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Abstract9

Neural circuits can generate many spike patterns, but only some are functional. The study of how10

circuits generate and maintain functional dynamics is hindered by a poverty of description of circuit11

dynamics across functional and dysfunctional states. For example, although the regular oscillation12

of a central pattern generator is well characterized by its frequency and the phase relationships13

between its neurons, these metrics are ineffective descriptors of the irregular and aperiodic14

dynamics that circuits can generate under perturbation or in disease states. By recording the circuit15

dynamics of the well-studied pyloric circuit in C. borealis, we used statistical features of spike times16

from neurons in the circuit to visualize the spike patterns generated by this circuit under a variety17

of conditions. This unsupervised approach captures both the variability of functional rhythms and18

the diversity of atypical dynamics in a single map. Clusters in the map identify qualitatively19

different spike patterns hinting at different dynamical states in the circuit. State probability and the20

statistics of the transitions between states varied with environmental perturbations, removal of21

descending neuromodulation, and the addition of exogenous neuromodulators. This analysis22

reveals strong mechanistically interpretable links between complex changes in the collective23

behavior of a neural circuit and specific experimental manipulations, and can constrain hypotheses24

of how circuits generate functional dynamics despite variability in circuit architecture and25

environmental perturbations.26

27

Introduction28

Neural circuits can generate a wide variety of spiking dynamics, but must constrain their dynamics29

to function appropriately. Cortical circuits maintain irregular spiking patterns through a balance30

of excitatory and inhibitory inputs (van Vreeswijk and Sompolinsky, 1996; Mariño et al., 2005;31

Brunel and Wang, 2003) and the loss of canonical dynamics is associated with neural diseases32

like channelopathies and epilepsy (Marbán, 2002; Staley, 2015). Preserving functional dynamics33

can be a challenge for neural circuits for the following reasons. The same spike pattern can be34

generated by diverse circuits with many different topologies and broadly distributed synaptic35

and cellular parameters (Prinz et al., 2004; Golowasch et al., 2002; Alonso and Marder, 2019).36

Furthermore, neural circuits are constantly being reconfigured, with ion channel protein turnover,37

and homeostatic feedbackmechanismsmodifying conductance and synapse strengths continuously38

(Turrigiano et al., 1994, 1995; O’Leary et al., 2014; Franci et al., 2020). The problem of maintaining39

functional activity patterns is aggravated by the fact that functional circuit dynamics tend to lie40

within a low-dimensional subspace within the high-dimensional state space: of the numerous41

possible solutions, only a few are functional and are found in animals (Cunningham and Yu, 2014;42
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Pang et al., 2016). How do neural circuits preserve functional dynamics despite these obstacles?43

Answering this question requires, as a prerequisite, a quantitative description of the dynamics of44

neural circuits during function and dysfunction. When rhythms are regular, this is relatively simple,45

but when rhythms become irregular, classifying them becomes hard (Haddad and Marder, 2018;46

Tang et al., 2012; Haley et al., 2018). In this paper we study the dynamics of a well-studied central47

pattern generator, the pyloric circuit in the stomatogastric ganglion in C. borealis (Marder and48

Bucher, 2007). The pyloric circuit is small, in crabs consisting of 13 neurons coupled by inhibitory49

and electrical synapses. Its topology and cellular dynamics are well understood, and the circuit50

generates a clearly defined "functional" collective behavior where bursts of spikes from three51

different cell types alternate rhythmically to generate a triphasic motor pattern. The stereotypy and52

periodicity of the motor pattern suggests that the dynamics of the pyloric circuit are fundamentally53

low dimensional. This has allowed for the effective parameterization of the rhythm by a small54

number of ad-hoc descriptors such as the burst period, duty cycles, and phase of each neuron55

(Hartline and Maynard, 1975; Eisen and Marder, 1984;Miller and Selverston, 1982).56

In response to prolonged perturbations, pyloric circuit dynamics are not always periodic, and57

descriptors that work well to characterize the canonical rhythm are inadequate to describe these58

atypical dynamical states. Efforts to study circuit dynamics under these regimes, and to characterize59

how the circuit responds to, and recovers from perturbations, have been frustrated by the inability60

to quantitatively describe irregular and non-stationary dynamics (Haddad and Marder, 2018; Tang61

et al., 2012; Haley et al., 2018).62

In this paper we set out to address the problem of quantitatively describing neural circuit dynam-63

ics under a variety of conditions. We reasoned that circuit dynamics lie on some lower dimensional64

set within the full high dimensional space of possible dynamics, even when circuits exhibit atypical65

and non-functional behavior, because even circuits generating dysfunctional dynamics are still66

constrained by cellular parameters and network topology. We therefore set out to find and visualize67

this subset of spike patterns using an unsupervised machine learning approach. This unsuper-68

vised method allows us to visualize the totality of a large and complex data set of spike patterns,69

while being explicit about the assumptions and biases in the analysis. Using this method, we70

found non-trivial spiking patterns in the distribution of the data that hinted at diverse, stereotyped71

responses to perturbations. By classifying these patterns, and measuring transitions between72

these patterns, we were able to characterize the diversity of circuit dynamics under baseline and73

perturbed conditions, and to identify anecdotally observed atypical states within the full repertoire74

of spiking patterns (for many hundreds of animals).75

Results76

Perturbations can destabilize the triphasic pyloric rhythm77

Studies that measure the pyloric rhythm commonly involve recording from nerves from the stomato-78

gastric ganglion (STG) in ex-vivo preparations. Preparations typically also include the stomatogastric79

nerve (stn) that carries the axons of descending neuromodulatory neurons from the oesophageal80

and commissural ganglia that project into the STG. Under baseline conditions (11°C, with the stn81

intact, Figure 1a), the periodic triphasic oscillation of the pyloric circuit can be measured by extra-82

cellular recordings of the lpn, pdn and pyn nerves (Figure 1a). Bursts of PD spikes on the pdn are83

followed by bursts of LP spikes on lpn and bursts of PY spikes on pyn. Spikes from LPG neurons are84

also found on the pyn nerve in these recordings, and can be differentiated from PY spikes by their85

shape and their timing (LPG spikes during PD bursts). Under these control conditions, where the86

rhythm is robust and spikes from these neurons are easily identifiable both by their location on the87

nerve and their phase in the cycle, the dual problems of identifying spikes from raw extracellular88

recordings and meaningfully describing circuit dynamics is easily resolvable.89

In studies that characterize the changes in circuit dynamics to prolonged perturbations, spike90

identification and circuit dynamics characterization is less straightforward. For example, when91
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Figure 1. The triphasic pyloric rhythm can become irregular and hard to characterize underperturbation. (a) Simplified schematic of part of the pyloric circuit (left). Filled circles indicate inhibitory
synapses. Solid lines are glutamatergic synapses and dotted lines are cholinergic synapses. Resistor symbol

indicates electrical coupling. The pyloric circuit is subject to descending neuromodulatory control from the

stomatogastric nerve (stn). (Right) simultaneous extracellular recordings from the lvn, lpn, pdn and pynmotor
nerves. Action potentials from LP, PD and PY are visible on lpn, pdn and pyn. Under these baseline conditions,
PD, LP and PY neurons burst in a triphasic pattern. The AB neuron is an endogenous burster and is electrically

coupled to PD neurons. (b) When the stn is cut, neuromodulatory input is removed and the circuit is
"decentralized". In this case, the pyloric rhythm can become irregular and hard to characterize. In addition,

spikes from multiple PY neurons can become harder to reliably identify on pyn.
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descending neuromodulatory projections from the stn are cut (i.e., when the STG is decentralized,92

Figure 1b), the collective dynamics of the pyloric circuit can become less regular. This loss of93

regularity is concomitant with spikes being harder to reliably identify in extracellular recordings.94

While PD and LP neuron spikes can still be typically easily identified on the pdn and lpn nerves (95

Figure 1b), identifying PY on the pyn in the absence of a regular rhythm can be challenging. This96

problem is aggravated by the fact that spikes from the LPG neuron are frequently found on pyn,97

and because there are several copies of the PY neuron, whose spikes can range from perfect98

coincidence to slight offsets that can unpredictably change the amplitude and shape of PY spikes99

due to partial summation. For these reasons, some previous work studying the response of pyloric100

circuits to perturbations have consistently recorded from the lpn and pdn nerves, but not from the101

pyn (Hamood et al., 2015; Haley et al., 2018; Haddad and Marder, 2018; Rosenbaum and Marder,102

2018). Therefore, in order to include the largest number of experiments in our meta-analysis, we103

chose to characterize the dynamics of the LP and PD neurons.104

Nonlinear dimensionality reduction allows for the visualization of diverse pyloric105

circuit dynamics106

The regular pyloric rhythm involves out-of-phase bursts of spikes between LP and PD, and is107

observed under baseline conditions (Figure 2a1-3). Perturbations such as the removal of descending108

neuromodulatory inputs, changes in temperature, or changes in pH can qualitatively alter the109

rhythm, leading to a large variety of hard-to-characterize spiking patterns (Figure 2a4-6). Because110

these irregular states may lose the strong periodicity found in the canonical motor pattern, burst111

metrics such as burst period or phase offsets between bursts that work well to characterize the112

regular rhythm perform poorly. Efforts to characterize and quantify these atypical spike patterns113

must overcome the slow timescales in observed dynamics, the large quantity of data, and irregularity114

and variability in observed spike trains. Previous work used ad-hoc categorization systems to assign115

observations of spike trains into one of a few groups (Haddad and Marder, 2018; Haley et al., 2018),116

but these categorization methods scaled poorly and relied on subjective annotations.117

We sought instead to visualize the totality of pyloric circuit dynamics under all conditions using118

an unsupervised method that did not rely on a-priori identification of canonical dynamical patterns.119

Such a data visualization method, while descriptive, would generate a quantitative vocabulary to120

catalogue the diversity of spike patterns observed both when these patterns were regular and also121

when they were irregular and aperiodic, thus allowing for the quantitative characterization of data122

previously inaccessible to traditional methods (Börner et al., 2003; Nguyen and Holmes, 2019).123

The visualization was generated as follows: time-binned (20s) spike trains were converted124

into their equivalent inter-spike interval (ISI) and phase representations (Figure 2b, Methods and125

Materials). Because there can be an arbitrary number of spikes in a bin, there are an arbitrary126

number of ISIs and phases. To convert this into a vector of fixed length, we measured percentiles of127

ISIs and phases (Figure 2c). Together with other metrics (Methods and Materials), these percentiles128

were assembled into a fixed-length vector and each dimension was z-scored across the entire129

dataset (Figure 2d). A collection of spike trains from an arbitrary number of neurons has thus been130

reduced to a matrix where each row consists of z-scored percentiles of ISIs and other metrics. This131

matrix can be visualized using a non-linear dimensionality reduction technique such as t-distributed132

stochastic neighbor embedding (t-SNE) (Van der Maaten and Hinton, 2008), which can generate a133

two-dimensional representation of the full data set (Figure 2e).134

In this representation, each dot corresponds to a single time bin of spike trains from both135

neurons. We found that spike trains that are visually similar (Figure 2a1-3) tend to occur close to136

each other in the embedding (Figure 2e1-3). Spike patterns that are qualitatively different from each137

other (Figure 2a4-6) tended to occur far from each other, often in clusters separated by regions of138

low data density (Figure 2e4-6).139

How useful is such a visualization and does it represent the variation in spike patterns in the data140

in a reasonable manner? We colored each point by classically defined features such as the burst141
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Figure 2. Visualization of diverse neural circuit dynamics. (a) Examples of canonical (1-3) and atypical (4-6)
spike patterns of PD (blue) and LP (red). Rasters show 10s of data. (b-d) Schematic of data analysis pipeline. (b)

Spike rasters in (a-2) can be equivalently represented by inter-spike intervals and phases. (c) Summary statistics

of ISI and phase sets in (d), showing tenth-percentiles. (d) z-scored data assembled into a single vector, together
with some additional measures (Methods and Materials). (e) Embedding of data matrix containing all vectors

such as the one shown in (d) using t-SNE. Each dot in this image corresponds to a single 20-second spike train

from both LP and PD. Example spike patterns shown in (a) are highlighted in the map. n = 94844 points from
N = 426 animals. In (a-d), features derived from with LP spike times are shown in red, and features derived from
PD spike times are shown in blue.

