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Abstract

Counting the number of species, items, or genes that are shared between two sets is a simple cal-
culation when sampling is complete. However, when only partial samples are available, quantifying
the overlap between two sets becomes an estimation problem. Furthermore, to calculate normal-
ized measures of β-diversity, such as the Jaccard and Sorenson-Dice indices, one must also estimate
the total sizes of the sets being compared. Previous efforts to address these problems have assumed
knowledge of total population sizes and then used Bayesian methods to produce unbiased estimates
with quantified uncertainty. Here, we address populations of unknown size and show that this pro-
duces systematically better estimates—both in terms of central estimates and quantification of un-
certainty in those estimates. We further show how to use species count data to refine estimates of
population size in a Bayesian joint model of populations and overlap.

Introduction

Quantifying the overlap between two populations is a problem in many fields including genetics, ecol-
ogy, and computer science. When the two populations or sets are fully known, one can simply count the
size of their intersection. However, when populations are only partially observed, due to a subsampling
or stochastic sampling process, the population overlap problem becomes one of inference.

In ecology, the relationship between the diversity in one population and another is calledβ-diversity [37],
an idea which has led to the creation of numerous indices and coefficients which seek to quantify it. For
example, the canonical Jaccard index [20] and the Sorenson-Dice coefficient [16, 32] have the appealing
properties that (i) they are based only on the number of shared species, s, and the numbers of species in
each population, Ra and Rb , and they take the values zero, when two populations are entirely unrelated,
and one, when the populations are identical. However, these coefficients, as well as alternatives [21],
have been shown to be biased when population sampling is incomplete [10, 23]. Furthermore, they
provide no measure of statistical uncertainty because they provide only point estimates.

To address these issues, improvements in the quantification of β-diversity have been made in various
ways. One direction of development recognizes that the measurement of β-diversity from the presence
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and absence of species fundamentally relies on counting the species shared by the two populations in
the context of the numbers of species in each population separately, thus cataloguing the myriad ways
in which these three integers might be reasonably combined, depending on the circumstances [21]. An-
other set of developments has been to work with species abundance data instead of binary presence-
absence measurements [6]. A third set of developments has been to place observations of both abun-
dance and presence-absence in the context of a probabilistic sampling process [10, 23], allowing for the
appropriate quantification of uncertainty through confidence intervals or credible intervals.

One key feature of the β-diversity measures that quantify uncertainty is that the assumptions of their
underlying statistical models must be stated explicitly. This provides transparency and also reveals as-
sumptions which may not hold in practice. In recent work, a Bayesian approach toβ-diversity estimation
was introduced which provides unbiased estimates of the overlap between two stochastically sampled
populations, yet this approach assumes that the two original population sizes are known a priori [23].
In practice, however, overall population sizes may be unknown, or may vary widely, making this model
and others like it misspecified from the outset to an unknown degree. Thus, while incorporating appro-
priate uncertainty into population overlap estimation is an improvement, doing so without recogniz-
ing uncertainty or misspecification in each individual population’s size may nevertheless lead to biased,
overconfident, and unreliable inferences.

Here we address this problem by leveraging an additional and often available source of data in presence-
absence studies: the total number of independent samples taken from each population, i.e. the sampling
depth or effort. Building on the same intuition as the estimation of total species from a species accumu-
lation curve [17], we introduce a model for β-diversity calculations which produces joint estimates of
s, Ra , and Rb in a Bayesian statistical framework. Posterior samples of these quantities offer solutions
to issues identified above by providing unbiased central estimates, the quantification of uncertainty via
credible intervals, and the construction of Bayesian versions of the canonical Jaccard and Sorenson-Dice
coefficients (as well as 20 others which are based on s, Ra , and Rb [21]).

Although estimating pairwise similarity is a problem in many fields, here we present the problem in the
context of estimating the genetic similarity between pairs of malaria parasites from the species Plasmod-
ium falciparum—the most virulent of the human malaria parasites.

P. falciparum repertoire overlap problem

Of the diverse multigene families of P. falciparum, the var family is the most heavily studied because of
its direct links to both malaria’s virulence and duration of infection [2, 13, 27, 35, 25]. Each P. falciparum
parasite genome contains a repertoire of hypervariable and mutually distinct var genes [18]. The var
genes differ within and between parasites, due to rapid recombination and reassortment [14, 38]. Criti-
cally, while the number of var genes found in each parasite’s repertoire is typically around 60, the actual
number may vary considerably [28]. For instance, the reference parasite 3D7 has been measured to have
58 var genes [18] while the DD2 and RAJ116 parasites have 48 and 39, respectively [30].

