively modulated, 

whether over short time scales (attention) or longer ones (development). A third (nonexclusive) possibility 

is that functional specialization in the brain arises for computational reasons, with distinct brain regions 

arising only for tasks that cannot be solved with more generic machinery. Here we test this third 

hypothesis for one of the best-established cases of functional specialization in the brain: the visual 

recognition of faces2,6,7. 

Recent advances in deep convolutional neural networks (CNNs), which now achieve human level 

performance on some visual recognition tasks, allow us to test a prediction of our hypothesis8–10: If face 

recognition is functionally segregated in the brain because more domain-general visual representations 

simply do not suffice for this task, then the same should be true for any computational system, including 

CNNs. Prior work suggests that this may not necessarily be the case – CNNs optimized for generic object 

recognition transfer well to many other tasks11–14, including fine-grained discrimination within a category12. 

On the other hand, recent studies in other domains have found computational advantages of functional 

specialization in auditory processing15, and even spontaneous functional specialization for some high-

level cognitive processes16. Thus it remains unknown, and not a priori obvious, whether the task of face 

recognition necessarily requires its own specialized machinery in any computational system, whether a 

brain or a machine. Here we address this question by measuring face and object recognition performance 

in CNNs trained to classify faces, objects, or both, testing whether high performance on both tasks 
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happens only when distinct subsets of the network are allocated to each task. Note that in this work we 

do not address spatial segregation of function in particular locations in the brain, but the more general 

phenomenon of any functional segregation in which certain populations of units are more critical for one 

task than another, no matter where they reside spatially. 

We first test object-trained and face-trained networks on both face and object recognition. One 

possible outcome is that CNNs trained only on object categorization will suffice for accurate face 

recognition, as they do for fine-grained discriminations within some other categories12. This finding would 

show that face recognition need not in principle require a specialized face system, instead favoring other 

accounts of the segregation observed in primate brains. However, we find that networks trained only on 

objects perform poorly on face recognition, and much worse than face-trained networks, supporting the 

computational account of why humans have specialized face systems. That finding raises a second 

question of what – if anything – must be built into a network for such a specialized face system to arise. 

One possibility, following long-standing evidence for innate domain-specific learning mechanisms in 

animals, is that face recognition could be learned from experience only if scaffolded upon built-in face-

specific predispositions17 (such as an innate face template18). However, we find instead that face 

discrimination spontaneously segregates from object recognition in networks trained on both tasks, 

despite the lack of built-in face-specific inductive biases. This finding raises a third question of whether 

spontaneous task segregation in networks predicts the particular functional specializations observed in 

brains, or whether spontaneous task decomposition is a more pervasive property in networks. In fact, we 

find spontaneous segregation not only for faces, but also for other categories to varying degrees, 

revealing a general tendency for task segregation in networks, and opening the door to a wider 

investigation of the particular architectures, loss functions and training diets that determine which tasks 

will be segregated in networks, and by hypothesis also brains.  

Results 
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Networks trained only on objects do not perform well on face recognition 

To test whether object-trained CNNs suffice for face recognition and vice versa, we trained two randomly 

initialized VGG16 networks19, one on face identification (Face CNN; Fig. 1a in red) and one on object 

categorization (Object CNN; Fig. 1a in orange). We then asked how well the resulting feature spaces of 

each network trained on one task would support the other task, by decoding 100 held-out face and object 

categories based on the image representations (i.e., activation patterns) in the penultimate layer in each 

network (Fig. 1b). As expected, novel (i.e., untrained) face identities could be decoded accurately from 

the face-trained network (mean decoding accuracy: 82.2%) and novel objects could be decoded from the 

object-trained network (74.1%). However, the object-trained network performed significantly worse 

(29.3%) at face recognition than the face-trained network (p=3.72e-11, two-sided paired t-test), and vice 

versa for object recognition (Face CNN: 17.3%; p=1.82e-12, two-sided paired t-test). Thus, 

representations learned for one task do not readily transfer to the other—each task appears to benefit 

from specialized task-specific representations.  

 
Figure 1 | Distinct face and object representations in singly-trained CNNs, while a dual-task CNN performs well. (a) 

Three networks with VGG16 architecture were optimized, one on face identity categorization (Face CNN in red), one on object 

categorization (Object CNN in orange) and one on both tasks simultaneously (Dual-task CNN in gray). (b) Decoding accuracy 

of held-out face identities and held-out object categories using activation patterns extracted from the penultimate layer of the 

Face CNN and the Object CNN. The Face CNN outperforms the Object CNN in face decoding, and vice versa for object 

decoding. Thus, the representations optimized for each task do not naturally support the other. The dashed gray line indicates 

chance level (1%). Error bars indicate SEM across classification folds. (C) A dual-task CNN optimized on both tasks performed 

as well as the separate networks (% Top-1 accuracy on the test set). Error bars denote 95% CI bootstrapped across classes 

and stimuli. 
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Spontaneous segregation for faces and objects in dual-trained networks  

But might training a single network to perform both tasks discover a common high-performing feature 

space for faces and objects? To address this question, we trained a new network on both face identity 

and object categorization (Fig. 1a in gray)15. Surprisingly, this dual-task network performed nearly as well 

on each task as the network trained on that task alone (Fig. 1c). One interpretation of this result is that 

the network discovered a common feature space to solve both tasks, arguing against the hypothesis that 

specialization of function is required for high task performance. However, another possibility is that the 

network learned to segregate itself into two separate systems, one for face recognition and the other for 

object recognition, even though nothing was built into the network architecture or training regime to force 

it to do this.  

