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Abstract  

The use of molecular methods to manage natural resources is increasingly common. However, 

DNA-based methods are seldom used to understand the spatial and temporal dynamics of 

species’ range shifts. This is important when managing range-shifting species such as non-

native species (NNS), which can have negative impacts on biotic communities. Here we 

investigated the range-shifting NNS Ciona robusta, Clavelina lepadiformis, Microcosmus 

squamiger and Styela plicata using a combined methodological approach. We first conducted 

non-molecular biodiversity surveys for these NSS along the South African coastline, and 

compared the results with historical surveys. We detected no consistent change in range size 

across species, with some displaying range stability and others showing range shifts. We then 

sequenced a section of cytochrome c oxidase subunit I (COI) from tissue samples and found 

genetic differences along the coastline but no change over recent times. Finally, we found that 

environmental DNA metabarcoding data showed broad congruence with both the non-molecular 

biodiversity and the COI datasets, but failed to capture complete incidence of all NSS. Overall, 

we demonstrated how a combined methodological approach can effectively detect spatial and 

temporal variation in genetic composition and range size, which is key for managing biodiversity 

changes of both threatened and NSS. 
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1. Introduction 

Biodiversity is undergoing a global redistribution as a result of human influence, with species 

increasingly found in environments outside their previously reported geographic range [1]. 

Contemporary climate change is causing species to shift their ranges to accommodate novel 

environmental conditions [2, 3], and human-mediated species introductions dramatically 

increase the range of non-native species (NNS) [4-6]. This exposes species to abiotic 

conditions and biotic interactions that are different to those experienced in native habitats. 

Such changes in distribution can result in a dramatic increase or decrease in population 

size, or may have a limited detectable immediate effect [1, 7]. Understanding these 

responses is important to answer fundamental ecological and evolutionary questions about 

changing biotic communities, but also for natural resource managers when predicting 

changes in ecosystem services and natural capital [1, 8]. 

 

Global biodiversity loss has consistently been shown to reduce ecosystem function, and in 

turn affects the provision of ecosystem services [9, 10]. A key driver of biodiversity loss is 

the introduction of NNS [11], which also imposes a substantial global economic cost [12] and 

has a dramatic impact on public health [13, 14]. In the marine environment the majority of 

NNS introductions are associated with transoceanic shipping [5, 15, 16] and therefore, major 

ports and harbours are hotspots for NNS. Once a species is introduced to these sites, 

secondary spread can be facilitated by smaller recreational vessels, marinas and marine 

infrastructure surrounding these major harbours [17, 18]. Considering the increasing number 

of yearly NNS introductions [6, 19], improving our understanding of how range shifts of NNS 

occur through time and space is critical in the design of effective management and mitigation 

responses. 

 

Natural resource managers have finite budgets and limited information when making 

decisions simultaneously on a number of NNS with variable or unknown impact [20, 21]. For 

each NNS, managers can attempt to eradicate a population, make efforts to avoid any 

further expansion into new areas, or acknowledge that control is not possible and work on 

mitigation strategies [22, 23]. These limited options are compounded by the vast costs 

associated with control or eradication, and even when control methods may be possible, 

they might be politically or publicly unacceptable [24, 25]. Furthermore, control measures 

can be unsuccessful because of incomplete eradication of the target species or ongoing 

species reintroductions [20, 26, 27]. Consequently, managers frequently take no action to 

control NNS or act only when evidence for both presence and substantial impact has been 

gathered [28]. It is therefore beneficial to develop tools that provide researchers and 
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managers with information to facilitate decision-making. Genetic tools can complement 

existing methods for assessing NNS range shifts by providing information that would be 

unfeasible or impossible to produce otherwise [29].  

 

Even when NNS can be unambiguously identified, it can be difficult to determine when and 

where they were first introduced into a region, (for example see Hudson et al. [30]). Since 

eradication or control efforts are improved by early detection [31], methods with high 

sensitivity are needed to increase the likelihood of successful management outcomes. One 

such method is the isolation of DNA from environmental samples (environmental DNA or 

eDNA) such as water or sediment for the detection of organisms. Studies have 

demonstrated that the amplification of DNA barcode regions from eDNA (i.e. eDNA 

metabarcoding) can be used to detect marine NNS [32-35] and that it is a sensitive and 

accurate method for biomonitoring [36, 37]. However, eDNA surveys are rarely used in 

conjunction with existing methods to detect NNS range shifts, and eDNA metabarcoding can 

validate, endorse, or highlight flaws, in current biodiversity management strategies. 

