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Abstract 

Teratogenicity poses severe threats to patient safety. Stem-cell-based in vitro systems 

are promising tools to predict human teratogenicity. However, current in vitro assays are 

limited because they either capture effects on a certain germ layer, or focus on a subset 

of predictive markers. Here we report the characterization and critical assessment of 

TeraTox, a newly developed multi-lineage differentiation assay using 3D human induced 

pluripotent stem cells. TeraTox probes stem-cell derived embryoid bodies with two 

endpoints, one quantifying cytotoxicity and the other inferring the teratogenicity potential 

with gene expression as a molecular phenotypic readout. To derive teratogenicity 

potentials from gene expression profiles, we applied both unsupervised machine-learning 

tools including factor analysis and supervised tools including classification and regression. 

To identify the best predictive model for the teratogenicity potential that is explainable, we 

systematically tested 64 machine-learning model architectures and identified the optimal 

model, which uses expression of 77 representative germ-layer genes, summarized by 10 

latent germ-layer factors, as input for random-forest regression. We combined measured 

cytotoxicity and inferred teratogenicity potential to predict concentration-dependent 

teratogenicity profiles of 33 approved pharmaceuticals and 12 proprietary drug candidates 

with known in vivo data. Compared with the mouse embryonic stem cell test, which has 

been in routine use for more than a decade, the TeraTox assay shows higher sensitivity, 

particularly towards teratogens impairing ectodermal development or stem-cell renewal, 

and a more balanced prediction performance. We envision that further refinement and 

development of TeraTox has the potential to reduce and replace animal research in drug 

discovery and to improve preclinical assessment of teratogenicity. 
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1. Introduction 

Teratogenicity, the ability of a chemical to cause defects in a developing fetus, has gained 

wide and continuous attention since the thalidomide tragedy in the 1960s (1). To assess 

the teratogenic potential of drug candidates, pharmaceutical companies must perform 

embryo-fetal-development studies (EFD studies hereafter) in at least one rodent and one 

non-rodent species (2,3). There is an urgent need to develop alternative, humanized in 

vitro assays for early assessment of teratogenicity, because they can potentially better 

mimic human physiology, reduce animal use in drug discovery, and lower the attrition rate 

of drug development by filtering out potential teratogens early (3-5). 

The current industrial standard in vitro assay for teratogenicity assessment is the mouse 

embryonic stem cell test (mEST). It measures both the differentiation of embryoid bodies 

(EB) derived from D3 mouse embryonic stem cells (mESC) by quantifying beating cardiac 

tissue, and the cytotoxicity in both mouse D3 ESCs as well as mouse 3T3 fibroblasts (6-

8).  

The mEST assay offers several advantages compared with other assays, including the 

zebrafish model (9,10) and other stem-cell-based in vitro models (11-18). It uses two well-

characterized, stable cell lines as the biological model that recapitulates early 

embryogenesis and no animal experiments are required. The cells are easy to acquire 

and handle. The protocol is well established and the assay is widely adopted. Importantly, 

the assay is validated by the European Centre for the Validation of Alternative Methods 

(7,8,19-21), and therefore trusted by many laboratories. 
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However, the mEST assay has both conceptual and practical limitations as a predictive 

model of human teratogenicity. First, it uses murine cells, which fail to recapitulate human 

teratogenicity for some chemical classes, for instance phthalimide-based molecules 

including thalidomide (22). Second, because the stem cells are differentiated into 

cardiomyocytes, the assay preferentially quantifies impairment of mesodermal germ-layer 

development. Third, the EB differentiation is a lengthy process of ten days and the manual 

counting of beating cardiomyocytes is both time-consuming and error-prone, which limits 

the throughput of the assay. Finally, and critically, the predictive algorithm relies on ID50, 

the concentration at which half of the maximal inhibition of differentiation is achieved. For 

strong cytotoxic compounds, it is common that IC50, the concentration at which half of the 

maximal cytotoxicity is observed, coincides closely with ID50, which causes false-negative 

predictions. Since the assay is used to pre-select developmental compounds prior to 

regulatory EFD studies, misclassifications necessitate unnecessary animal use in EFD 

studies and, in case the teratogenicity is specific to humans, pose severe threats for 

patient safety. 

Given the limitations of the mEST assay, we developed a new, humanized in vitro 

teratogenicity assay. The new assay, which we call TeraTox, uses ethically non-restricted 

human induced pluripotent stem cells (hiPSC). The cells form three-dimensional embryoid 

bodies (EBs) and differentiate spontaneously into all three germ layers – ectoderm, 

mesoderm, and endoderm – with expression of representative developmental markers of 

each layer. We previously documented the technical details of the assay and 

demonstrated its feasibility with four teratogens and four non-teratogens (23). However, a 

systematic assessment of its performance using a larger compound set has not been 

conducted yet and the prediction algorithm is missing.  
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To fill these gaps, here we describe the optimization and critical assessment of the 

TeraTox assay and the setup of a predictive model for human teratogenicity evaluation. 

We compiled a panel of 45 drug-like molecules with known teratogenicity profiles and 

tested them in six-point concentration response, generating the largest published dataset 

so far in a single study about in vitro modelling of teratogenicity with reference to clinical/ 

animal in vivo data. Because both the cell amount and the workload required by digital 

PCR would be prohibitive, we adapted Molecular Phenotyping, a technology based on 

amplicon-based RNA sequencing, to quantify expression of germ-layer genes. Using 

gene expression data as input, we built machine-learning models with varying 

architectures and identified the best-performing model using factor analysis and random-

forest regression. Using a leave-one-out training-testing strategy, we classified the 45 

compounds as either teratogenic or non-teratogenic, thereby considering both 

concentration-dependent cytotoxicity and teratogenicity potential. We found that TeraTox 

features a lower specificity but outperforms mEST with regard to sensitivity and balanced 

prediction considering precision and sensitivity. Finally, we augmented the model with 

biological and pharmacological interpretations as well as simulation studies that explain 

how it works. In summary, our assessment highlights both the advantage of TeraTox over 

the standard mEST assay for preclinical teratogenicity assessment and directions of its 

future development.  
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2. Material and Methods 

2.1.  Human iPSC derived TeraTox Assay 

The TeraTox assay is built upon commercially available human induced pluripotent stem 

cells (hiPSC, Gibco, A18945) with indistinguishable gene expression profiles compared 

with embryonic stem cells (16,24). The cells form 3D EBs and undergo multi-lineage 

differentiation into all three germ layers (23). Prior to the assay, the hiPSC were tested 

with the TaqMan ScoreCard assay (Thermo Fisher) to confirm sufficient levels of 

pluripotency (25). The EBs were spontaneously differentiated and treated with several 

reference substances over a time course of seven days in Elplasia 96w micro-well plates 

(Corning, 4442) using the ViaFlo 96 automated microplate pipetting device (Integra) for 

liquid handling. Compounds were applied to the EBs on day 0, day 3 and day 5 at six 

concentrations, together with EB medium and 0.25% DMSO solvent controls as the 

negative reference. Cell viability was determined on day 7 by measuring ATP release in 

supernatants with the CellTiter-Glo 3D assay (Promega, G9681) to pre-specify 

appropriate testing ranges. All cell culture media and reagents were obtained from Gibco 

(Thermo Fisher) unless otherwise specified. The overall cell culture and cytotoxicity 

protocol was previously described in detail by Jaklin et al., 2020 (23). 

Targeted gene expression profiling was performed with the molecular phenotyping 

platform that we developed previously (26-28). In total, 1,055 samples of differentiated 

EBs were lysed after 7 days of differentiation in 350 μl MagNA Pure LC RNA Buffer 

(Roche Diagnostics) and purified by using the automated MagNA Pure 96 system (Roche 

Diagnostics). The total RNA was quantified using the Qubit RNA Assay Kit (Thermo 

Fisher) on the Fluorometer Glomax (Promega). Total RNA with a maximum of 10 ng from 

each biological replicate was reverse transcribed to cDNA using Superscript IV Vilo 
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(Thermo Fisher). Libraries were generated with the AmpliSeq Library Plus Kit (Illumina) 

according to the reference guide. Pipetting steps for target amplification, primer digestion, 

and adapter ligation were done with the mosquito automatic pipettor (SPT Labtech) in 

miniaturization. For the purifications before and after final library amplification, solid phase 

reversible immobilization magnetic bead purification (Clean NGS, LABGENE Scientific 

SA) was performed on the multidrop automated pipetting station (Thermo Fisher).  

