


Figure 3: Accuracy of estimates across a range of true parameter values and sampling efforts. For each over-
lap value s between 0 and 70, we performed three independent simulations to generate synthetic count data
(Methods).. Estimates of s (A,B,C) and Ra (D,E,F) from the resulting count data, using our statistical model, are
shown. Estimates are shown for sampling efforts m = 50,96,192 across left, middle, and right columns, respec-
tively. Dashed black lines represent perfect unbiased inference.

sampling effort m, even if some samples were duplicate observations of previously observed genes, sim-
ply because those sample counts inform repertoire size estimates. Second, increasing the sampling effort
concentrates p(R |C ) around the true repertoire size, concretely linking sampling effort to estimation of
not only repertoire size, but through decreased uncertainty, eventual overlap estimates as well.

Next we examined whether the ŝ, R̂a , and R̂b estimates in Equations (10)-(12) are accurate across a range
of sampling efforts m in two steps. First, we simulated the sampling process for various values of s, Ra ,
and Rb to produce synthetic count data Ca and Cb with varying levels of overlap between the observed
samples. Then, we evaluated our ability to recover s, Ra , and Rb by applying Eqs. (10)-(12) to the synthetic
data.

We found that the overlap and repertoire estimates accurately reproduce the true parameter values, pro-
vided that sampling effort is sufficiently large. Furthermore, as sampling effort increases, estimates be-
come increasingly accurate (Fig. 3).

However, we also observed that when the sampling effort is small but repertoires are large and highly
overlapping (e.g. m = 50 and s > 50), ŝ underestimates the true values (Fig. 3A). This phenomenon is
due to a more general property of Bayesian inference: when there are fewer samples from which to infer,
the prior distribution exerts a stronger effect on inferences. Here, the Poisson prior over repertoire sizes
assigns low probability to repertoire sizes as large as 70 (p(Ra ≥ 70) = 0.03), and thus, in the absence
of a large sampling effort to overwhelm that prior, the surprisingly large repertoire sizes and overlaps
require substantially more samples m to establish. In real data from P. falciparum , repertoires (and thus
repertoire overlaps) larger than 60 are rarely observed [28, 15], decreasing the potential impact of this
issue.
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Figure 4: Credible intervals quantify uncertainty in overlap estimates. For each overlap value s between 0 and
70, we performed one simulation to generate synthetic count data (Methods). Estimates from the resulting count
data, using our statistical model, of s (A,B,C), and error in Ra and Rb (D,E,F) are shown. Estimates (dots) and
95% credible intervals (lines) are shown for sampling efforts m = 50,96,192 in left, middle, and right columns,
respectively.

Uncertainty

Bayesian methods also allow us to quantify uncertainty via credible intervals (CIs). To measure how well
our CIs capture the true parameter values, we computed 95% highest density posterior intervals for pa-
rameter estimates in simulated data, where true values were known. As expected, uncertainty decreased
as sampling effort increased, and approximately 95% of the 95% CIs captured the true parameter values,
as designed (Fig. 4). For instance, for sampling efforts of m = 50, m = 96, and m = 192, the proportions
of the 95% ŝ CIs containing the true s were 0.975, 0.975, and 0.965, respectively. For the same three sam-
pling efforts, the proportions of the 95% R̂a CIs that contained the true repertoire size Ra were 0.920,
0.950, and 0.955, respectively.

Improving β-diversity indices

Over 20 different indices of β diversity have been proposed which algebraically combine empirical esti-
mates of Ra , Rb , and s [21], including the well known Jaccard index and the Sorenson-Dice coefficient.
The Sorenson-Dice coefficient is defined as the ratio of repertoire overlap to the average of the repertoires
sizes,

SD = s
1
2 (Ra +Rb)

. (13)

Typically, in the absence of more sophisticated estimates of Ra , Rb , and s, empirical values are used,

ŜDEmpirical =
nab

1
2 (na +nb)

(14)
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Figure 5: Bayesian vs empirical Sorensen-Dice estimates. For each overlap value s between 0 and 70, we per-
formed one independent simulation to generate synthetic count data (Methods) and estimated the Sorensen-Dice
coefficient using estimates from our Bayesian framework as well as from the raw empirical data. The error in
the Bayesian Sorensen-Dice estimate, ŜDB (Equation (15)), and accompanying 95% credible intervals are shown.
The often-used empirical Sorensen-Dice estimate, ŜDE (Equation (14)), is also shown. The dashed black line at 0
represents the true Sorensen-Dice coefficient (Equation (13)).

However, the joint posterior distribution Eq. (9) over s, Ra , and Rb opens the door to a Bayesian reformu-
lation of the Sorenson-Dice coefficient as

ŜDBayesian = ∑
s,Ra ,Rb

s
1
2 (Ra +Rb)

·p(s,Ra ,Rb |Ca ,Cb) (15)

with similar generalizations for the Jaccard coefficient or other combinations of s, Ra , and Rb [21]. This
Bayesian Sorenson-Dice coefficient averages the values of the typical Sorenson-Dice coefficient over
joint posterior estimates of s, Ra , and Rb .