 

During a range expansion, understanding if there was a single NNS introduction event or 

multiple simultaneous introductions is valuable for managers to target possible source 

regions, and to effectively manage introduction vectors (e.g. ballast waters). As NNS spread 

across the new region, understanding if expansions are due to local spread or introductions 

from distant regions is useful to target containment efforts. Finally, after eradication efforts 

have been conducted, understanding if the reappearance of NNS is due to incomplete 

eradication or a secondary reintroduction is of value for effective management into the 

future. The sequencing of DNA isolated from NNS has previously identified the source of 

NNS [38, 39], provided evidence of multiple introductions [40] and tested if post eradication 

invasions are a result of incomplete eradiation or reinvasion [41]. Cumulatively, these 

studies have demonstrated the value of DNA evidence for the management of NNS. 

Furthermore, observations from both laboratory [42, 43] and field studies [44-49] have 

shown that eDNA can provide population genetics inference, but very little work has used 

this approach to study NNS [50]. 

 

Here we combined eDNA metabarcoding, mitochondrial gene sequencing, and non-

molecular biodiversity surveys to study four NNS that are directly relevant to marine natural 

resource managers. First, we evaluated if the NNS shifted their ranges over decadal time 

scales and compared each range shift to historical data. Secondly, we evaluated changes in 

genetic diversity and haplotype composition for each NNS between two sampling occasions 

across the sampled coastline. Finally, we examined how spatial genetic variation data can 
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inform the management of range shifting species by comparing eDNA metabarcoding data 

to biodiversity survey and mitochondrial DNA sequence datasets. 

 

2. Methods 

(a) Fieldwork and historical biodiversity data 

The coastline of South Africa is an ideal system to study range shifting species and their 

management. South Africa has been subject to intense human impact and many species 

invasions have been documented across the three environmentally varied coastal 

ecoregions [51-53]. Moreover, rapid assessment survey (a non-molecular biodiversity survey 

technique) [54] data has been previously collected and mitochondrial sequence data have 

been generated for NNS along the entire coastline [52]. Furthermore, historical data are 

available for a range of relevant species [55-57] providing an insightful opportunity to 

conduct a spatial and temporal analysis of range expansions. Here, we selected twelve 

human impacted sites and conducted surveys (see details below) between October and 

November 2017. The sampled sites were the 11 sites previously sampled in 2007 and 2009 

by Rius et al. [52], which included all major harbours and a number of marinas, and a new 

marina constructed post 2009 (Figure 1a with full details in Supplementary Table 1). 

Collectively, the sites encompass the main introduction points for marine NNS into the South 

African coastline. 

At each sampling site a rapid assessment survey was conducted following Rius et al. [52], 

targeting non-indigenous ascidian species (Class: Ascidiacea). Ascidians are unique species 

for studying range expansions as they are successful invaders [58] and have a relatively 

short pelagic larval phase, meaning that long-distance dispersal can only be achieved 

through anthropogenic transport of species [59]. For each site, species abundance was 

ranked as absent (0%), scarce (< 10%), common (10-50%), or dominant (> 50%) based on 

observations of substrate coverage as in [52].  

Rapid assessment survey data from 2007 and 2009 was sourced from Rius et al. [52] for the 

species of interest. Additionally, historical incidence data was extracted from several 

taxonomic publications [55-57, 60, 61]. These investigations are not an exhaustive survey of 

the coastline, but they provide valuable historical species incidence data over the last 

century and are therefore of value in gaining a broad understanding of range shifts over 

time. 
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(b) Sample collection, DNA extraction and Sanger sequencing 

Tissue samples were collected for species for which genetic data were available from the 

2009 surveys (Ciona intestinalis, Clavelina lepadiformis, Microcosmus squamiger and Styela 

plicata). Samples were collected where sufficient numbers of individuals per species were 

present at a site to provide a reasonable estimate of genetic diversity (minimum 10 

individuals), with 30+ individuals per species being the target at each sampling site. 