To test this possibility, we performed a series of lesion experiments on the last convolutional layer 

(i.e., the final layer of feature extraction) of the model (Fig. 2a). First, we identified filters important for 

face recognition by measuring how ablating each filter (i.e., setting its output to zero) affected the loss for 

batches of face images (Fig. 2a, top panel) or object images (Fig. 2a, bottom panel) from the training set. 

We then ranked the filters according to their associated loss on each task. (Ranking by the selectivity of 

their response to faces or objects was less informative; see Supplemental Note 1.) Using a greedy 

procedure, we first selected and dropped the highest-ranking group (~1.6%) of filters for each task, then 

selected the next highest-ranking group from the remaining filters in similar fashion but on novel batches 

of images. We repeated this process until there were no remaining filters left, resulting in all filters being 

ranked for their importance on each task (see Methods). Next, we tested the task specificity of this final 

ranking by lesioning the filters that most affected performance of one task (e.g. highest-ranking face 

filters) while measuring performance on the independent validation set for the face and the object task.  

This analysis revealed that lesioning the 20% highest-ranking face filters strongly impairs 

performance on the face task, but only minimally impairs performance on the object task, and vice versa 

for the highest-ranking object filters (Fig. 2b). These findings demonstrate a double dissociation in the 
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network: face and object tasks rely on distinct features in the last convolutional layer. That is, the network 

spontaneously segregated itself into distinct subsystems for face and object recognition, despite the lack 

of any task-specific inductive bias that might have encouraged this outcome. 

 

Figure 2 | Lesion experiments in the last convolutional layer reveal spontaneous task segregation. (a) Schematic of 

lesion experiments for the last convolutional layer in VGG16. Each filter in the layer was ablated while measuring the loss to 

batches of face (top panel) and object (bottom panel) images. The filters were rank ordered by their corresponding losses to 

determine those that contribute most to face (red) or object recognition (orange). (b) Normalized performance of face and object 

tasks after lesioning the 20% highest-ranking filters for the face task (top) and the object task (bottom) in the last convolutional 

layer. Error bars denote 95% CIs bootstrapped across classes and stimuli.  

Task segregation increases across layers, like the brain 

How is this task segregation built up over layers of the network? In primate brains, processing of visual 

categories appears to share an initial set of common features in early stages of processing (retina, LGN, 

V1, V2, etc.), followed by branching into subsequent category-specific pathways (e.g., face, body, scene, 

etc.). Might dual-trained CNNs exhibit a similar organization? To test this possibility, we performed the 

same lesioning analysis in each convolutional layer individually (Fig. 3a). To quantify functional 
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segregation, we defined a combined task segregation index. We defined task selectivity as the 

proportional drop on a given task (e.g. face task) when dropping any given group of filters together minus 

the proportional drop on the other task (e.g. object task) when the same group of filters are dropped, 

normalized by the sum of the two. We computed a face selectivity index and object selectivity index when 

the top-20% face-ranked and the top-20% object-ranked filters were dropped, respectively. The average 

of these two selectivity indices served as our combined task segregation index (see Methods). This 

segregation index is bounded between -1 and 1 where 1 indicates maximum segregation (e.g., lesioning 

filters would only impact the given task but not the other), 0 indicates no segregation (e.g., lesioning 

would impact both tasks equally) and -1 indicates inverse segregation (e.g., lesioning filters would only 

impact the other task but not the given task). An index of 1/3 indicates that the decrement in performance 

of the corresponding task is at least twice as large as of the other task.  

Indeed, we found that task segregation was small in early layers and increased with later layers, 

exceeding 1/3 for the first time at layer Conv6 (p=0, bootstrap test) and reaching 0.75 by Conv13 (see 

Fig. 3a). These results indicate that the processing of faces and objects gradually diverge at middle 

stages of processing in the network, and become highly segregated at later stages, much as we see in 

the primate brain.  

 

Figure 3 | Spontaneous segregation of face and object tasks in mid-level processing stages. (a) Task segregation, 

measured as combined index of the differences in proportional drops in performance on the face and object task, when the 20% 

highest-contributing filters are dropped in each convolutional layer. Task segregation increased after the first convolutional layers 
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to a maximum index of 0.75. Shaded area represents 95% CIs bootstrapped across classes and stimuli. (b) Images optimized 

to drive responses in 3 example filters among the top-10 selected filters for the face (left) and the object (right) task in 

convolutional layer 5, 9 and 13 (rows). The size of the receptive fields increases and features become more task-specific in later 

layers.  