Recent studies of P. falciparum epidemiology and evolution have generated insights by comparing the
var repertoires between parasites through β-diversity calculations [3, 1, 11, 4, 5, 34, 15, 12]. Indeed, since
var repertoires are, themselves, under selection, theory suggests that if a human population has been
exposed to particular var genes, then repertoires containing those var genes will have lower fitness than
repertoires that are entirely unrecognized by local hosts, shaping the var population structure [4, 34,
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7, 19, 29, 5]. Methods by which we estimate the extent to which var repertoires overlap are therefore
important, particularly as studies of the population genetics and genetic epidemiology of P. falciparum
antigens become more sophisticated and data rich. However, as with estimates of β-diversity in ecology,
traditional estimates of overlap between var repertoires also suffer bias due to subsampling.

Due to the massive diversity and recombinant structure of var genes, the vast majority of var studies
to date have been restricted to using degenerate PCR primers targeting a small “tag” sequence within a
particular var domain called DBLα [33]. Although these DBLα tags have been widely used to study the
structure and function of var genes [35, 3, 4, 33, 8, 9, 26, 36, 24], DBLα PCR data nevertheless comprise
a random subsample from each parasite’s repertoire of var genes. Thus, these procedures produce (i)
presence-absence data for various var types, and (ii) a count of the total number of samples accumulated
in the process.

In the malaria literature, repertoire overlap, also called pairwise type sharing [3], is most commonly
quantified by the the Sorenson-Dice coefficient:

ŜDEmpirical =
nab

1
2 (na +nb)

(1)

where na and nb are the number of unique var types sampled from parasites a and b, respectively, and
nab is the number of sampled types shared by both parasites (i.e., the empirical overlap). When reper-
toires are not fully sampled (as is overwhelmingly the case in existing studies [3, 1, 11, 4, 34, 15]) the
Sorensen-Dice coefficient underestimates the true overlap between repertoires. Problematically, this
downward bias increases as na and nb decrease [10, 23] resulting in difficulties when making compar-
isons between study sites with different sampling depths.

The methods introduced in this paper, while targeted more broadly at the development of β-diversity
quantification, are developed in the particular context of this P. falciparum repertoire overlap problem.

Methods

Setup

Our method for inferring overlap is based on two key observations. First, not all repertoires are the same
size but information about a repertoire’s size can be gleaned from the rate at which more samples identify
new repertoire elements [17]. Second, the observed overlap nab is a realization of a stochastic sampling
process which depends on not only the true overlap but also the true repertoire sizes. These observations
lead us to use a hierarchical Bayesian approach (Figure 1).

In brief, we model the stochastic process that generates the observed presence-absence data (na , nb ,
and nab) which can be derived from observed sample counts (i.e. observed abundances, Ca , Cb), from
two parasites with repertoire sizes Ra and Rb and overlap s. The core of this stochastic sampling process
is the assumption that sampling from each repertoire is done independently, uniformly at random, and
with replacement, corresponding to PCR of var gDNA without substantial primer bias. From this model,
we compute the joint posterior distribution of the unknown parameters, s, Ra , and Rb . With this joint
posterior distribution, p(s,Ra ,Rb | Ca ,Cb), we can produce unbiased a posteriori point estimates of the
repertoire sizes and overlap, and can quantify uncertainty in these point estimates via credible intervals.
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Figure 1: Diagram of the model. Two repertoire sizes, Ra and Rb , are generated by their priors. The overlap be-
tween the repertoires, s, is then generated by the prior on the overlap given the repertoire sizes. The repertoire sizes
and overlap define the two parasites, a and b, from which we sample. Sampling ma items with replacement from
parasite a produces count data Ca consisting of genes sampled from parasite a and counts per gene. Sampling mb

items with replacement from parasite b produces count data Cb consisting of genes sampled from parasite b and
counts per gene.

In the detailed methods that follow, we describe our choice of priors over the three parameters s, Ra ,
and Rb , derive the model likelihood, and review the steps required to make calculations efficient. An
open-source implementaton of these methods is freely available (see Code Availability statement).

Choice of prior distributions

Due to extensive sequencing and assembly efforts [28], the repertoire sizes for thousands of P. falciparum
parasites have been characterized, leading us to choose a data-informed prior distribution for repertoire
sizes Ra and Rb . We assume an informative Poisson prior for Ra and Rb , fit to the repertoire sizes from
2398 parasite isolates published by Otto et al. [28].

Ra ,Rb ∼ Poisson[55].

