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ABSTRACT 21 
The heterogeneity of liver non-parenchymal cells (NPCs) is essential for liver structure 22 
and function. However, the current understanding of liver NPCs, especially in different 23 
liver diseases, remains incompletely elucidated. Here, a single-cell transcriptome atlas 24 
of 171,814 NPCs from healthy and 5 typical liver disease mouse models, including 25 
alcoholic liver disease, nonalcoholic steatohepatitis (NASH), drug-induced liver injury, 26 
cholestatic, and ischemia-reperfusion liver injury is constructed. The inter- and intra-27 
group heterogeneity of 12 types (and numerous subtypes) of NPCs involving 28 
endothelial cells, hepatic stellate cells (HSCs), neutrophils, T cells, and mononuclear 29 
phagocytes (MPs) are summarized. A protective subtype of neutrophils characterized 30 
by Chil3high is validated and found significantly increasing only in drug-induced and 31 
cholestatic liver injury models. Transcriptional regulatory network analysis reveals 32 
disease-specific transcriptional reprogramming. Metabolic activity analysis indicates 33 
that fibrosis is accompanied by increases in glycolysis and retinol metabolism in 34 
activated HSCs and MPs. Moreover, we found that cell-cell interactions between 35 
cholangiocytes and immune cells contribute more to cholestatic liver fibrosis compared 36 
with NASH, while HSCs are more important for NASH fibrosis. Our atlas, together 37 
with an interactive website provides a systematic view of highly heterogeneous NPCs 38 
and a valuable resource to better understand pathological mechanisms underlying liver 39 
diseases. 40 
 41 
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INTRODUCTION 44 
The liver is a complex ecosystem, composed of diverse types of cells, that plays vital 45 
metabolic and immunological functions (1). Despite considerable improvements over 46 
past decades, liver diseases remain a major public health challenge worldwide. 47 
Alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), drug-48 
induced liver injury (DILI), cholestatic liver injury, and liver ischemia-reperfusion (IR) 49 
injury caused by surgery together account for over 70% of the incidence of liver 50 
diseases, seriously affecting the quality of human life (2). A major obstacle for 51 
development of precision therapies for liver disease is our lack of systematical 52 
understanding of the ecosystem, especially in different liver diseases.  53 

Almost all types of liver disease are accompanied by an inflammatory response (3). 54 
Liver non-parenchymal cells (NPCs), including mononuclear phagocytes (MPs), 55 
endothelial cells (ECs), hepatic stellate cells (HSCs), cholangiocytes, and other 56 
infiltrated inflammatory cells (e.g. neutrophils), are essential for the liver structure, 57 
function, and response to inflammatory liver injury (4). MPs are composed of Kupffer 58 
cells (KCs), monocyte-derived macrophages (MoMFs), and dendritic cells (DCs) (4). 59 
KCs, resident macrophages, play a key role in liver inflammation. After activation, KCs 60 
adopt M1-like pro-inflammatory macrophage or M2-like anti-inflammatory 61 
macrophage functions in response to liver injury (3). Recruited MoMFs, which are 62 
divided according to pro-inflammatory (M1) and wound-healing (M2) phenotypes, also 63 
play a role in acute and chronic liver inflammation (3). Although KCs and MoMFs have 64 
similarities, they can be distinguished by numerous markers (3). Neutrophils also play 65 
essential roles in acute and chronic inflammation (5). These inflammatory cells also 66 
have interaction with HSCs through specific ligand-receptor pairs (6). Inflammatory 67 
activities of these inflammatory cells induce HSCs activation (from the resting 68 
phenotype to a myofibroblast-like phenotype), which is the major cause of liver fibrosis 69 
(7). Activated HSCs themselves promote further liver inflammation and fibrosis, which 70 
is characterized by increased cell proliferation, the secretion of pro-inflammatory 71 
cytokines, and an enhancement in the synthesis of extracellular matrix (ECM) (3). Thus, 72 
liver NPCs show considerable cellular diversity, and their crosstalk plays an important 73 
role in liver disease. Although it is well known that NPCs regulate various aspects of 74 
the occurrence and progression of liver disease, the cellular heterogeneity and dynamic 75 
regulation of NPCs needs to be studied at a single-cell resolution to better understand 76 
the pathological mechanism of liver disease. 77 

Single-cell RNA sequencing (scRNA-seq) provides a new perspective for 78 
understanding the physiological and pathological processes of multicellular organism 79 
(8). By defining the transcriptomic landscape of cells, scRNA-seq can reveal the role 80 
of intercellular communication in health and disease at an unprecedented resolution (4). 81 
Recently, a diverse range of studies involving scRNA-seq have revealed the 82 
heterogeneity of healthy human liver cells (9), explored the distinctive functional 83 
composition of infiltrating T cells in hepatocellular carcinoma (10), delineated the 84 
transcriptomic landscape and intercellular crosstalk in human intrahepatic 85 
cholangiocarcinoma (11), and revealed the heterogeneity of individual cell types and 86 
their crosstalk during fibrogenesis in both fibrotic mice and nonalcoholic steatohepatitis 87 
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(NASH) patients (12). However, a complete single-cell landscape of liver NPCs 88 
including health and multiple liver diseases has not been disclosed, and differences in 89 
NPCs among these different typical mouse models of liver disease need to be clarified. 90 