The analyses above indicate that the network has effectively assigned some filters to the face 

task and other filters to the object task. But what features are these filters extracting? To find out, we 

visualized the preferred stimulus for each filter by presenting the network with a random noise input and 

modifying this input so as to maximize the activation of filters that ranked high on the face or the object 

task (Fig. 3b). While filters in early layers (e.g., Conv5) showed similar features across tasks, filters that 

were ranked high for the face tasks maximally responded to features that appear somewhat like face 

parts (e.g., nose, eyes) in mid-level layers (e.g., Conv9) and that appear to represent faces in a more 

holistic manner in late convolutional layers (e.g., Conv13). In contrast, object-specific filters were 

maximally activated by features and patterns that appear more generic, such as triangular shapes. These 

results show the development across the processing hierarchy of the distinctive features that each task 

relies on. 

Functional segregation does not arise for random tasks or distinct datasets for the same task 

So far, we have shown that the double dissociation in primate brains between face and object recognition 

is recapitulated in CNNs optimized for both tasks, even though we did not build in any specific inductive 

bias to encourage the networks to discover this segregation. But perhaps the spontaneous segregation 

we found does not reflect task decomposition in any interesting sense, but would be found for any pairs 

of tasks, no matter how trivially they differ from each other. To test this possibility, we performed a control 

analysis to test whether a similar segregation would be found for random tasks. Here we randomly 

assigned 50% of the face and 50% of the object classes to a random task A, and the remaining face and 

object classes to task B (Fig. 4a). We then performed the same lesioning analysis based on these random 
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tasks in the last convolutional layer (where we found strongest segregation for face and object tasks). 

We found no evidence of segregation based on these random tasks (Fig. 4b).  

The combined task segregation index was 0.01 (not significantly different from zero, p=0.596, 

bootstrap test), meaning that lesioning filters ranked highly on task A equally impacted performance on 

task A and task B, and vice versa. These results indicate that segregation does not develop for arbitrary 

tasks, but instead the network learns features that are specific to the face or object task, and that 

generalize across classes within – but not outside – each domain. 

 

Figure 4 | No segregation for random tasks. (a) Schematic of randomly assigning 50% of the face and 50% of the object 

classes to new tasks A and B. Each filter in the last convolutional layer was ablated while measuring the loss to batches of 

images belonging to task A or task B. Using a greedy procedure, the filters were rank ordered by their corresponding losses to 

determine those that contribute most to task A or task B. (b) Normalized performance of tasks A (dark gray) and B (light gray) 

after lesioning the 20% highest-contributing filters for task A (left) and task B (right) in the last convolutional layer. Performance 

decrement through lesioning was smaller than for the original tasks (Fig. 2b) and affected both tasks equally. Error bars denote 

95% CIs bootstrapped across classes and stimuli.  

Could the functional segregation between tasks be explained by low-level differences or image 

collection biases in datasets? If low-level differences in tasks drive segregation, we would expect to find 

segregation starting in early layers of the network, where such low-level features are typically processed. 

However, in the layer-wise analysis of segregation above, segregation is minimal in the initial stages, 

only beginning to emerge at mid-level stages, suggesting that common low-level features are important 
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for both tasks. Alternatively, each task might rely on distinct features, but impairment of these features in 

early layers might have less effect on performance. To distinguish between these two possibilities, we 

complemented this analysis with an analysis of how many of the top-20% ranked filters are shared 

between tasks (i.e., filters that ranked high on both tasks) in each layer. We found that the proportion of 

shared top-ranked filters across tasks was initially high, but strongly decreased with progressive layers 

(Supplementary Note 2), suggesting that the same filters contribute to both tasks in earlier layers, but 

each task relies on a distinct set of features in late layers. To further test whether low-level biases in 

datasets can drive segregation, we asked whether segregation can arise for the same task performed on 

two different image datasets. We found only a small degree of segregation in this case (Supplementary 

Note 3). Taken together, these control analyses suggest that the high degree of functional segregation 

we found for faces and objects is not due to simple dataset biases or low-level differences, but is instead 

driven by the distinct mid- to high-level visual features required for each task. 

Functionally segregated networks capture human behavior on faces and objects 

Our findings of task segregation for faces and objects in dual-trained CNNs mirror the functional 

specialization observed in the human visual system. But are the learned feature spaces to perform both 

tasks also similar to the human visual system? Neural responses in task-specific areas for face and object 

processing have previously been linked to primate perceptual behavior in these tasks4,20,21. Are the 

learned representational spaces for faces and objects in the dual-trained network similar to those 

revealed in human behavior, and more so than the separate models optimized for only one task? To find 

out, we ran two behavioral experiments measuring the perceived similarity of pairs of face stimuli and 

pairs of object stimuli. For each task, we correlated the behavioral representational dissimilarity matrices 

(RDMs) of each subject for the corresponding stimuli with the RDMs obtained from each layer of the face-

trained CNN (red), the object-trained CNN (yellow) and the dual-task CNN (gray) (Fig. 5). We found that 

the face-trained CNN was more similar to human face behavior than the object-trained CNN, and vice 
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versa for object behavior, revealing a double dissociation. Importantly, each layer of the dual-task trained 

network matched behavior as well as or better than each of the singly-trained networks. These results 

show that the dual-task network captures human behavior in both face and object tasks, thereby 

supporting the conclusion that the learned solutions to perform both tasks resemble those in the human 

visual system. 