For β-diversity studies outside of P. falciparum , alternative informative priors can be chosen. Because
the repertoire overlap s can take values between 0 and min{Ra ,Rb}, we use an uninformative prior for
repertoire overlap s,

s | Ra ,Rb ∼ Uniform[0,min{Ra ,Rb}] .
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Computing the joint posterior distribution p(s,Ra ,Rb |Ca ,Cb)

The posterior distribution of the parameters given the count data is a product of three terms

p(s,Ra ,Rb |Ca ,Cb) = p(s | na ,nb ,nab ,Ra ,Rb) ·p(Ra |Ca) ·p(Rb |Cb) , (2)

a calculation shown in detail in Appendix 1. The rest of this section is devoted to computing each of these
terms, noting that that last two are mathematically identical, but derived from different data.

To compute p(R | C ), the distribution of repertoire size given count data for a fixed but arbitrary total
sampling effort m, we first calculate the likelihood of observing count data C given a repertoire size R,
i.e., p(C | R). Knowing how to compute p(C | R), allows us to calculate p(R |C ) via Bayes’ rule

p(R |C ) = p(C | R) ·p(R)

p(C )
= p(C | R) ·p(R)∑

Ri
p(C | Ri ) ·p(Ri )

(3)

where p(R) is the prior on repertoire size and the sum in the denominator should be computed over the
support of p(R). For the unbounded support of the Poisson prior used here, we restrict the sum to only
those terms above the numerical precision of the computer.

In Appendix 2, we prove that

p(C | R) = R !

(R −n)! · f1! · f2! · · · fQ !
· m!

c1! · c2! · · ·cn !
· 1

Rm (4)

where the ci are the number of times each of the n sampled var types were observed and the fi are the
multiplicities of the unique numbers in {ci }n

i=1. For instance, suppose the count data consists of five
unique var types with counts

{c1,c2,c3,c4,c5} = {1,1,2,2,3} (5)

then there are three (Q = 3) unique numbers amongst the ci : 1, 2, and 3. Further, 1’s multiplicity in
{1,1,2,2,3} is 2, 2’s is 2, and 3’s is 1 so ( f1, f2, f3) = (2,2,1).

With the likelihood p(C | R) in hand, it is straightforward to calculate the posterior p(R | C ) via Equa-
tion (3). And, thus, we can calculate the second and third terms in Equation (2).

Conveniently, the remaining term of Eq. (2) p(s | na ,nb ,nab ,Ra ,Rb) has been derived in the literature [23],
but only under the restriction that Ra = Rb = 60. We therefore rederive this quantity for general but fixed
Ra and Rb , summarizing the main steps here.

Using Bayes’ rule, we can write

p(s | na ,nb ,nab ,Ra ,Rb) ∝ p(nab | na ,nb , s,Ra ,Rb) ·p(s | Ra ,Rb) (6)

where p(s | Ra ,Rb) is a user-specified prior described above. The other term, p(nab | na ,nb , s,Ra ,Rb),
can be computed by considering the probability that two subsets of size na and nb will have an inter-
section of size nab , given that they have been drawn uniformly from sets of total size Ra and Rb whose
intersection is size s. To do so, we use the hypergeometric distribution, H (s,R,n), which is the dis-
tribution of the number of "special" objects drawn after n uniform draws with replacement from a set
of R objects, s of which are "special." With this distribution in mind, note that observing nab shared
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var genes can be thought of as a two-step process. First, draw na var genes from parasite a’s Ra to-
tal in which s are special because they are shared with parasite b. The number of shared vars drawn
is a random variable sa ∼ H (s,Ra ,na). Second, draw nb genes from parasite b’s Rb total in which
sa are special because they are shared by both parasites and were drawn from parasite a. The num-
ber of shared vars captured after sampling from both parasites, nab , will be distributed according to
H (sa ,Rb ,nb) =H (H (s,Ra ,na),Rb ,nb).

To generate a particular empirical overlap nab , first step 1 must happen and then, independently, step
2 must happen. We therefore multiply these two hypergeometric probabilities. However, because these
two steps may occur for any value of the intermediate variable sa , we sum over all possible values of sa

p(nab | na ,nb , s,Ra ,Rb) =
s∑

sa=0
p(sa | na ,Ra , s) ·p(nab | nb ,Rb , sa) (7)

=
s∑

sa=0
p (H (s,Ra ,na) = sa) ·p (H (sa ,Rb ,nb) = nab) (8)

Plugging this into Equation (6) allows us to compute p(s | na ,nb ,nab ,Ra ,Rb).