Figure 2–Figure supplement 1. Burst metrics smoothly vary in map.
Figure 2–Figure supplement 2. Embedding arranges data so that neighbors tend to be similar.
Figure 2–Figure supplement 3. Effect of varying perplexity in t-SNE embedding.
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period or the phase (Figure 2–Figure Supplement 1). We found that the embedding arranges data so142

that differences between clusters and within clusters had interpretable differences in various burst143

metrics. For example, clusters on the left edge of the map tended not to have defined LP phases,144

typically due to silent or very sparse LP firing (Figure 2–Figure Supplement 1b). Location of data in145

the largest cluster was correlated to firing rate in the PD neuron (Figure 2–Figure Supplement 1c).146

We observed that burst metrics, when they were defined, tended to vary smoothly across the map.147

To quantify this observation, we built a Delaunay triangulation (Methods and Materials) on the148

embedded data and measured the triadic differences between PD burst periods and PD duty cycles149

(Figure 2–Figure Supplement 2). Triadic differences in these metrics were significantly smaller in150

the map than triadic differences in a projection of the first two principal components or a shuffled151

map (p < .0001, Kolmogorov-Smirnoff test), suggesting that the t-SNE cost function generates a152

useful embedding where spike features vary smoothly within clusters.153

Visualization of circuit dynamics allows manual labelling and clustering of data154

Previous studies have shown that regular oscillatory bursting activity of the pyloric circuit can quali-155

tatively change on perturbation. Circuit dynamics can be highly variable, and has been categorized156

into various states such as "atypical firing", "LP-01 spikes" or "atypical" (Haddad and Marder, 2018;157

Haley et al., 2018). Both the process of constructing these categories and the process of classifying158

data into these categories are typically done manually, and therefore requires expert knowledge159

that is not explicitly captured and is impossible to reproduce. Because the embedding distributed160

data into clusters, we hypothesized that clusters corresponded to stereotyped dynamics that161

were largely similar, and different clusters represented the qualitatively different circuit dynamics162

identified by earlier studies.163

Figure 3. Map allows identification of distinct spiking dynamics. (a) Map of all pyloric dynamics in dataset
where each point is colored by manually assigned labels. Each point corresponds to a 20s paired spike train

from LP and PD. Each panel in (b) shows two randomly chosen points from that class. The number of points in

each class is shown in parentheses above each panel. n = 94844 points from N = 426 animals. Labels are
ordered by likelihood in the data.

Figure 3–Figure supplement 1. Speed of trajectories through map.
Figure 3–Figure supplement 2. Embeddings with different initializations.
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We therefore inspected circuit dynamics at randomly chosen points in each apparent cluster,164

and generated labels to describe the dynamics in that region (Figure 3). This process colored the165

map and segmented it into distinct regions that broadly followed, and were largely determined by,166

the distribution of the data in the embedding (Figure 3a). Most of the data (57%) were assigned167

the regular label, where both PD and LP neurons burst regularly in alternation with at least two168

spikes per burst, and all identified regular states occurred in a single contiguous region in the map169

(blue). In the LP-weak-skipped state, PD bursts regularly, but LP does not burst every cycle, or only170

fires a single spike per burst. irregular-bursting states showed bursting activity on both neurons,171

which were interrupted or otherwise irregular. In contrast, the irregular state showed spiking that172

was more variable, and did not show strong signs of bursting at any point. LP-silent-PD-bursting173

states had regular bursting on PD, with no spikes on LP, while LP-silent states also had no spikes174

on LP, but activity on PD was more variable, and did not show regular bursting.175

The time evolution of the pyloric dynamics of every preparation constitutes a trajectory in the176

map, and every point in the map is therefore associated with an instantaneous speed of motion177

in the map. We hypothesized that instantaneous speed could vary across the map, with points178

labelled regularmoving more slowly through the map than points with labels corresponding to179

atypical states such as irregular, because regular rhythms would vary less over time. Consistent180

with this, we found that points in the regular cluster tended to have smaller speeds than points181

in other clusters (Figure 3–Figure Supplement 1a). Speeds in the regular state we significantly182

lower than every other state except PD-silent-LP-bursting (p < .004, permutation test), suggesting183

that atypical states were associated with increased variability in circuit dynamics (Figure 3–Figure184

Supplement 1b).185

Variability in baseline circuit dynamics across a population of wild-caught animals186

Work on the pyloric circuit has almost exclusively used a wild-caught crustacean population. This187

uncontrolled environmental and genetic variability serves as a window into the extant variabil-188

ity of a functional neural circuit in a wild population of animals. In addition, experimental and189

computational work has shown that similar rhythms can be generated by a wide variety of circuit190

architectures and cellular parameters (Prinz et al., 2003; Hamood and Marder, 2015; Alonso and191

Marder, 2019). We therefore set out to study the variability in baseline circuit dynamics in the 346192

pyloric circuits recorded from under baseline conditions in this dataset.193

The burst period of the pyloric circuit in the lobster can vary 2-3 fold under baseline conditions194

at 11°C across animals (Bucher et al., 2005). Despite this sizable variation, other burst metrics,195

such as the phase onset of follower neurons, or the duty cycles of individual neurons, are tightly196

constrained (Bucher et al., 2005), likely related to the fact that these circuits are under activity-197

dependent feedback regulation (Turrigiano et al., 1995; O’Leary et al., 2014; Gorur-Shandilya et al.,198

2020) as they develop and grow. Activity-dependent regulation of diverse pyloric circuits could199

constrain variability in a single circuit across time to be smaller than variability across the population.200

To test this hypothesis, we measured a number of burst metrics such as burst period and the201

phases and duty cycles of the two neurons across these 346 preparations in baseline conditions202

(Figure 4) when data are labelled regular, because metrics are well-defined in this state. Mean203

values of each of these metrics were unimodally distributed (Figure 4a) and the coefficient of204

variation for all metrics was approximately 0.1 (Figure 4b). Using the mean coefficient of variation205

in each individual as a proxy for the within-animal variability, and the coefficient of variation of the206

individual means as a proxy for the across-animal variability, we found that every metric measured207

was more variable across animals than within animals (Figure 4c). Shuffling experimental labels208

generated null distributions for excess variability across animals, and showed that across animal209

variability was significantly greater than within animal variability (Figure 4d, p < .007, permutation210

test, Table 1).211

It is reasonable to suppose that all baseline data exist in the regular cluster. While most baseline212

data are confined to the regular cluster (≈80%, Figure 4–Figure Supplement 1a), the remaining213
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data, nominally recorded under baseline conditions, contains atypical circuit dynamics (Figure 4–214

Figure Supplement 1b-c). What causes these atypical circuit dynamics in this large, unbiased survey215

of baseline pyloric activity? One possibility could be inadvertent damage to the preparation caused216

by dissection and preparation of the circuit for recording. Consistent with this, we found that the217

probability of observing regular states was significantly reduced when cells were recorded from218

intracellularly (Figure 4–Figure Supplement 2), which may be due to increase in leak currents due219

to impaling cells with sharp electrodes (Cymbalyuk et al., 2002), or due to cell dialysis (Hooper220

et al., 2015). No significant correlation was observed between sea surface temperatures (a proxy221

for environmental conditions for these wild-caught animals) and burst metrics (Figure 4–Figure222

Supplement 4a-c) or the probability of observing a regular state (Figure 4–Figure Supplement 4d).223

Taken together, these results underscore the importance of verifying that baseline or control data224

does not include uncontrolled technical variability that could mask biological effects of interest.225

Figure 4. Variability of burst metrics under baseline conditions. (a) Variability of burst metrics in PD and
LP neurons across a population of wild caught animals. Metrics are only computed under baseline conditions

and in the regular cluster. (b) Distribution of coefficient of variation (CV) of metrics in each animal across all
data from that animal. In (a-b), each dot is from a single animal, and distributions show variability across the

entire population. (c) Across-animal variability (CV of individual means,△) is greater than within-animal
variation (mean of CV in each animal, ○) for every metric. (d) Difference between across animal variability and
within animal variability (colored dots). For each metric, gray dots and distribution show differences between

across-animal and within-animal variability for shuffled data. n = 18336 points from N = 346 animals.

Figure 4–Figure supplement 1. State distribution under baseline conditions
Figure 4–Figure supplement 2. Recording condition alters regular state probability

Figure 4–Figure supplement 3. Effect of sea surface temperature on baseline circuit dynamics
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Figure 5. Effect of three different environmental perturbations. (a) Map showing regions that are more
likely to contain data recorded under extreme environmental perturbations. (b) Mean distance travelled in map

during pH and temperature perturbations. Solid lines indicate mean and shading is the standard deviation

across all preparations. Vertical dashed lines indicate baseline conditions. (c) Treemaps showing probability

distributions of states under baseline and perturbed conditions. (d) Probability distribution of states preceding

silent state under perturbation. pH perturbations: n = 4023 from 6 animals. [K+] perturbations: n = 5526 from
20 animals. Temperature perturbations: n = 80470 from 414 animals.
Figure 5–Figure supplement 1. Preparation-by-preparation response to pH perturbations.
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Table 1. ANOVA results and power analysis for Figure 4
Metric Across animal MS Within animal MS F N.99

LP delay off (s) 1.1391 0.010 956 103.97 6

LP delay on (s) 0.616 47 0.0111 55.54 6

LP durations (s) 0.363 86 0.012 366 29.424 4

LP duty cycle 0.159 86 0.001 309 3 122.09 10

LP phase off 0.234 06 0.007 227 9 32.383 11

LP phase on 0.216 55 0.008 811 5 24.576 9

PD burst period (s) 3.557 0.036 872 96.469 4

PD durations (s) 0.079 397 0.000 549 44 144.5 6

PD duty cycle 0.053 472 0.000 413 23 129.4 16

Table 1–source data 1. ANOVA results for burst metrics in baseline conditions. For each metric, each animal
is treated as a group and the variability (mean square difference) is compared within and across group. F is

the ratio of across-animal to within-animal mean square differences. N.99 is the estimate of the sample size

required to reject the null hypothesis with a probability of .99 when the alternative hypothesis is true. N = 346

animals.