 

Figure 5 | Dual-trained CNN is most correlated with behavior. Correlations between behavioral representational dissimilarity 

matrices (RDMs) for either face (left, n=14) or object (right, n=15) stimuli and layer-specific RDMs obtained from activation 

patterns in the Face CNN (red), the Object CNN (in yellow), and the dual-task CNN (in gray) to the corresponding stimuli. Color-

shaded areas denote bootstrapped SEM across subjects. Gray-shaded horizontal bars indicate estimated noise ceiling based 

on the variability across subjects.  

Varying functional segregation for other visual categories 

Thus, CNNs optimized for both face and object recognition, but with no domain-specific inductive biases, 

recapitulate both the double dissociation between face and object processing observed in the human 

brain, and the representational spaces for faces and objects revealed in human behavior. But are faces 

“special”, or might we also see spontaneous segregation of networks for the recognition of other 

categories (e.g., food, cars)? Note that we focus here on “natural” categories (i.e., those that frequently 

occur in the human visual diet) as we do not expect to find segregation in the human visual system for 

tasks that are not relevant to humans. One possibility is that only certain tasks are computationally distinct 

enough that they need their own separate processing mechanisms, and it is only these tasks that 
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spontaneously segregate themselves in networks. Perhaps we could even “predict” which functions will 

be segregated in the cortex from the functions that spontaneously segregate themselves in networks. 

However, another possibility is that networks have a default tendency to segregate most natural tasks 

into distinct subnetworks. This might suggest that in brains too, functional segregation might be expected 

for most natural tasks that are important to us (or were important to our evolutionary ancestors). In that 

case our results would provide an explanation for why functional segregation is found in brains, but not 

for the particular functional specificities observed in the brain (e.g., for faces, places and bodies, but not 

for categories of similar evolutionary and modern-day relevance such as food22).  

To test whether task segregation is found in networks even for natural tasks that have not been 

found to show segregation in the brain, we performed the same lesioning analysis on a dual-task network 

trained on visual food and object categorization (Fig. 6a). While food and objects showed weaker 

segregation than faces and objects in mid-level layers conv7 to conv9 (all p=0, bootstrap tests, fdr-

corrected for number of layers), both networks showed similar degrees of segregation in the last 

convolutional layer (combined segregation index = 0.8 for food and objects; p=0.184, bootstrap test; fdr-

corrected; Fig. 6b, green). Thus, spontaneous task segregation in networks predicts some specializations 

that have not been found in the brain. One potential explanation might be that food discrimination relies 

more on texture, while object categorization relies more on shape, and the “food” system is really a texture 

system in disguise23. Would another task that also requires fine-grained discrimination like face 

recognition, but that relies more on shape features, also show functional segregation? To test this idea, 

we trained a dual-task network on object recognition and car model/make discrimination (more fine-

grained than most humans can perform). Interestingly, the car task showed later segregation than face 

and food tasks, exceeding a combined segregation index of 1/3 for the first time in layer conv9 (Fig. 6b, 

blue; p=0.013, bootstrap test, fdr-corrected). Moreover, while the degree of segregation in the last 

convolutional layer was still relatively high for objects and cars (max. combined segregation index = 0.56), 

it was significantly lower than for faces or food from layer conv3 onwards (all p=0, bootstrap test, fdr-
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corrected for number of layers and networks). Thus, CNNs show a widespread tendency to 

spontaneously segregate natural tasks to varying degrees, at least when half of their training is on that 

task, although their precise match to the brain needs to be further explored. It may turn out that all 

functional segregations found in the brain will also be found in CNNs, but the opposite may not be the 

case. Indeed, further investigation of the necessary conditions for spontaneous task segregation in 

artificial networks might reveal which factors determine the particular functional specificities observed in 

the brain24.  

 

Figure 6 | Spontaneous segregation to varying degrees for food or car recognition. (a) In addition to the dual-task model 

for face and object tasks (red), we trained one dual-task model on food (green) and object categorization, and another one on 

car (blue) and object categorization. (b) Task segregation was measured by lesioning the most-contributing filters for faces, 

food, and cars (respectively) and objects in each convolutional layer. Task segregation was found for all tasks to varying degrees. 

Task segregation for cars and objects increased later and to a lesser degree than for food or faces and objects. Color-shaded 

areas denote 95% CIs bootstrapped across classes and stimuli.  