We measured both amplicon sizes and cDNA concentrations using an Agilent High 

Sensitivity DNA Kit (Agilent Technologies) according to the manufacturer’s 

recommendation. Prior to sequencing, cDNA contents of the samples were normalized 

and pooled to 2 nM final concentration on Biomek FXP workstation. The libraries were 

sequenced on the NovaSeq 6000 Instrument (Illumina) with the sequencing-by-synthesis 

technology. All the 75 cycles ended up with a minimum of 2 Mio sequencing reads per 

sample for analysis. We used molecular phenotyping with 1,215 detectable pathway 

reporter genes including a subset of 87 early developmental markers (germ-layer genes, 

Suppl. Tab. S3) and genes representative of toxicological pathways to identify 

differentially expressed genes induced by the compounds at pre-specified concentration 

levels (25,29). 

2.2.  Mouse Embryonic Stem Cell Test  

The protocol of the mEST was adapted from the original publication from Genschow et 

al., 2004 (7) into an industry compliant format (8). We used the pluripotent mouse 

embryonic stem cell line ES-D3 (ATCC, CRL-1934) and the somatic mouse 3T3 fibroblast 

line (Balb/c 3T3 cell clone A31 from ATCC, CCL-163). Most manual steps of the assay, 

such as cell seeding, dilution and addition of compounds, centrifugation and incubation of 
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the EBs, are standardized and automated to gain reproducible data (30). The only non-

automated assay procedures were cell maintenance and the manual count of beating 

cardiomyocytes.  

The mEST assay is performed in two steps. First, the MTT cytotoxicity assay (3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) is conducted with both 

differentiated 3T3 fibroblasts and pluripotent D3 ESCs in monolayer cultures. Second, 

EBs derived from D3 ESCs are differentiated into cardiomyocytes over a total time course 

of 10 days, with compound treatment in six different concentrations on day 4 and day 7. 

The endpoints measured are the concentration at which 50% inhibition of growth of 3T3 

(IC50 3T3) and D3 cells (IC50 D3) is achieved, and the concentration at which 50% 

inhibition of differentiation into cardiomyocytes (ID50 D3) is achieved, compared to DMSO 

solvent controls, respectively (Suppl. Fig. S1a). 

A modified discriminant function analysis was used to classify the test chemicals into two 

groups based on the calculated predictive score (PS) for low potential of teratogenicity 

(negative, PS <0.6) and high potential of teratogenicity (positive, PS ≥0.6).  

A possible prediction result is ‘borderline’, if calculated predictive scores are below the 

cut-off of 0.6 but above 0.5. Inconclusive results are also possible, for example, if solubility 

limits the concentration ranges tested to an extent that no IC50 or ID50 values can be 

reliably determined for one or more concentration response curves (Suppl. Fig. S1b). 
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2.3. Assessing characteristics of differentiated hiPSC with BioQC  

We applied the BioQC software that we developed previously to characterize the identity 

of the differentiated samples across all treated compound concentrations (including 

vehicle controls) at the endpoint on day 7 (31). We used raw data of gene expression 

derived from molecular phenotyping and compared these profiles with tissue-preferential 

gene signatures derived from organ, tissue, and cell-type-specific gene expression data 

collected from public compendia (32,33). The BioQC performs Wilcoxon-Mann-Whitney 

tests comparing expression of genes in a set, for instance genes preferentially expressed 

in one tissue, versus genes that are not in the set. The enrichment scores (log-10 

transformed P-values) reported by BioQC are used to assess the similarity between the 

expression profile of interest and cell-type- and tissue-specific expression profiles. 

2.4. Analysis and modelling of the TeraTox data 

We performed differential gene expression analysis comparing compound-treated 

samples with DMSO controls using the generalized linear model implemented in the 

edgeR package in R/Bioconductor (34). To generate features for machine-learning 

models, we transformed the P-values associated with the coefficients of compound 

treatment to z-scores by the inverse of the quantile function of Gaussian distribution, given 

by the sign of log2 fold-change (logFC). The vectors of z-scores of all genes (N=1,215) 

were used as raw features for machine-learning models, based on which further feature 

selection and engineering work was performed.  

We also tested the possibility of using the effect size, logFC, as features. However, we 

found that using z-scores as features delivered better generalizability between training 

and testing datasets. Therefore, we report the performance of models using z-scores 

unless otherwise specified. 
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Besides the raw feature set of z-scores of all genes, we used three knowledge- and data-

driven approaches to engineer the features in order to improve the performance of the 

machine-learning algorithms. First, we confined ourselves to the subset of germ-layer 

genes, because our and other’s work confirmed that their expression is specific to germ 

layers of embryogenesis, and their expression is modulated by teratogenic compounds 

(Suppl. Tab. S3) (23,25,29,35). Second, we used the germ-layer associations reported by 

Tsankov et al. to derive a reduced feature set defined by five germ-layer classes, including 

both germ layers (ectoderm, endoderm, mesoderm, mesendoderm) and pluripotency, by 

taking the median z-scores of germ-layer genes associated with each germ-layer class 

(25). Finally, we used factor analysis, a dimension-reduction approach that derives latent 

variables from the correlation structure of observed variables, to identify latent biological, 

germ-layer factors (germ-layer factors for short), which reflect linear combinations of 

transcription factors, epigenetics, and other gene regulatory mechanisms that control 

embryogenesis.  

We predicted the teratogenicity potential in two ways. One way was to treat teratogenicity 

as a binary variable and to perform binary classification. The other way was to convert 

concentration-response teratogenicity into numeric metrics and to construct regression 

models. For the latter case, we define a compound-specific Teratogenicity Score (TS 

hereafter). For non-teratogens, the TS is defined as 0 independent of the tested 

concentration. For teratogens, the TS is defined as the 0-1-bounded cosine similarity 

between the differential expression profile induced by a particular concentration of a 

certain compound and the differential expression profile induced by the highest non-

cytotoxic concentration of the same compound.  
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The non-cytotoxic concentration was determined by the highest concentration that we 

tested which is associated with an average variability equal or larger than 80%. 

The models were trained and validated using the Leave-One-Out (LOO) scheme. We 

iterated over all compounds, leaving one compound out at a time and using the remaining 

compounds to build machine-learning models. Then we compared teratogenicity scores 

predicted by the models with the observation of the left-out compound with the Spearman 

correlation coefficient.  

As an alternative to LOO, we also tested repeated 80%/20% splitting of data into training 

sets and test sets. However, it cannot be used to predict teratogenic scores for any 

particular compound without using its data in both training and testing sets. Therefore, we 

report only results derived from the LOO scheme unless otherwise stated. 

In short, we considered two types of features (z-scores and logFC), four sets of features 

(all genes, germ-layer genes, median z-scores or logFC of germ-layer classes defined by 

Tsankov et al., and median z-scores or logFC of germ-layer factors defined by factor 

analysis), two methods (linear regression with elastic net regularization and random 

forest, implemented in the caret package, version 6.0-88), two types of target variables 

(binary classification and regression), and two training/testing schemes (LOO and 

80%/20% splitting). We tested all combinations exhaustively to build machine-learning 

models for teratogenicity scores and identified the best-performing models. 

Besides predicting teratogenicity scores, we also exhaustively probed all options to build 

regression models for cytotoxicity (100%-viability), which was measured as part of the 

TeraTox assay. The same set of model architectures was tested, however the 
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combinations giving best performing models differ from that for teratogenicity scores 

(further discussed in results). 

All data analysis was performed with R (version 4.0.1) or Python (version 3.8.1) unless 

otherwise specified. 

2.5. Test chemicals for validation 

In total we tested 27 positive and 18 negative reference substances in six-point 

concentrations in the mEST and the human TeraTox assay (Tab. 1). This compound panel 

consisted of both commercial and developmental pharmaceuticals with known 

teratogenicity profiles available from either human evidence-based information, where 

unambiguous warnings have been found and use during pregnancy is explicitly 

contraindicated by the FDA, or from in vivo EFD studies in rats and/ or rabbits (3,36-47). 