Perturbation modality alters state probability226

The pyloric circuit and other circuits in the crab must exhibit robustness to the environmental227

perturbations that these animals are likely to encounter. Previous studies have characterized the228

ability of crustacean circuits to be robust to environmental perturbations such as pH (Haley et al.,229

2018; Ratliff et al., 2021; Qadri et al., 2007), temperature (Tang et al., 2010, 2012; Rinberg et al.,230

2013; Haddad and Marder, 2018; Kushinsky et al., 2019), oxygen levels (Clemens et al., 2001) and231

changes in extracellular ionic concentrations (He et al., 2020). Robustness to these perturbations232

exists up to a limit, likely reflecting the bounds of the natural variation in these quantities that these233

circuits are evolved to function in. When challenged with extremes of any of these perturbation234

modalities, the pyloric rhythm breaks down, displaying irregular or aberrant states, and may even235

cease spiking entirely.236

What remains unclear is if extreme perturbations of different modalities share common path-237

ways of destabilizing and disrupting the pyloric rhythm (Ratliff et al., 2021). In principle, these238

environmental perturbations can disrupt neuron and circuit function in qualitatively different ways:239

e.g., changes in extracellular potassium concentration can alter the reversal potential of potassium240

(He et al., 2020) vs. changes in temperature can have varied effects on the timescales and conduc-241

tances of all ion channels (Tang et al., 2010; Caplan et al., 2014). Because prior work was focussed242

on studying the limits of robustness, and lacked a detailed quantitative description of irregular243

behavior, the fine structure of the transition between functional dynamics and silent or "crashed"244

states remain poorly characterized (Ratliff et al., 2021). We therefore set out to measure how pH,245

temperature and extracellular potassium perturbations alter circuit state probability.246

Where in the map are data under extreme environmental perturbations? Circuit spike patterns247

under high pH (>9.5), high temperature (>25°C) and high extracellular potassium (2.5 × [K+]) are248

distributed across a wide region of the map, spanning both regions in the regular cluster and249

other non-regular clusters (Figure 5a). Spike patterns observed under high temperature conditions250

in the regular region were clustered in the lower extremity, in the region containing high firing251

rates and small burst periods of PD (Figure 2–Figure Supplement 1), consistent with earlier studies252

showing that elevated temperatures tend to speed up the pyloric rhythm (Tang et al., 2010, 2012).253

To characterize how environmental perturbations destabilize the pyloric rhythm and increase the254

variability in observed dynamics, we measured the mean distance travelled in the map by each255

preparation as a function of the perturbation intensity (Figure 5b). For both pH and temperature256

perturbations, the mean distance travelled in the map was lowest at baseline conditions (pH257
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7.8, 11°C) and increased away from these conditions, suggesting that changes in either of these258

environmental parameters increased the variability in observed pyloric dynamics (� = .95 for pH>7.8,259

� = −.36 for pH<7.8, � = .81 for T>11°C, p < .001, Spearman rank correlation test).260

Subjecting the pyloric circuit to extremes of pH, temperature and extracellular potassium altered261

the distribution of observed states (Figure 5c). In all cases, the probability of observing regular262

was significantly reduced (p < .001, paired permutation test), and a variety of non-regular states263

were observed. We observed that high pH (>9.5) did not silence the preparation, but silent states264

were observed in low pH (<6.5), consistent with previously published manual annotation of this265

data (Haley et al., 2018). Silent states were also observed in 2.5 × [K+], as reported earlier by He266

et al. (2020). Previous work has shown that the isolated pacemaker kernel (AB and PD neurons)267

has a stereotyped trajectory from bursting through tonic spiking to silence when subjected to268

temperature and high [K+] perturbations (Ratliff et al., 2021). Do pathways to silent states share269

similarities across perturbation modality in intact circuits? To answer this, we plotted the probability270

of observing states conditioned on the transition to silence in low pH, high temperature, and271

2.5 × [K+] (Figure 5d). In the ≈ 2000 transitions between states detected, we never observed a272

transition from regular to silent, suggesting that the timescales of silencing are slow, longer273

than the width of one data bin (20s). Trajectories to silent states always transition through a few274

intermediate states such as sparse-irregular, LP-silent or PD-silent (Figure 5d).275

Transitions between states during environmental perturbations276

Changes in temperature, pH and [K+] have different effects on the cells in the pyloric circuit and277

therefore can destabilize the rhythm in different ways. Increasing the extracellular [K+] changes278

the reversal potential of K+ ions, altering the currents flowing through potassium channels, and279

typically depolarizes the neuron (He et al., 2020). Ion channels can be differentially sensitive to280

changes in temperature or pH, and changes in these variables can have complex effects of ionic281

currents in neurons (Tang et al., 2010, 2012; Haley et al., 2018). We therefore asked if different282

environmental perturbations changed the way in which regular rhythms destabilized.283

Our analysis mapped a time series of spiketimes from PD and LP neurons to a categorical time284

series of labels such as regular. We therefore could measure the transitions between states during285

different environmental perturbations (Methods and Materials). We found that transition matrices286

between states shared commonalities across environmental perturbations (Figure 6a), such as likely287

transitions between regular and LP-weak-skipped states. PD-silent-LP-bursting states tended288

to be followed by PD-silent states, in which the LP neuron is spiking, but not bursting regularly.289

The LP neuron becomes less regular in both transitions, contributing to the loss of regular rhythms.290

We never observed a transition from regular rhythms LP-silent or PD-silent states, suggesting291

slow (>20s) timescales of rhythm collapse. In high pH, every transition away from the regular state292

was to the LP-weak-skipped state, hinting at increased sensitivity of the LP neuron to high pH. High293

pH perturbations also never silenced the circuit, as previously reported (Haley et al., 2018), and294

showed fewer and less varied transitions than other perturbations. Are some transitions over-295

or under-represented in the transition matrix? To determine this, we constructed a null model296

where transitions occurred with probabilities that scaled with the marginal probability of final states297

(Methods and Materials). Transitions that occurred significantly more often than predicted by the298

null model are shown with black borders and those that occurred significantly less often than299

predicted are shown with filled circles (Figure 6a). Transitions that never occurred, but occurred at300

significantly non-zero rates in the null model are indicated with diamonds.301

Earlier work has shown that transitions from regular bursting are preceded by an increase in302

variability in the voltage dynamics of bursting in PD neurons pharmacologically isolated from most303

of the pyloric circuit (Ratliff et al., 2021). Can we detect similar signatures of destabilization before304

transitions from regular states in the intact circuit? We measures the coefficient of variation (CV)305

of the burst periods of PD and LP neurons in regular states just before transitions away from306

regular Figure 6b). Because we restricted our measurement of variability to regular states, we307
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Figure 6. Effect of environmental perturbations on transitions between states. (a) Transition matrix
between states during environmental perturbations. Each matrix shows the conditional probability of observing

the final state in the next time step given an observation of the initial state. Probabilities in each row sum to 1.

Size of disc scales with probability. Discs with dark borders are transitions that are significantly more likely than

the null model (Methods and Materials). Dark solid discs are transitions with non-zero probability that are

significantly less likely than in the null model. ◊ are transitions that are never observed, and are significantly
less likely than in the null model. States are ordered from regular to silent. (b) Coefficient of variation (CV) of
burst period of PD (purple) and LP (red) vs. time before transition away from the regular state. �, p are from
Spearman test to check if variability increases significantly before transition. Temperature perturbations:

n = 1035 transitions in 61 animals. pH perturbations: n = 90 transitions in 6 animals. [K+] perturbations: n = 271
transitions in 20 animals.
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could disambiguate true cycle-to-cycle jitter in the timing of bursts from the apparent variability308

in cycle period due to alternations between bursting and non-bursting dynamics. We found that309

transitions away from regular were correlated with a steady and almost monotonic increase in310

variability in PD and LP burst periods for low pH and high [K+] perturbations, but not for high pH311

and high temperature perturbations (Spearman rank correlation test). This suggests mechanistically312

different underpinnings to the pathways of destabilization between these sets of perturbations, and313

is consistent with previous work showing that robustness to perturbations in pH only moderately314

affects temperature robustness in the same neuron (Ratliff et al., 2021).315

Decentralization elicits variable circuit dynamics316

The pyloric circuit is modulated by a large and chemically diverse family of neuromodulators that317

it receives via the stomatogastric (stn) nerve (Marder, 2012). Decentralization, or the removal of318

this neuromodulatory input via transection and/or chemical block of the stn, has been shown319

to affect the pyloric rhythm in a number of ways (Russell, 1976). Decentralization can stop the320

rhythm temporarily, which can recover after a few days (Golowasch et al., 1999; Thoby-Brisson321

and Simmers, 1998). Decentralization slows down the pyloric rhythm (Eisen and Marder, 1982;322

Rosenbaum and Marder, 2018), and makes the rhythm more variable (Hamood and Marder, 2015;323

Hamood et al., 2015). Decentralization can evoke variable circuit dynamics, sometimes with slow324

timescales (Figure 7–Figure Supplement 1), and can lead to changes in ion channel expression325

(Mizrahi et al., 2001).326

The variability in circuit dynamics elicited by decentralization, and the animal-to-animal variability327

in response to decentralization has made a quantitative analysis of the effects of decentralization328

difficult. We therefore set about to characterize the variable and invariant features of the changes329

in circuit spiking dynamics on removal of descending neuromodulation across a large (N = 141)330

population.331

We first asked where in the map decentralized data were (Figure 7a). A large fraction (≈ 30%)332

of the data was found outside the regular cluster, suggesting the existence of atypical circuit333

dynamics on decentralization. To determine if decentralization dispersed data in the map, and334

made circuit dynamics more variable across time, we measured the mean distance travelled by each335

preparation before and after decentralization (Figure 7b, Methods and Materials). Decentralization336

significantly increased the distance covered by each preparation across the map (p < .0001, paired337

permutation test), suggesting that circuits displayed more variable dynamics on decentralization.338

Decentralization also changed probabilities of observing many states. The regular state was339

significantly less likely on decentralization, and several atypical states were significantly more likely340

(Figure 7c,d, Table 2, Figure 7–Figure Supplement 2).341

How do preparations switch between different states when decentralized? The transition matrix342

during decentralization revealed many transitions between diverse states (Figure 7e), with the most343

likely transitions being significantly over-represented compared to the null model (p < .05, Methods344

and Materials). Transitions away from regular included significantly more likely transitions into345

states where one of the neurons was irregular such as LP-weak-skipped and PD-weak-skipped.346

Similar to rhythm destabilization in high [K+] or low pH, transitions away from regular were347

associated with a near-monotonic increase in the variability of PD and LP burst periods before the348

transitions (Figure 7f, � ≈ .8, p < .006, Spearman rank correlation test).349

The time series of identified states on a preparation-by-preparation basis showed striking350

variability in the responses to decentralization (Figure 7–Figure Supplement 3a), with the proba-351

bility of observing regular states decreasing immediately after decentral8ization (Figure 7–Figure352

Supplement 3b). What causes the observed animal-to-animal variability in circuit dynamics on353

decentralization? One possibility is that seasonal changes in environmental conditions alter the354

sensitivity of the pyloric circuit to neuromodulation. We tested this hypothesis by measuring the355

correlation between measures such as the probability of observing the regular state, the change in356

burst period, and the change in firing rate on decentralization and the sea surface temperature at357
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the approximate location of these wild caught animals (Figure 7–Figure Supplement 4). None of358

these measures was significantly correlated with sea surface temperature (p > .07, Spearman rank359

correlation test).360

Figure 7. Effect of decentralization. (a) Map occupancy conditional on decentralization. Shading shows all
data, bright colored dots indicate data when preparations are decentralized. (b) Distance travelled in map

before and after decentralization. Each dot is a single preparation. Gray shading indicates null distribution and

solid line is the mean difference upon decentralization. (c) State probabilities before and after decentralization.

