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ABSTRACT

Invasive ductal carcinoma (IDC) is the most common form of breast cancer. For the non-operative
diagnosis of breast carcinoma, core needle biopsy has been widely used in recent years which allows
evaluation of both cytologic and tissue architectural features; so that it can provide a definitive
diagnosis between IDC and benign lesion (e.g., fibroadenoma). Histopathological diagnosis based
on core needle biopsy specimens is currently the cost effective method; therefore, it is an area that
could benefit from AI-based tools to aid pathologists in their pathological diagnosis workflows. In
this paper, we trained an Invasive Ductal Carcinoma (IDC) Whole Slide Image (WSI) classification
model using transfer learning and weakly-supervised learning. We evaluated the model on a core
needle biopsy (n=522) test set as well as three surgical test sets (n=1129) obtaining ROC AUCs in the
range of 0.95-0.98.

Introduction

Breast cancer is one of the leading causes of global cancer incidence [1]. In 2020, there were 2,261,419 new cases
(11.7% of all cancer cases) and 684,996 deaths (6.9% of all cancer related deaths) due to breast cancer. Among women,
breast cancer accounts for 1 in 4 cancer cases and for 1 in 6 cancer deaths in the vast majority of countries (159 of 185
countries) [1].

Invasive Ductal Carcinoma (IDC) (or invasive carcinoma of no special type: ductal NST) is a heterogenous group
of tumors which fail to exhibit sufficient characteristics to achieve classification as a specific histopathological types.
Microscopically, there are a wide variety of histopathological characteristics in IDCs. IDC grows in diffuse-sheets,
well-defined nests, cords, or as individual (single) cells. Tubular differentiation tends to be well developed, barely
detectable, or altogether absent.

Core needle biopsy is frequently used for the management of the non-palpable mammogram abnormalities, as it is
cost effective and provides an alternative to short-interval follow-up mammography. It is also generally favored over
fine-needle aspiration biopsy (FNAB) for the non-operative diagnosis of breast carcinoma, and it could replace open
breast biopsy provided that the quality assurance is acceptable [2, 3]. Core needle biopsy allows the evaluation of
both cytopathological and histopathological features, making it possible to provide a definitive diagnosis of IDC and
benign lesions (e.g., fibroadenoma) in over 90% of cases [4]. All these factors highlight the benefit of establishing a
histopathological screening system based on core needle biopsy specimens for breast IDC patients. Glass slides of biopsy
specimens can be digitised as Whole Slide Images (WSIs) and could benefit from the application of computational
histopathology algorithms to aid pathologists as part of a screening system.
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Dataset Model ROC AUC Log loss

Hospital 1 (biopsy)

Stomach ADC x10 512 [18] 0.853 [0.818, 0.884] 1.090 [0.955, 1.257]
Colon ADC x10 512 [18] 0.691 [0.645, 0.735] 1.101 [0.966, 1.257]
Lung carcinoma x10 224 [28] 0.664 [0.617, 0.710] 2.542 [2.184, 2.932]
Pancreas ADC x10 224 [29] 0.800 [0.761, 0.835] 0.734 [0.661, 0.816]
Stomach poorly-ADC x20 224 [30] 0.894 [0.867, 0.920] 0.548 [0.508, 0.587]
Stomach signet ring x10 224 [27] 0.817 [0.790, 0.857] 0.895 [0.801, 0.976]
TL x10 512 B1 0.980 [0.969, 0.991] 0.269 [0.201, 0.335]
TL x10 224 B1 0.971 [0.957, 0.984] 0.258 [0.199, 0.317]
TL x10 512 B3 0.979 [0.967, 0.989] 0.366 [0.284, 0.462]
TL x20 512 B1 0.962 [0.945, 0.975] 0.285 [0.240, 0.346]

Hospital 1 (surgical) TL x10 512 B1 0.958 [0.941, 0.973] 0.377 [0.308, 0.445]
TL x10 224 B1 0.907 [0.881, 0.929] 0.725 [0.635, 0.828]

Hospital 2 (surgical) TL x10 512 B1 0.994 [0.987, 0.998] 0.180 [0.139, 0.230]
TL x10 224 B1 0.970 [0.956, 0.982] 0.399 [0.335, 0.476]

TCGA (surgical) TL x10 512 B1 1.000 [1.000, 1.000] 0.274 [0.108, 0.332]
TL x10 224 B1 0.997 [0.983, 1.000] 0.377 [0.245, 0.578]

Table 1: ROC and log loss results of the models on the biopsy and surgical test sets

Deep learning has found a wide array of applications in computational histopathology in the past few years. The
applications from cancer cells classification and segmentation and patient outcome predictions for a variety of organs
and diseases [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Machine learning has been previously applied to various
applications of breast histopathology classification [19, 20, 21, 22, 23, 24].