Discussion 

Our goal in this work was to understand why functional specialization is such a pervasive feature of brain 

organization, and to test the hypothesis that specialization in the brain may result from optimization (over 

development or evolution or both) for multiple natural tasks. This hypothesis predicts that even very 

different computational systems, with very different optimization procedures, may arrive at a similar 

solution10. We tested this prediction in CNNs for one of the best-established cases of functional 
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specialization in the brain: face recognition. Supporting our hypothesis, we found that CNNs trained on 

object recognition perform poorly on face recognition and vice versa, and that CNNs trained on both tasks 

spontaneously segregate themselves into distinct subsystems for face and object recognition. We further 

showed that the dual-trained network also fits human perceptual behavior better than does either singly-

trained network. And finally, although spontaneous network segregation is not found for trivially different 

tasks (like random tasks or the same task performed on two different data sets), it is found for other 

natural tasks including those for which brain specializations have not been reported. Taken together, 

these findings indicate that spontaneous task segregation is a widespread tendency in systems optimized 

to perform multiple natural tasks, lending support for the hypothesis that functional segregation in brains 

may reflect a computational solution given the structure of the tasks brains must solve.  

Our findings also have implications for face perception in particular. Our results show that it is in 

principle not necessary to appeal to the social significance or meaning of faces to humans to understand 

how the face system develops or how it represents faces25. Our networks know nothing about why faces 

matter to humans; faces are just visual patterns to classify. And yet the networks “discover” the same 

functional dissociation between faces and objects that has long been reported in the human brain, and 

they “discover” a similar representational space for faces to that revealed in human behavior. These 

findings suggest that these properties of the human face perception system may result more from the 

computational structure of the task itself, than from the particular meaning faces have for humans. Of 

course, the networks used in our study could not achieve this performance on face recognition without 

extensive training on faces, which may also be true for minds26,27 and brains (but see28–30). To obtain this 

experience, networks would either need to be fed this information (as they were here), or if trained on 

more naturalistic data sets they may need some system to preferentially select faces for their own training 

input. For humans, faces indeed comprise a large percent of the perceptual input to human infants and 

adults31–33, and this has likely been true during much of human evolution. Indeed, it may be that the only 
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inductive bias humans need to develop their face system is the already well-established early preference 

of infants to look at faces34,35. 

Several limitations of this work should be noted. First, when we say a system has been optimized, 

that does not mean it is optimal. We have tested only a tiny subset of the possible architectures, data 

sets, and loss functions, and it remains possible that in some other corner of this large space a neural 

network could be found that will perform as well as the networks tested here and that may find a shared 

representational space for faces and objects. Thus we cannot argue that our results indicate that the 

human brain must segregate face and object processing to attain high performance on both – simply that 

under the circumstances we tested, we found segregation, resembling what we see in the brain. Second, 

the present work is agnostic on whether specialization in the brain is constructed through optimization 

over development or evolution or both. We trained CNNs to ask how they are functionally organized once 

optimized, not to ask how that optimization occurs. How this segregation arises in humans is bound to 

be very different from how it arises in CNNs trained with backpropagation. Third, this work does not 

address the spatial organization of functionally specialized systems in the brain, as the units and filters 

in the networks trained here have no analogue to location on the cortical sheet. These broader questions 

can be approached in future work using networks that explicitly model spatial topography36,37 and that 

are trained in a fashion more like human development38.  

Finally, while our findings support a computational account of why functional specialization is 

found at all in brains, they do not yet accurately predict which mental functions should have specialized 

machinery in human brains. We find functional specialization for visual categorization of food in networks, 

but this has not been found in brains, despite the extensive interest and experience all of us (and our 

ancestors) have with visual discrimination of food. One possibility is that a visual specialization for food 

does in fact exist in brains, but at a finer spatial grain than current methods can detect. Another possibility 

is that the particular functional specializations found in CNNs might more closely match that found in 

brains for more brain-like architectures, training diets that more closely match human visual experience 
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(e.g., our visual diet unlikely consists of 50% food), or different training regimes such as unsupervised or 

self-supervised loss functions39–41. A third possibility is that task-specific inductive biases need to be 

included in networks to match the particular specializations found in brains. Network optimization with 

and without task-specific inductive biases might help reveal which functional specializations rely on 

inductive biases in the brain17 and which do not.  

Our findings dovetail with several prior lines of work. A few studies have shown performance 

advantages when branches are built into a network, with each branch trained on a different task, 

indicating an advantage of functional specialization15,42,43. Other studies have shown that even if each 

branch is not trained separately on a different task, the branches sometimes spontaneously differentiate 

themselves40,44–46. Separate functional responses can even arise in subsets of a network with no built-in 

branches47,48. Most impressively, one study found that the functional segregation that arose 

spontaneously in a network reflected distinct causal roles of each subnetwork in performance of different 

tasks16. Specifically, the authors in that study trained a RNN on twenty different cognitive tasks, and found 

that recurrent units developed into clusters, such that lesioning units in each cluster produced deficits in 

different subsets of the 20 tasks. Although it uses much simpler networks and tasks, this study mirrors 

our finding of spontaneous segregation of a network into distinct components, each causally engaged in 

a subset of the trained tasks. Lastly, several studies reported functional specialization for class-specific 

features using visualization techniques and lesioning methods49,50. While it has been proposed that class-

specific units harm networks’ generalizability51, our control analysis using random tasks suggests that the 

emerging functional segregation is not class- but task-specific.  