Inference Method Summary

We now have all the pieces in place to compute p(s,Ra ,Rb |Ca ,Cb):

p(s,Ra ,Rb |Ca ,Cb) ∝ p(Ra) ·p(Rb) ·p(s | Ra ,Rb) ·
[

s∑
sa=0

p (H (s,Ra ,na) = sa) ·p (H (sa ,Rb ,nb) = nab)

]

×
[

Ra !

f a
1 ! · f a

2 ! · · · f a
Qa

!
· ma !

ca
1 ! · ca

2 ! · · ·ca
Ra

!

(
1

Ra

)ma
]

×
[

Rb !

f b
1 ! · f b

2 ! · · · f b
Qb

!
· mb !

cb
1 ! · cb

2 ! · · ·cb
Rb

!

(
1

Rb

)mb
]

(9)

where the first three terms are the user-specified priors. With this joint posterior distribution, we can
compute unbiased Bayesian estimates of s, Ra , and Rb as expectations over the posterior:

ŝ = ∑
s,Ra ,Rb

s ·p(s,Ra ,Rb |Ca ,Cb) (10)

R̂a = ∑
s,Ra ,Rb

Ra ·p(s,Ra ,Rb |Ca ,Cb) (11)

R̂b = ∑
s,Ra ,Rb

Rb ·p(s,Ra ,Rb |Ca ,Cb) (12)

Moreover, and importantly, we can compute unbiased Bayesian estimates of any functional combination
of s, Ra , and Rb such as Bayesian versions of the Jaccard index [20], the Sorensen-Dice coefficient [32],
other coefficients based on s, Ra , and Rb [21], and the directional pairwise-type-sharing measures of He
et al. [19]. For all of these measures, in addition to the point estimates, the ability to draw from the joint
posterior distribution Eq. (9) enables one to compute credible intervals to quantify uncertainty.
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Figure 2: Repertoire size posterior estimates improve with increased sampling effort. For true repertoire size
R = 52, the posterior distribution p(R |C ) is plotted for different sampling efforts m (see legend). For each value of
m, count data C were generated by drawing m genes uniformly with replacement from a repertoire of 52 genes. As
sampling effort increases, the posterior p(R |C ) concentrates around the true repertoire size 52. The m = 0 curve
is the Poisson prior on repertoire size, p(R).

Generation of Simulated Data

To facilitate numerical experiments in which we tested our inference method’s ability to recover accurate
estimates of s, Ra , and Rb , we generated synthetic data via simulation as follows. First, we selected a
value of overlap s between 0 and 70, so that analyses could be stratified according to overlap. Next, we
drew repertoire sizes Ra and Rb independently from the prior distribution, ensuring that Ra ≤ s and
Rb ≤ s, redrawing as necessary. Next, we drew from the model (Fig. 1) a set of ma and mb samples from
repertoires of sizes Ra and Rb , respectively, with specified overlap s, to generate count data histograms
Ca and Cb . This procedure therefore stochastically created synthetic count data for a specified overlap s
and sampling depth m, allowing us to test our method’s accuracy and uncertainty quantification under
various scenarios.

Results

Inference

We first investigated how increasing the total number of independent samples m improves our ability to
correctly estimate the total population size R. To do so, we conducted numerical experiments where we
presumed a repertoire size and then simulated samples from it to produce count data C . An example of
such an experiment shows how posterior estimates approach the true repertoire size as sampling effort
m increases (Fig. 2). The true value of R is always contained within the inferred distributions, but only
when the number of samples m grows large are inferences about R highly confident.

This experiment illustrates two related points. First, there is valuable information in knowing the total
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Figure 3: Accuracy of estimates across a range of true parameter values and sampling efforts. For each over-
lap value s between 0 and 70, we performed three independent simulations to generate synthetic count data
(Methods).. Estimates of s (A,B,C) and Ra (D,E,F) from the resulting count data, using our statistical model, are
shown. Estimates are shown for sampling efforts m = 50,96,192 across left, middle, and right columns, respec-
tively. Dashed black lines represent perfect unbiased inference.

sampling effort m, even if some samples were duplicate observations of previously observed genes, sim-
ply because those sample counts inform repertoire size estimates. Second, increasing the sampling effort
concentrates p(R |C ) around the true repertoire size, concretely linking sampling effort to estimation of
not only repertoire size, but through decreased uncertainty, eventual overlap estimates as well.

Next we examined whether the ŝ, R̂a , and R̂b estimates in Equations (10)-(12) are accurate across a range
of sampling efforts m in two steps. First, we simulated the sampling process for various values of s, Ra ,
and Rb to produce synthetic count data Ca and Cb with varying levels of overlap between the observed
samples. Then, we evaluated our ability to recover s, Ra , and Rb by applying Eqs. (10)-(12) to the synthetic
data.