We investigated the performance of the Bayesian Sorenson-Dice coefficient ŜDBayesian and its empirical
counterpart ŜDEmpirical by once more simulating the sampling process under known conditions and ap-
plying both formulas. As in our estimates of repertoire overlap, we again found that Bayesian Sorenson-
Dice estimates produce consistent and unbiased estimates with correct quantification of uncertainty via
credible intervals (Fig. 5), except when sampling effort is low (m = 50) while true repertoire overlap is
extremely high (s > 50). Furthermore, the Bayesian estimates track the true Sorenson-Dice values better
than direct empirical estimates across overlap values and sampling efforts; direct empirical estimates
are biased more and more downward as sampling effort decreases and as true overlap increases (Fig. 5).
While this illustrates how the Bayesian framework herein may be used to improve classical and com-
monly used estimators via Eq. (15), an identical approach may be used to compute Bayesian Jaccard
coefficients, or other algebraic combinations of s, Ra , and Rb [21].

Sample size calculations

Sample size calculations ask how many samples are needed to produce eventual estimates with a pre-
specified level of (or upper bound on) statistical uncertainty. Such questions, while critical in the ethical
study of human subjects, are also important when budgeting for studies in which additional samples
require time, reagents, and funding.

To assist in sample size calculations, we used simulations to quantify the relationship between increases
in sampling effort m and decreases in the typical width of the credible interval around the repertoire
overlap estimate estimate ŝ (Eq. (10)). For many overlap-sampling effort pairs, (s,m), we performed 300
independent replicates in which we generated synthetic data, computed the posterior distribution for s,
and calculated the width of the 95% ŝ CI.
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Figure 6: Quantifying the decrease in uncertainty from increased sequencing. Constant s curves show the me-
dian 95% credible interval (CI) width for the s estimate, ŝ, as a function of the sampling effort m. For each (s,m)-
duplet, the median is across 300 count data generation simulations. This plot illustrates the intuition that addi-
tional laboratory efforts (increasing m) lead to higher accuracy (smaller CIs).

We found that, as expected, increased sampling effort m leads to decreased uncertainty across all values
of overlap s (Fig. 6). However, we also found that overlap plays a role as well, with larger overlap causing
wider CIs. For instance, after m = 200 samples, a CI for overlap s = 70 is typically of width 8, while a CI
for overlap s = 30 is typically of width 4. After m = 300 samples from each repertoire, median CI widths
are 4 or lower for all overlap values. In short, it is easier to show with high confidence that two samples
do not overlap than to show that they are highly overlapping.

Discussion

This manuscript presents a Bayesian solution to estimating the overlap between two populations when
only subsamples of those populations are available. Importantly, because the total population sizes bear
on the inference of overlap, this method jointly estimates population sizes and overlap from the quanti-
tative accumulation of evidence, improving inferences. Samples from the joint posterior distribution can
be used to quantify uncertainty via credible intervals, or can be used in Bayesian versions of the Jaccard
index, Sorenson-Dice coefficient, and other algebraic combinations of set sizes and intersections.

In addition to the analysis of existing data, this approach can also be used prospectively to perform
sample size calculations. Importantly, context-specific sample sizes can be estimated by including addi-
tional information in the Bayesian prior. For instance, in the context of malaria’s var genes, it is known
that parasites from South America tend to have smaller repertoires [22, 31] than samples from other re-
gions [28]—information which can be expressed through the prior distribution to influence (and in this
case, decrease) sampling needs. Because additional sampling has financial and complexity costs, this al-
lows researchers to weigh accuracy requirements against laboratory costs in the contexts of a particular
study.

Beyond the study of P. falciparum , the approach introduced in this work lands in between two existing
classes of β-diversity measures in the ecology literature. One class of methods measures β-diversity in
terms of species presence or absence [21], while the other further includes species abundance [10]. The
present work uses abundance measurements (which we call count data) in order to improve presence-
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absence-based β-diversity estimates, but does not construct abundance-based similarity measures per
se. By drawing inferences both from this work also aligns with past efforts which rely in principle on an
idea that one may draw inferences both from what is observed and what is not observed [10, 23].

The tradeoffs for improved inferences are twofold. First, our approach requires abundance data (i.e.,
count data C ) instead of presence/absence totals na , nb , and nab . This limits the retrospective analysis
of past work or meta-analyses to only those studies that meet a greater data-sharing burden. However,
we also note that, as proven in Appendix 2, full count data are not necessary: the posterior p(s,Ra ,Rb |
Ca ,Cb) can still be computed exactly when only the sampling efforts (ma and mb) and the presence/ab-
sence values (na , nb , and nab) are known.