In this study, we used the 10x Genomics scRNA-seq platform to profile single cells 91 
from healthy mouse and diseased murine livers. The diseased livers were obtained from 92 
various mouse models of liver disease, including ALD, 45% high fat-93 
methionine/choline deficient (HF-MCD) diet-induced NASH, bile duct ligation (BDL)-94 
induced cholestatic liver injury, acetaminophen (APAP)-induced DILI, and liver IR 95 
injury. Using these data, we aimed to provide a comprehensive transcriptomic overview 96 
of NPCs from healthy and diseased murine livers, investigate the heterogeneity of liver 97 
NPCs, clarify the differences between the assessed disease models, and developed an 98 
interactive website (http://tcm.zju.edu.cn/mlna) to provide universal access to this data 99 
source. Together, our findings provide a valuable resource to better understand the 100 
pathological mechanisms underlying liver diseases and for clinical therapeutics. 101 
 102 
MATERIALS AND METHODS 103 
Animals 104 
Eight- to twelve-week-old male C57BL/6J mice were purchased from Charles River 105 
Laboratories (Beijing, China). Mice were maintained in specific pathogen-free facilities 106 
(12-hour light/dark cycle) with access to food and water ad libitum. All animal 107 
experiments were performed following procedures approved by the Animal Care and 108 
Use Committee of Zhejiang University. 109 
 110 
Animal models of liver disease 111 
Model Construction of ALD. The mouse model of ALD by chronic-plus-binge ethanol 112 
feeding was described previously (13). Briefly, mice initially received the control 113 
Lieber-DeCarli diet (Bio-Serv, Cat#F1259SP) for 5 days to accommodate to a liquid 114 
diet, which was followed by acclimation to the ethanol Lieber-DeCarli ethanol liquid 115 
diet (Bio-Serv, Cat#F1258SP) of 5% (v/v) ethanol for 2 weeks. On the final day of 116 
feeding, an additional gavage of ethanol (5 g kg-1, Aladdin Biochemical, Cat#E111993) 117 
was administered to mice in the early morning. After 9 hours of gavage, mice were 118 
anesthetized for subsequent experiments. 119 
 120 
Model Construction of NASH. The long-term feeding of choline deficiency combined 121 
with high-fat diet was developed to recapitulate key features of human NASH (14). To 122 
construct the NASH model, mice were feed on a MCD diet containing 45% kcal fat 123 
(Research Diets, Cat#A06071301B) for 8 weeks as previously described (15), which 124 
preferable maintained the increase of mice body weight. The normal chow diet fed mice 125 
were treated as control. 126 
 127 
Model Construction of Liver IR Injury. An established mouse model of 70% warm 128 
hepatic IR injury was used (16). Briefly, the hepatic artery and portal vein were isolated 129 
and clipped with a microvascular clamp, occluding blood supply to the left and middle 130 
liver lobes. After 45 minutes of ischemia, the clamp was removed to initiate the 131 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 7, 2021. ; https://doi.org/10.1101/2021.07.06.451396doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.06.451396


 