We found that the overlap and repertoire estimates accurately reproduce the true parameter values, pro-
vided that sampling effort is sufficiently large. Furthermore, as sampling effort increases, estimates be-
come increasingly accurate (Fig. 3).

However, we also observed that when the sampling effort is small but repertoires are large and highly
overlapping (e.g. m = 50 and s > 50), ŝ underestimates the true values (Fig. 3A). This phenomenon is
due to a more general property of Bayesian inference: when there are fewer samples from which to infer,
the prior distribution exerts a stronger effect on inferences. Here, the Poisson prior over repertoire sizes
assigns low probability to repertoire sizes as large as 70 (p(Ra ≥ 70) = 0.03), and thus, in the absence
of a large sampling effort to overwhelm that prior, the surprisingly large repertoire sizes and overlaps
require substantially more samples m to establish. In real data from P. falciparum , repertoires (and thus
repertoire overlaps) larger than 60 are rarely observed [28, 15], decreasing the potential impact of this
issue.
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Figure 4: Credible intervals quantify uncertainty in overlap estimates. For each overlap value s between 0 and
70, we performed one simulation to generate synthetic count data (Methods). Estimates from the resulting count
data, using our statistical model, of s (A,B,C), and error in Ra and Rb (D,E,F) are shown. Estimates (dots) and
95% credible intervals (lines) are shown for sampling efforts m = 50,96,192 in left, middle, and right columns,
respectively.

Uncertainty

Bayesian methods also allow us to quantify uncertainty via credible intervals (CIs). To measure how well
our CIs capture the true parameter values, we computed 95% highest density posterior intervals for pa-
rameter estimates in simulated data, where true values were known. As expected, uncertainty decreased
as sampling effort increased, and approximately 95% of the 95% CIs captured the true parameter values,
as designed (Fig. 4). For instance, for sampling efforts of m = 50, m = 96, and m = 192, the proportions
of the 95% ŝ CIs containing the true s were 0.975, 0.975, and 0.965, respectively. For the same three sam-
pling efforts, the proportions of the 95% R̂a CIs that contained the true repertoire size Ra were 0.920,
0.950, and 0.955, respectively.

Improving β-diversity indices

Over 20 different indices of β diversity have been proposed which algebraically combine empirical esti-
mates of Ra , Rb , and s [21], including the well known Jaccard index and the Sorenson-Dice coefficient.
The Sorenson-Dice coefficient is defined as the ratio of repertoire overlap to the average of the repertoires
sizes,

SD = s
1
2 (Ra +Rb)

. (13)

Typically, in the absence of more sophisticated estimates of Ra , Rb , and s, empirical values are used,

ŜDEmpirical =
nab

1
2 (na +nb)

(14)
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Figure 5: Bayesian vs empirical Sorensen-Dice estimates. For each overlap value s between 0 and 70, we per-
formed one independent simulation to generate synthetic count data (Methods) and estimated the Sorensen-Dice
coefficient using estimates from our Bayesian framework as well as from the raw empirical data. The error in
the Bayesian Sorensen-Dice estimate, ŜDB (Equation (15)), and accompanying 95% credible intervals are shown.
The often-used empirical Sorensen-Dice estimate, ŜDE (Equation (14)), is also shown. The dashed black line at 0
represents the true Sorensen-Dice coefficient (Equation (13)).

However, the joint posterior distribution Eq. (9) over s, Ra , and Rb opens the door to a Bayesian reformu-
lation of the Sorenson-Dice coefficient as

ŜDBayesian = ∑
s,Ra ,Rb

s
1
2 (Ra +Rb)

·p(s,Ra ,Rb |Ca ,Cb) (15)

with similar generalizations for the Jaccard coefficient or other combinations of s, Ra , and Rb [21]. This
Bayesian Sorenson-Dice coefficient averages the values of the typical Sorenson-Dice coefficient over
joint posterior estimates of s, Ra , and Rb .