Compounds without existing human or in vivo animal data were classified as teratogens 

based on known teratogenic risks associated with their mode of action (18,48-55). Some 

compounds have been taken by cohorts of pregnant women and did not lead to any 

observed increase in the frequency of malformations during early pregnancy. We 

considered these drugs as non-teratogenic in humans, at least in the physiologically 

relevant concentrations of exposure (56-72) (Suppl. Tab. S1).  

The commercial compounds were obtained from Merck, Germany. We also included 12 

developmental small molecules RO-1 to RO-12 provided by F. Hoffmann – La Roche, 

Switzerland (compound structures are not disclosed due to confidentiality and intellectual 

property). Those compounds have unknown human teratogenicity profiles, but in vivo data 

are available from EFD studies performed either in rats, or in rabbits, or in both (Suppl. 

Tab. S2).  
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We assigned RO-1, RO-3, RO-8, RO-9 and RO-10 due to the outcome of in vivo studies 

as positive teratogens, and RO-2, RO-4, RO-5, RO-6, RO-7, RO-11, RO-12 as non-

teratogens (73). All compounds were serially diluted in DMSO (0.25%) from a stock 

solution to six test concentrations.  

We used the following metrics to compare the performance of the TeraTox assay and that 

of the mEST assay. We calculated assay sensitivity as the proportion of correctly 

predicted teratogens. Assay specificity was calculated as the proportion of correctly 

predicted non-teratogens. Overall accuracy was taken as the proportion of all correct 

predictions, and F1 scores are calculated as the harmonic mean of precision and recall. 

When we denote True Positive, True Negative, False Positive, and False Negative with 

TP, TN, FP, and FN, respectively, the metrics of performance are defined in Equations 1-

5. 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)  =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (Eq. 1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (Eq. 2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (Eq. 3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (Eq. 4) 

𝐹1 =
2

1

𝑅𝑒𝑐𝑎𝑙𝑙
+

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 (Eq. 5) 

To identify the threshold of TS that maximizes the performance (F1 score) of the TeraTox 

Score model, we used grid search between 0 and 1 with a step size of 0.01. The best 

threshold (TS=0.38) was chosen manually by inspecting the performance metrics defined 

in Equations (1)-(5).  
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Table 1: Reference compounds used for assay validation, with human teratogenicity labels and test 

concentration in both human and mouse model. Teratogenicity classification was based on FDA 

classification (Suppl. Tab. S1) or in vivo EFD data (indicated with asterisks*, Suppl. Tab. S2).  

Reference 
Compound 

Teratogenicity 
Classification 

Test Concentrations 
(human model) [µM] 

Test Concentrations 
(mouse model) [µM] 

Acitretin Positive  0.08 – 2.5 0.004 – 100 

Amoxicillin Negative  6.25 – 200 39 – 2500 

Artesunate Positive  0.13 – 4 0.016 – 100 

Ascorbic Acid Negative  28 – 900 0.035 – 2000 

Bosentan Positive  4.7 – 150 7.8 – 500 

Busulfan Positive  0.13 – 4 0.6 – 500 

Carbamazepine Positive  9.4 – 300 11.7 – 750 

Cetirizine Negative  19 – 600 11.7 – 750 

Cyclopamine Positive  0.6 – 20 0.07 – 50 

Cyproheptadine Negative  0.9 – 30 0.3 – 250  

Dabrafenib Positive  0.06 – 2 0.1 – 100 

DAPT Positive  0.09 – 3 0.1 – 500 

Dasatinib Positive  0.6 – 20 0.3 – 20 

Dexamethasone Negative  9.4 – 300 0.3 – 1000 

Dorsomorphin Positive  0.4 – 14 0.04 – 50 

Doxycycline Negative  0.6 – 20 1.6 – 1500 

5-Fluorouracil Positive  0.08 – 0.25 0.02 – 20 

Hydroxyurea Positive  1.6 – 200 7.8 – 500 

Ibuprofen Negative  2.9 – 1400 47 – 3000 

Isotretinoin Positive  9.3 – 300 0.0001 – 250 

Imatinib  Positive  3.1 – 100 0.8 – 50 

IWP-2 Positive  0.003 – 0.1 0.8 – 50 
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Lazabemide Negative  3.1 – 100 0.6 – 400 

Metformin Negative  15.6 – 500 0.7 – 500 

Methotrexate  Positive  0.003 – 40 0.0001 – 1 

Misoprostol Positive  0.04 – 1.3 1.3 – 100 

Penicillin G Negative  4.7 – 600 31 – 2000 

Progesterone Negative  0.63 – 40 0.3 – 500 

Retinoic Acid Positive  0.0003 – 0.035 0.00016 – 350 

RO-1* Positive 3.1 – 100  3.1 – 300 

RO-2* Negative 15.6 – 500 0.3 – 250 

RO-3* Positive 9.4 – 300  3.9 – 500 

RO-4* Negative 6.3 – 200 3.9 – 500 

RO-5* Negative 1.6 – 50 0.07 – 50 

RO-6* Negative 12.5 – 400 0.0003 – 250 

RO-7* Negative 18.8 – 600 0.6 – 400 

RO-8* Positive 2.5 – 80 1.3 – 125 

RO-9* Positive 0.16 – 5 0.8 – 50 

RO-10* Positive 0.5 – 15 0.07 – 50 

RO-11* Negative 1.25 – 40 2.3 – 150 

RO-12* Negative 3.1 – 100  3.9 – 250 

SB431542 Positive  0.63 – 20 0.1 –100 

(±) Thalidomide Positive  0.001 – 0.5 125 – 2000 

Valproic Acid Positive  31.25 – 1000 47 –3000 

Warfarin Positive  1.9– 60 39– 2500 
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2.6. Model explainability and interpretation 

We used the Type I importance measure of features (mean decrease in accuracy) of 

random-forest models to compare the importance of germ-layer genes in the 

teratogenicity model and in the cytotoxicity model.  

Pharmacology data of publicly available compounds were downloaded from ChEMBL 

(version 26). We only used human targets and affinities derived from high-quality dose-

response data. Binary distances were used to cluster the compounds by their 

pharmacological profiles.  

To construct a Bayesian network model of regulations between factors, we first discretized 

differential gene expression data of the first six germ-layer factors into three levels using 

the Hartemink’s pairwise mutual information method implemented in the bnlearn package 

(74). We generated 1,000 bootstrap replicates using Hill Climbing, a score-based learning 

algorithm, and the Bayesian Dirichlet equivalent (uniform) score (bde, with the imaginary 

sample size set to 10). Edges that persist in more than 85% bootstrap samples are 

deemed as significant and reported. 

The beta regression model used for sensitivity analysis was built with the glmmTMB 

package (75). Scores outside the boundaries [0.01, 0.99] are set to the boundary values 

to allow beta regression. All ten factors and significant interaction terms identified in the 

Bayesian network are used as the model input, and compounds are modelled as random 

effects to capture between-concentration correlations. For better interpretability, input 

variables are scaled to 0 mean and standard deviation. Simulation was performed with 

the ggeffects package (76).  
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3. Results 

3.1.  Gene expression quantification by molecular phenotyping  

We described previously that differential expression of a set of 87 genes preferentially 

expressed in different germ layers (germ-layer genes hereafter), which both determine 

and reflect embryonic development, is in principle able to distinguish between teratogenic 

and non-teratogenic compounds (23,25). To validate our findings, we compiled a large set 

of well-documented teratogens, partially with label information for drug-use, and non-

teratogens that are challenging to predict and/or known to cause false-positives using 

animal studies (Suppl. Tab. S1, S2). The compounds cover a broad spectrum of chemical 

classes and a wide range of effective concentrations. This large compilation of 

compounds with solid clinical and animal data anchoring is a useful resource for further 

model development. 

We interrogated our human stem-cell model with the compilation of compounds, adapting 

the experimental workflow that we developed previously (Fig. 1a and 1b). We identified 

the assay throughput as a major challenge due to the high number of samples for gene 

expression profiling (>1,000). It would be particularly cost- and labor-intensive if we use 

the digital PCR technique, established in our previous work to quantify gene expression 

(23). To address this challenge, we used molecular phenotyping as alternative readout. 