5 
 

reperfusion phase. Mice were sacrificed at 24 hours after reperfusion 132 
 133 
Model Construction of APAP-induced Acute Liver Injury. Acute liver injury was 134 
induced by APAP overdose in mice (17). Before APAP treatment, mice were fasted for 135 
approximately 16 hours. Then the animals were intraperitoneally injected once with 136 
APAP (300 mg kg-1, TCI, Cat#H0190) dissolved in 25% propylene glycol (Sinopharm 137 
Chemical Reagent, Cat#30157018) and saline solution. At 24 hours after APAP 138 
administration, livers were obtained to be processed for further experiments. 139 
 140 
Model Construction of BDL-induced Cholestatic Liver Injury. Cholestasis in the 141 
experimental model was induced by BDL surgery in mice as previously performed (18). 142 
Under general anesthesia, mice were placed supine for midline laparotomy to expose 143 
the common bile duct. Then bile duct ligation was performed in two adjacent positions 144 
approximately 1 cm from the porta hepatis with 6–0 silk sutures. The duct was then 145 
severed by incision between the two sites of ligation. On the tenth day after bile duct 146 
ligation, the liver was harvested to isolate NPCs. 147 
 148 
Isolation of Liver NPCs and Preparation of Single-cell Suspensions 149 
Liver NPCs were isolated from mice according to a two-step collagenase method 150 
reported previously (6). In detail, murine livers were perfused in situ via the inferior 151 
vana cava with calcium-free Hank’s Balanced Salt Solution (HBSS, Gibco, 152 
Cat#14170112) containing EDTA (0.2 mg mL-1, Sigma, Cat#E6758), followed by the 153 
buffer II containing pronase (0.4 mg mL-1, Sigma, Cat#P5147-1G) and 0.2% 154 
collagenase type II (Worthington, Cat#LS004176) at a perfusion rate of 8 mL/minute. 155 
Then livers were surgically removed and cut into small pieces. Tissues were transferred 156 
in HBSS containing 0.2% collagenase type II, pronase (0.4 mg mL-1) and DNase I (0.1 157 
mg mL-1, Roche, Cat#10104159001), and then incubated for digestion at 37 ℃ in a 158 
water bath for 20 minutes. DMEM (Mediatech, Cat#10-013-CV) containing 10% 159 
serum (FBS, Gibco, Cat#10099-141C) was added at the end of the incubation. 160 
Sequentially, hepatocytes removal was achieved by centrifugation for 3 minutes at 50 161 
g. Then cell suspension was filtered using a 40 μm nylon cell strainer (Falcon, 162 
Cat#352340). Erythrocytes were lysed by treatment with 3-5 mL ACK lysing buffer 163 
(Gibco, Cat#A1049201) for 5 minutes, after which PBS (Beyotime Biotec, 164 
Cat#C0221A) was added to terminate the lysis. The resulting suspension was subjected 165 
to Dead Cell Removal Kit (Miltenyi Biotec, Cat#130090101) to remove dead cells 166 
according to the manufacturer’s recommendations. The obtained cell pellet was washed 167 
twice and resuspended in PBS. Cell viability was assessed by Trypan Blue (Gibco, 168 
Cat#15250-061). 169 
 170 
10x Genomics scRNA-seq 171 
Liver NPCs single cell suspensions were loaded onto the 10x Genomics Chromium 172 
chip (10x Genomics; Pleasanton, CA, USA) to generate droplets. Then the obtained 173 
Gel Beads-in-emulsion (GEMs) were transferred into a PCR tube strip, followed by 174 
reverse transcription using ProFlex PCR System (Thermo Fisher, MA, USA). The 175 
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resulting cDNA was purified and amplified for 12 cycles before cleanup with 176 
SPRIselect beads (Beckman, Cat#B23318). Based on the cDNA concentration 177 
determined by Qubit (Thermo Fisher, MA, USA), libraries were prepared using the 178 
Chromium Single Cell 3′ Library & Gel Bead Kit v3 (10x Genomics; Pleasanton, CA, 179 
USA) according to the manufacturer’s instructions. All the libraries were sequenced on 180 
the Illumina Novaseq platform by Novogene (Beijing, China). 181 
 182 
Histological Assessment of Liver Sections 183 
Retrieved liver tissues from sacrificed mice were placed immediately in 10% formalin 184 
solution. After embedded in paraffin, tissue sections were cut at 5 μm thickness 185 
followed by deparaffinization in xylene and rehydration in 100%, 95%, 90%, 80%, 75% 186 
alcohol successively. Then the sections were incubated with 3% H2O2 to inactive 187 
endogenous peroxidases for 10 minutes in the dark at room temperature. Nonspecific 188 
binding blocking was performed with 5% BSA for 1 hour. Next, slides were stained 189 
with hematoxylin and eosin (H&E) for morphological evaluation, and were stained with 190 
Sirius Red for fibrosis assessment. For immunochemical analysis, slides were 191 
incubated with primary antibodies against LYVE1 (1:2000, Abcam, Cat#218535) at 4 ℃ 192 
overnight in the dark. After three times of PBS washing for 5 minutes, the 193 
corresponding horseradish peroxidase (HRP)-conjugated Goat anti-Rabbit IgG 194 
secondary antibody (Origene, Cat#PV-6002) was sequentially used for incubation at 195 
room temperature for 30 minutes. Nuclei were counterstained with hematoxylin. The 196 
expression pattern of LYVE1 in liver slides was acquired by Olympus BX63 197 
microscope (Olympus, Shinjuku, Japan) at 200x magnification. 198 
 199 
Immunofluorescence Staining 200 
Liver sections were cut into 5 μm slides from formalin-fixed and paraffin-embedded 201 
tissues dissected from C57BL/6J mice. The slides were incubated with the primary 202 
antibody against S100A9 (1:500, Abcam, Cat#ab242945) at 4 ℃ overnight. After slide 203 
washing with PBS-T (PBS + 0.05% Tween20), the fluorophore-conjugated secondary 204 
antibodies were used for incubation at room temperature for 1.5 hours. For double 205 
immunostaining, liver sections were firstly stained with CD31 (1:500, Abcam, 206 
Cat#ab182981) or S100A9 (1:500, Abcam, Cat#ab242945) followed by the appropriate 207 
secondary antibody. Then LYVE1 (1:1000, Abcam, Cat#ab218535) or YM1 (1:500, 208 
Abcam, Cat#192029) antibody was applied onto sections following the identical 209 
procedure. Tissue slides were mounted with Antifade Mounting Medium with DAPI 210 
(Origene, Cat#ZU9557) for nuclei staining. Fluorescence images were captured with 211 
an Olympus BX63 microscope. The fluorophore-conjugated secondary antibodies 212 
include Goat anti-Rabbit IgG H&L-Alexa Fluor 488 (1:500, Abcam, Cat#ab150077) 213 
and Goat anti-Rabbit IgG H&L-Alexa Fluor 555 (1:500, Abcam, Cat#ab150078) 214 
 215 
Data Processing 216 
The gene expression matrix for each scRNA-seq sample was generated by CellRanger 217 
pipeline (10x Genomics) and raw data were processed further in R (version 3.6.1). 218 
Quality filtering steps were performed using the Seurat package (version 3.1.2) (19): 219 
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1. Genes expressed by less than 5 cells were excluded from further analysis. 220 
2. Cells with fewer than 200 genes expressed, and > 20% of total expression from 221 

mitochondrial genes were filtered out. 222 
Through the above steps, 197,194 cells were used for next analysis. For filtered gene 223 

expression matrices, gene counts for each cell were normalized by dividing by the total 224 
counts for that cell and multiplying by the scale.factor (10,000) with the NormalizeData 225 
function of the Seurat package. In order to remove the batch effect, the top 2,000 highly 226 
variable genes were used for canonical correlation analysis (CCA) implemented in 227 
Seurat. 228 