We investigated the performance of the Bayesian Sorenson-Dice coefficient ŜDBayesian and its empirical
counterpart ŜDEmpirical by once more simulating the sampling process under known conditions and ap-
plying both formulas. As in our estimates of repertoire overlap, we again found that Bayesian Sorenson-
Dice estimates produce consistent and unbiased estimates with correct quantification of uncertainty via
credible intervals (Fig. 5), except when sampling effort is low (m = 50) while true repertoire overlap is
extremely high (s > 50). Furthermore, the Bayesian estimates track the true Sorenson-Dice values better
than direct empirical estimates across overlap values and sampling efforts; direct empirical estimates
are biased more and more downward as sampling effort decreases and as true overlap increases (Fig. 5).
While this illustrates how the Bayesian framework herein may be used to improve classical and com-
monly used estimators via Eq. (15), an identical approach may be used to compute Bayesian Jaccard
coefficients, or other algebraic combinations of s, Ra , and Rb [21].

Sample size calculations

Sample size calculations ask how many samples are needed to produce eventual estimates with a pre-
specified level of (or upper bound on) statistical uncertainty. Such questions, while critical in the ethical
study of human subjects, are also important when budgeting for studies in which additional samples
require time, reagents, and funding.

To assist in sample size calculations, we used simulations to quantify the relationship between increases
in sampling effort m and decreases in the typical width of the credible interval around the repertoire
overlap estimate estimate ŝ (Eq. (10)). For many overlap-sampling effort pairs, (s,m), we performed 300
independent replicates in which we generated synthetic data, computed the posterior distribution for s,
and calculated the width of the 95% ŝ CI.
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Figure 6: Quantifying the decrease in uncertainty from increased sequencing. Constant s curves show the me-
dian 95% credible interval (CI) width for the s estimate, ŝ, as a function of the sampling effort m. For each (s,m)-
duplet, the median is across 300 count data generation simulations. This plot illustrates the intuition that addi-
tional laboratory efforts (increasing m) lead to higher accuracy (smaller CIs).

We found that, as expected, increased sampling effort m leads to decreased uncertainty across all values
of overlap s (Fig. 6). However, we also found that overlap plays a role as well, with larger overlap causing
wider CIs. For instance, after m = 200 samples, a CI for overlap s = 70 is typically of width 8, while a CI
for overlap s = 30 is typically of width 4. After m = 300 samples from each repertoire, median CI widths
are 4 or lower for all overlap values. In short, it is easier to show with high confidence that two samples
do not overlap than to show that they are highly overlapping.

Discussion

This manuscript presents a Bayesian solution to estimating the overlap between two populations when
only subsamples of those populations are available. Importantly, because the total population sizes bear
on the inference of overlap, this method jointly estimates population sizes and overlap from the quanti-
tative accumulation of evidence, improving inferences. Samples from the joint posterior distribution can
be used to quantify uncertainty via credible intervals, or can be used in Bayesian versions of the Jaccard
index, Sorenson-Dice coefficient, and other algebraic combinations of set sizes and intersections.

In addition to the analysis of existing data, this approach can also be used prospectively to perform
sample size calculations. Importantly, context-specific sample sizes can be estimated by including addi-
tional information in the Bayesian prior. For instance, in the context of malaria’s var genes, it is known
that parasites from South America tend to have smaller repertoires [22, 31] than samples from other re-
gions [28]—information which can be expressed through the prior distribution to influence (and in this
case, decrease) sampling needs. Because additional sampling has financial and complexity costs, this al-
lows researchers to weigh accuracy requirements against laboratory costs in the contexts of a particular
study.

Beyond the study of P. falciparum , the approach introduced in this work lands in between two existing
classes of β-diversity measures in the ecology literature. One class of methods measures β-diversity in
terms of species presence or absence [21], while the other further includes species abundance [10]. The
present work uses abundance measurements (which we call count data) in order to improve presence-
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absence-based β-diversity estimates, but does not construct abundance-based similarity measures per
se. By drawing inferences both from this work also aligns with past efforts which rely in principle on an
idea that one may draw inferences both from what is observed and what is not observed [10, 23].

The tradeoffs for improved inferences are twofold. First, our approach requires abundance data (i.e.,
count data C ) instead of presence/absence totals na , nb , and nab . This limits the retrospective analysis
of past work or meta-analyses to only those studies that meet a greater data-sharing burden. However,
we also note that, as proven in Appendix 2, full count data are not necessary: the posterior p(s,Ra ,Rb |
Ca ,Cb) can still be computed exactly when only the sampling efforts (ma and mb) and the presence/ab-
sence values (na , nb , and nab) are known.

The second tradeoff for improved inference is that one must specify a prior distribution for the total
population sizes. In the case of the var gene repertoires of P. falciparum , data-informed prior distribu-
tions can be created for both global [28] or local [31] estimates. In this light, one may view past work on
Bayesian methods for repertoire overlap [23, 5] as specifying point priors at a particular fixed repertoire
size. In general, the choice of an appropriate prior is left to the user, which may require users to make
explicit their prior beliefs about population size.