Perhaps the most exciting aspect of this work is the fact that we can move beyond simply 

describing the organization of the brain, to asking normative questions about why the brain is organized 

the way it is. We now not only have strong evidence that face processing is segregated from object 

processing in the brain, we have an understanding of why this might be the case: functional segregation 

is a natural consequence of optimization to solve multiple tasks. The stage is now set, and the methods 
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are now in place, to tackle a suite of further why questions. Which visual categories require segregation 

and why these? What functional segregations are expected for domains other than visual classification? 

Should we expect to find functional segregation of rhythm and melody in music perception, or syntax and 

semantics in language understanding, based on the computational structure of these tasks? Network 

optimization and dissection provide powerful methods to tackle these10 and myriad other questions about 

why the brain is organized the way it is. 

Methods 

Task-optimizing CNNs on face and object recognition 

To measure object categorization performance in a network trained on object categorization only (Object 

CNN), we trained a randomly initialized VGG16 network19 on 423 manually sampled categories of the 

ILSVRC-2012 database52. To avoid confounding the object task with scene or body categorization, for 

which segregation has also been found in the brain, we removed all categories from the original dataset 

that were scene-like (e.g., boathouse) or animals which include lots of bodies (and faces). We then 

manually chose categories that were prototypical objects (e.g., trumpet, hammer, coffee cup) from the 

remaining categories. For each of the 423 selected object categories, we used 1000 images for training 

and 200 for validation, for a total of 423,000 training and 84,600 validation images. We used similar 

training parameters as suggested in the original VGG paper19: stochastic gradient descent (SGD) with 

momentum with an initial learning rate of 10-3, a weight decay of 10-4 and momentum of 0.9. We manually 

reduced the learning rate twice to 10-4 and 10-5 when the training loss did not decrease for five epochs 

(i.e., full passes over the training set). To update the weights during training, we computed the cross-

entropy loss on random batches of 128 object images and backpropagated the loss. Each image was 

scaled to a minimum side length (height or width) of 256 pixels, normalized to a mean and standard 

deviation of 0.5, and data augmentation (i.e., 20% gray-scaled, randomly cropped to 224 x 224 pixel) 

was applied during training. The test images were scaled, normalized and center-cropped before 
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extracting the classification. The resulting classification accuracy on the validation set provides a 

performance measure of a network that is free to learn task-optimized representations at all stages of 

visual object processing. 

We measured face recognition performance achievable by the same architecture by training a 

VGG16 network on face identity categorization only (Face CNN). We trained the randomly initialized 

network on 1,714 identities (857 female) from the VGGFace2 database53. To allow for better comparison 

with humans, we tried to match the number of identities during training to the minimum number of people 

typically known by humans (range 1,000 – 10,000)54. We chose identities with a minimum of 300 images 

per identity and balanced female and male identities (857 each), otherwise the identities were randomly 

selected from the VGGFace2 database. To match the training set size to the Object CNN, we randomly 

chose 246 images per face identity for training, and 50 images per category for validation, for a total of 

421,644 training and 85,700 validation images15. All other learning parameters were identical to the object 

network. The resulting classification accuracy on the validation set served as a measure for 

unconstrained face identity categorization performance.  

Decoding of within- and between-domain visual categories 

To test whether representations and computations optimized for one task would transfer to the other task, 

we decoded exemplars of a held-out set of face identities and object categories from the activations 

extracted from both networks. We used 100 held-out face identities (50 female; 10 images per identity; 

1000 images total) from the VGGFace2 dataset that were not included in the training set. For object 

decoding, we selected 100 categories from the THINGS database55 (10 images each; 1000 images total) 

that were prototypical object categories and did not overlap with the 423 categories the object CNN was 

trained on. We extracted the activation in the penultimate layer of each network (i.e., the last layer before 

the classification layer) to the 1000 face images and the 1000 object images, respectively. For each task 

and activations from each network, we trained and tested a 100-way linear support vector machine (with 
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L2 regularization) on the corresponding activation patterns using a leave-one-image-out (i.e., 10-fold) 

cross-validation scheme. 

Training and testing dual-task networks 

To determine whether representations could be learned to simultaneously support both tasks, we trained 

a dual-task CNN on face identity and object categorization (see Fig. 1a). We concatenated the face 

identity categories (1,714) and the object categories (423) to one task classification layer (2,137 

categories in total) and used random batches of face and object images (batch size: 128) during training. 

All other learning parameters and the datasets were identical to the VGG16 training (see above). To 

measure the performance on the face and the object task, we computed the accuracy on the independent 

validation set separately for the face classes (1,714) and object (423) classes.  