 229 
Clustering and Cell Typing 230 
After aligning the top 20 dimensions according to CCA, principal component analysis 231 
(PCA) was used to reduce dimension using the RunPCA function, and unsupervised 232 
clustering was applied using the FindNeighbors function and the FindClusters function 233 
with default parameters. Cells were later visualized using the RunTSNE function with 234 
the t-distributed stochastic neighbor embedding (t-SNE) algorithm. We then calculated 235 
the top marker genes for each cluster using the Wilcoxon rank-sum test, by the 236 
FindAllMarkers function (logfc.threshold = 1.5, min.pct = 0.25). The identity for each 237 
cluster was annotated based on the SingleR package (version 1.0.5)(20) and the prior 238 
knowledge of biology. The cells expressing high levels of classic hepatocyte marker 239 
genes (Alb, Apoa2, Apoc3 and Mup3) were filtered out. A total of 171,814 cells 240 
remained finally. For sub-clustering of each major liver cell type, a higher “resolution” 241 
parameter of FindClusters function was applied. We also used the FindAllMarkers 242 
function (logfc.threshold = 0.25, min.pct = 0.25, test.use = “wilcox”) to perform 243 
differential expression analysis for each subcluster. 244 
 245 
Pseudo-cell Analysis 246 
As described and confirmed before (21), we performed pseudo-cell analysis to increase 247 
the gene expression correlation from high-throughput scRNA-seq data. Briefly, we built 248 
a new gene expression matrix for each cell type by constructing pseudo-cells, which 249 
were the averages of 20 cells randomly chosen. 250 
 251 
Transcription Factor-target Gene Network Analysis 252 
The regulatory network analysis was performed on pseudo-cell gene expression 253 
matrices using the SCENIC package (version 1.1.2-01, corresponds to GENIE3 1.8.0, 254 
RcisTarget 1.6.0 and AuCell 1.8.0)(22) with default parameters. Two gene-motif 255 
rankings databases of mouse (10 kb around the TSS and 500 bp upstream of TSS) were 256 
selected for RcisTarget. To determine the number of “on/off” regulons in each cell type 257 
on different models, we set the criteria as follow: 258 

1. we used “mean (AUC scores)” for each regulon as threshold to binarize the 259 
regulon activity scores and created the binary regulon activity matrix, where 1 260 
for “on” and 0 for “off”. 261 

2. In each cell type, if the binary activity of the regulon was “on” in more than half 262 
of cells, we considered this regulon was “on” in the cell type. 263 
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The transcription factor-target gene network was visualized with Cytoscape (version 264 
3.7.2). 265 