Molecular phenotyping is an amplicon-based targeted sequencing approach, which 

delivered quantitative expression data of 1,215 detectable genes. Notably, all germ-layer 

specific genes used in our previous work were included. In this way, we were able to 

characterize both general pathway activity modulations and germ layer-specific changes 

as potential features associated with teratogenicity (26-28).  
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We performed extensive quality control of the data. In particular, we addressed the 

questions whether results of molecular phenotyping are comparable to those of qRT-PCR, 

and whether the hiPSC used show expected reproducibility based on their gene 

expression profile. We compared the differential expression profiles of germ-layer genes 

obtained by RT-qPCR in previous studies with newly generated data of molecular 

phenotyping and observed highly similar results (Pearson correlation coefficient R=0.9, 

p<2.2E16) (Fig. 1c). This suggests that targeted RNA sequencing with molecular 

phenotyping delivers highly comparable results, at least for germ-layer genes. The 

comparison is not feasible for other pathway reporter genes because they were not 

quantified by digital RT-qPCR. 

A unique advantage of quantifying pathway reporter genes along with germ-layer genes 

is that we can use them to assess cell-type-specific gene expression patterns. To this 

end, we applied BioQC analysis, a method that we developed to identify sample 

heterogeneity and tissue comparability using gene sets preferentially expressed in cells 

and tissues (31). We observed that the expression profiles of the cells used in the TeraTox 

assay at day 7 resemble a mix of those gene signatures specific for astrocytes, epithelial 

cells, and iPSC derived neurons (Fig. 1d). It suggests that the hiPSC used for the assay 

shows a preferred differentiation propensity into the neuroectodermal lineage, which is in 

agreement with previous time-series gene expression studies that demonstrated 

pronounced expression of ectodermal markers at day 7, followed by meso- and 

endodermal expression (23,25).  
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Figure 1: The human TeraTox assay: workflow and quality control.  

(a) Workflow of the human TeraTox assay: cell culture and compound testing. To start, human induced 

pluripotent stem cells (hiPSC) are seeded in a density of 120.000 cells per well in 96-well microwell 

plates. They form homogenous embryoid bodies (EBs) which are spontaneously differentiated over 7 

days. Compounds are added with six-point concentrations at day 0, day 3 and day 5. Single wells 

containing about 70 differentiated EBs are lysed to generate one sample for the viability assay and gene 

expression profiling. 

(b) Workflow continued: cell viability and gene expression profiling. After 7 days of spontaneous EB 

differentiation, cell viability of EBs is determined by ATP release with the luminescent CellTiter-Glo 

assay, and normalized to DMSO controls by setting the average of latter to 100%. Gene expression was 

determined with molecular phenotyping by targeted RNA sequencing. We derive differential expression 

profiles (vectors of z-scores) of germ-layer genes induced by compounds with linear models comparing 
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with DMSO, and summarize them by the profiles of 10 germ-layer factors that we identified with factor 

analysis (further detailed in Figure 2). Median z-scores of genes belonging to each germ-layer factor are 

used as the input for a random-forest regression model to predict teratogenicity scores (further detailed 

in Figure 3). We generate concentration-response curves of both cell viability and teratogenicity scores, 

and calculate a TeraTox Score per compound to predict its teratogenicity potential (further detailed in 

Figure 4). 

(c) Differential gene expression derived from molecular phenotyping in TeraTox is highly correlated with 

differential gene expression derived from the gold-standard RT-PCR assay. The scatter plot shows 

differential expression (logFC: log2 fold-change) of germ-layer genes derived from targeted RNA 

sequencing with the molecular phenotyping platform, analyzed by the edgeR method, in x-axis, and 

differential gene expression quantified with RT-qPCR, analyzed by the ddCt method (25), in y-axis. Each 

dot represents a gene. Samples shown are independent biological replicates treated with identical 

compounds and concentrations, and median values of technical replicates are used for plotting. Colors 

indicate compounds that were tested with both techniques. Solid lines indicate x=0, y=0, and y=x, 

respectively. R gives the Spearman correlation coefficient between the two sets of measurements across 

compounds, and the P-value reports the probability that the null hypothesis (no correlation between the 

two measurements) is rejected wrongly.  

(d) Gene expression profiles of hiPSC used by TeraTox reveal their biological identity. We applied BioQC 

analysis to raw gene expression data from all 1,055 samples. BioQC identifies enrichment of 

characteristic expression signatures from tissues, organs, and cell types to assess sample-specific 

constitution. The gene-sets are derived from large gene expression compendia. BioQC scores are 

absolute log10 transformed p-values of the Wilcoxon-Mann-Whitney test. The larger the score, the more 

enriched is the expression of the set of genes of interest i.e., the expression of genes in the set are 

higher than genes that are not in the set. Each dot represents one sample. Violins indicate the 

distributions of the BioQC scores of each gene set, respectively, with vertical lines indicate median 

values.  

3.2.  Unsupervised learning from gene expression data with factor analysis 

Before applying supervised learning techniques to differentiate teratogens from non-

teratogens, we applied several unsupervised learning algorithms to analyze the gene 

expression data, including principal component analysis (PCA) and factor analysis. PCA 

revealed experimental plate effects that we could successfully correct with linear 

regression models for differential gene expression (data not shown). Unexpectedly, factor 

analysis revealed both biological insights and, as further discussed below, a feature 
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engineering technique that contributed to the best-performing model. Since this is the first 

time to our knowledge that factor analysis is applied in the context of gene-expression-

based toxicity prediction, we highlight its concepts and unique advantages.  

Factor analysis, sometimes called exploratory factor analysis to differentiate it from 

confirmatory factor analysis, is a statistical method to discover latent (unobserved) 

variables that account for the correlations observed between features. Useful for both 

dimension reduction and feature engineering, factor analysis has been particularly 

powerful in building predictive machine-learning models in biology using highly correlated 

features such as cell morphology in the context of high-content screening (32,33,77,78). 

With respect to gene expression, factor analysis reduces the data dimension from genes 

to factors, each of which is usually associated with multiple genes. Genes in each factor 

show correlated gene expression profiles across samples (Fig. 2a, b). These factors, 

therefore, can be thought of as being a representation of all biological processes 

influencing gene expression, for instance epigenetic profiles, transcription factor activities, 

microRNA abundances, etc. Despite the fact that most of these variables are not directly 

observable, latent factor analysis offers a possibility to infer their total contribution to 

detected variation in gene expression profiles. 

Conceptually, factor analysis is familiar with other correlation-based methods, for instance 

Relevance Networks (79) and Weighted Correlation Network Analysis (WGCNA) (80). We 

preferred factor analysis to alternative methods because factor analysis does not make 

any additional assumptions than the common, minimum ones underlying correlation 

analyzes (homogeneity, completeness, etc.), whereas other methods do so, for instance 

the scale-free network structure assumed by WGCNA, whereas this assumption is often 
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challenged (81,82). On the other hand, we have many more samples than the number of 

factors. Factor analysis is feasible with the maximum-likelihood method. We therefore 

decided to use factor analysis following the principle of Occam’s Razor. 

We applied factor analysis to raw gene expression data and identified intriguing patterns. 

Since factor analysis is based on inter-gene correlations, we visualize the correlation 

matrix of germ-layer genes in Figure 2a (the full matrix is visualized in Supplementary 

Figure S2a). Genes that strongly correlate with each other form clusters, which 

correspond to latent factors.  

Despite that, factor analysis is a correlation-based statistical method in which we injected 

no prior knowledge, it revealed biologically meaningful patterns. Using the maximum 

likelihood method, we decomposed the covariance matrix of gene expression into factors. 

The heatmap in Figure 2b shows loadings, i.e. how strong factors influence the expression 

of germ-layer genes, of the first ten factors that collectively explain more than 70% of the 

covariance (Suppl. Fig. S2b and S2c). Left to the heatmap we use colors to indicate germ-

layer classes that were distilled from biological knowledge. We found that the first six 

factors (ranked by explained covariance of the data) are significantly enriched with 

signatures of individual germ layers or signatures of stem-cell self-renewal (Fig. 2c, 

p<0.01, Fisher’s exact test). This significant enrichment is both intriguing and novel, 

because while it is established that germ-layer genes are highly expressed at different 

stages of embryogenesis, we failed to find any previous studies reporting that their 

expression are strongly correlated in 3D embryoid bodies formed by hiPSC, with or without 

compound treatment. Given that the cells in TeraTox are all grown up to day 7, it is unlikely 

that the correlations are caused by temporal changes of embryogenesis. Instead, factor 
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analysis suggests that besides being correlated across time in development, expression 

of germ-layer genes is also correlated across treatment conditions in 7-day spontaneously 

differentiated EBs. 