To test whether we would find segregation for other natural tasks, we additionally trained two 

dual-task networks: 1) We trained a network on object categorization and food discrimination using the 

Food10156 dataset. This dataset contains 101 food categories with 1000 images each. We used 900 

images per category for training and 100 for validation for a total of 90,000 training and 10,000 validation 

images. Importantly, to maximize the distinction between the food and the object task, we removed all 

food classes from the object dataset (50 of the 243 original classes were food-related) prior to training. 

For the remaining 393 classes, we chose the number of training images for each class (231 images per 

class; 90,783 images in total) to match the number of the food images in the training dataset. 2) We 

trained a network on object recognition and fine-grained car model/make discrimination using the 

CompCars dataset57. To obtain enough images per class, we concatenated images from the same 

model/make but of different years into one class. In this fashion, we ended up with 1,109 classes with 45 

images for training and 5 images for testing per class, for a total of 49,905 training and 5,545 validation 

images. We randomly chose 127 images from each class of the object dataset (i.e., all 423 classes for 

53,271 images in total; none of these classes were car- or vehicle-related) to match the overall number 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.07.05.451192doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.451192
http://creativecommons.org/licenses/by-nc/4.0/


 20 

of training images. Both of these networks were again trained with the identical training parameters as 

described for the model trained on faces and objects. 

Lesion experiments in dual-task networks 

To test whether the dual-task network segregated the processing of faces and objects in the hidden 

convolutional layers, we performed lesion experiments49. First, for each convolutional layer, we identified 

putative task-specific filters by evaluating how much ablating that filter (i.e., setting its output to zero) 

affected the loss for 50 batches of face images and for 50 batches of object images, respectively, all 

taken from the training set. We then ranked the filters in each convolutional layer by how much they 

affected the loss on face images (face ranking) and the loss on object images (object ranking). Using a 

greedy procedure, we first selected and dropped the highest-ranking group (~1.6%) of filters for each 

task, then selected the next highest-ranking group from the remaining filters in similar fashion but on 

novel batches of images (also taken from the training set). We repeated this process until there were no 

remaining filters left, resulting in all filters being ranked for the impairment they produced on each task 

when lesioned. For each layer, we then tested the task specificity of these filters by lesioning the top 20% 

filters that most affected performance according to the face or object ranking while measuring the 

performance on the independent full validation set for the face and the object task. To quantify functional 

segregation, we defined a combined task segregation index. First, we defined a task specificity (TS) index 

for a group of top-20% ranked filters a based on task A: 

𝑇𝑆# =	
𝑑'( − 𝑑*(
𝑑'( + 𝑑*(

 

Where 𝑑'( indicates the proportional drop on a given task A (e.g., face task) when dropping the 

top-20% filters a ranked by the corresponding task A altogether, 𝑑*( indicates the proportional drop on 

the other task B (e.g., object task) when the same group a of filters are dropped. We computed the task 

specificity index for the top-20% face-ranked and the top-20% object-ranked filters, respectively. The 
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average of these two selectivity indices served as our combined task segregation index. This segregation 

index is bounded between -1 and 1 where 1 indicates maximum segregation (e.g., lesioning filters would 

only impact the given task but not the other), 0 indicates no segregation (e.g., lesioning would impact 

both tasks equally) and -1 indicates inverse segregation (e.g., lesioning filters would only impact the other 

task but not the given task). An index of 1/3 indicates that the decrement in performance of the 

corresponding task is at least twice as large as of the other task.  

Visualization of filters 

To better understand the nature of the top face- and object-ranked filters, we generated images that 

strongly drove responses of single units in the network, optimizing the input image to maximize the unit’s 

responses. We initialized the input image with random noise, then used gradient ascent to maximize the 

units’ responses, with an additional L2 regularization over pixel values to encourage shrinkage of pixel 

values towards zero. Each unit visualized was chosen such that the center of its receptive field 

corresponded to the center of the image. This was done after observing that units from the same filter 

yielded similar synthesized images (but with receptive fields that were not centered at the center of the 

image). A small learning rate of 1e-3 worked best for maximizing the loss function. In addition, periodic 

(every 10 iterations) blurring and random jittering was applied to the pixel values50 to enhance 

visualization, presumably by discouraging getting caught in local minima. Note that units in filters from 

later layers have larger receptive field sizes than those at earlier layers. The visualizations demonstrate 

this property by optimizing over the receptive field size and leaving noise for image pixels on the borders.  

Testing segregation in random tasks 

To test whether arbitrary tasks would lead to segregation in dual-task networks, we created two random 

tasks, each composed of half faces and half objects. To create two sets of face classes, face identities 

were chosen randomly until half of all identities were selected. This procedure resulted in two mutually 
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exclusive, but exhaustive sets of identities, Faces-1 and Faces-2. The same procedure was repeated for 

object categories, resulting in two mutually exclusive and exhaustive sets of categories, Objects-1 and 

Objects-2, of equal size. To create two random tasks, we assigned the identities in Faces-1 and the 

categories in Objects-1 to Task-A and likewise Faces-2 and Objects-2 to Task-B. It follows that Task-A 

and Task-B are also mutually exclusive and of equal size where each comprise of half the face identities 

and object categories.  