 266 
Deconvolution of Liver Microarray/Bulk-seq Data 267 
To accessed the MPs composition in different liver diseases, we applied deconvolution 268 
analysis on publicly available microarray/bulk-seq data from annotated liver biopsy 269 
specimens taken across the AH (GSE28619), the APAP induced ALF (GSE120652), 270 
the BA (GSE159720), the IR injury (GSE151648) and the NAFLD (GSE48452). In 271 
particularly, all control samples from 5 datasets were collected together as control group. 272 
We only chose the IRI+ samples as IR group and the nonalcoholic steatohepatitis 273 
samples as NASH group. MPs from our scRNA-seq data were clustered into KCs, 274 
MoMFs and DCs, and signature gene expression profiles of these 3 cell types were used 275 
to deconvolve the MPs composition of different liver disease samples using 276 
CIBERSORTx (23). The composition of MoMFs of different liver disease samples was 277 
later associated with the histological features provided by original research paper. 278 
 279 
Pathway Enrichment Analysis 280 
Pathway enrichment analysis was performed using the Gene Ontology (GO) biological 281 
process and pathway terms in Metascape (version 3.5)(24) (http://metascape.org) with 282 
default parameters, as well as Ingenuity Pathway Analysis (IPA). The results were 283 
visualized with the ggplot2 package (version 3.3.0). 284 
 285 
CCI Analysis 286 
Pseudo-cell gene expression matrices were input to predict CCI based on the pseudo-287 
cell gene expression matrices using CellPhoneDB (version 1.1.0) (25). The ligands or 288 
receptors which expressed in at least 10% of cells were considered only. For all ligand-289 
receptor pairs, only those with average expression > 0.1 as well as p-value < 0.1 were 290 
selected for subsequent prediction. To explore immune activation of non-immune cells 291 
in different groups, for each type of non-immune cells (endothelial cell, HSC and 292 
cholangiocyte), we selected the shared interactions between it and each immune cell 293 
type of six major cell types (B cell, MPs, neutrophil, NK, pDC and T cell). We also 294 
analyzed the expression levels of immune genes in non-immune cells in different 295 
groups. A totally 2484 immune genes in 17 major categories were obtained from 296 
ImmPort database (https://www.immport.org). Based on the result of Sirius Red 297 
staining, we chose the ligand/receptor genes in two fibrosis-related categories 298 
“TGFb_Family_Member” and “TGFb_Family_Member_Receptor” to perform the 299 
CCI analysis between non-immune cells and immune cells in BDL and HF-MCD 300 
groups. 301 
 302 
Metabolic Analysis 303 
We used the method published before to characterize the metabolic heterogeneity in 304 
different cell types and groups (26). Totally 1,664 metabolic genes and 85 pathways 305 
were obtained from the KEGG database (http://www.kegg.jp), and the metabolic 306 
pathways were further grouped into specific categories based on KEGG classifications. 307 
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The pathway activities were calculated following the protocol using the pseudo-cell 308 
gene expression matrices. 309 
 310 
Pseudotime Analysis 311 
Pseudotime analysis was performed on neutrophil (Neu1, Neu2, and Neu3) and kupffer 312 
subtypes (MP1, MP2, and MP3) using the monocle R package (version 2.14.0) (27). 313 
Genes expressed in less than 10 cells were removed. After reducing the dimensionality 314 
of the data using the DDRTree dimensionality reduction algorithm with the 315 
reduceDimension function, cell ordering was performed by the orderCells function to 316 
build the trajectory. We then calculated the genes differentially expressed along the 317 
pseudotime with the differentialGeneTest function and selected those with significant 318 
differences (q-value < 0.05). For Kupffer cell, we also verified the trajectory and its 319 
directionality using the velocyto (version 0.17) (28). We generated annotated spliced 320 
and unspliced reads matrices from 10x bam files and selected the aimed cells based on 321 
the cell typing result to estimate cell velocities. We set the neighborhood size as 500 322 
cells and all other parameters were default. 323 
 324 
Statistical Analyses 325 
Marker genes for each cell cluster were calculated by the FindAllMarkers function in 326 
Seurat R package using the Wilcoxon rank-sum test. Genes with q-value < 0.05 were 327 
considered statistically enriched in a cluster. For metabolic pathways analysis, we 328 
evaluated the activities of metabolic pathways in a specific cell type by using the 329 
random permutation test. Only the pathways with p-value < 0.05 were considered 330 
statistically changed in different cell types or groups. For CCI analysis, the interaction 331 
with p-value < 0.1, mean expression > 0.1 was indicated statistically significant. For 332 
calculating the genes differentially expressed along the trajectory in pseudotime 333 
analysis, the genes with significant differences were selected based on q-value < 0.05. 334 
For plasma biochemical parameters, the significance of differences between control 335 
group and model group was determined by two-tailed Student’s t-test using Graph-Pad 336 
Prism v5.0, the p-value < 0.05 was considered statistically significant. 337 
 338 
RESULTS 339 
An overview of the single-cell atlas of murine liver NPCs 340 
To obtain an overall landscape and compare the cell heterogeneity of liver NPCs in 341 
various disease models at a single-cell level, we successfully established 5 classic 342 
models of liver disease and performed scRNA-seq on livers from these disease groups 343 
and a control group using the 10x Genomics platform (Figure 1A; Supplementary 344 
Figure S1A and Table S1). We subsequently developed an interactive website “Murine 345 
liver NPCs Atlas” to provide universal access to this data source. Through the browsing 346 
function, we can know the expression of clinically important genes related to diseases 347 
in different cell types. 348 

All liver cells were isolated from mice according to a previously described method, 349 
which has a higher collection rate for NPCs (6). After quality control analysis, we 350 
obtained 197,194 single-cell transcriptomes in total, which include 25,380 hepatocytes 351 
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and 171,814 NPCs from 18 mice (3 mice per group) in the control and 5 liver disease 352 
groups (Figure 1B and C; Supplementary Figure S1B and C). Clustering analysis of 353 
NPCs was subsequently performed using gene expression profiles. The t-distributed 354 
stochastic neighbor embedding (t-SNE) plot was used to visualize 12 major clusters of 355 
NPCs based on the expression of marker genes (Figure 1B and E; Supplementary 356 
Figure S1D). The distribution and proportions of the 12 major cell types in each group 357 
provide an insight into the disease groups. For example, an obvious opposite trend was 358 
observed in the numbers of ECs in the ALD and HF-MCD groups, and neutrophils were 359 
notably increased in the APAP and BDL groups compared with the other groups (Figure 360 
1D). Likewise, the numbers of MPs in the BDL group showed a difference in 361 
distribution compared with those in the control group, indicating that some subclusters 362 
of MPs may be increased in the BDL group (Figure 1B and C). Clustering analysis of 363 
12 NPCs clusters confirmed several unique transcriptomic characteristics (Figure 1E). 364 
For instance, PECAM1 (CD31) and LYVE1 are already well-known ECs markers, and 365 
S100A9 is often used as a neutrophil marker (6,29). Consistent with our analysis results, 366 
an immunofluorescence staining experiment with PECAM1 and LYVE1 and 367 
immunohistochemical staining of LYVE1 confirmed the opposite trend in ALD and 368 
HF-MCD groups (Figure 1F and G; Supplementary Figure S1E). Similarly, a dramatic 369 
increase in the neutrophil number in the APAP and BDL groups was verified by S100A9 370 
staining (Figure 1H and Supplementary Figure S1F). These results provide an overview 371 
of the differences in NPCs in the murine livers among different classic liver diseases. 372 