(d) Fold change in state probabilities on decentralization. States marked n.s. are not significantly more or less

likely after decentralization. All other states are (paired permutation test, p < 0.00016). (a-b) n = 10602 points
from N = 141 animals. (e) Transition matrix during decentralization. Probabilities in each row sum to 1. Size of
disc scales with probability. Discs with dark borders are transitions that are significantly more likely than the

null model (Methods and Materials). Dark solid discs are transitions with non-zero probability that are

significantly less likely than in the null model. ◊ are transitions that are never observed, and are significantly
less likely than in the null model. States are ordered from regular to silent. n = 1933 transitions. (f) Coefficient
of variation of PD (purple) and LP (red) burst periods before transition away from regular states. �, p from
Spearman test. n = 1332 points from N = 79 animals.

Figure 7–Figure supplement 1. Decentralization evokes variable dynamics
Figure 7–Figure supplement 2. Effects of decentralization on state probabilities
Figure 7–Figure supplement 3. Time course of effects of decentralization
Figure 7–Figure supplement 4. Effects of decentralization do not correlate with seasonal effects
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Table 2. State counts before and after decentralization for data shown in Figure 7
State ncontrol ndec. p ΔP (state)

regular 7967 5791 <0.001 −0.308 77
LP-silent 22 724 <0.001 0.030 65

LP-silent-PD-bursting 14 577 <0.001 0.045 926
PD-silent 11 140 4 × 10−5 0.018 51

PD-silent-LP-bursting 20 18 0.469 59 0.000 188 91
aberrant-spikes 111 168 0.300 37 0.003 285 3
LP-weak-skipped 317 1628 <0.001 0.099 875
PD-weak-skipped 142 118 0.292 19 0.003 453 8
sparse-irregular 4 154 <0.001 0.013 263

irregular 13 116 0.000 23 0.010 877
silent 0 321 <0.001 0.024 825

irregular-bursting 72 753 <0.001 0.057 913

Table 2–source data 1. State counts before and after decentralization. p-value of change in probability of
observing change estimated from paired permutation tests.

Stereotyped effects of decentralization on burst metrics361

Despite the animal-to-animal variation in responses to decentralization, are there stereotyped362

responses to decentralization? Previous work has shown that decentralization typically slows363

down the pyloric rhythm (Eisen and Marder, 1982; Rosenbaum and Marder, 2018), but a finer-364

grained analysis of rhythm metrics were confounded by the irregular dynamics that can arise365

when preparations are decentralized. For example, alteration between regular and atypical states366

could bias estimates of burst metrics that are not defined in atypical states. Because our analysis367

allows us to identify the subset of data where pyloric circuit dynamics are regular enough that368

burst metrics are well-defined, we measured the changes in a number of burst metrics like the369

burst period, duty cycle and phases on decentralization (Figure 8a). Every metric measured was370

significantly changed except the phase at which LP bursts start (p < 0.007, paired permutation test).371

Consistent with earlier studies, we found that the coefficient of variation in every metric increased372

following decentralization (Figure 8b).373

What are the dynamics of changes in burst metrics on decentralization? Firing rates of both LP374

and PD neurons decreased immediately on decentralization, roughly halving their pre-decentralized375

values (Figure 8c). This occurred together with a doubling of PD burst periods (Figure 8d), suggesting376

that the entire rhythm is slowing down. Intriguingly, decentralization led to significant advance in377

the phase of LP burst ends, but not starts (Figure 8e), leading to a large decrease in the duty cycle of378

the LP neuron (Figure 8f) that was significantly more than the decrease in PD’s duty cycle (p < 10−8 ,379

paired t-test).380

The stereotyped slowing of the rhythm on decentralization can also be quantified by looking381

at the distribution of the data in the regular cluster before and after decentralization (Figure 8–382

Figure Supplement 1). Data are concentrated in the upper left edge of the regular cluster when383

decentralized, where burst periods are large and firing rates low (Figure 2–Figure Supplement 1a,c),384

suggesting that decentralization could elicit a more stereotyped rhythm for circuits that continue385

to burst regularly, because circuits that do so tend to share a common, slow bursting dynamics.386

Counter-intuitively, it may appear that regular rhythms in baseline conditions are more variable387

than regular rhythms after decentralization. To test this hypothesis we measured the dispersion388

of each preparation in the map (Figure 8–Figure Supplement 1b) before and after decentralization.389

Dynamics before decentralization were significantly more dispersed in the regular cluster than390

dynamics after decentralization (Figure 8–Figure Supplement 1c, p = .0016, paired t-test), because391

they then tended to be concentrated in the upper-left edge of that cluster. To first approximation,392
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Figure 8. Effects of decentralization on burst metrics. (a) Change in mean burst metrics on decentralization.
(b) Change in coefficient of variation of burst metrics on decentralization. In (a) and (b), each dot is a single

preparation; * indicate distributions whose mean is significantly different from zero (p < .007, paired
permutation test). Firing rates (c), burst period (d), LP phases (e) and duty cycles (f) vs. time since

decentralization. In panels (c-f), thick lines indicate population means, and shading indicates the standard error

of the mean. n = 13898 points from N = 141 preparations.

Figure 8–Figure supplement 1. Effects of decentralization on regular rhythms

our analysis shows that there aremany ways tomanifest a regular rhythm under baseline conditions,393

but regular rhythms on decentralization are typically slow, and stereotyped in comparison.394

Neuromodulators differentially affect state probabilities395

The crustacean stomatogastric ganglion is modulated by more than 30 substances (Harris-Warrick396

and Marder, 1991; Marder, 2012) that tune neuronal properties on an intermediate time scale,397

between feedback homeostasis and intrinsic cellular properties (Daur et al., 2016). Earlier work has398

focussed on understanding the effect modulators have on restoring (or destabilizing) the canonical399

rhythm, in part because the restoration of regular oscillatory dynamics is a dominant feature of400

neuromodulator action. Other effects that neuromodulators might have on pyloric circuit dynamics401

are harder to investigate, and are hindered by the difficulty in characterizing circuit dynamics when402

non-regular. Here we set out to systematically characterize the effects of neuromodulators on403

dynamical states identified in the full space of circuit behaviors (Figure 3).404

We focussed our analysis on the effect of four neuromodulators: Red pigment-concentrating405

hormone (RPCH), proctolin, oxotremorine, and serotonin. In the experiments analyzed, these406
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Figure 9. Effect of bath applied modulators. (a) State distribution in decentralized preparations. (b) State
distribution on bath application of neuromodulators. Change percentages show difference in probability of

regular state from decentralized to addition of neuromodulator. (c) Probability distribution of states
conditional on transition to (for RPCH, proctolin and oxotremorine) or from (for serotonin) the regular state. (d)
Coefficient of variation (CV) of burst periods of PD (purple) and LP (red) neurons vs. time before a transition

away from regular states. �, p from Spearman test. n is the number of data points, N is the number of animals.

Figure 9–Figure supplement 1. Raw traces during proctolin application
Figure 9–Figure supplement 2. Neuromodulators affect map occupancy
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neuromodulators were added to decentralized preparations so that endogenous effects of these407

(and other) neuromodulators were minimized. We therefore first characterized the distribution of408

states in decentralized preparations where neuromodulators were subsequently added (Figure 9a).409

RPCH is a neuropeptide that targets a number of cells in the circuit (Nusbaum and Marder,410

1988; Swensen and Marder, 2001), and has been shown to increase the number of spikes per burst411

in PD and LP, (Dickinson et al., 2001; Thirumalai and Marder, 2002) though it has little effect on412

the pyloric period (Thirumalai et al., 2006). RPCH increased the probability of the regular state,413

suggesting stabilization of the triphasic rhythm, and decreased the probability of most other atypical414

states (Figure 9b, Table 3, p < .004, paired permutation test). Consistent with earlier studies that415

reported that RPCH can activate rhythms in silent preparations (Nusbaum and Marder, 1988), the416

probability of observing the silent state was driven to 0 in the presence of RPCH , together with417

other atypical states such as LP-silent and LP-silent-PD-bursting (Figure 9b).418

Proctolin also targets a number of cells in the circuit (Swensen and Marder, 2001) and strength-419

ens the pyloric rhythm through variousmechanisms: by increasing the amplitude of slow oscillations420

in AB and LP (Hooper and Marder, 1987; Nusbaum and Marder, 1989), depolarizing the LP neuron421

(Golowasch and Marder, 1992; Turrigiano and Marder, 1993), and increasing the number of spikes422

per burst in LP and PD (Hooper and Marder, 1987;Marder et al., 1986; Hooper and Marder, 1984).423

Oxotremorine, a muscarinic agonist, has also been shown to enhance the robustness of the pyloric424

rhythm (Bal et al., 1994; Haddad and Marder, 2018; Rosenbaum and Marder, 2018). Similar to425

RPCH, both proctolin and oxotremorine significantly increase the probability of seeing the regular426

state (Figure 9b, Table 3, p < .004, paired permutation test), and the regular state is the only one427

significantly more likely when the neuromodulator is added. The strengthening effects of RPCH and428

oxotremorine are also manifested in the significantly lower probabilities of observing atypical and429

dysfunctional states such as silent, LP-silent, PD-silent, and sparse-irregular (Table 3).430

Serotonin can have variable effects on the pyloric circuit, varying from animal to animal, and431

can either speed up or slow down the rhythm (Beltz et al., 1984; Spitzer et al., 2008). In Panularis,432

serotonin depolarizes LP in culture, but hyperpolarizes LP in situ, unlike other neuromodulators433

which typically have the same effect in situ and in culture (Turrigiano and Marder, 1993). Consistent434

with earlier work in C. borealis showing that serotonin destabilizes the rhythm in decentralized435

preparations (Haddad and Marder, 2018), we found that the probability of seeing regular states436

was significantly lower on addition of serotonin (Figure 9b, Table 3, p < .004, paired permuta-437

tion test), together with a significantly higher probability of seeing atypical dysfunctional states438

such as LP-silent, aberrant-spikes, PD-silent-LP-bursting and irregular, suggesting loss of439

coordination between the many neurons in the pyloric circuit with serotonin receptors (Clark, 2004).440

Do these modulators share common features in how they (de)stabilize the rhythm? We com-441

puted the probability distribution of states conditional on transitions to the regular state for RPCH,442

proctolin and oxotremorine, and conditional on transitions from the regular state for serotonin443

Figure 9c). For all four neuromodulators, the conditional state distribution was predominantly444

comprised of these three states: LP-weak-skipped, irregular-bursting and aberrant-spikes, sug-445

gesting that trajectories of recovery or destabilization of the regular rhythm share common features.446

Serotonin destabilizes the rhythm, decreasing the likelihood of observing regular states, similar to447

environmental perturbations (Figure 5) and decentralization (Figure 7).448

Different neuromodulators activate different forms of the rhythm (Marder and Weimann, 1992;449

Marder and Hooper, 1985;Marder, 2012), partly because different neuron types express different450

receptors to varying extents (Garcia et al., 2015). Moreover, similar rhythmic motor patterns451

can be produced by qualitatively different mechanisms, such as one that depends on voltage452

gated sodium channel activity, and one that can persist in their absence (Harris-Warrick and453