The second tradeoff for improved inference is that one must specify a prior distribution for the total
population sizes. In the case of the var gene repertoires of P. falciparum , data-informed prior distribu-
tions can be created for both global [28] or local [31] estimates. In this light, one may view past work on
Bayesian methods for repertoire overlap [23, 5] as specifying point priors at a particular fixed repertoire
size. In general, the choice of an appropriate prior is left to the user, which may require users to make
explicit their prior beliefs about population size.

There are limitations to our approach which relate to our assumptions about the sampling process which
generates the count data. Specifically, we have assumed throughout this work that each time a new sam-
ple is generated, this sample is drawn independently and uniformly from a population in which unique
genes, species, or objects are identically represented. Thus, unlike abundance based measures [10]
which assume that some species are more likely to be sampled than others, we assumed each species’
selection is equiprobable.In the sampling of var gene sequences, for instance, methodological artifacts
such as PCR primer bias may cause non-uniform sampling. One avenue for future work could be to
extend our rigorous probabilistic modeling to the non-uniform sampling regime.
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Appendix 1

Factorization of the joint posterior distribution

p(s,Ra ,Rb |Ca ,Cb) = p(s |Ca ,Cb ,Ra ,Rb) ·p(Ra ,Rb |Ca ,Cb) (A1)

= p(s |Ca ,Cb ,Ra ,Rb) ·p(Ra |Ca ,Cb) ·p(Rb |Ca ,Cb) (A2)

= p(s |Ca ,Cb ,Ra ,Rb) ·p(Ra |Ca) ·p(Rb |Cb) (A3)

= p(s | na ,nb ,nab ,Ra ,Rb) ·p(Ra |Ca) ·p(Rb |Cb) (A4)

The first equality is an application of the probability identity p(A,B) = p(A | B)p(B). The second equal-
ity uses the independence of Ra and Rb . For the third equality, note that the count data for parasite b
contains no pertinent information relative to parasite a’s repertoire size that parasite a’s own count data
does not contain. Thus, p(Ra |Ca ,Cb) = p(Ra |Ca) and, similarly, p(Rb |Ca ,Cb) = p(Rb |Cb). The fourth
equality is the claim that

p(s |Ca ,Cb ,Ra ,Rb) = p(s | na ,nb ,nab ,Ra ,Rb) (A5)

which follows from the fact that the number of times each gene was observed (i.e., the counts) informs
the repertoire size as the example above showed. However, when the repertoire sizes are known, only the
na , nb , and nab values from the count data are pertinent to the overlap size.
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Appendix 2

Theorems enabling efficient computations

Theorem 1. Let C be the count data resulting from sampling m elements uniformly with replacement from
a set with R elements. Let n be the number of unique elements drawn from C . Then, when R is known, we
can think of C as a vector

C = (c1,c2, . . . ,cn ,0,0, . . . ,0︸ ︷︷ ︸
R −n zeros

)

where the ci correspond to the number of times each sampled element was drawn and we have
∑n

i=1 ci = m.
Let u = (u1,u2, . . . ,uQ ) be the unique nonzero numbers in C and let fi be the number of times ui appears
in C . Then, the distribution of C | R is given by

p(C | R) = R !

(R −n)! · f1! · f2! · · · fQ !
· m!

c1! · c2! · · ·cn !
· 1

Rm (A6)

Proof. First note that, given R labeled elements each with equal probability of being sampled, the multi-
nomial distribution gives the probability of observing any given count data. This is almost the probability
that we are interested in except that, for us, the elements are not labeled. That is, as an example, count
data C = (2,3) is the same as C = (3,2). So, p(C | R) is the multinomial probability multiplied by the
number of unique permutations of the counts. The multinomial probability is given by

m!∏R
i=1 ci !

R∏
i=1

(
1

R

)ci

= m!

c1! · c2! · · ·cn !
·
(

1

R

)c1
(

1

R

)c2

·
(

1

R

)cn

(A7)

= m!

c1! · c2! · · ·cn !
·
(

1

R

)∑n
i=1 ci

(A8)

= m!

c1! · c2! · · ·cn !
·
(

1

R

)m

(A9)

The number of unique permutations of the counts is the same as the number of R-letter words contain-
ing Q + 1 unique letters, u0,u1, . . . ,uQ , where letter ui appears fi times for i 6= 0 and letter u0 appears
R −n times. This number is given by the multinomial coefficient

number of unique permutations
of (c1,c2,...,cn ,0,0,...,0) = R !

(R −n)! · f1! · f2! · · · fQ !
(A10)

And, thus,

p(C | R) = R !

(R −n)! · f1! · f2! · · · fQ !
· m!

c1! · c2! · · ·cn !