Organisms were sampled by hand, with no adjacent (within 0.3m) individuals collected, and 

dissected within six hours (see details of research permit in the Acknowledgements). For 

each sampled individual, approximately 10mm2 of tissue from around the syphons was 

dissected using tools decontaminated with 10% bleach solution (3.5% chlorine), except in 

the case of C. lepadiformis for which a single zooid was removed from the tunic and stored. 

Tissue samples were preserved in 100% ethanol and stored at ambient temperature during 

transportation, and then stored at -80°C in the laboratory until later DNA extraction.   

DNA from ascidian tissue samples was extracted using the Qiagen (Hilden, Germany) 

DNeasy Blood and Tissue Kit (96 Well Format) following manufacturer’s recommended 

protocol with one blank control per extraction run. The final DNA elution was performed 

using 200µl of Qiagen Buffer ATL. A section of the cytochrome c oxidase subunit I gene 

(COI) was sequenced for all tissue samples aiming to cover the entire section previously 

analysed in Rius et al. [52]. Each PCR contained 6µl of Applied Biosystems (Foster City, 

Califonia, USA) AmpliTaq GOLD 360 Mastermix, 1.8µl of oligonucleotide mix (5 µm 

concentration per primer), 1.2µl of undiluted template DNA and PCR quality water up to 12µl 

total reaction volume. The reaction conditions varied by primer set and are listed in 

Supplementary Table 2a. During preliminary trials a set of primers were designed and 

validated for M. squamiger (sequence details in Supplementary Table 2b), existing primer 

sets [62-64] were optimised for the remaining three species. Successful amplification was 

confirmed using gel electrophoresis and PCR products were cleaned using Applied 

Biosystems ExoSAP-IT Express following the manufacturer’s recommended protocol. 

Cleaned products were normalised to approximately 50ng/µl and 5µl of sample was added 

to each of 5µl of the forward or reverse primers (5µm) used in the initial PCR. These 

samples were sent for sequencing using the Macrogen Europe (Amsterdam, Netherlands) 

EZ-Seq service. Resultant chromatogram files were analysed using Geneious Prime 

(v2020.2.4) (Biomatters Ltd, Auckland, New Zealand). For each sequence the forward and 

reverse traces were aligned and sequences with ambiguities or failed reactions were re-

sequenced from the initial PCR once and subsequently discarded if poor results persisted. 

The 764 COI sequences from Rius et al. [52] were added to the analysis and trimmed, 
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truncated and aligned with the experimental data as follows. For each species, sequences 

were trimmed to remove primer binding and poor-quality regions and aligned using the 

Geneious Alignment Tool. Subsequently each alignment was manually checked to confirm 

complete alignment, and short sequences that did not overlap at all polymorphic regions or 

had ambiguous base calls were discarded. 

 

(c) Environmental DNA metabarcoding  

Before each rapid assessment survey, surface seawater was sampled from the top 10cm  

for eDNA metabarcoding following Holman et al. [65]. Briefly, three replicate 400ml water 

samples were filtered on site with a 0.22 µm polyethersulfone enclosed filter. Filters were 

preserved with Longmire’s solution until DNA extraction following Spens et al. [66]. Data 

generated from these samples is presented in Holman et al. [65] with the aim of 

conservatively characterising whole community diversity. COI and ribosomal RNA (18S) 

data targeting metazoans [67, 68] was reanalysed as follows for accurate ascidian species 

detection. Primer regions were removed from forward and reverse reads using the default 

settings of Cutadapt (v2.3) [69]. Sequences were denoised and an ASV (amplicon sequence 

variant) by sample table generated using DADA2 (v1.12) [70] in R (v3.6.1) [71] with 

parameters as in Holman et al. [65]. Recent work has highlighted that different bioinformatic 

methods have an effect on the resolution of intra-specific variation of eDNA metabarcoding 

data [42, 45, 72]. Therefore in addition to the sequenced tissue samples and DADA2 

methods outlined above, we reanalysed the COI data using the unoise3 algorithm [73] as 

follows. Raw COI paired-end fastq data from Holman et al. [65] was merged using usearch 