In this paper, we trained a WSI breast IDC classification model using transfer learning from ImageNet and weakly-
supervised learning. We have also evaluated on the test sets, without fine-tuning, models that had been previously
trained on other organs for the classification of carcinomas.

Results

A deep learning model for WSI breast IDC classification

The purpose of this study was to train a deep learning model to classify breast IDC in WSIs. We had a total of
1,154 biopsy WSIs of which we used 632 for training and 522 for testing. In addition, we used 1,129 surgical WSIs
obtained from three sources as part of supplementary test sets. We used a transfer learning approach based on partial
fine-tuning [25] to train the models. Figure 1 shows an overview of our training method. We then evaluated the
trained models on four tests sets: one biopsy test set and three surgical test sets. As we had at our disposal six models
[18, 26, 27, 28, 29, 30] that had been trained specifically on specimens from different organs (stomach, colon, lung, and
pancreas), we evaluated those models without fine-tuning on the test sets to investigate whether morphological cancer
similarities transfer across organs without additional training. Table 2 breaks down the distribution of the WSIs in each
test set. For each test set, we computed the ROC AUC and log loss, and we have summarised the results in Tab. 1 and
Fig. 2. Figures 4, 5, and 7, show representative heatmap prediction outputs for true positive, false positive, and false
negative. Table 3 shows a confusion matrix breakdown by subtype for the false positives and true negatives using a
probability threshold of 0.5. All 10 false positive WSIs were fibroadenomas. Figure 6 shows overview of representative
fibroadenoma histopathology of 10 cases (WSIs) which were falsely predicted as IDC. There were representative
histopathologic changes (e.g., proliferative epithelial changes, fibrocystic epithelial canges, and stromal changes) [31]
in falsely predicted fibroadenomas (Figure 6); the proliferative findings could be the potential cause of the false positive.

Discussion

In this study, we trained deep learning models for the classification of breast IDC in surgical and biopsy WSIs. We
used weakly-supervised and transfer learning. We used the partial fine-tuning approach, which is fast to train. The best
model achieved AUCs in the range of 0.96-0.98.

Overall, the EfficientNetB1 model trained at magnification x10 achieved slightly better results than x20 on the biopsy
test set. In addition, using a larger tile size of 512x512px achieved slightly better results than 224x244px. Despite
IDC morphology having some similarity with adenocarcinoma, the application of models that classify ADC on other
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Figure 1: Overview. Training consisted of two stages. In the first stage (b) we randomly sampled tiles from the positive
and negative WSIs, restricting the sampling from WSIs that had annotations if they were positive. In the second stage
(c) We iteratively alternated between inference and training, relying only on the WSI label. During inference, the model
weights were frozen, and it was applied in a sliding window fashion on each WSI. The top k tiles with the highest
probabilities were then selected from each WSI. During training the selected tiles were then used to train the model.

organs did not fully generalise to IDC. The stomach ADC had the highest AUC 0.85-0.89 when applied to breast IDC
WSIs. While the results on the TCGA test set are high, it does not provide a proper evaluation in terms of potential false
positives as there were only four benign cases.

All of the false positive cases in the biopsy test set were fibroadenomas (see Tab. 3). Fibroadenomas exhibit a wide
range of morphology, and it could be that the variety was not fully represented in the training set, which only had 91
cases of fibroadenomas compared to the 131 in the test set. One source of difficulty in creating a balanced set of the
fibroadenomas varieties is that the diagnostic reports did not include detailed description of fibroadenoma histology,
making a simple random partition the only option. In addition, the test set had a larger proportion of fibroadenomas
compared to other benign subtypes. Therefore, as future work, it would be important to investigate the histopathological
typing of fibroadenomas in order to develop better deep learning models.