 373 
Reconstruction and heterogeneity of transcriptional regulatory networks in 374 
disease groups 375 
To understand the regulatory networks of transcriptional factors (TFs) in cell types and 376 
to determine the differences between groups, we predicted the relevant TFs and binarize 377 
the activity scores of TFs. We then counted the number of TFs with activity “on” and 378 
that of TFs with activity “off” in each cell type. In most cell types, the number of TFs 379 
with activity “on” was increased in disease groups (compared with that in the control 380 
group), although there were obvious differences among the disease groups (Figure 2A). 381 
The heat map of the activity of TFs revealed that, in each cell type (e.g. ECs or 382 
neutrophils), the up-regulated TFs demonstrated an inter-group specificity (Figure 2B 383 
and C; Supplementary Figure S2). 384 

We found that most TFs for ECs up-regulated in the ALD group were down-regulated 385 
in the HF-MCD group observably, including Egr1, Snai1, and Bcl6b, which are related 386 
to angiogenesis, vascular development, and cell growth (Figure 2B and D). However, 387 
up-regulated TFs in the HF-MCD group, such as Foxp1, are associated with cell death 388 
and negative regulation of vascular development according to gene ontology (GO) 389 
analysis (Figure 2B and D). These results may partially explain the observed opposite 390 
trend of ECs numbers between the ALD and HF-MCD groups presented in Figure 1D. 391 
In the IR group, up-regulated TFs (Irf2, Irf8, Stat1, and Stat2) of ECs are related to the 392 
defense response and innate immune response based on the GO analysis (Figure 2B). 393 
This is consistent with the characteristics of IR injury. Although inflammation-related 394 
neutrophils were dramatically increased in both APAP and BDL groups compared to 395 
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the control group, neutrophil TFs were differentially regulated (Figure 1D and Figure 396 
2C). TFs (Fos, Atf3, and Nfe2l2) related to acute inflammation and oxidative stress were 397 
up-regulated in the APAP group and down-regulated in the BDL group (Figure 2C and 398 
E). In contrast, TFs (Irf1, Stat1, and Stat2) related to innate immunity, adaptive 399 
immunity, and defense response were up-regulated in the BDL group and down-400 
regulated in the APAP group (Figure 2C and E). In the IR group, the TFs up-regulated 401 
in neutrophils were similar to those up-regulated in ECs (Figure 2B, C, and E). Together, 402 
these data demonstrate that specific diseases reprogram transcriptional regulatory 403 
networks and that there is a heterogeneity among disease groups. 404 

 405 
The inter- and intra-group heterogeneity of NPCs 406 
Here, we performed detailed subtype annotation and functional analysis mainly on ECs, 407 
HSCs, neutrophils, T cells, MPs, and cholangiocytes. ECs were divided into six 408 
subtypes at a higher t-SNE resolution based on their unique transcriptomic signatures: 409 
four subtypes (Endo1-Endo4) of LSECs and two subtypes (Endo5 and Endo6) of 410 
pericentral (Endo-pc) and periportal (Endo-pp) ECs (Figure 3A-C). LSECs are 411 
characterized by two known LSECs markers (Gpr182 and Fcgr2b) (30). Although 412 
transcriptomes of LSECs are similar in general, some genes are highly expressed in a 413 
subtype-specific manner (Figure 3C). In addition to two conventional LSEC subtypes 414 
(Endo1 and Endo2), GO analysis demonstrated that Endo3 and Endo4 are related to the 415 
inflammatory response and adaptive immune response, respectively. Furthermore, 416 
C1qa (a marker of Endo3) was found to stimulate ECs proliferation and promote new 417 
vessel formation (31). The group proportions in ECs subtypes were similar to those in 418 
ECs (Figure 1D and Figure 3C). Liver fibrosis-associated HSCs were divided into four 419 
subtypes, containing quiescent HSCs (HSC1) and activated HSCs (HSC2, HSC3, and 420 
HSC4) based on specific markers (Figure 3D-F). Interestingly, GO analysis showed 421 
distinguishable functions of HSC2 and HSC3, HSC2 are related to wounding response 422 
and ECM organization, while HSC3 are related to inflammatory response and 423 
cholesterol metabolic process. All three neutrophil subtypes (Neu1, Neu2, and Neu3) 424 
with distinct transcriptomic signatures were dramatically increased in APAP and BDL 425 
groups (Figure 3G-I). Evidence is accumulating that neutrophils have different 426 
phenotypes and characteristics even in a highly mature state (32). According to the IPA, 427 
Neu1 promotes an inflammatory response and cell migration, while Neu2 and Neu3 428 
downregulate inflammation and cell movement (Figure 3J). Mmp8 (a marker of Neu2) 429 
is highly expressed in mature neutrophils and to play a beneficial role in chronic and 430 
cholestasis liver injury by alleviating fibrosis (33). Likewise, Chil3 (Ym1, a marker of 431 
Neu3) is a known marker of M2 macrophages, and Ly6g+ neutrophils play an anti-432 
inflammatory role in allergic mice (34). Furthermore, our immunofluorescence staining 433 
experiment has verified the abundant presence of protective Neu3 subtype in BDL and 434 
APAP groups (Figure S4). The subtypes of infiltrated neutrophils in the tissue 435 
demonstrates the development of neutrophil heterogeneity and reprogramming of 436 
neutrophils from a pro-inflammatory phenotype to an anti-inflammatory phenotype 437 
(35). To determine whether neutrophils have polarization for homeostasis maintenance 438 
in response to inflammation, we analyzed the pseudotime polarization trajectory of 439 
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these three neutrophil subtypes. We found that the infiltrated neutrophils demonstrate a 440 
polarization trajectory from Neu1 to Neu3 (Figure 3K). Hence, our results demonstrate 441 
the existence of protective neutrophil subtypes and neutrophil polarization. 442 