(v11.0.667) [73] with the following parameters -fastq_maxdiffs 15 -fastq_pctid 80. Primer 

sequences were then stripped from each merged read using Cutadapt (v3.1) [69] under the 

default parameters and reads longer than 323 and shorter than 303 base pairs (±10 from the 

expected size of 313) were discarded. Reads from all samples were pooled, and singletons 

and reads with an expected error greater than 1 were discarded using vsearch (v2.15.1) 

[74]. The unoise3 algorithm from usearch was then used to generate ASVs with -

unoise_alpha set at 5 as recommended for resolving metazoan intraspecific variation with a 

COI fragment of 313 base pairs in length [45]. Sequences were then mapped back to the 

ASVs using the -usearch_global function of vsearch with an -id parameter of 0.995 to 

produce an ASV by sample table. 

To provide an initial taxonomic assignment all ASVs were compared using a BLAST 

(v2.6.0+) search with no limits on sequence similarity or match length to the NCBI nt 

database (downloaded 16th May 2019). Taxonomic assignments were then parsed using a 
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custom R function (ParseTaxonomy, DOI:10.5281/zenodo.4671710) with the default 

settings. The taxonomic assignments were subset to include only those with a hit to species 

in the class Ascidiacea. The following quality control steps were then applied to each 

dataset. The data was filtered to only retain ASVs that appeared in more than one replicate 

sample. For any ASVs detected in both the negative and experimental control samples, the 

maximum number of reads in the negative controls were subtracted from the experimental 

control samples. Reads were then divided by the total number of reads per sample and 

relative proportions were used in all subsequent analyses, technical replicates per site were 

averaged. The remaining ASVs were then taxonomically checked manually using the online 

National Centre for Biotechnology nucleotide BLAST search function against the nt 

databases (last accessed on 1st October 2020) under default megablast parameters. For 

each ASV in the COI dataset, taxonomy was only assigned at species level if multiple, 

independent sequences had a match greater than 97% identity (with 100% coverage) with 

no other species within 97% of the target ASV. For the 18S dataset a 100% match (with 

100% coverage) between the subject ASV and database sequences was required for 

taxonomic confirmation. Additionally, as some taxa within the same genera have near 100% 

similarity at the 18S region, taxonomy was only assigned to species if organisms from the 

same genera were in the database with at least 1 base pair between the query and species 

from the same genera. Following taxonomic annotation, ASVs assigned to the same species 

were merged for the distribution datasets. ASVs were kept separate for the haplotype 

reconstruction of the COI data.   

 

(d) Data manipulation and statistical analyses 

Distances between sites along the coast were estimated by drawing a transect 1 km parallel 

to the coastline in Google Earth Pro (v7.3.2.5776) and calculating the distance between 

each pair of sites. The study area was plotted using the function map from the package 

maps (v3.3.0). Sequenced COI regions from 2009 and 2017 were aligned separately for 

each species using the Geneious aligner in Geneious Prime; alignments were truncated to 

include only overlapping regions. Sequences were manipulated using the SeqinR package 

in R (v4.2-5) [75]. Nucleotide and haplotypic diversity were calculated using the nuc.div and 

hap.div functions from the pegas package (v0.14) [76]. For each species an alignment was 

created between the tissue sampled COI sequences and the eDNA metabarcoding derived 

haplotypes. The region of overlap was extracted and used in subsequent analyses. 

Haplotype frequencies were calculated per site for the tissue derived sequences and the 

different bioinformatic analyses of eDNA metabarcoding data. Minimum spanning network 
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haplotype maps [77] were created using the default settings of PopArt (v1.7) [78]. Analyses 

of molecular variance (AMOVA) were performed using the function poppr.amova from the 

poppr package (v2.8.6) [79]. AMOVA models were structured to analyse the effect of 

sampling year and sites for each species. All data analyses were conducted in R (v4.0.3) 

unless otherwise stated.  