According to the guideline by General Rule Committee of the Japanese Breast Cancer Society [32], the pathological
diagnosis of IDC is sufficient for core needle biopsy. Therefore, the application of a deep learning model, once properly
validated, in a clinical setting would help pathologists in their diagnostic workflows. On the other hand, surgical
specimens tend to require further subtyping of IDC, so future work could look into developing models specifically for
IDC subtype classification for surgical specimens.
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Figure 2: ROC curves for the various existing models as well as models trained via transfer learning on core needle
biopsy test set.

Set Source IDC Benign Total

Test

Hospital 1 (biopsy) 289 233 522
Hospital 1 (surgical) 305 240 545
Hospital 2 (surgical) 247 237 484
TCGA (surgical) 96 4 100

Training Hospital 1 (biopsy) 82 343 425
Hospital 2 (biopsy) 107 40 147

Validation Hospital 1 (biopsy) 30 30 60

Table 2: Distribution of WSIs in the different sets.
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Figure 3: ROC curves on surgical test sets.

Subtype of benign number of WSIs %
False-positives (10 WSIs) Fibroadenoma 10 100.0
True-negatives (223 WSIs) Fibroadenoma 121 54.3

Mastopathy 67 30.0
Normal 24 10.8
Fibrosis 6 2.7
Ductal hyperplasia 2 0.9
Granulation tissue 2 0.9
Fat necrosis 1 0.4

Table 3: A breakdown of the subtypes of the false positives and true negatives in the biopsy test set using the TL model
x10 using a classification threshold of 0.5.
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Figure 4: A representative true positive invasive ductal carcinoma (IDC) of breast from core needle biopsy test set.
Heatmap images show true positive predictions of IDC cells (b) and they correspond respectively to H&E histopathology
(a) using transfer learning from ImageNet model (magnification x10). Not only abundant IDC cells invading areas (c)
but also a few IDC cells (e, f), heatmap images show appropriately true positive predictions (d, g).
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Figure 5: A representative example of invasive ductal carcinoma (IDC) false positive prediction output on a case from
core needle biopsy test set. Histopathologically (a), this case is a benign lesion (fibroadenoma). Heatmap images (b, d,
f) exhibited false positive prediction of IDC using transfer learning from ImageNet model (magnification x10). The
ductular structures in fibroadenoma with a pericanalicular pattern (c, d, e, f) would be the primary cause of false positive
due to its morphological analogous to ductular structures in IDC.
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Figure 6: Representative tissue areas (Cases 1-10), without heatmap overlay, that were falsely predicted as IDC. There
were 10 cases of false positive prediction outputs from the core needle biopsy test set. The false positive predictions
are most likely due to the enlarged spindle shaped stromal cell nuclei with pleomorphism and tubules composed of
cuboidal or low columnar cells with round uniform nuclei resting on a myoepithelial cell layer. This is morphologically
analogous to invading single cells, ductular structures, and cancer stroma in IDC.
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Figure 7: A representative false negative prediction output on a case from core needle biopsy test set. According to
the histopathological report, this case (a, c) is an invasive ductal carcinoma (IDC). However, there is no true positive
predictions of IDC cells on heatmap image (b).

Methods

Clinical cases and pathological records

This is a retrospective study. A total of 2,183 H&E (hematoxylin & eosin) stained histopathological specimens of
human breast IDC and benign lesions – 1,154 core needle biopsy and 1,028 surgical – were collected from the surgical
pathology files of three hospitals: International University of Health and Welfare, Mita Hospital (Tokyo) and Kamachi
Group Hospitals (Fukuoka) after histopathological review of those specimens by surgical pathologists. The test cases
were selected randomly, so the obtained ratios reflected a real clinical scenario as much as possible. All WSIs were
scanned at a magnification of x20. In addition, we collected 100 WSIs from TCGA; however, only four bengin cases
were available.

Dataset

The pathologists excluded cases that were inappropriate or of poor scanned quality prior to this study. The diagnosis
of each WSI was verified by at least two pathologists. Table 2 breaks down the distribution of dataset into training,
validation, and test sets. Hospitals which provided histopathological cases were anonymised (e.g., Hospital 1-2). The
training set was solely composed of WSIs of core needle biopsy specimens. The test sets were composed of WSIs of
core needle biopsy or surgical specimens. The patients’ pathological records were used to extract the WSIs’ pathological
diagnoses and to assign WSI labels. 96 WSIs out of the 191 WSIs with IDC were loosely annotated by pathologists.
The rest of IDC and benign WSIs were not annotated and the training algorithm only used the WSI labels. Each WSI
diagnosis was observed by at least two pathologists, with the final checking and verification performed by a senior
pathologist.