Flamm, 1987; Epstein and Marder, 1990; Rosenbaum and Marder, 2018). To determine if different454

neuromodulators elicit regular rhythms that occupy different parts of the map, we plotted the455

location of data elicited by various neuromodulators in the full map (Figure 9–Figure Supplement 2).456

regular data elicited by different neuromodulators tended to lie in clusters, whose distribution in457
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the map was significantly different between serotonin and CCAP, and proctolin and every other458

neuromodulator tested (p < .05, two-dimensional Kolmogorov Smirnoff test, using the method459

of Peacock (1983)). The differential clustering of regular states in the map with neuromodulator460

suggests that neuromodulators can elicit characteristic, distinct rhythms.461

Table 3. Probability distribution of states during modulator application, as shown in Figure 9
State Decentralized RPCH proctolin oxotremorine serotonin

regular 0.39 0.73 0.69 0.78 0.27
LP-silent 0.06 0 0.02 0 0.07

LP-silent-PD-bursting 0.09 0 0.07 0 0.1
PD-silent 0.07 0 0 0 0.04

PD-silent-LP-bursting 0.01 0 0 0 0.03
aberrant-spikes 0.01 0.04 0.01 0.01 0.03
LP-weak-skipped 0.14 0.11 0.07 0.17 0.19
PD-weak-skipped 0.02 0.05 0 0 0

sparse-irregular 0.03 0 0.01 0 0.02
irregular 0.02 0.02 0.01 0 0.07
silent 0.07 0 0 0 0.01

irregular-bursting 0.1 0.04 0.11 0.03 0.17

Neuromodulators differentially affect transition between states462

RPCH, proctolin and oxotremorine activate a common voltage dependent modulatory current, IMI463

(Swensen and Marder, 2001), but can differentially affect neurons in the STG because different cell464

types express receptors to these modulators to different degrees. For example, RPCH activates IMI465

strongly in LP neurons, but the effects of oxotremorine and proctolin are more broadly observed466

in the circuit (Swensen and Marder, 2000, 2001). Though these three modulators strengthen the467

rhythm, only rhythms elicited by oxotremorine and RPCH persist in tetrodotoxin, and proctolin468

rhythms do not, hinting that qualitatively different mechanisms underlie the generation of these469

seemingly similar rhythms (Rosenbaum and Marder, 2018). We therefore measured the transition470

rates between states during neuromodulator application to how similar or different trajectories471

towards recovery were.472

In RPCH, proctolin and oxotremorine application, ≈ 100 transitions were observed between473

states (Figure 10). Transitions could not always be predicted by a null model assuming that transi-474

tion probabilities scaled with the conditional probability of observing states after a transition. For475

example, some transitions, such as the transition from irregular to regular were never observed476

in RPCH, a significant deviation from the expected number of transitions given the likelihood of477

observing regular states after transitions (Methods and Materials). Others, such as the transi-478

tion LP-silent to LP-silent-PD-bursting in proctolin and oxotremorine, were observed at rates479

significantly higher than expected from the null model. Strikingly, no transition is significantly480

over- or under-represented except the transitions from regular to irregular-bursting and to481

LP-weak-skipped across all three stabilizing modulators. Transitions into regular state are dis-482

tributed across aberrant-spikes, LP-weak-skipped and irregular-bursting states for all three,483

but no invariant feature emerges in the rest of the transition matrix.484

Serotonin destabilizes the rhythm in decentralized preparations, and the transition matrix under485

serotonin reveals several features of the irregularity behavior observed under serotonin (Figure 10).486

A number of irregular and low-firing states states from silent to irregular never transition into487

the regular state, which is unlikely in the null model (p < .05, Methods and Materials). Transi-488

tions between pairs of states are symmetric and occur at rates significantly larger than in the null489
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Figure 10. Effect of RPCH, proctolin, oxotremorine and serotonin on transition probabilities. Each
matrix shows the conditional probability of observing the final state in the next time step given an observation

of the initial state during bath application of that neuromodulator. Probabilities in each row sum to 1. Size of

disc scales with probability. Discs with dark borders are transitions that are significantly more likely than the

null model (Methods and Materials). Dark solid discs are transitions with non-zero probability that are

significantly less likely than in the null model. ◊ are transitions that are never observed, and are significantly
less likely than in the null model. States are ordered from regular to silent. Bar graphics show the coefficient
of variability (CV) of PD and LP burst periods before transition away from regular states. �, p from Spearman
rank correlation test. RPCH: n = 148 transitions in N = 33 animals. Proctolin: n = 155 transitions in N = 59
animals. Oxotremorine: n = 102 transitions in N = 21 animals. Serotonin: n = 263 transitions in N = 23 animals.
Bar graphs show the coefficient of variability (CV) of burst periods of PD and LP vs time before a transition away

from regular states during serotonin application. �, p from Spearman rank correlation test.

model, such as between LP-silent and LP-silent-PD-bursting. Intriguingly, destabilizing transi-490

tions from regular to LP-weak-skipped, aberrant-spikes and irregular-bursting are observed491

at rates signficantly higher than in the null model. These three abnormal states are also observed492

immediately preceding regular states in RPCH, proctolin and oxotremorine (Figure 9c), suggest-493

ing that mechanisms for both stabilization and destabilization of the rhythm share stereotyped494

trajectories.495

Are transitions away from regular states also associated with increases in variability of burst496

periods? Similar to preparations in high [K+] and low pH, and when decentralized, transitions away497

from regular states in serotonin were associated with significantly rising variability in the burst498

periods of PD and LP neurons (Figure 10, p < .05, Spearman rank correlation test).499
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Discussion500

This study provides a concrete example of why it can be difficult to characterize experimental501

observations without the appropriate vocabulary to do so. Both highly stereotyped rhythms such502

as the pyloric oscillation, and highly irregular Poisson-like firing in large brain circuits are routinely503

described quantitatively using summary statistics. In the intermediate region between order and504

disorder, dynamics are harder to describe, and therefore frustrate efforts to systematically study505

circuits that generate them. We show that an unsupervised dimensionality reduction algorithm like506

t-SNE can create a useful representation of a dataset that is too large to visualize in its entirety using507

traditional methods. We incorporated domain-specific expert knowledge into this unsupervised508

approach by manually segmenting and labelling clusters in the embedding, identifying clusters of509

dynamics with biologically significant behavior. This dual approach conferred a two-fold advantage:510

both to more accurately measure traditional metrics such as burst metrics in regular states in large511

datasets (Figure 4, Figure 8), and to analyze irregular dynamics beyond the remit of conventional512

analysis methods (e.g., Figure 9). The map created in the present study (Figure 2) can be used as a513

blueprint to contextualize new experimental data from future experiments, which in turn can be514

added to the map to create a more complete picture of pyloric circuit dynamics.515

Robust identification of regular rhythms allows for detailed, interpretable analysis516

of rhythmmetrics517

Measuring the mean and variability of a regular oscillation in a neural circuit has several subtle518

challenges. Typically, variations in estimated metrics arising from cycle-to-cycle fluctuations are not519

distinguished from those arising from alteration between regions of regular bursting interrupted by520

regions of irregular spiking where these metrics are not defined. One way to disambiguate the two521

is to construct elaborate checks to make sure that the spike pattern being measured meets certain522

criteria. However, edge cases abound, and this is a challenging and poorly-motivated approach. One523

consequence of the embedding method we used is to reliably identify when rhythms were regular,524

and we found that burst metrics were well defined for this subset of data. We were therefore able525

to measure the mean and variability of various burst metrics (Figure 4), confident that we were526

measuring these metrics only in stretches of data where it made sense to do so. A byproduct of527

this restriction is that the variability in burst metrics measured this way stems almost entirely from528

cycle-to-cycle variations.529

Consistent with years of study (Bucher et al., 2005; Hamood and Marder, 2015; Hamood et al.,530

2015), our results (Figure 4) show explicitly that within-animal variability in pyloric burst metrics531

is less than across-animal variability. Our results are from a meta-analysis of data from several532

different experimenters from different laboratories, collected over a span of ten years. It is therefore533

an ideal dataset in which to measure variability. We find that the coefficient of variation of all burst534

metrics measured is ≈ 0.1 (Figure 4b), which is a proxy for how regular the pyloric oscillation can535

be under baseline conditions. Measuring burst metrics on decentralization (Figure 8) also allowed536

us to characterize how regular rhythms change, while still being recognizably regular. In addition537

to recapitulating well-understood phenomena such as the slowing down and increased variability538

in rhythms, we found that phase of LP burst starts did not significantly change, but phases of LP539

bursts stops did, suggesting that features of the rhythm are differentially robust to the removal of540

neuromodulation.541

Numerical methods to analyze neural circuit dynamics542

Advances in experimental techniques in neuroscience allow for recordings from larger number543

of neurons for longer periods. There have been contemporaneous advances in techniques to544

analyze this data. A first step in data analysis is often data visualization. Modern neural data can545

be large and high dimensional, and visualizing the entirety of a large data set can be a non-trivial546

task. Visualization and other forms of data analysis rely on dimensionality reduction (Nguyen and547

Holmes, 2019).548
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Here we used the t-SNE algorithm as a core method to reduce the dimensionality of the dataset549

and to visualize our data. t-SNE has been widely used in the unsupervised analysis of many types550

of biological data (Berman et al., 2014; Kollmorgen et al., 2020; Chen et al., 2020; Macosko et al.,551

2015; Kobak and Berens, 2019; Leelatian et al., 2020), including neural recordings (Dimitriadis552

et al., 2018). t-SNE minimizes the Kullback-Leibler divergence between a Gaussian distribution553

modeling pairwise distances between data points and a Student t-distribution modeling distances554

between the same points in a low (typically two) dimensional embedding (Van der Maaten and555

Hinton, 2008; Linderman and Steinerberger, 2019). This feature makes t-SNE an attractive tool to556

try to visualize data sets such as the data in this paper, because it can demonstrate how similar557

spike patterns are to each other.558

t-SNE has also been used to find clusters in data, since its original use in visualizing and559

clustering hand-written digits in the MNIST database (Van der Maaten and Hinton, 2008). t-SNE560

has been shown rigorously to be capable of recovering well-separated clusters (Linderman and561

Steinerberger, 2019). Neighborhood embedding techniques like t-SNE combine attractive forces562

between pairs of points with repulsive forces between all points. Stronger attraction can better563

represent smoothly varying manifold structures, while stronger repulsion can better represent564

discrete cluster structures (Böhm et al., 2020). In our application, t-SNE generated clusters where565

spike patterns could be described as qualitatively different. For example, spike patterns in top-most566

cluster (colored green in Figure 3) all had weak PD spiking, but regular and strong LP spiking. This567

was qualitatively different from the two closest clusters LP-weak-skipped and irregular. In regions568

of the map where clusters were not cleanly separated (for example, in the connection between the569

regular and irregular-bursting clusters), manual inspection revealed a number of intermediate570

states. The "clustered" or "not-clustered" regions of the map are therefore informative of the571

underlying distribution of spike patterns, and emerge robustly from the embedding.572

t-SNE-based methods are not the only way to analyze such data, and a variety of other methods573

have been developed recently. Multidimensional Scaling (MDS) (Cox and Cox, 2008) has been574

used to visualize collective coding for different task dimensions in a population of neurons in the575

amygdala in rats (Kyriazi et al., 2018). Convolutional non-negative matrix factorization (Mackevicius576

et al., 2019) has been used to find sequences in neural and behavioral data by building a parts-577

based representation of the data. Recent work (Williams et al., 2020) extends this method by578

including a point process model to model sparse spike sequences without binning time. Tensor579

Component Analysis (Williams et al., 2018) can generate three low-dimensional descriptions from580

neural data: separating out neuron-specific, trial-specific and temporal factors, making it valuable in581

multi-trial data. Dynamical Component Analysis is a linear method that attempts to find dynamics582

rather than explaining variance in the data (as in PCA) (Clark et al., 2019).583

Methods based on neural networks offer powerful tools to analyze unstructured neural data.584