 

3.Results 

(a) Range shifts 

Rapid assessment surveys found that non-native ascidians known to be broadly restricted to 

warmer waters (M. squamiger and S. plicata) [52] showed distributions principally limited to 

the southern and eastern coastlines (Fig.1b). In contrast C. robusta and C. lepadiformis 

were found along most of the coastline. We found no change across years in range extent 

for M. squamiger and S. plicata, a decrease in easternly range for C. robusta and an 

expansion of range both westerly and easterly for C. lepadiformis (Fig.1c). Historical total 

range extent data (Fig.1d) showed more recent increases in range for C. lepadiformis and S. 

plicata compared to C. robusta and M. squamiger. The COI and 18S eDNA metabarcoding 

data showed mixed results. There was good agreement between detections from eDNA and 

rapid assessment surveys in M. squamiger and S. plicata (see Fig.1b). However, 18S 

entirely failed to detect C. robusta or C. lepadiformis, and COI demonstrated a number of 

false-negative metabarcoding detections in these species (Fig.1b). For sites sharing 

detections from eDNA metabarcoding and rapid assessment surveys, eDNA metabarcoding 

data and field density estimates showed a non-significant relationship (18S p = 0.052, COI p 

= 0.297) (see Supplementary Note 1 for details). 
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Figure 1 a Map depicting the coastline of South Africa, sampling sites are shown as blue points, full 
details in Supplementary Table 1. b Bubble plot showing incidence of four non-native ascidians 
across the sampling sites shown in the map from west to east. Blue bubbles show results of rapid 
assessment surveys and square outlines show the results of eDNA metabarcoding surveys 
conducted concurrently. Results from COI are shown with green squares and 18S shown with purple 
squares, the size of each point or square shows the comparative density. Site codes correspond with 
sites as detailed in Supplementary Table 1. c Line plot showing range extent over the surveyed coast 
for 2009 (dark red) rapid assessment surveys from Rius et al. [52] and surveys conducted in 2017 
presented here (blue). The location of each site across the coastline is shown with grey dashed lines. 
d Historical maximum range extent for each of the featured species across the coastline of South 
Africa, y axis is kilometres of extent, x axis is year, colour indicates each of the species indicated 
according to labels in b and c.  

(b) Changes in genetic composition 

A total of 1,320 sequencing reactions generated 660 bi-directionally sequenced COI 

sequences. After alignment and quality control, 541 samples remained with complete 

alignment and no missing site information, 88 for C. robusta, 261 for C. lepadiformis, 90 for 

M. squamiger and 102 for S. plicata. After combining the COI sequences with previously 

sequenced samples from 2009 [52], alignments were 626, 440, 635 and 599 base pairs in 

length for C. robusta, C. lepadiformis, M. squamiger and S. plicata respectively. Observed 

haplotype richness across both sampling years and all sites was highest in M. squamiger 

followed by C. robusta, S. plicata and C. lepadiformis (Fig. 2). There was no statistically 

significant difference between nucleotide or haplotype diversity between sampling years 

across all species (p > 0.05 in all cases, see Supplementary Note 2 for full model output and 
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details). Additionally, AMOVA models found no significant differences between sampling 

years across all species (p > 0.05 in all cases, see Supplementary Table 3 for full model 

outputs), but significant differences between sampling sites within years (p < 0.05 in all 

species, see Supplementary Table 3 for full model outputs). In all species, the greatest 

proportion of the genetic variance was found between samples, then within sampling sites, 

followed by variance between sampling sites (Supplementary Table 3). As shown in Figure 

2, haplotype frequencies agreed with the AMOVA analyses, showing stable patterns of 

genetic variation occurring between years and variation in haplotype frequencies across the 

study system (Figure 2). 

After aligning the shorter sequences derived from eDNA metabarcoding data to the 

sequenced COI region, alignments were 191, 258, 289 and 286 base pairs in length for C. 

robusta, C. lepadiformis, M. squamiger and S. plicata respectively. Regardless of 

bioinformatic method and across species, the eDNA metabarcoding data did not recover all 

the haplotype sequences derived from tissue (Figure 3).  
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Figure 2 Mitochondrial DNA COI haplotype proportions for a Ciona robusta b Clavelina lepadiformis c 
Styela plicata d Microcosmus squamiger across the South African coastline. Results are shown for 
surveys conducted in 2009 and 2017 for each species, site abbreviations follow supplementary Table 
1. Haplotype networks based on minimum spanning distance are shown for each species with colours 
matching the bar plot within species, the number of cross-hatches indicates the mutation steps 
between haplotypes.  
 