Deep learning models

We trained all the models using the partial fine-tuning approach [25]. This method consists in using the weights of an
existing pre-trained model and only fine-tuning the affine parameters of the batch normalisation layers and the final
classification layer. We have used the EfficientNetB1 architecture [33], as well as B3, with a modified input sizes of
224x224px and 512x512px, starting with pre-trained weights from ImageNet. The total number of trainable parameters
for EfficientNetB1 was only 63,329.
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Figure 8: Representative true positive, false positive, and false negative prediction outputs on surgically resected speci-
mens for invasive ductal carcinomas (IDCs) and fibroadenoma. Histopathologically, (a) has IDC; (c) is fibroadenoma;
and (e) has IDC (scirrhous type). (b) shows true positive probability heatmap using transfer learning from ImageNet
model (magnification x10) for IDC invading area which was corresponded to surgical pathologists marked area with
blue-ink-dots (and yellow-triangles) (a). (d) exhibited false positive prediction of IDC in fibroadenoma. There is no true
positive predictions of IDC cells on heatmap image (f) in scirrhous carcinoma of IDC (e).
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The training method that we have used in this study is exactly the same as reported in a previous study [26] with the
main difference being the use of partial fine-tuning method. For completeness, we repeat the method here.

To apply the model on the WSIs for training and inference, we performed slide tiling by extracting fixed-sized tiles from
tissue regions. We detected the tissue regions by performing a thresholding on a grayscale version of the WSI using
Otsu’s method [34], which allows the elimination of most of the white background. During inference, we performed
the slide tiling in a sliding window fashion on the tissue regions, using a fixed-size stride that was half the size of
the tile. During training, we initially performed random balanced sampling of tiles from the tissue regions, where we
maintained an equal balance of positive and negative labelled tiles in the training batch. To do so, we placed the WSIs
in a shuffled queue with oversampling of the positive labels to ensure that all the WSIs were seen at least once during
each epoch, and we looped over the labels in succession (i.e. we alternated between picking a WSI with a positive label
and a negative label). Once a WSI was selected, we randomly sampled batch size

2 tiles from each WSI to form a balanced
batch. We then switched into hard mining of tiles. To perform the hard mining, we alternated between training and
inference. During inference, the CNN was applied in a sliding window fashion on all of the tissue regions in the WSI,
and we then selected the k tiles with the highest probability for being positive. If the tile is from a negative WSI, this
step effectively selects the false positives. The selected tiles were placed in a training subset, and once the subset size
reached N tiles, a training pass was triggered. We used k = 4, N = 256, and a batch size of 32.

A subset of WSIs with IDC were loosely annotated (n=96) while the rest had WSI-level labels only (n=95). From the
loosely annotated WSIs, we only sampled tiles from the annotated tissue regions. Otherwise, we freely sampled tiles
from the entire tissue regions.

The models were trained on WSIs at x10 and x20 magnifications. We used two input tile sizes: 512x512px and
224x224px. The strides were half the tile sizes. The WSI prediction was obtained by taking the maximum probability
from all of the tiles.

We trained the models with the Adam optimisation algorithm [35] with the following parameters: beta1 = 0.9,
beta2 = 0.999. We used a learning rate of 0.001. We applied a learning rate decay of 0.95 every 2 epochs. We used the
binary cross entropy loss. We used early stopping by tracking the performance of the model on a validation set, and
training was stopped automatically when there was no further improvement on the validation loss for 10 epochs. The
model with the lowest validation loss was chosen as the final model.

Software and statistical analysis

The deep learning models were implemented and trained using TensorFlow[36]. AUCs were calculated in python using
the scikit-learn package[37] and plotted using matplotlib [38]. The 95% CIs of the AUCs were estimated using the
bootstrap method[39] with 1000 iterations.

Data availability

Due to specific institutional requirements governing privacy protection, datasets used in this study are not publicly
available.
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