Generally, one method to study how a high-dimensional neural system works is to model it with a585

recurrent neural net (RNN), and then to study the RNNmodel (Vyas et al., 2020). Autoencoders offer586

an interesting way of dimensionality reduction (or latent space analysis) because their architecture587

contains an information bottleneck (Rumelhart et al., 1985), and have long been a focus of unsu-588

pervised machine learning (Baldi, 2012). Topological autoencoders combine autoencoders with the589

concept of persistent homology, and use a topological loss term that minimizes differences between590

the topological signatures of the data and the representation in the lower dimensional space (Moor591

et al., 2019). These methods are similar in spirit to the analysis presented here, but use sophisti-592

cated neural nets whose parameters yield the lower-dimensional representation. Other end-to-end593

analysis methods include a method called SOM-VAE, which combine self-organizing maps (SOMs)594

and variational auto-encoders (VAEs)(Fortuin et al., 2018) to analyze high dimensional time series595

and find transitions between states, and deep temporal clustering, which combines dimensionality596

reduction and temporal clustering in a single unsupervised learning problem (Madiraju et al., 2018).597
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Applicability to bigger circuits and unidentified neurons598

In this study, we used spiking patterns of PD and LP cells as a proxy for the dynamics of the599

pyloric circuit. A better characterization of pyloric circuit dynamics would include AB, PY, VD and IC600

cells (Eisen and Marder, 1982; Marder and Bucher, 2007). The data analyzed in this study did not601

consistently have recordings that made it possible to reliably and consistently extract spike times of602

the VD and PY neurons. While most of the data included recordings from the lvn nerve, extracting603

PY spike times from the lvn was not feasible at scale. Spikes from PY are smaller than spikes from LP604

and PD on the lvn, and the duration of PY bursting may partially overlap with that of LP and PD. Even605

when data include recordings from the pyn, identifying PY spikes is not straightforward. There are606

several PY neurons, whose spikes may overlap to varying degrees to variability in the subpopulation607

of PY neurons that spike and the precise timing of action potential initiation. The shape of PY spikes608

can therefore be quite variable. In addition, spikes from the gastro-pyloric LPG neuron are often609

observed on the pyn (Figure 1b). Even intracellular recordings from PY neurons are not necessarily610

sufficient to accurately estimate PY spike times because intracellular recordings measure the activity611

of only the cell recorded from, and it is not uncommon to observe that the PY cell being recorded612

from generates fewer spikes than the other PY neurons as observed extracellularly, possibly due to613

leak currents introduced from sharp electrodes (Cymbalyuk et al., 2002).614

In this analysis, we chose to include features such as the "spike phase" (Figure 2b-c) because the615

neurons in this circuit are mutually coupled with inhibitory and electrical synapses and therefore616

strongly affect the activities of each other in the collective rhythm. An analysis of circuit dynamics617

from other neural networks that did not show such strong intrinsically phase-controlled behavior618

could use other features more suitable to those systems. The analysis method in this study is619

well-suited for large datasets of neural recordings from identified neurons. Data where the identity620

of each neuron is not uncontrolled, or cannot be known, such as large scale recordings from a brain,621

would require modifications to the analysis pipeline described in Figure 2. First, it would no longer622

be possible to construct a data vector of fixed length, because ordering of the different neurons623

would not be meaningful. Each data point would instead be an unordered set of spike times from624

each neuron, and a distance function that operated on spike times (Christen et al., 2006; Victor and625

Purpura, 1997; Schreiber et al., 2003; Rossum, 2001) could be used to generate a distance matrix626

between raw data points, which would be the input to the embedding algorithm.627

Ahead-of-time experimental design can maximize utility and interpretability of628

data629

This study used a large dataset collected by various experimenters, and included data originally630

collected for other studies (Tang et al., 2012, 2010; Haddad and Marder, 2018; Haley et al., 2018;631

Rosenbaum and Marder, 2018; Powell et al., 2021; He et al., 2020). As such, this post-hoc analysis632

is limited ultimately by the data: its quantity, the way it was collected, and the decisions made633

and tradeoffs chosen by the experimenter who collected it. A general lesson learned here is that634

close coordination between experimenters and theorists and data analysts can help maximize the635

utility of data collected. Because experiments are expensive to perform, in the time of researchers,636

reagents and experimental animals, seemingly inconsequential changes to the way data are col-637

lected can substantially increase the amount of usable data to a greater number of questions, some638

of which may not be well-formulated at the time of data collection.639

For example, studying the effects of perturbations to pyloric circuits forces experimenters to640

make choices about experimental protocol that have far-reaching consequences on the analysis and641

interpretation of data collected. If perturbations are severe enough to destabilize the pyloric rhythm,642

and even cause prolonged periods of silence, should an identical sequence of perturbations be643

used in every preparation if some preparations "crash" under relatively moderate perturbations and644

greater perturbations may risk irreversible changes? Is it more important to introduce perturbations645

that change at a certain, fixed rate, or should perturbation intensity be dialed up or down based on646

observed responses, to better characterize the full response range of the system being perturbed?647
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Experimental constraints and the priorities of specific studies have led to a patchwork of choices in648

the dataset used here, which means that it is not entirely straightforward to disentangle the effects649

of applied perturbations at a given time from the cumulative effects of the entire experimental650

protocol and stimulus history.651

Data acquisition systems allow experimenters to record from neurons at high temporal res-652

olution for long periods of time. Time-varying metadata, such as pH, temperature, [K+] or the653

concentration of added modulators are not always recorded concomitantly, because they can654

be difficult to measure. Temperature and pH probes, when used, can yield high-resolution and655

automatic logging of these quantities. Because decentralization involves a manual intervention656

such as cutting the stn or constructing and filling a well on the stn, and because the process takes657

time, the precise time of decentralization can be hard to record and estimate, leading to a fraction658

of preparations being decentralized before the nominal start of decentralization, with effects being659

evident as in the apparent increase in burst period shown in Figure 8d.660

Cryptic circuit variability can be revealed by diversity in crashes661

A large body of work has shown that there is more than one way to make a functional neural circuit662

(Prinz et al., 2003, 2004; Gutierrez et al., 2013). Several combinations of circuit parameters such as663

synapse strengths, ion channel conductances and network topology can be found in circuits that664

generate similar emergent collective dynamics (Gonçalves et al., 2020). In the pyloric circuit, the665

dimensionality of the space of neuron and circuit parameters is larger than the dimensionality of the666

rhythm: ≈ 50 parameters are required to specify ionic and synaptic conductances even in simplified667

models, but the rhythm under baseline conditions can be well described using a handful of metrics668

(Marder and Bucher, 2007). This disparity in dimensionality leads to an inherently many-to-one669

mapping from the space of circuit architecture to the space of circuit dynamics. Pyloric circuits at670

baseline can therefore exhibit "cryptic" architectural variability (Haddad and Marder, 2018), where671

the diversity of circuit topologies and neuron parameters underlying functional circuits is masked672

by the relatively low-dimensional nature of the observation of regular rhythms. Intriguingly, there673

was no seasonal effect on the variations in bursting under baseline conditions (Figure 4–Figure674

Supplement 4), or sensitivity to decentralization (Figure 7–Figure Supplement 4), suggesting that675

these dimensions of observed variability my arise from other factors such as circuit-to-circuit676

architectural differences.677

Perturbations can reveal differences between seemingly identical circuits because parameter678

differences that were inconsequential in the generation of baseline activity can now generate679

disparate dynamics. Perturbations such as current injections in a network of oscillators can shift680

phases, revealing connection weights between individual neurons (Timme, 2007). What do the681

perturbations used in this work do? Some perturbations like decentralization can have complex,682

time varying and variable effects, because neurons in the STG are multiply modulated (Marder,683

2012); this may lead to the complex and diverse responses seen on decentralization (Figure 7).684

Others like changing extracellular [K+] can have more focussed effects, which changes the reversal685

potential of K+ ions, altering currents through K+ permeable ion channels, and tends to depolarize686

neurons (He et al., 2020). The challenge in interpreting data from experiments with perturbations687

such as these is the dual complexity of the elicited circuit behavior and the functional effects of the688

perturbations. Future work with other, sparse perturbations can help determine if diverse dynamics689

observed in the present work are a consequence of the complex nature of the perturbations used.690

If there are many solutions to a designing a functional circuit, are some solutions more robust to691

all perturbations? Alternatively, is there a tradeoff for circuits between being robust to perturbation692

X and being robust to perturbation Y ? At the population level, some animals could possess pyloric693

circuits more robust to one perturbation, and the expense of greater sensitivity to another; and694

other animals could possess circuits that are more robust to other perturbations. Recent work695

studying a population of isolated pacemaker kernels of the pyloric circuit (AB and PD cells) found696

only moderate correlation between robustness to perturbations in pH and temperature (Ratliff697
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et al., 2021). Examples of population-level hedges against uncertain environmental perturbations698

include the diversity in chemotactic behavior in bacteria (Frankel et al., 2014). In modeling work with699

neurons, recent work has shown that homeostatic regulation rules that confer robustness to some700

perturbations can create sensitivity to other perturbations (O’Leary et al., 2014; Gorur-Shandilya701

et al., 2020).702

Linking behavior to mechanisms703

The present work offers a path towards analysis that can reveal cryptic variability and build mecha-704

nistic links from circuit architecture to function. By characterizing the totality of circuit dynamics705

under a variety of conditions, this study equips further work with the tools to fit biophysically706

detailed models of the pyloric circuit to diverse circuit dynamics under baseline conditions and707

perturbations. From the large diversity of neuron and circuit parameters that can reproduce a708

snapshot of activity, will only a subset of models recapitulate the diverse irregular behavior seen709

under extreme perturbations? Recent work that reproduced how circuits change cycle periods710

with temperature (Alonso and Marder, 2020) can be extended to find parameter sets that also711

generate the irregular states characterized in this study, at the rates observed in the data, and will712

help resolve this question. Future experimental work can pair data analysis methods such as this713

work with quantitative measurements of cellular and circuit parameters using emerging techniques714

(Schulz et al., 2006, 2007; Tobin et al., 2009) to find parameter values of cells that generate robust715

rhythms and irregular states.716

Diversity and stereotypy in trajectories from functional to crash states717

Are there preferred paths to go from regular rhythms to crash? Diversity in the solution space of718

functional circuits, and the varied effects of perturbations on these circuits, argue for an assortment719

of trajectories from function dynamics to irregular or silent states. While transition matrices720

measured during different perturbations were varied (Figure 6), we did observe universal features721

in transition matrices measured during environmental perturbations, decentralization, and addition722

of neuromodulators (Figure 6, Figure 7, Figure 10). The destabilizing transition from regular →723

LP-weak-skipped was over-represented in every transition matrix, suggesting that the weakening724

of the LP neuron is a crucial step in the trajectories towards destabilization, perhaps because there725

is only one copy of LP in the circuit. Earlier work studying trajectories of destabilization of regular726

bursting in the isolated pacemaker kernel also found a common trajectory of destabilization, from727

regular bursting to tonic spiking to silence (Ratliff et al., 2021). Transitions away from regular728

rhythms were also associated with increased variability in burst periods during all perturbations729

except high temperature and low pH (Figure 6, Figure 7, Figure 10). Earlier work on the isolated730

pacemaker kernel found similar increase in variability in PD voltage dynamics before transitions731

from regular bursting, similar to the increasing variability measured in the present study (Ratliff732

et al., 2021).733

The structure of the transitions between states also hints at features of the circuit that are critical734

for rhythm (de)stabilization. Unsurprisingly, PD-silent states precede silent states in low pH, high735

temperature and high [K+] perturbations (Figure 6). This makes sense because PD cells are electri-736

cally coupled to the endogenous burster AB in the pacemaker kernel, and silencing the pacemaker737

kernel can cause the circuit to go silent. Though the states are determined purely from clusters738

in the embedding (Figure 2), and thus from statistical features of spike times, some states may be739

identified predominantly with cell-specific features (e.g., LP-weak-skipped where the LP neuron740

fails to burst regularly, but the PD neurons do), or with circuit-level features (e.g., aberrant-spikes741

where one or both neurons fire spikes outside the main burst, which may be caused by incomplete742

inhibition from the reciprocal neuron). Decentralization elicits the largest number of transition743

types, with ≈ 80% of all transition types observed, which could be a consequence of the complex744

change in the neuromodulator milieu following transection of descending nerves.745
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Comparison with other categorization methods746