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SB SM TB HB MB KN PE BR PA EL DU RB

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SB SM TB HB MB KN PE BR PA EL DU RB

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SB SM TB HB MB KN PE BR PA EL DU RB

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SB SM TB HB MB KN PE BR PA EL DU RB

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

20
09

20
17

20
09

20
17

20
09

20
17

20
09

20
17

a

b

c

d

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.07.06.451303doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.06.451303
http://creativecommons.org/licenses/by/4.0/


 
Figure 3 Haplotype proportions recovered using eDNA metabarcoding for a Ciona robusta b 
Clavelina lepadiformis c Styela plicata d Microcosmus squamiger across the South African coastline. 
Results are shown for analysis of COI eDNA metabarcoding data using the denoising software 
DADA2 and UNOISE3 for each species, site abbreviations follow supplementary Table 1. Haplotype 
networks based on minimum spanning distance are shown for each species with colours matching the 
bar plot within species, the number of cross-hatches indicates single nucleotide mutation steps 
between haplotypes.  
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4. Discussion 

Here we found both losses and gains in range size across sampling years for four non-

native ascidian species, with no consistent pattern emerging when introduction dates were 

compared. For all species we found haplotype variability across the study region but no 

significant change in genetic variation for almost a decade. Finally, eDNA metabarcoding 

data recovered broad NSS incidence trends and for some species was as accurate as non-

molecular surveys. Most dominant haplotypes from tissue samples were detected with 

eDNA metabarcoding but fine scale genetic patterns could not be resolved using the eDNA 

metabarcoding data. Cumulatively, the evidence demonstrates that a suite of tools, including 

DNA and non-DNA biodiversity surveys can be used in combination to evaluate the role of 

genetic variation on range shifts and to inform natural resource managers. 

 
Non-DNA biodiversity surveys found that C. lepadiformis expanded its range by 168.4 km 

since surveys in 2009, for an assumed rate of 21.1 km per year. This is in line with previous 

studies that found an average marine non-native spread rate of 44.3 km per year [80], with 

values of 16 km per year for tunicates, 30.0 km per year for barnacles and 20 km per year 

for a bryozoan species [81]. In contrast, we observed a range contraction for C. robusta, 

which was unexpected. There are limited studies showing range contraction in the 

introduced range for marine species. However, previous work has identified biotic resistance 

for invasions of several species in the genus Ciona [82, 83], and so it might be feasible for 

local species to have begun predating on Ciona robusta during the 80+ years it has been 

documented in South Africa (Fig.1d). A lack of any western increase in range for M. 

squamiger might be explained by the species inability to mature to reproductive age in the 

colder sea temperature on the western coast [52]. Further range expansions or contractions 

(eastwards for M. squamiger and east or westward for S. plicata) cannot be ruled out as 

observations of these species extended to the margins of the sampled area. It is important to 

note that the harbours and marinas in this study act as islands of suitable habitat, and the 

frequency of introductions outside these areas is relatively uncertain. Further surveys of 

surrounding hard benthic environments are required to understand the role of artificial 

environments across the coastal ecosystem. Overall, these patterns demonstrate that the 

spread of marine non-native species is not characterised by a continuous expansion of 

range, but rather by a complex picture of expansions and contractions in response to 

dynamic abiotic and biotic conditions.  
 