There are limitations to our approach which relate to our assumptions about the sampling process which
generates the count data. Specifically, we have assumed throughout this work that each time a new sam-
ple is generated, this sample is drawn independently and uniformly from a population in which unique
genes, species, or objects are identically represented. Thus, unlike abundance based measures [10]
which assume that some species are more likely to be sampled than others, we assumed each species’
selection is equiprobable.In the sampling of var gene sequences, for instance, methodological artifacts
such as PCR primer bias may cause non-uniform sampling. One avenue for future work could be to
extend our rigorous probabilistic modeling to the non-uniform sampling regime.
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Appendix 1

Factorization of the joint posterior distribution

p(s,Ra ,Rb |Ca ,Cb) = p(s |Ca ,Cb ,Ra ,Rb) ·p(Ra ,Rb |Ca ,Cb) (A1)

= p(s |Ca ,Cb ,Ra ,Rb) ·p(Ra |Ca ,Cb) ·p(Rb |Ca ,Cb) (A2)

= p(s |Ca ,Cb ,Ra ,Rb) ·p(Ra |Ca) ·p(Rb |Cb) (A3)

= p(s | na ,nb ,nab ,Ra ,Rb) ·p(Ra |Ca) ·p(Rb |Cb) (A4)

The first equality is an application of the probability identity p(A,B) = p(A | B)p(B). The second equal-
ity uses the independence of Ra and Rb . For the third equality, note that the count data for parasite b
contains no pertinent information relative to parasite a’s repertoire size that parasite a’s own count data
does not contain. Thus, p(Ra |Ca ,Cb) = p(Ra |Ca) and, similarly, p(Rb |Ca ,Cb) = p(Rb |Cb). The fourth
equality is the claim that

p(s |Ca ,Cb ,Ra ,Rb) = p(s | na ,nb ,nab ,Ra ,Rb) (A5)

which follows from the fact that the number of times each gene was observed (i.e., the counts) informs
the repertoire size as the example above showed. However, when the repertoire sizes are known, only the
na , nb , and nab values from the count data are pertinent to the overlap size.
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Appendix 2

Theorems enabling efficient computations

Theorem 1. Let C be the count data resulting from sampling m elements uniformly with replacement from
a set with R elements. Let n be the number of unique elements drawn from C . Then, when R is known, we
can think of C as a vector

C = (c1,c2, . . . ,cn ,0,0, . . . ,0︸ ︷︷ ︸
R −n zeros

)

where the ci correspond to the number of times each sampled element was drawn and we have
∑n

i=1 ci = m.
Let u = (u1,u2, . . . ,uQ ) be the unique nonzero numbers in C and let fi be the number of times ui appears
in C . Then, the distribution of C | R is given by

p(C | R) = R !

(R −n)! · f1! · f2! · · · fQ !
· m!

c1! · c2! · · ·cn !
· 1

Rm (A6)

Proof. First note that, given R labeled elements each with equal probability of being sampled, the multi-
nomial distribution gives the probability of observing any given count data. This is almost the probability
that we are interested in except that, for us, the elements are not labeled. That is, as an example, count
data C = (2,3) is the same as C = (3,2). So, p(C | R) is the multinomial probability multiplied by the
number of unique permutations of the counts. The multinomial probability is given by

m!∏R
i=1 ci !

R∏
i=1

(
1

R

)ci

= m!

c1! · c2! · · ·cn !
·
(

1

R

)c1
(

1

R

)c2

·
(

1

R

)cn

(A7)

= m!

c1! · c2! · · ·cn !
·
(

1

R

)∑n
i=1 ci

(A8)

= m!

c1! · c2! · · ·cn !
·
(

1

R

)m

(A9)

The number of unique permutations of the counts is the same as the number of R-letter words contain-
ing Q + 1 unique letters, u0,u1, . . . ,uQ , where letter ui appears fi times for i 6= 0 and letter u0 appears
R −n times. This number is given by the multinomial coefficient

number of unique permutations
of (c1,c2,...,cn ,0,0,...,0) = R !

(R −n)! · f1! · f2! · · · fQ !
(A10)

And, thus,

p(C | R) = R !

(R −n)! · f1! · f2! · · · fQ !
· m!

c1! · c2! · · ·cn !

(
1

R

)m

(A11)

■

Theorem 2. Let C be the count data resulting from sampling m elements uniformly with replacement
from a set with R elements. The count data C consists of the unique elements sampled and the number
of times each element was sampled. Let n be the number of unique elements sampled and let p(R) be the
prior distribution on the (unknown) set size R. Then, for fixed C and m,

p(R |C ) = p(R | n)
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That is, p(R |C ) depends only on the unique number of elements sampled n and not the number of times
each element was sampled.