Earlier work categorized the varied dynamics of the pyloric circuit during perturbations (Haddad747

and Marder, 2018; Haley et al., 2018; Ratliff et al., 2021; Alonso and Marder, 2020). In that work,748

categories were typically constructed by hand and were not rigorously shown to be mutually exclu-749

sive. Categories in the present work, while being manually chosen, emerge from the distribution of750

the data in the map (Figure 3); and no segment of data can have more than one label, because it can751

exist only at a single point in the map. Earlier work categorized rhythms that were labelled regular752

into two categories, "normal triphasic" and "normal triphasic slow" (Haddad and Marder, 2018).753

While there is significant variation in the burst periods in the regular cluster, (Figure 2–Figure754

Supplement 1, Figure 4), we did not observe a distinctly bimodal distribution of burst periods,755

and therefore could not justify splitting regular into two. Earlier work also included a category756

called "gastric like rhythms", where LG or DG neurons were active, indicating the presence of the757

gastric mill (Weimann and Marder, 1994). Because the present work only considers spikes on PD758

or LP neurons, circuit dynamics with gastric activity are scattered across states, based on how the759

gastric activity affects PD and LP spikes. The "LP01" state identified in Haddad and Marder (2018)760

is equivalent to the LP-weak-skipped state; the present work also identified a PD-weak-skipped761

which was not identified in the earlier work, perhaps because it is ≈ 1∕7 as prevalent (Figure 3). The762

catch-all "atypical firing" state could be teased apart into a number of irregular states (irregular,763

irregular-bursting, sparse-irregular) that span several well-separated clusters in the map (Fig-764

ure 3). In summary, the present work recapitulates every label constructed to categorize spike765

patterns from PD and LP neurons in earlier work, and additionally finds new spike patterns that766

were either not detected or not identified as distinct.767

Our work provides a key tool to characterize non-regular spike patterns in small neural circuits768

and thus provides a bridge between experimental or simulation work grounded in the biophysical769

detail of ion channels and synaptic currents; and the rich body of observations of circuits under770

baseline and challenging conditions. The tools we have employed can easily be adapted to other771

circuits and systems, makes limited assumptions of the dynamics of the circuit, yet provides a robust772

framework on which to hang a large volume of previously ineffable expert domain knowledge.773

Methods and Materials774

Animals and experimental methods775

Adult male Jonah crabs (C. borealis) were obtained from Commercial Lobster (Boston, MA), Seabra’s776

Market (Newark, NJ) and Garden Farm Market (Newark, NJ). Dissections were carried out as previ-777

ously described (Gutierrez and Grashow, 2009). Decentralization was carried out either by cutting778

the stn, or by additionally constructing a well on the stn and adding sucrose and TTX as described in779

Haddad and Marder (2018). Temperature was controlled as described in Tang et al. (2012, 2010);780

Haddad and Marder (2018). Extracellular potassium concentrations were varied as described in He781

et al. (2020). pH perturbations are described in Haley et al. (2018).782

Spike identification and sorting783

Spikes are identified from extracellular recordings of motor nerves or from intracellular recordings.784

LP spikes were identified from intracellular recordings, lvn, lpn and gpn nerves (in descending order785

of likelihood). PD spikes were identified from pdn, intracellular recordings, and lvn. We used a786

custom-designed spike identification and sorting software (called "crabsort") that we have made787

freely available at https://github.com/sg-s/crabsort previously described in Powell et al. (2021).788

Spikes are identified using a fully connected neural network that learns spike shapes from small789

labelled data sets. A new network is typically initialized for every preparation. Predictions from790

the neural network also indicate the confidence of the network in these predictions, and uncertain791

predictions are inspected and labelled and the neural network learns from these using an active792

learning framework (Settles, 2009).793
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Data curation and data model794

Each file was split into 20-second non-overlapping bins and spike times, together with metadata,795

were assembled into a single immutable instance of a custom-built class (embedding.DataStore).796

The data store had the following attributes:797

• spike times containing LP and PD spike times.798

• ISIs containing inter-spike intervals and spike phases799

• labels categorical data containing manually generated labels from Figure 3800

• metadata such as concentration of modulators, pH, temperature, whether the preparation801

was decentralized or not, etc.802

Using an immutable data structure reduced risks of accidental data alteration during analysis.803

Every attribute was defined for every data point.804

Embedding805

ISI and phase representation (Figure 2b)806

Each data point is a 20-second bin containing spike times from LP and PD neurons (Figure 2a) . For807

each data point, spike times are converted into inter-spike intervals. A set of spike times uniquely808

identifies a set of (ordered) inter-spike intervals. The set of LP spike times generates a set of LP ISIs,809

and the set of PD spike times generates a set of PD ISIs (Figure 2b).810

For every spike in PD or LP, a "spike phase" can be calculated as follows. Spike phases are not811

defined when either LP or PD are silent in that data point, or for LP/PD spikes with no spikes from812

the other neuron before or after that spike. Thus the "spike phase" of the i-th spike on neuron X813

w.r.t neuron Y is given by:814

tXi − t
Y
i,−

tYi,+ − t
Y
i,−

∈ [0, 1]

where tXi is the time of the i-th spike on neuron X, t
Y
i,− is the time of the last spike on Y before815

tXi and t
Y
i,+ is the time of the first spike after t

X
i . Note that this definition can be generalized to N816

neurons, though the number of spike phases grows combinatorially with N .817

Construction of vectorized data frame (Figure 2c-d)818

Each data point can contain an arbitrary number of spikes, and thus an arbitrary number of ISIs819

and spike phases. Ideally, each data point is a data frame of fixed length (a point in some fixed820

high-dimensional space). To do so, we computed percentiles ISIs and spike phases (Figure 2c). We821

chose ten bins per ISI type (deciles). The end result is not strongly dependent on the number of bins822

chosen, as long as there are sufficiently many bins to capture the distinctly bimodal distribution in823

ISIs during bursting.824

We included three other features to help separate spike patterns that appeared qualitatively825

different. First, firing rates of LP and PD neurons. Second, the ratios of 2nd-order to 1st-order ISIs,826

defined as:827

max I (2)

max I (1)

where I (n) is the n-th order set of ISIs computed as time the time between n spikes. I (1) is the828

simple set of ISIs defined between subsequent spikes. This measure is included because it captures829

the difference between single spike bursts and normal bursts well.830

Finally, we also included a metric defined as follows:831

max dif f(s)
smax

where s is a vector of sorted ISIs and smax is the sorted ISI for which the difference between it and832

the previous sorted ISI is maximum. This metric was included as it captures to a first approximation833
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how "burst-like" a spike train is. Intuitively, this metric is high for spike trains with bimodal ISI834

distributions, as is the case during bursts.835

All these features were combined into a single data frame and z-scored (Figure 2d).836

In some cases, these features were not defined, e.g.: when there are no spikes on either neuron,837

the concepts of spike phases or ISIs are meaningless. In these cases, "filler" values were used that838

were located well off the extremes of the distribution of the metric when defined. For example, ISIs839

were filled with values of 20s (the size of the bin) when no spikes were observed. The overall results840

and shape of the embedding did not depend sensitively on the value of the filler values used.841

Embedding using t-SNE842

So far, we have described how we converted a 20-second snippet containing spike times from LP843

and PD into a data frame (a vector). We did this for every 20-second snippet in the dataset. Data844

that did not fit into any bin was discarded (for example, data at the trailing end of an experiment845

shorter than 20 seconds). Thus, our entire dataset is represented byM ×N matrix whereM is the846

number of features in the data frame and N is the number of data points.847

We used the t-SNE algorithm (Van der Maaten and Hinton, 2008) to visualize the vectorized data848

matrix in two dimensions. Our dataset contained ≈ 105 points, and was therefore too large for849

easy use of the original t-SNE algorithm. We used the FI-tSNE approximate algorithm (Linderman850

et al., 2019) to generate these embeddings. We used a perplexity of P = 100 to generate these851

embeddings. Varying perplexity caused the embedding to change in ways consistent with what852

is expected for t-SNE embeddings, and the coarse features of the embedding did not sensitively853

depend on this choice of perplexity (Figure 2–Figure Supplement 3).854

t-SNE is often used with random initialization, and different random initializations can lead855

to different embeddings with clusters located at different positions in the map. The importance856

of meaningful initializations has recently been highlighted (Kobak and Linderman, 2021), and we857

used a fixed initialization where the X-axis corresponded to the shortest ISI in each data point,858

and the Y-axis corresponded to the maximum ratio of 2nd-order to 1st order ISI ratios (described859

above). For completeness, we also generated embeddings using other initializations (Figure 3–860

Figure Supplement 2). For both random initializations (Figure 3–Figure Supplement 2a-d) and861

initializations based on ISIs (Figure 3–Figure Supplement 2e-f), we observed that regular states862

tended to occur in a single region, surrounded by clusters that were dominated by a single color863

corresponding to irregular states. Thus, the precise location of different clusters can vary with the864

initialization, but the overall structure of the embedding, and the identity of points that tend to865

co-occur in a cluster, does not vary substantially with initialization.866

Triangulation and triadic differences (Figure 2–Figure Supplement 2)867

The output of the embedding algorithm is a set of points in two dimensions. We built a Delaunay868

triangulation on these points. For each triangle in the triangulation, we computed the maximum869

difference between some burst metric (e.g., burst period of PD neurons) across the three vertices870

of that triangle. These triadic differences are represented colored dots, where the dots are located871

at the incenters of each triangle in the triangulation.872

Time series analysis873

Measuring transition matrices (Figure 6, Figure 7, Figure 10)874

The transition matrix is a square matrix of sizeN that describes the probability of transitioning from875

one to another of N possible states. The transition matrix we report is the right stochastic matrix,876

where rows sum to 1. Each element of the matrix Tij corresponds to the conditional probability that877

we observe state j given state i. To compute this, we iterate over the the sequence of states and878

compare the current state to the state in the next state. Breakpoints in the sequence are identified879

by discontinuities in the timestamps of that sequence and are ignored. We then zeroed the diagonal880

of the matrix and normalized each row by the sum.881
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Measuring variability before transitions away from regular states (Figure 6 ,Figure 7)882