(
1

R

)m

(A11)

■

Theorem 2. Let C be the count data resulting from sampling m elements uniformly with replacement
from a set with R elements. The count data C consists of the unique elements sampled and the number
of times each element was sampled. Let n be the number of unique elements sampled and let p(R) be the
prior distribution on the (unknown) set size R. Then, for fixed C and m,

p(R |C ) = p(R | n)
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That is, p(R |C ) depends only on the unique number of elements sampled n and not the number of times
each element was sampled.

Proof. First note it is impossible for the set size R to be less than number of unique elements sampled n.
So, when R < n, p(R |C ) = 0.

For R ≥ n, we can think of the fixed count data C as a vector

C = (c1,c2, . . . ,cn)

where n is the number of elements sampled and the ci are the number of times each sampled element
was sampled. From Theorem 1, we know that

p(R |C ) ∝ p(C | R) ·p(R) = R !

(R −n)! · f1! · · · fQ !
· m!

c1! · c2! · · ·cn !

(
1

R

)m

·p(R) (A12)

where u1,u2, . . . ,uQ are the unique numbers other than zero in C and fi is the number of times ui appears
in C . Dropping all the terms that do not depend on R gives

p(R |C ) ∝ R !

(R −n)!
·
(

1

R

)m

·p(R) (A13)

Now let’s look at p(R | n). First, using Bayes’ rule and ignoring the denominator term that does not
depend on R, we have

p(R | n) ∝ p(n | R) ·p(R) (A14)

p(n | R) is the probability that n unique elements were sampled from a set with R elements after m
uniform draws with replacement. To draw n elements after m draws, note that draw a previously unseen
element must have been drawn n times and already seen elements must have been drawn m −n times.
We can think of this process as a Markov chain with R +1 states corresponding to the number of unique
elements drawn. For the Markov chain’s probability transition matrix, note that if i unique elements have
already been drawn then the probability that the next element drawn has already been drawn is i /R and
the probability that it is a previously unseen element is (R − i )/R. Thus, the probability transition matrix
π has entries

πi j =


i
R , i = j
R−i

R , j = i +1

0, otherwise

, i , j = 0,1, . . . ,R (A15)

To calculate p(n | R), we will sum over all possible paths that the Markov chain could have taken to get
from state 0 to state n in m steps. Let’s denote all the possible paths that start at state 0 and end at state n
after m steps by P . Since every possible path must have must start at 0 and end at n, every possible path
must include the following transitions: 0 → 1, 1 → 2, . . ., and n −1 → n. The remaining m −n steps must
have been steps for which the number of unique elements drawn did not change, i.e., a previously drawn
element was drawn again. So the possible paths are differentiated by the number of times qi that the
chain stayed in state i . For notational convenience, let Q be the set of all unique n-tuples (q1, q2, . . . , qn)
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such that each qi is a nonnegative integer and
∑n

i=1 qi = m −n. In this notation, summing over paths is
equivalent to summing over the n-tuples in Q

p(n | R) = ∑
(q1,q2,...,qn )∈Q

(
R

R

)
︸︷︷︸

p(0→1)

·
(

R −1

R

)
︸ ︷︷ ︸

p(1→2)

· · ·
(

R − (n −1)

R

)
︸ ︷︷ ︸

p((n−1)→n)

·
(

1

R

)q1

︸ ︷︷ ︸
p(1→1)

·
(

2

R

)q2

︸ ︷︷ ︸
p(2→2)

· · ·
( n

R

)qn

︸ ︷︷ ︸
p(n→n)

(A16)

= R · (R −1) · · · (R −n +1)

Rn

∑
(q1,q2,...,qn )∈Q

1q1 ·2q2 · · ·nqn

Rq1+q2+···qn
(A17)

= R · (R −1) · · · (R −n +1)

Rn

∑
(q1,q2,...,qn )∈Q

1q1 ·2q2 · · ·nqn

Rm−n (A18)

= R · (R −1) · · · (R −n +1)

Rm

∑
(q1,q2,...,qn )∈Q

1q1 ·2q2 · · ·nqn (A19)

∝ R !

(R −n)!
· 1

Rm (A20)

where, in the last equation, we have dropped the sum that doesn’t depend on R and used the fact that
R · (R −1) · · · (R −n +1) = R !

(R−n)! .

Plugging this result into p(R | n) gives

p(R | n) ∝ p(n | R) ·p(R) (A21)

∝ R !

(R −n)!
· 1

Rm ·p(R) (A22)

which, as a function of R, is the same expression we found for p(R |C ). Thus, for fixed count data C ,

p(R |C ) = p(R | n) (A23)

■

In the context of estimating var repertoire sizes and assuming PCR samples vars uniformly, this result
means that only knowing the sampling effort m and the number of unique vars sampled n is as informa-
tive as knowing all the counts per gene.
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