Similarly, 30,120 T cells were divided into seven subtypes, including natural killer T 443 
(NKT) cells (T1), CD4+ T cells (T2, T3, and T4), CD8+ T cells (T5 and T6), and specific 444 
Ramp1+ T cells (T7), with distinct transcriptomic signatures (Figure 4A-C). In 445 
particular, the number of subtypes T3 (CD4+ Foxp3+ regulatory T cells) and T6 (effector 446 
memory CD8+ T cells) was notably elevated in the HF-MCD group, which consistent 447 
with previous studies that activated CD4+ and CD8+ T cells is essential for the 448 
progression of NASH and liver fibrosis (Figure 4C) (14,36). T4 and T5 are naive CD4+ 449 
and CD8+ T cells with high expression of Ccr7 and Sell (10). Finally, a specific subtype 450 
of Ramp+ T cells was also identified, which plays a role in angiogenesis according to 451 
GO analysis. The role of T cells in angiogenesis and vasculogenesis has previously been 452 
noted under pathological and physiological conditions (37). MPs, the largest cell type 453 
of NPCs, were divided into eight subtypes based on their unique transcriptomic markers, 454 
including KCs (MP1-MP4), MoMFs (MP5 and MP6), and conventional dendritic cells 455 
(cDCs) (MP7 and MP8) (Figure 4D-F) (4,6,38). MP3 is a type of periodic KC 456 
characterized by high expression of Stmn1 (Figure 4F) (38). Trem2 and Chil3 are well-457 
known markers of pro- and anti- inflammatory macrophages, respectively (6,38). 458 
Ingenuity Pathway Analysis (IPA) analysis was used to confirm that Trem2+ MoMFs 459 
(MP5) up-regulated the inflammatory response pathways and Chil3+ MoMFs (MP6) 460 
down-regulated those inflammatory response pathways (Figure 4G). Cholangiocytes 461 
are an important type of intrahepatic NPCs that participate in bile production and 462 
homeostasis (39). Cholangiocytes were divided into four subtypes (Cho1-Cho4) using 463 
distinctive transcriptomic markers (Figure 4H-J). Besides, cell types including NK cells 464 
(Figure S3A-C), dividing cells (Figure S3D-F), B cells (Figure S3G-I), and 465 
plasmacytoid dendritic cells (pDCs) (Figure S3J-L) were divided into different cell 466 
subtypes according to their individual transcriptomic signatures. Altogether, above 467 
results demonstrate the heterogeneity of NPCs in the liver. 468 

As recruited macrophages, MoMFs play important regulatory roles in a variety of 469 
liver injury (3). To determine whether MoMFs expand in various human liver diseases 470 
as we found in mouse models, we analyzed liver RNA sequencing data of patients with 471 
NASH, alcoholic hepatitis (AH), IR injury after liver transplantation, APAP-induced 472 
acute liver failure (ALF), and biliary atresia (BA). We applied differential gene 473 
expression signatures of KCs, MoMFs, and DCs to the deconvolution algorithm to 474 
evaluate the composition of MPs in human liver (Supplementary Figure S5A and B). 475 
Results showed abundant expansion of MoMFs in patients with NASH, IR injury, 476 
APAP-induced ALF, and BA, which is consistent with our findings (Supplementary 477 
Figure S5A-C). With the increase of MoMFs, the histological NAFLD activity score 478 
(NAS), fibrosis score, and inflammation score deteriorated (Supplementary Figure 479 
S5D). It indicated that the expansion of MoMFs positively correlated with the progress 480 
of NASH and the degree of fibrosis. 481 

Furthermore, one of the advantages of scRNA-seq technology is to understand the 482 
characterization of gene expression in different cell types/subtypes. In order to 483 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 7, 2021. ; https://doi.org/10.1101/2021.07.06.451396doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.06.451396


 