We first identified continuous segments that corresponded to uninterrupted recordings from the883

same preparation at the appropriate condition. For each segment, we found all transitions away884

from the regular state. We therefore computed a vector, as long as the segment, containing the885

time to the next transition. We then collected points corresponding to time to next transition886

ranging from t = −200s to t = 0s. For each time bin, we measured the coefficient of variation of the887

burst period by dividing the standard deviation of the burst period in that datum by the mean in888

that datum.889

Data visualization890

Raincloud plots (Figure 4)891

Raincloud plots (Allen et al., 2019) are used to visualize a univariate distribution. Individual points892

are plotted as dots and a shaded region indicates the overall shape of the distribution. This shape893

is obtained by estimating a kernel smoothing function estimate over the data. Individual points are894

randomly jittered along the vertical axis for visibility.895

Occupancy maps (Figure 5, Figure 7)896

To visualize where in the map data from a certain condition occurred, the full embedding is first897

plotted with colors corresponding to the state each point belongs to. The full dataset is made semi-898

transparent and plotted with larger dots to emphasize the data of interest. Data in the condition899

of interest is then plotted as usual. Each bright point in these plots corresponds to a 20-second900

snippet of data in the condition indicated.901

Treemaps (Figure 7, Figure 9)902

Treemaps (Shneiderman and Wattenberg, 2001) were used to visualize state probabilities in a given903

experimental condition. For each preparation, the probability of each state was computed, and the904

mean probability of a given state was computed by averaging across all preparations. Thus, each905

preparation contributes equally. The area of the region in the treemap scales with the probability of906

that state.907

Transition matrices (Figure 6, Figure 7, Figure 10)908

Transition matrices were visualized as in Corver et al. (2021). Initial states are shown along the left909

edge and final states are shown along the bottom edge of each matrix. Lines are colored by origin910

(horizontal lines) or destination (vertical) states. The size of each disc at the intersection of each line911

scales with the conditional probability of moving from the initial state to the final state. Note that912

the size of all discs is offset by a constant to make small discs visible.913

Statistics914

Comparing within-group to across-group variability (Figure 4)915

To compare the variability of various burst metrics within each animal and across animals, we first916

measured the means and coefficients of variations (CV) of each burst metrics in every animal. We917

then used the mean of the coefficients of variations as a proxy for the within-animal variability, and918

used the coefficient of variation of the means as a proxy for the across-animal variability. Note that919

both measures are dimensionless. They can therefore be directly compared.920

To test if the within animal variability was significantly less than the across animal variability, we921

performed a permutation test. We shuffled the labels identifying the animal to which each data922

point belonged to and measured a new "within-animal" and "across-animal" variability measure923

using these shuffled labels. We repeated this process 1000 times to obtain a null distribution of924

differences between within- and across-animal variability. Identifying where in the null distribution925

the data occurred allowed us to estimate a p-value for the measured difference. For example, if the926

measured difference between within- and across-animal variability in metric X was greater than927
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99% of the null distribution obtained by shuffling labels, we conclude that the p-value is .01. The928

significance level of .05 was divided by the number of burst metrics we tested to determine if any929

one metric was significantly more or less variable across animals.930

Comparing map occupancy before and after decentralization (Figure 7b)931

To determine if data are more widely distributed in the map after decentralization, we computed932

the mean distances travelled in the map between subsequent time points for each preparation.933

Each preparation’s circuit dynamics is represented as a trajectory in this map. Distances in the map934

between subsequent points are measured and summed for each preparation.935

Each point in (Figure 7b) corresponds to a single preparation before and after decentralization.936

Data are therefore paired and we can generate a null distribution by randomly shuffling each pair.937

This null distribution is shown in the gray shading in (Figure 7b). The dashed line is the line of unity938

and indicates the middle of the null distribution. The measured difference between the distances939

travelled in the decentralized and intact cases is shown in the purple line. The p value can be940

estimated as the fraction of the null distribution greater in magnitude than the purple line.941

Measuring trends in variability in regular rhythms before transitions (Figure 6b ,Figure 7f,942

Figure 9d)943

To determine if variability significantly increased in the 200s preceding a transition away from944

regular, we measured the Spearman rank correlation between time before transition (x-axis) and945

mean variability. The Spearman rank correlation � is 1 if quantities monotonically increase.946

Measuring transition rate significance (Figure 6a ,Figure 7e, Figure 10)947

In the empirical transition matrices, certain transitions never occur, and certain transitions occur948

with relatively high probability. Each element of the transition matrix Tij corresponds to the949

conditional probability P (final|initial). Our null model assumes that transitions occur at random950

between states, and therefore the probability of observing any transition i → j scales with the951

marginal probability of observing state j after transitions. We therefore built a null distribution of952

transition rates by sampling with replacement from the marginal counts of states after transitions.953

The fraction of this null distribution that was above or below the empirical transition rate was954

interpreted to be the p-value and thus determined significance.955

Code availability956

The following table lists code used in this paper. Code can be downloaded by prefixing https:957

//github.com/ to the project name.958

Table 4. Code availability
project Notes

sg-s/crabsort interactive toolbox to sort spikes from extracellular data

sg-s/stg-embedding Contains all scripts used to generate every figure in this paper

KlugerLab/FIt-SNE Fast interpolation based t-SNE, used to make embedding

sg-s/SeaSurfaceTemperature wrapper to scrape NOAA databases
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Figure 2–Figure supplement 1. Burst metrics smoothly vary in map. In each panel, embedding
of the entire dataset is shown in gray. Points are colored by (a) burst period of the PD neuron (b)

phase of LP burst start in PD time (c) mean firing rate of PD neuron and (d) mean number of spikes

per burst in the LP neuron. In each panel, the color scale also shows the distribution of metric over

the entire data set (Y-axis in log scale). The distribution in (d) is spiky because the mean number of

spikes/burst tends to be integer valued.
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Figure 2–Figure supplement 2. Embedding arranges data so that neighbors tend to be simi-
lar. (a) Map shows embedding of all data in red shading. Shaded dots are incenters of a Delaunay
triangulation of the map, and shading indicates the maximum absolute value of difference between

burst period of the PD neuron in each cell in the triangulation. (b) Distribution of absolute triadic

differences over the entire dataset (gray), compared to triadic differences between shuffled triads

(green) and compared to triadic differences between the first two principal components. Triadic

differences are significantly smaller than in the shuffled data and in the principal components

(p < .001, K-S test). (c-d) Same as in (a-b), for the duty cycle of the PD neuron.
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Figure 2–Figure supplement 3. Effect of varying perplexity in t-SNE embedding. In each panel,
data are embedded using t-SNE using the indicated perplexity parameter. Initialization is the same

across all perplexities (Methods and Materials). In every panel, points are colored by their location

in the embedding with P = 100 (black box).
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Figure 3–Figure supplement 1. Speed of trajectories through map. (a) Map colored by speed
of trajectories through map at that point. Cooler colors indicate that preparations move through

that region of space more slowly and warmer colors suggest that preparations are more likely to be

far from that location in the next time step. (b) Speed grouped by manually identified labels.
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Figure 3–Figure supplement 2. Embeddings with different initializations. In each panel, the
embedding is performed with a different initialization. (a-d) Random initializations. (e) Initializations

based on minimum ISIs in PD and LP. (f) Initializations based on mean ISIs in PD and LP. In every

panel, points are colored identically.
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Figure 4–Figure supplement 1. State distribution under baseline conditions. (a) Map showing
occupancy of baseline data. Shading indicates all data. Bright colored points are data from baseline

conditions. (b) Treemap showing state probabilities under baseline conditions. (c) Preparation-by-

preparation variation in state distribution under baseline conditions. n = 22807 data snippets from
N = 346 individual preparations.
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Figure 4–Figure supplement 2. Recording condition alters regular state probability. (a) Cumu-
lative probability of the probability of observing a regular state, per animal. Cumulative probability
of probability of regular state for preparations with LP (b) and PD (c) recorded extracellularly
(black) vs. LP recorded intracellularly (red). (d-g) State probabilities in different recording conditions.

(h) Probability of observing states in which PD activity is reduced (PD-silent, PD-weak-skipped) in

preparations in which PD is recorded intracellularly (red) vs. preparations in which PD is recorded

extracellularly (black). (i) Same as (h), but for LP. In all panels, thick lines show CDFs and shading

indicates confidence intervals estimated by bootstrap. n = 22807, N = 346. p-values in each panel
are from two-sample Kolmogorov-Smirnoff tests.
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Figure 4–Figure supplement 3. Effect of sea surface temperature on baseline circuit dynam-
ics. (a) Sea surface temperature at the Boston Harbor vs. experimental date. Red line is a smoothing
fit. Mean burst period of PD neuron (b), mean duty cycle of PD (c), and probability of observing

the regular state (d) vs. sea surface temperature. In all panels, each dot corresponds to a single
preparation. N = 312 preparations. � is the Spearman correlation coefficient and p-value is from
the Spearman rank correlation test.
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Figure 5–Figure supplement 1. Preparation-by-preparation response to pH perturbations.
Each panel shows the response of a single preparation to pH perturbations. States are indicated in

colors. Each preparation was stepped through various pH levels before returning to baseline pH.

Note silent states (black) during acidic pH.
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Figure 7–Figure supplement 1. Decentralization evokes variable dynamics. In each panel,
inter-spike intervals (ISIs) of PD (blue) and LP are shown before and after (shaded) decentralization.

The diversity of circuit responses to decentralization include minimal change (a), transient perturba-

tion followed by recovery (b-d), silence in one or two neurons (e-h), slow oscillatory responses (l)

and a switch from bursting to spiking (m,n). Each panel corresponds to a different preparation.
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Figure 7–Figure supplement 2. Effects of decentralization on state probabilities. Each panel
shows the probability of observing a given state before (x-axis) and after (y-axis) decentralization.

Each dot is a single preparation. Probabilities computed on an animal-by-animal basis from

n = 16940 points from N = 140 preparations.
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Figure 7–Figure supplement 3. Time course of effects of decentralization. (a) Each line shows
the states exhibited by one circuit before and after (gray shaded region) decentralization. Dots

indicate states that were maintained only for one time bin (20s). (b) Stacked bars show probabilities

of displaying state vs. time. N = 93 animals.
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Figure 7–Figure supplement 4. Effects of decentralization do not correlate with seasonal
effects. Probability of observing the regular state during decentralization (a), change in time
period of PD neuron (b), and change in firing rate of PD (c) vs. sea surface temperature on day

experiment was carried out. � is the Spearman correlation coefficient, and p-values are computed
using the Spearman rank correlation test.
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Figure 8–Figure supplement 1. Effects of decentralization on regular rhythms. (a) Mean
locations of data in the regular cluster before and after decentralization. Each preparation is
represented by a pair of points, one circle and one cross. (b) Dispersion (Methods and Materials) of

data before and after decentralization. Each preparation is a single point. Note that the data appear

to be skewed to the right, indicating larger dispersion before decentralization. (c) Distribution of

differences in dispersion. The distribution of differences is not significantly skewed from a Gaussian

(p = .66, Anderson-Darling test), and dispersion in decentralized preparations is significantly lower
than in baseline (p = .0016, t = 3.246, paired t-test). n = 13758 points from N = 140 preparations.
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Figure 9–Figure supplement 1. Non-regular activity patterns in proctolin. Each panel shows a
20s snippet of raw recordings showing spikes from LP (red) and PD (blue). Each panel is from a

different animal. Each row is from a different experimenter. (a) Irregular bursting, note prolonged

spiking of LP on lvn. (b) LP completely silent, missing from lvn. (c) Intermittent LP interruptions,
note breaks in lvn. (d) Interruption in LP bursting. (e) Interruption in PD and LP bursting. (f) Irregular
bursting of both PD and LP. (g-h) Interruption of both PD and LP. Traces labelled PD or LP are

intracellular recordings.
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Figure 9–Figure supplement 2. Neuromodulators affect map occupancy. In each panel, all the
data are shown in light shading. Bright colors indicate distribution of data during bath application

of that neuromodulator. The number of animals in each panel is indicated in the title.
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