A consistent pattern of genetic differentiation emerged across the studied species; 

significant differences across sampling sites and persistence of similar haplotypes across 
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time (Fig. 2). Previous studies of temporal changes in genetic diversity of non-native 

ascidians have found some evidence for genetic differences over time [84, 85]. In contrast 

other work has found relatively stable genetic diversity over several years [86, 87]. In our 

study, the time between sampling occasions (i.e. 2009 and 2017) represents between four 

and 24 generations depending on the species [88-90]. Therefore, dramatic changes in 

haplotype frequencies could only be as a result of anthropogenic transfer of haplotypes 

between sites or changes in site frequencies in response to high mortality events (for 

example extreme weather events). These types of changes have been documented in 

ascidian species elsewhere [85, 91, 92], and a large number of NNS introductions have 

been documented in South African marinas and harbours supporting regional transfer of 

these organisms [52, 53]. It is therefore somewhat surprising that across four different 

species, all of which are known to be transported anthropogenically, there was little evidence 

of shifts in haplotype composition. Consequently, our results demonstrated that the studied 

NSS are well-established and are not subject to high levels of mortality or genetic bottleneck 

that may affect population viability. It may be that these well-established haplotypes impede 

newcomers to succeed and ultimately change the haplotype composition of the site.  

 

We found that eDNA metabarcoding captured similar incidence data as rapid assessment 

surveys for some species, and performed poorly for others. Previous work has identified that 

NNS can be detected using eDNA metabarcoding [32, 34], but these surveys aimed at 

detecting any NNS rather than a specific set of target taxa. Several studies have identified 

that general target metabarcoding primers show lower reliability and sensitivity compared to 

species-specific quantitative PCR assays [93, 94]. Additionally, previous work has identified 

that in some cases different bioinformatic methods carry variable sensitivity [95], although 

this effect is fairly minimal in this dataset (see Supplementary Note 3). Managers should 

therefore be aware that general metabarcoding primers will perform well in the detection of 

some important NNS but others may be missed due to poor sensitivity. In cases when a list 

of priority species can be assembled, mixed DNA positive control samples or trials with 

aquaria of known composition (for example Holman et al. [96]) would provide information on 

which NNS might be overlooked by eDNA metabarcoding. Inevitably, there will be a cost-

benefit trade-off between using imperfect broad metabarcoding assays for monitoring 

unknown invaders, and expending resources on the development and application of eDNA 

tools targeting specific known NNS.  

 

In some cases, resource managers might be interested in tracking invasions using haplotype 

data [97]. Here, we showed that eDNA metabarcoding with broad-target primers resolves 

broad scale patterns of haplotype diversity (Fig. 3). However, fine-scale genetic variation 
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was not recovered in our study, indicating that targeted eDNA amplicon sequencing [48] 

might be more appropriate when this level of genetic data is required. As with biodiversity 

incidence data, the management objectives for a given NNS determine how haplotype 

sequencing should be implemented. If large numbers of tissue samples can be easily 

collected and there are sufficient resources, then sequencing the tissue directly might be 

more appropriate. In contrast if a broad scale analysis across a larger or difficult-to-sample 

area is preferred resolving haplotype data from eDNA metabarcoding might be preferable. 

Overall, eDNA based techniques show great potential for NNS detection but for our target 

taxa, we demonstrated that current biodiversity surveys and direct tissue sequencing are 

more reliable for the detection of NNS and genetic composition. It is important to note that 

there are several key advantages of eDNA-based methods compared to the other tools used 

in this work. Firstly, eDNA samples can be collected with minimal training and the 

sequenced DNA provides an unambiguous identification, provided reference data is 

available [33, 34]. Secondly, eDNA-based methods can be automated and can scale to a 

much greater survey effort at reduced cost compared to other methods [98]. Third, the 

limitations described above concerning the sensitivity of eDNA-based incidence data and 

lack of resolution of eDNA-based haplotype data can be attributed to the use of 

metabarcoding with broad-target primers. Reanalysing the samples with metabarcoding 

primers for more specific groups or using species specific qPCR assays [94] would provide 

increased sensitivity and accuracy.  

 

Overall we demonstrated how our combined methodological approach can effectively detect 

spatial and temporal trends of range shifts and genetic differentiation, but also to monitor 

biodiversity changes of both threatened and NSS. The strengths of eDNA or DNA-based 

biomonitoring demonstrated here for the detection of range shifting species make them a 

pragmatic choice for natural resources managers. These tools provide managers with 

greater sensitivity and accuracy when monitoring biodiversity in human impacted 

environments.  
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