Detailed analysis of the results from the factor analysis revealed more insights. The 

strongest correlation of the germ-layer genes was observed among genes in Factor 1, 

many of which are markers of the ectodermal layer, e.g., WNT1, POU4F1, OLFM3, CDH9, 

LMX1A, DMBX1, PAX3, MAP2, and TRPM8 (Fig. 2a). While BioQC analysis revealed that 

ectodermal genes are highly expressed at the endpoint on day 7, factor analysis further 

indicates that their expression is strongly correlated across conditions, too, which is 

neither sufficient nor necessary for their high expression. Factors 2-6 mainly consist of 

genes representing the mesodermal layer (Factor 2), stem-cell self-renewal (Factor 3), 

and the endoderm layer (Factor 4-6), respectively. The remaining factors (Factor 7-10) 

are of smaller sizes and more heterogeneous (Fig. 2b). Genes associated with each factor 

are associated mainly, but not exclusively, with other genes of the same germ-layer class.  
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Figure 2: Identification of latent factors that are associated with germ layers.  

(a) Germ-layer genes correlate with each other and form clusters. The heatmap represents Pearson 

correlation coefficients of gene expression in all samples, including both vehicle controls and treated 

samples. Each row and each column represent a gene and the matrix is symmetric. Labels are shown 

for representative genes from each cluster of strongly correlated genes (the full matrix is shown in 

Supplementary Figure S2a). To assist interpretation of the latent germ-layer factors, genes are split by 

them. Magenta colors represent strong positive correlations between genes, yellow colors represent 

strong negative correlations, and black colors represent little correlation. 

 

(b) Loadings of germ-layer factors. The heatmap shows loadings of latent factors on the germ-layer genes. 

A loading equal to or near 1 indicates that the factor strongly influences the gene. A loading near 0 

means that the factor has little effect on the gene. And a loading equal to or near -1 indicates that the 

factor negatively influences the gene. Each row contains a germ-lay gene, and each column contains a 

factor. The rows are ordered so that the genes that are ordered by the factors are impacted most, which 

is visible from the patterns of cascades. Though no prior biological knowledge is used in the analysis, 
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we noticed that the factor loadings partially resemble the clustering of genes defined by germ-layer 

classes, which are illustrated in the row-side color to the left of the figure. Based on this reason, we call 

the factors germ-layer factors. We consider 77 out of 87 germ-layer genes for germ-layer factors because 

the remaining 10 genes are negatively influenced by germ-layer factors (bottom rows in the heatmap), 

and therefore it does not make sense averaging their expression with other genes that are positively 

influenced. For readability, we showed representative genes from the first six clusters here while 

displaying the full matrix in Suppl. Fig. S2c. 

(c) Germ-layer factors are not equivalent to, but significantly associated with, germ-layer classes. The 

heatmap visualizes the number of genes shared by each pair of germ-layer classes (in rows) and germ-

layer factors (in columns). 

3.3. Training and testing of a predictive model for the TeraTox assay 

To build a quantitative predictive model of concentration-dependent teratogenicity 

potential with gene expression as input, we explored all combinations of the following 

options exhaustively (Fig. 3a): 

1. Feature type: We tested both log2 fold change (logFC), the point-estimate of the effect 

size, and z-scores transformed from the sign of logFC and p-value reported by the 

edgeR model, which considers both effect size and variance of differential gene 

expression. 

2. Feature engineering: We used all detectable pathway reporter genes (N=1,215), 

detectable germ-layer genes (N=87), germ-layer classes defined by Tsankov et al. 

(N=7), and germ-layer factors derived from factor analysis (N=10). In case of both 

germ-layer classes and factors, we use the median value of the genes belonging to 

each group as the engineered feature. 

3. Model construction: We used and benchmarked two methods of different nature, 

Elastic Net (linear regression with regularization) and Random Forest (ensemble 

decision trees), to construct machine-learning models. We chose them based on the 

size of the dataset and the relatively good explainability of both methods (83). 
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4. Target variable: We used both binary classification (teratogen or non-teratogen) and 

regression (the teratogenicity score, defined below and further detailed in the Material 

and Methods section) for teratogenicity and regression alone for cytotoxicity. 

5. Data splitting: we tried both repeated splitting of 80% training and 20% test set, and 

the leave-one-out (LOO) scheme. In the first case, we used 80% compounds 

(stratified sampling from non-teratogens and teratogens) as the training set to train a 

model, which was used to predict the teratogenicity scores using the remaining 20% 

compounds as the test set. In the latter case, all except one compound were used to 

train the model, which predicts the teratogenicity scores for the left-out compound, 

and repeated the procedure for all compounds so that teratogenicity scores were 

predicted for each compound based on data from other compounds. In either case, 

the model performance was assessed by F1 scores in case of binary classification 

models, and Spearman correlation coefficients of teratogenicity scores for teratogens 

in case of regression models. The best model parameters were searched by 10-fold 

cross-validations of the training set.  

While all other technical terms are used in their common sense, we explain the motivation 

and definition of the Teratogenicity Score in detail. A key challenge for building a predictive 

model of teratogenicity is that the potential of a compound inducing teratogenicity varies 

by its concentration. A concentration-response relationship can be assumed, namely a 

treatment with a higher concentration is more likely to induce teratogenicity than that with 

a low concentration. However, the concrete functional form between the potential and the 

concentration is not known. This motivated us to define the Teratogenicity Score as the 

‘0-1 cosine bounded similarity’ between differential gene expression profiles induced by 

any given concentration and the profiles induced by the maximum non-cytotoxic 
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concentration. The teratogenicity scores of teratogens are defined between 0 and 1, and 

those of non-teratogens are fixed as 0 at all concentrations (Fig. 3b). By defining 

teratogenicity scores, we effectively transformed the binary classification problem into a 

regression problem. 

Two important technical details require clarification. First is the range of the teratogenicity 

score. Mathematically, cosine similarity ranges between -1 and 1; we bounded it to 0-1 by 

setting negative similarities as zero, which did not change the performance of the models 

(data not shown) but helped with human understanding. The teratogenicity score can be 

interpreted as an estimate of the probability of inducing teratogenicity, which would be a 

real number between 0 and 1, though the real probability is unknown to us because we 

are working with an in vitro system only, and the probability estimated in our system may 

differ significantly from that in vivo.  

The second technical detail is the selection of regression models. Given the truncated 

domain where the teratogenicity score is defined, we tried both simple linear regression 

and generalized linear models with beta regression. However, beta regression was 

computationally intensive and much slower, and its use led to similar results as simple 

linear regression for predicting teratogenicity scores. Therefore, we used simple linear 

regression throughout the study except in the last part of model explainability, because 

only one model is required there and the boundary consideration is important for 

simulation studies. 
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We observed the following patterns as we tried all options of model building: 

1. The feature type has minimal impact on the performance, though models trained with 

z-scores perform better on the test set than models trained with logFC (data not 

shown). 

2. The combination of feature engineering and machine-learning model is important and 

the best combination depends on the prediction task (Fig. 3c and 3d, contrasted with 

Fig. 5a). For teratogenicity prediction, the combination of germ-layer factors and 

random-forest regression works the best.  

3. With regard to the target variable, the performance of the regression-based 

teratogenicity-score prediction model is slightly better than the model for binary 

classification (data not shown). 

4. Performance is comparable between two modes of data splitting (data not shown). 

However, the leave-one-out training-testing scheme is preferable because it allows 

us to set up a single threshold of teratogenicity score which can be applied to all 

compounds, whether or not a compound is included in the training set or in the test 

set as in the case of 80%/20% data splitting. 

Based on these observations, we decided to use germ-layer factors as features, random-

forest regression as the machine-learning model, and teratogenicity score as the target 

variable to build the predictive model for teratogenicity with gene expression data.  
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Figure 3: Construction of machine-learning models predicting concentration-dependent 

teratogenicity potentials based on differential gene expression as input. 

(a) Overview of the workflow to construct machine-learning models using differential gene expression as 

input to predict teratogenicity potential. Oval node: input; diamond nodes: steps where more than one 

option was tested; plain-text nodes: options that were tested; rectangle nodes: outcome of the model. 