By removing filters that degrade the performance of Task-A as constructed above, we expect to 

find that Task-B is equally affected and vice-versa since presumably high impact features for either task 

are also of high impact for the other. We performed the same greedy lesioning analysis on the dual-task 

network trained on faces and objects based, as introduced above, but using the two random tasks (each 

comprising of half face identities and half object categories). The resulting proportional drop in each task 

and the combined segregation index then served as a baseline for a null specificity measure in dual-task 

networks. 

Human subjects 

Behavioral data from 14 subjects (7 female; mean age 25.9, SD = 4.33) from a previously published 

study58 were used to perform the representational similarity analysis on face stimuli. As described 

previously, all subjects provided informed, written consent prior to the experiment and were compensated 

financially for their time.  

Another set of 15 subjects (8 female; mean age: 28.9, SD = 8.2) were asked to perform the same 

task on object stimuli. All subjects provide informed, written consent prior to the experiment and were 

compensated financially for their time. The Massachusetts Institute of Technology (MIT) Committee on 

the Use of Humans as Experimental Subjects approved both experimental protocols (COUHES No 

1606622600).  
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Stimuli and behavioral representational dissimilarities 

To find out whether humans and CNNs trained to recognition faces (Face CNN), objects (Object CNN) 

or both (dual-task CNN) represent faces and objects similarity, we performed representational similarity 

analysis. The experimental design to obtain the behavioral data has been explained in detail previously58, 

so here we just briefly summarize the stimuli and task. To obtain behavioral similarities for faces, Subjects 

(n=14) performed a multi-arrangement task59 using 80 gray-scale face stimuli. Stimuli consisted of 16 

celebrities, which varied orthogonally in gender and age, such that half were female and half were male 

and half of them were young (below ~35 years) and half were old (above ~60 years). Another set of 

subjects (n=15) performed the same task but using manually selected images of objects. Stimuli 

consisted of five gray-scale images of each of eight prototypical object categories (chair, cheeseburger, 

dice, fork, guitar, headphones, car, kettle) for a total of 40 images. Subjects performed the multi-

arrangement experiment online using the meadows platform (www.research-meadows.com) on their own 

computer. During the task, subjects were instructed to arrange different subsets of the images based on 

their perceived similarity (“similar images together, dissimilar images apart”) by dragging and dropping 

them in a circle. After the completion of the experiment, the pairwise squared on-screen distances 

between the arranged images was computed, thus representing a behavioral representational 

dissimilarity matrix (RDM). For each subject, we extracted the lower off-diagonal data from the behavioral 

RDM to obtain a vector of pairwise dissimilarities used for computing the correlations. We additionally 

computed the noise ceiling for the representational dissimilarities given the inconsistencies across 

subjects using a method described previously. Briefly, we estimated the upper bound of the noise ceiling 

as the mean correlation of each subject’s vector of perceived dissimilarities with the group mean 

(including the subject itself). In contrast, the lower bound was computed by taking the mean correlation 

of each subject with all other subjects.  

Representational similarity analysis between humans and CNNs 
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To obtain representational dissimilarities on faces and objects for the singly- and dual-trained CNNs, we 

presented the same stimuli (80 face images, 40 object images) as used for the human subjects to the 

CNNs. For each CNN, we extracted the activation patterns to each image separately for each of the 13 

convolutional layers and the three fully connected layers and computed the correlation distance (1 – 

Pearson’s r) between each pair of activation patterns. This resulted in one RDM per layer for each of the 

three CNNs. To compute the similarity between the human RDMs and the RDMs obtained for the CNNs, 

we rank correlated each subject’s behavioral dissimilarities vector with the corresponding CNN 

dissimilarities vectors. The average rank correlation across subjects served as similarity measure 

between human subjects and CNNs. We further computed the bootstrapped confidence intervals by 

bootstrapping the subjects and computing the correlation with the CNN RDMs 10,000 times and 

computed the 95% CI of the resulting distribution.  

Significance Testing 

We obtained bootstrapped 95% confidence intervals (CIs) for the accuracy of all networks by 

bootstrapping across classes and images 10,000 times. To obtain 95% CIs for the combined segregation 

indices, we bootstrapped across classes and images for the original and lesioned networks and 

computed the combined segregation indices for each bootstrap. Significance of comparison between the 

combined segregations indices and critical values (i.e., zero or 1/3), or between combined segregation 

indices of different networks was obtained by using direct bootstrap tests and FDR-correction. 

Data availability 

The face stimuli used in the behavioral online experiment have been previously made available at 

https://osf.io/gk6f5/. The object stimuli used for the behavioral online experiment will be made available 

at https://osf.io/ upon acceptance. Behavioral data will be made available upon reasonable request. The 
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source data underlying Figures 1–6 and Supplementary Figures 1–3 will be made available on OSF upon 

acceptance. 

Code availability 

To reproduce the relevant analyses and figures, the Python scripts and functions will be made available 

on www.github.com upon acceptance. The computational models as well as the code to train 

computational models and extract activations will be made available upon reasonable request. 
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