Proof. First note it is impossible for the set size R to be less than number of unique elements sampled n.
So, when R < n, p(R |C ) = 0.

For R ≥ n, we can think of the fixed count data C as a vector

C = (c1,c2, . . . ,cn)

where n is the number of elements sampled and the ci are the number of times each sampled element
was sampled. From Theorem 1, we know that

p(R |C ) ∝ p(C | R) ·p(R) = R !

(R −n)! · f1! · · · fQ !
· m!

c1! · c2! · · ·cn !

(
1

R

)m

·p(R) (A12)

where u1,u2, . . . ,uQ are the unique numbers other than zero in C and fi is the number of times ui appears
in C . Dropping all the terms that do not depend on R gives

p(R |C ) ∝ R !

(R −n)!
·
(

1

R

)m

·p(R) (A13)

Now let’s look at p(R | n). First, using Bayes’ rule and ignoring the denominator term that does not
depend on R, we have

p(R | n) ∝ p(n | R) ·p(R) (A14)

p(n | R) is the probability that n unique elements were sampled from a set with R elements after m
uniform draws with replacement. To draw n elements after m draws, note that draw a previously unseen
element must have been drawn n times and already seen elements must have been drawn m −n times.
We can think of this process as a Markov chain with R +1 states corresponding to the number of unique
elements drawn. For the Markov chain’s probability transition matrix, note that if i unique elements have
already been drawn then the probability that the next element drawn has already been drawn is i /R and
the probability that it is a previously unseen element is (R − i )/R. Thus, the probability transition matrix
π has entries

πi j =


i
R , i = j
R−i

R , j = i +1

0, otherwise

, i , j = 0,1, . . . ,R (A15)

To calculate p(n | R), we will sum over all possible paths that the Markov chain could have taken to get
from state 0 to state n in m steps. Let’s denote all the possible paths that start at state 0 and end at state n
after m steps by P . Since every possible path must have must start at 0 and end at n, every possible path
must include the following transitions: 0 → 1, 1 → 2, . . ., and n −1 → n. The remaining m −n steps must
have been steps for which the number of unique elements drawn did not change, i.e., a previously drawn
element was drawn again. So the possible paths are differentiated by the number of times qi that the
chain stayed in state i . For notational convenience, let Q be the set of all unique n-tuples (q1, q2, . . . , qn)
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such that each qi is a nonnegative integer and
∑n

i=1 qi = m −n. In this notation, summing over paths is
equivalent to summing over the n-tuples in Q

p(n | R) = ∑
(q1,q2,...,qn )∈Q

(
R

R

)
︸︷︷︸

p(0→1)

·
(

R −1

R

)
︸ ︷︷ ︸

p(1→2)

· · ·
(

R − (n −1)

R

)
︸ ︷︷ ︸

p((n−1)→n)

·
(

1

R

)q1

︸ ︷︷ ︸
p(1→1)

·
(

2

R

)q2

︸ ︷︷ ︸
p(2→2)

· · ·
( n

R

)qn

︸ ︷︷ ︸
p(n→n)

(A16)

= R · (R −1) · · · (R −n +1)

Rn

∑
(q1,q2,...,qn )∈Q

1q1 ·2q2 · · ·nqn

Rq1+q2+···qn
(A17)

= R · (R −1) · · · (R −n +1)

Rn

∑
(q1,q2,...,qn )∈Q

1q1 ·2q2 · · ·nqn

Rm−n (A18)

= R · (R −1) · · · (R −n +1)

Rm

∑
(q1,q2,...,qn )∈Q

1q1 ·2q2 · · ·nqn (A19)

∝ R !

(R −n)!
· 1

Rm (A20)

where, in the last equation, we have dropped the sum that doesn’t depend on R and used the fact that
R · (R −1) · · · (R −n +1) = R !

(R−n)! .

Plugging this result into p(R | n) gives

p(R | n) ∝ p(n | R) ·p(R) (A21)

∝ R !

(R −n)!
· 1

Rm ·p(R) (A22)

which, as a function of R, is the same expression we found for p(R |C ). Thus, for fixed count data C ,

p(R |C ) = p(R | n) (A23)

■

In the context of estimating var repertoire sizes and assuming PCR samples vars uniformly, this result
means that only knowing the sampling effort m and the number of unique vars sampled n is as informa-
tive as knowing all the counts per gene.

A4
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