Plain-text nodes in bold show the options that give the best prediction performance. logFC: log2 fold 

change. 

(b) Definition of teratogenicity scores (TS). TS is set to 0 for non-teratogens (from Amoxicillin to Lazabemide 

from bottom up), independent of the concentration level. For teratogens, TS is set to 1 for the highest 

non-cytotoxic concentration, and TS for other concentrations is set to the cosine similarity of differential 

gene expression profiles between each concentration and the highest non-cytotoxic concentration. 

Negative TS is set to 0. Colors indicate the concentration level: the highest concentration is assigned 

red, the lowest concentration is assigned black, and the concentrations between them are of darker red 

as they move towards lower concentrations. Points for non-teratogens are overlapping with each other. 

Here we show the subset of commercially available compounds as examples. The same definition was 

also applied to proprietary compounds. 

(c) Spearman correlation coefficients between observed teratogenicity scores, calculated on a per-

compound basis, and predicted teratogenicity scores, which are derived from models trained using all 

but the test compound (leave-one-out). Higher values are favorable. Only teratogens are considered 

here because the teratogenicity scores are defined as 0 for non-teratogens and the Spearman correlation 

coefficient is a poor choice to characterize the models in such cases. 

(d) Mean (dots) and standard deviations (error bars) of teratogenicity scores of non-teratogens. For each 

compound, the median teratogenicity score is derived from six concentrations to represent the 

compound. Both lower values and smaller error bars are favorable. 

 

3.4. Assay performance of the TeraTox assay compared to mEST prediction 

Based on the best-performing machine-learning model, we defined the following 

predictive model for teratogenicity. First, we considered the maximal non-cytotoxic 

threshold concentration (NCCmax) for cell viability measured by the CellTiter Glo assay of 

at least 80%. Next, we defined the minimal teratogenic concentration (TCmin) as the 

concentration at which the threshold of the teratogenicity score was met (TS=0.38, defined 

by grid search, Fig. 4a). If no NCCmax or TCmin could be determined because values did 

not exceed these thresholds, the maximal tested concentrations were used for NCCmax 
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and TCmin. The predictive score, which we named TeraTox Score to avoid confusion with 

Teratogenicity Score, is defined by the logarithmic ratio between threshold concentrations 

at 20% viability impairment (NCCmax) and teratogenic concentrations (TCmin). Negative 

TeraTox scores classify the compounds as negative whereas positive scores classify 

compounds as positive (Fig. 4b).  

We plotted the concentration-response curves of both measured cytotoxicity and 

predicted teratogenicity scores induced by each compound (Fig. 4c, see Suppl. Fig. S4 

for all compounds). In general, teratogenicity levels increased while cell viability 

decreased with rising concentrations. Correctly predicted negative compounds were 

unlikely to induce teratogenicity within non-cytotoxic concentrations, which means the 

calculated TeraTox score was negative or zero (e.g., Doxycycline, RO-4, RO-6). Positive 

compounds (e.g., Bosentan, Carbamazepine, Retinoic Acid, RO-1) or false positive 

predicted compounds (e.g., Cetirizine) were more likely to induce teratogenicity under 

non-cytotoxic concentrations, which was indicated by positive TeraTox scores (Fig. 4c).  

We compared predictions of 45 reference compounds by TeraTox scores with 

classifications from FDA or in vivo EFD studies (Suppl. Tab. S4). Classification with 

TeraTox Scores achieved an overall accuracy of 68% and outperformed mEST (60%). 

The two assays show different sensitivity and specificity profiles: While mEST is more 

specific (specificity 78%), TeraTox is more sensitive (sensitivity/recall 78%). Among 18 

negative reference compounds, 9 were classified as false positives (FP) by TeraTox, and 

only 4 by the mEST. Whereas from 27 positive reference compounds, 21 were predicted 

as true positives (TP) by the human TeraTox and only 13 by the mEST (Tab. 2, Fig. 4d). 

It is noteworthy that among the 26 compounds misclassified in total, these seven are 
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wrongly predicted by both assays: cyproheptadine, RO-11, 5-FU, methotrexate, 

misoprostol, RO-8, warfarin. Given the distinct sensitivity and specificity profiles of the two 

assays, we asked whether we can achieve even better prediction results by using them 

in a sequential mode. Specifically, we first let mEST classify the compounds, and among 

the negative predictions, we accept the predictions by TeraTox. The intuition is that we 

may benefit both from the high specificity of mEST and the high sensitivity of TeraTox. 

Indeed, we found that overall accuracy of the combined prediction increased to 78%. This 

suggests that it may be possible to achieve better prediction results by combining the 

existing mEST assay with the novel TeraTox assay. 

Table 2: Overview of assay performance for mEST and human TeraTox assay. 

Values were calculated based on 45 compounds (according to equations 1-5 in section 2.4. TP= true 

positive, TN=true negative, FP=false positive, FN=false negative). 

Model TP TN FP FN Accuracy Precision Recall Specificity F1 

TeraTox 21 9 9 6 67% 70% 78% 50% 73% 

mEST 13 14 4 14 60% 76% 48% 78% 59% 

mEST + 
TeraTox 

21 14 4 6 78% 84% 78% 78% 81% 
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Figure 4: Prediction of teratogenicity with the human TeraTox assay. 

(a) Results of a grid search to select the optimal threshold of the teratogenicity score. Prior to the grid search, 

we predicted teratogenicity scores for each compound using data from all other compounds (with the 

best options, i.e. using z-scores, germ-layer factors, random-forest, regression-based prediction, and 

leave-one-out cross-validation). We then fitted concentration-response curves to the predicted 

teratogenicity scores and made predictions by the model described in Figure 4b by varying the thresholds 

in a grid search. Each dot in the plot indicates one point in the grid, which starts at 0 and ends at 1, with 

a step size of 0.01. The best threshold (TS=0.38) was chosen manually by inspecting the performance 

metrics defined in Equations (1)-(5). 
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(b) Concentration-response curves normalized to DMSO solvent controls for determination of minimal 

teratogenic concentration (TCmin) and maximal non-cytotoxic concentration (NCCmax) using predicted 

teratogenicity scores and measured cell viability. Teratogenicity scores were predicted by leave-one-out 

testing/ training, and the optimal threshold of teratogenicity scores (TS=0.38) was found by grid search 

(a). The log ratio of the concentration leading to 20% viability impairment (NCCmax) and that causing a 

teratogenicity score equal to the threshold (TCmin) was used to calculate a predictive score. If no NCCmax 

or TCmin could be determined, the minimum tested concentrations were used for TCmin and the maximum 

tested concentrations were chosen for NCCmax. Predictive scores ≤0 classified the compounds as 

negative and values >0 were classified as positive.  

(c) Examples of concentration-response curves reported by the TeraTox assay of 4 selected non-teratogens 

(top panel, concentrations indicated by open circles): Doxycycline, RO-4, RO-6, and Cetirizine, and 4 

selected teratogens (bottom panel, concentrations indicated by crosses): Bosentan, Carbamazepine, 

Retinoic Acid, and RO-1. In most cases, teratogenicity (black curves) rises with increasing 

concentrations whereas cell viability (red curves) decreases. The points indicate predicted teratogenicity 

score (2 replicates each) and measured cytotoxicity (3 replicates each). 

(d) The receiver operating characteristics (ROC) curve based on 45 reference compounds. The triangle 

symbol indicates the performance of TeraTox, and the circle indicates the performance of mEST.  
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3.5. Model interpretation and explanation 

A model’s explainability is crucial for understanding that allows inspection and further 

improvement (84). We performed additional in-depth analysis and collected data 

orthogonal to TeraTox, thereby implementing three independent approaches to interpret 

and explain how the TeraTox model, in particular, how the teratogenicity score prediction 

model works. 

First, we followed up on previous work and asked the question whether the cytotoxicity 

quantified by the phenotypic assay can be predicted by gene expression data as well, and 

whether teratogenicity scores are confounded by general cytotoxicity (85,86). For this 

purpose, we followed the same scheme as described in Figure 3a while using cytotoxicity 

instead of teratogenicity scores as the target variable. Interestingly, an exhaustive search 

showed that using all pathway reporter genes and the elastic net model, instead of using 

germ-layer factors and random forest as in the case of teratogenicity prediction, gives the 

best result (Fig. 5a). 

Given that the combination of germ-layer genes and random forest gives reasonable 

performance in both cases, and that random forest allows inquiry of feature importance 

by accuracy, we compared the feature importance of germ-layer genes in predicting both 

target variables (Fig. 5b). The prediction of cytotoxicity and teratogenicity by molecular 

phenotyping relies on expression changes of distinct genes. The distinction shows that 

teratogenicity of a compound is not a determinant for cytotoxicity whereas a compound 

that shows cytotoxicity at a specific concentration can still be teratogenic at lower, non-

cytotoxic concentrations and that pathways for cytotoxicity and teratogenicity may be 

independently regulated. This is well in line with several previous findings (87-89). 
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The second approach addressed the question whether a compound’s pharmacology, 

namely its target profile (protein targets and binding affinities), suffices to predict its 

teratogenicity potential. If so, one may hope to predict teratogenicity potential based on 

target profiles and/or even based on the chemical structure alone. While some teratogens 

indeed have similar target profiles, we observe close clustering of teratogens and non-

teratogens that have similar target profiles as well (Fig. 5c, Suppl. Fig. S5a). The potential 

of teratogenicity, therefore, may be associated with off-target effects or effects through 

targets that are not captured in ChEMBL, especially at the relatively high concentrations 

approaching cytotoxicity levels that we tested. Corroborating this, we found almost no 

correspondence between clustering of average differential gene expression across 

concentration per compound and that of pharmacological profiles (Suppl. Fig. S5b). 

Therefore, we conclude that while knowing the target- and off-target profile of a compound 

is essential for de-risking its safety liabilities including teratogenicity, pharmacology data 

alone cannot predict a compound’s teratogenicity potential, at least in their current stand. 

In-vitro assays, for instance with TeraTox and other advanced cellular models, are 

indispensable for preclinical teratogenicity assessment.  

The third approach was to use a simpler generalized linear regression model for sensitivity 

analysis, which would allow us to analyze how the model responds to changes of the 

input. Given that random forest is an ensemble method and the contribution of each germ-

layer factor can be therefore difficult to interpret, we built an alternative model using beta 

linear regression. To identify interaction terms in the linear regression, we made the 

assumption that germ-layer factors regulate each other by forming a directed acyclic 

graph (DAG). Under this assumption, we built a Bayesian network using the differential 

expression data of germ-layer factors (Fig. 5d). The network reveals potential influences 
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on both mesoderm and endoderm by the ectoderm, influences on endoderm by 

mesoderm, and influences on stem-cell renewal by endoderm. 

The Bayesian network topology prompted us to build a beta regression model including 

all germ-layer factors and interactions identified in the Bayesian network (Fig. 5e, Suppl. 

Fig. S6). The model provides both interpretable coefficients of the model and a tool for 

sensitivity analysis, because we can quantify prediction uncertainty much easier with a 

linear model than the random forest model, by paying the price of assuming linear 

regulation relationship. For the sensitivity analysis, we kept all other parameters fixed and 

tuned one input parameter at a time to simulate its impact on predicted teratogenicity 

scores. We observed that the model is likely sensitive to impairment of either ectoderm 

layer or stem-cell self-renewal, while being relatively robust to changes to either 

mesoderm or endoderm (Fig. 5e). The results of sensitivity analysis further underlined the 

prominent ectodermal nature of the model at the endpoint on day 7.  

In summary, we explain how the TeraTox model works by complementing the machine-

learning model with feature importance analysis, biological and pharmacological 

interpretation, and sensitivity analysis. 
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Figure 5: Biological interpretation of the model. 

(a) Differential gene expression can be used to predict cytotoxicity, though the best-performing model for 

cytotoxicity differs from that for teratogenicity. Similar as what we did for teratogenicity in Figure 3b, we 

built machine-learning models for cytotoxicity using the same workflow shown in Figure 3a. While z-

scores, regression, and leave-one-out remain the same, the best model for cytotoxicity predictions uses 

all pathway reporter genes and elastic net, in contrast to germ-layer factors and random forest for 

teratogenicity prediction. Each dot represents the correlation between held-out and predicted cytotoxicity 

and observed cytotoxicity using leave-one-out cross validation. Lines of two colors (blue: random forest; 

orange: elastic net, also known as glmnet) show that the elastic net consistently outperforms random 

forest for cytotoxicity prediction. 

(b) Feature importance of germ-layer genes differ for cytotoxicity and teratogenicity prediction. Because the 

combination of germ-layer genes and random forest shows reasonable predictivity for both teratogenicity 

(Fig. 3b) and cytotoxicity (Fig. 5a), we inspected their feature importance in the random forest model 

using importance measures. Each dot represents a germ-layer gene. Genes that are mostly important 

for teratogenicity prediction are shown in blue. Genes that are most important for cytotoxicity prediction 

are shown in red. The overlapping genes that are important for both predictions are shown in magenta. 

(c) The target profile alone is not sufficient to determine a compound’s teratogenicity potential. We clustered 

compounds by their target profile, i.e. number and affinity to targets collected in the ChEMBL database 

and visualized the clustering with the dendrogram. Compounds are colored by their truth classification 

whether they are teratogen (red) or not (black). Note that while teratogens are enriched in some branches 

of the dendrogram, non-teratogens and teratogens can have very similar target profiles and therefore 

cluster near to each other in other cases.  

(d) Structure of the Directed Acyclic Graph (DAG) that we used to model the relationship between 

teratogenicity score and germ-layer factors with generalized linear model. Besides ten germ-layer 

factors, significant interactions between germ-layers identified by Bayesian networks (blue edges) are 

used as input variables for the model. Model fitting results are shown in Supplementary Figure S6. 

(e) Sensitivity analysis shows both the advantages and the limitations of the TeraTox assay. The relatively 

simple generalized linear model with beta-regression allowed us to run the sensitivity analysis, a 

simulation technique to test how the model would behave if we tune the input variables specifically. Each 

panel shows one of such analyzes, where we tune one parameter (for instance the ectoderm germ-layer 

factor in the top-left panel) while keeping all other parameters fixed. Black lines indicate average 

prediction and gray areas indicate 95% confidence intervals of prediction. To facilitate interpretation, the 

input variables are scaled to 0 mean and standard deviation. Note that for all sensitivity analyzes plots, 

when the input parameter is 0 (vertical dashes), the simulated teratogenicity scores center around the 

optimal threshold that we identified (TS=0.38, horizontal dashes). Therefore, the plot can be interpreted 

in the following way: if the slope of a variable is positive, the teratogenicity potential increases as the 

expression of genes in that germ-layer factor increases. Otherwise, if the slope is negative, the 

teratogenicity potential increases as the expression of genes in that germ-layer factor decreases.   
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4. Discussions 

This study characterizes the optimization of TeraTox, a newly developed human 

teratogenicity assay. TeraTox quantifies drug-like molecules’ cytotoxicity and 

teratogenicity profiles in concentration response using a hiPSC derived embryoid body 

model that spontaneously differentiates into all three germ layers over seven days. It thus 

extended and standardized earlier embryoid body models, and fully leveraged their 

predictive potential by adding a toxicological prediction model (87,90). We challenged the 

TeraTox assay with a selection of 45 reference substances with teratogenic profiles based 

on high-quality data. We identified latent germ-layer factors that influence germ-layer gene 

expression, and identified the best machine-learning model that predicts the teratogenicity 

potential based on germ-layer factors as input and random forest as the regression model. 

We demonstrated that TeraTox outperforms mEST in both sensitivity and balanced 

prediction performance, though having lower specificity. Furthermore, we explored the 

interpretation and explainability of the TeraTox model with three independent approaches. 

We found that teratogenicity can be distinguished from cytotoxicity, that pharmacological 

profiles are not sufficient for predicting teratogenicity, and that the TeraTox assay is 

particularly sensitive towards teratogens impairing ectoderm development and stem-cell 

self-renewal. The study embodies a comprehensive and critical assessment of the 

TeraTox assay and its predictive algorithm, addressing important open questions for its 

practical use. 

The TeraTox model presents a promising companion and an alternative to mEST as a 

humanized in vitro model for preclinical teratogenicity assessment. The two assays differ 

in cellular origin (human iPSC versus mouse ESC and fibroblasts), final endpoints 

(differential gene expression from all germ layers versus direct differentiation into mouse 
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cardiomyocytes), and the prediction model. Both assays are anchored to a specific 

cytotoxicity threshold that determines the non-cytotoxic yet teratogenic effects. Contrary 

to the mEST assay, where cytotoxicity is inferred from IC50 values of D3 and 3T3 cells that 

are grown in monolayers, we anchored the TeraTox assay to a much lower cytotoxicity 

threshold (NCCmax, viability >80%) in a three-dimensional scale, which is more 

physiological relevant. With the exception of a few compounds, TeraTox determined 

cytotoxicity and/or teratogenicity LOAEL (lowest observed adverse effect levels) at lower 

concentrations compared to the mEST (except of dexamethasone, bosentan, 

dorsomorphin, hydroxyurea, imatinib, isotretinoin). We therefore believe that TeraTox may 

be a more relevant in vitro assay for human teratogenicity assessment. 

Our analysis of the TeraTox data revealed its three unique advantages over mEST. First, 

TeraTox is more sensitive than the mEST assay. We believe the higher sensitivity is due 

to several factors, including the use of human induced pluripotent stem cells, cytotoxicity 

determination in 3D EBs and using gene expression as readout. In this study, we carefully 

selected concentration ranges based on drug-specific maximum plasma concentrations 

(Cmax) from either human data whenever possible or model species otherwise (Suppl. Tab. 

S1, S2). Retrospective comparison of the TeraTox readout with the human therapeutic 

Cmax data showed that TeraTox captured relevant in vivo doses for teratogenicity for most 

compounds, except for bosentan, isotretinoin, imatinib, and warfarin. The higher 

sensitivity to detect teratogens is particularly important for preclinical drug discovery to 

remove potential teratogens from the pipeline as early as possible. 

The second advantage of TeraTox over mEST is that it allows the detection of human-

specific teratogens. Generally, using a model species such as the mouse or the rabbit to 

predict toxicity may lead to misclassifications if the toxicity is specific for either the species 
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or for humans. For this reason, when we compiled our compound panel, we chose 

preferentially those compounds that are either known to be species-specific or known to 

be misclassified by alternative methods. And when we assigned labels to the compounds, 

we relied on human data whenever possible. An example for species-specific 

teratogenicity is thalidomide, which was correctly identified as positive by TeraTox. At the 

same time, it shows a high level of cytotoxicity at concentrations that are 80-fold lower 

than human Cmax. It is well established that the mouse system is insensitive to the 

teratogenic effects of thalidomide due to the lack of cereblon-mediated degradation of the 

SALL4 transcription factor, which has been shown to result in agenesis of the limb buds 

in rabbit embryos and was recapitulated by a species-specific false-negative response of 

the mEST (55,91,92). 

The third advantage of TeraTox is that it is less of a phenotypic black box but more an 

interpretable and explainable model. We used factor analysis, an established 

unsupervised, generative data-analysis method, to reveal clustering patterns in 

correlations between expression of germ-layer genes. Despite that these clustering 

patterns, which we termed germ-layer factors, were derived from the raw gene expression 

data statistically without any biological prior knowledge, we were surprised that they 

correlated well with known biology of germ-layer development. Specifically, germ-layer 

factors were enriched with genes preferentially expressed in one of the three germ layers 

or stem-cell renewal. Interestingly, averaging differential gene expression of germ-layer 

genes by germ-layer factors provided the best features for the prediction of teratogenicity. 

The latent factors can be seen as a sum of the output of gene regulatory networks in 

germ-layer development and stem-cell self-renewal. Therefore, TeraTox informs 

predictions not only based on statistical data patterns: it builds upon biological 
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mechanisms and thus may reflect disturbed functionalities, similar to those leading to 

teratogenicity in vivo. This feature puts the TeraTox conceptually in a group of other 

assays that use phenotypic changes or disturbed functionalities as readouts (17,93-95). 

The model consolidates our previous call to ‘focus on germ layers’ and corroborates our 

recent work exploring gastruloid models that profiles morphological changes of germ-

layers for teratogenicity prediction (23,96). 

Besides factor analysis, we tried several ways to shed light on how the model works (or 

not). Most importantly, we could distinguish cytotoxicity from teratogenicity. We explored 

machine-learning model variants for both teratogenicity and cytotoxicity predictions and 

made the intriguing observation that the best models are distinctly depending on the target 

variable. Whereas germ-layer factors and random forest performed best for teratogenicity 

prediction, the combination of all pathway reporter genes and regularized linear 

regression with elastic nets showed the best prediction for cytotoxicity. We speculate that 

there might be two explanations for this. First, the molecular phenotyping platform 

contains well curated genes that reflect cytotoxicity and cell death, which were highlighted 

in a previous drug screening study using iPS-derived cardiomyocytes (26). Therefore, we 

can anticipate that these genes are used by linear regression to predict cytotoxicity. 

Second, teratogenicity is notably complex. It can be caused in many different subtle ways, 

with many different perturbations leading to different down-stream changes that are 

collectively known as teratogenicity. Therefore, a change in the total output of the germ-

layer regulatory network as summarized by germ layers is probably a more robust readout 

than individual genes, and random-forest, which is an ensemble learning method, is better 

at detecting heterogenous signals than linear regression.  
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Furthermore, we used pharmacological data to show that knowing target profiles of drug 

candidates is likely not sufficient to predict its teratogenicity potential, therefore an in vitro 

based assay like TeraTox is necessary. Last but least, we combined Bayesian network 

analysis, beta linear regression, and sensitivity analysis to show that while TeraTox is 

sensitive to ectoderm development damage, further work is required to better model 

mesoderm and endoderm development. 

Given the advantages of TeraTox over mEST, and considering distinct profiles of 

sensitivity and specificity of the two assays, we can image three possible scenarios of 

their routine use in drug discovery: TeraTox replacing mEST, TeraTox running besides 

mEST, or two assays running sequentially. We believe while the first option is the long-

term goal that we go after, the last option of running them sequentially may be currently 

the best solution. Our analysis showed that if we use the mEST assay first, and next run 

the TeraTox assay for compounds predicted negative by mEST, we gain improved 

prediction accuracy, sensitivity, and specificity. Further real-world testing is planned to 

validate the performance of this approach. 

Further studies are warranted to explore several parallel paths further optimizing the 

TeraTox assay, which can be divided into three categories: paths leading to better 

characterization of EBs, paths leading to better predictive and explanatory algorithms, and 

paths leading to better biological models of human embryo development. To better 

characterize EBs, one apparent way is to perform multi-modal - bulk and single-cell omics, 

and morphological profiling - characterizations of the EBs. Extension of the assay duration 

to more than 7 days or using other differentiation protocols may further improve TeraTox’s 
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capacity to model mesoderm and endoderm development. Omics profiling of EBs may 

reveal the best condition. 

There are several viable options to further improve the predictivity and the explainability 

of the TeraTox model. To better distinguish between non-teratogens and teratogens, we 

may try to test the compounds with the TeraTox assay at lower concentrations (especially 

for non-teratogens), where the lowest concentration should be predicted to have a 

teratogenicity score equal to or close to zero. Multi-model data, if available, can be used 

to identify further relevant features beyond germ-layer genes and factors. As more and 

more data are collected, we may also optimize the prediction algorithm, for instance using 

the nearest-neighbor prediction or other variants, to benefit from the data.  

Finally, the TeraTox assay may benefit from a better modelling of human embryo 

development. We may use alternative morphology-based assays of gastruloids to 

complement the TeraTox readout (96,97). Alternatively, sophisticated microphysiological 

systems may better mimic the maternal-placenta-embryo axis and with that may 

recapitulate true embryo exposure levels (98-100). In the future they may replace the 3D 

embryoid bodies in TeraTox. In the current throughput, though, such systems will probably 

be more powerful as a secondary assay to spot check a few compounds of particular 

interest. For this purpose, a continuous integration and modelling of data of human 

embryogenesis, for instance from omics, imaging, and perturbation studies, is required to 

guide further optimization of the TeraTox assay (96,101,102).  
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5. Conclusion 

In summary, we demonstrate that the TeraTox assay addresses several limitations of the 

industrial standard mEST assay regarding performance, species-specificity, and 

explainability. We believe that further optimization of the TeraTox assay and its routine 

use in drug-screening processes will lead us towards better preclinical assessment of 

teratogenicity. 
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