13 
 

determine the expression characteristics of disease-related clinically significant genes 484 
in different cell types/subtypes, we analyzed the gene expression of a series of blood 485 
markers and drug targets for NASH diagnosis and therapy in each cell type. Cytokeratin 486 
18 (CK18) is a blood marker of apoptosis and fibrosis for diagnosis of NASH (40). We 487 
found that Krt18, which encodes CK18, is specifically high expressed in cholangiocytes 488 
and obviously increased in subtype Cho3 in HF-MCD group (Supplementary Figure 489 
S5E and F), suggesting that NASH is accompanied by significant injury and apoptosis 490 
of cholangiocytes, especially subtype Cho3, and cholangiocytes may associate with the 491 
mechanism of NASH. Galectin 3 (Gal-3) is one of the promising targets involved in 492 
fibrosis for NASH treatment in clinical trials (40). We found that the gene expression 493 
of Lgals3 (encoding Gal-3) is increased in cell types of MPs and HSCs in the HF-MCD 494 
group (Supplementary Figure S5G). Moreover, the expression of Lgals3 is elevated in 495 
subtypes of KCs, MoMFs, and HSC2 in the HF-MCD group (Supplementary Figure 496 
S5H), implying that it not only reminds the importance of these three cell subtypes to 497 
liver fibrosis, but also provides more precise guiding significance for the development 498 
of drugs with Gal3 as the drug target. Altogether, these indicated the clinical value of 499 
our scRNA-seq data. 500 

 501 
Metabolic reprogramming of NPCs across disease groups 502 
Considering that the liver plays an important role in regulating energy metabolism in 503 
the whole body, the metabolic reprogramming of NPCs in liver disease states is worth 504 
investigating. The hepatic immune response includes the enhanced glucose metabolism 505 
of immunocompetent cells (41). HSCs show a particularly high sensitivity, and they 506 
play an important role in immune metabolism by maintaining liver function and 507 
responding to injury (42). Next, we investigated the features of metabolic pathway 508 
reprogramming of NPCs in different disease groups by quantifying metabolic pathway 509 
activity based on a previously described pathway activity score (26). The pathways 510 
investigated included those for carbohydrate metabolism, energy metabolism, lipid 511 
metabolism, etc. Almost all metabolic pathways in cholangiocytes were dramatically 512 
activated in the BDL group (Figure 5A). This is consistent with the pathological 513 
mechanism of cholestatic liver injury induced by ligation of the bile duct, in which the 514 
siltation and reflux of bile aggravates cholangiocyte stimulation and subsequent 515 
damage. In addition, numerous metabolic pathways in HSCs and MPs, including the 516 
carbohydrate, energy, lipid, etc. metabolic pathways, were activated (compared with 517 
control) in the BDL, IR, and HF-MCD groups (Figure 5A and B). This suggests that 518 
the metabolic activation of HSCs and MPs is required to exert an appropriate immune 519 
effect. Interestingly, NK cells were only activated in the IR group, suggesting that NK 520 
cells have specific metabolic activity in IR liver injury (Figure 5B). Next, through 521 
analysis of the metabolism in subtypes of MPs, HSCs, and NK cells in each disease 522 
group, we found that the metabolic activity of subtypes KCs, HSC2, and NK3 was the 523 
strongest in BDL, IR, and HF-MCD groups (Supplementary Figure S6A-C).  524 

Energy metabolism is essential in activated HSCs to support a multitude of functions, 525 
including proliferation, secretion of ECM and cytokines, and migration to the injury 526 
regions. In addition, carbohydrate and lipid metabolism are required for the activation 527 
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of HSCs, because transdifferentiation into the myofibroblast phenotype requires 528 
upregulation of glycolysis and depletion of retinol-containing cytoplasmic lipid 529 
droplets to meet energy demands (42). To understand further, we analyzed gene 530 
expression of glycolytic and retinol metabolism pathway in each cell type in different 531 
groups (Supplementary Figure S7A and B). We observed that the gene expression of 532 
inhibition of glycolysis (Fbp1) was down-regulated, while genes expression of 533 
promotion of glycolysis and retinol metabolism (Eno2, Eno3 and Rdh5, Aox1) were 534 
elevated in HSCs in HF-MCD and BDL groups (Figure 5C) (43-45). These results 535 
confirm the abovementioned metabolic up-regulation and demonstrate the inter-group 536 
heterogeneity of HSCs activation. Besides, the expression of glycolysis-related genes 537 
was up-regulated in MPs (to varying degrees) in BDL, IR, and HF-MCD groups (Figure 538 
5D). The expression of these genes in different cell subtypes can be further explored on 539 
our website. These findings reveal the heterogeneity of the metabolic reprogramming 540 
of NPCs in different liver diseases, especially confirm the importance of metabolic 541 
activation of HSCs and MPs in liver disease. 542 

 543 
Inter-group heterogeneity in communication between non-immune cells  544 
and immune cells 545 
Cell-cell interaction (CCI) is a basic feature of multicellular organisms, playing an 546 
essential role in numerous biological processes (46). The construction of a CCI network 547 
based on ligand-receptor interaction is a common strategy for analyzing scRNA-seq 548 
data (46). Non-immune NPCs, including ECs, cholangiocytes, and HSCs, also play a 549 
role in immune activation by communicating with immune cells and thus influencing 550 
pathological progression (47). To evaluate the global participation of non-immune cells 551 
in the immune response, we investigated the expression of immune-related genes in 552 
ECs, cholangiocytes, and HSCs and constructed a model of the CCI network between 553 
non-immune and immune cells in different disease groups (Figure 6). We found that 554 
expression levels of immune-related genes, especially those encoding 555 
chemokines/cytokines and their receptors, were up-regulated in ECs, cholangiocytes, 556 
and HSCs and that the different disease states show differential expression (Figure 6A). 557 

After comparison of CCI networks between non-immune and immune cells in 558 
different groups, we observed a notable increase of CCIs in most disease groups 559 
compared to the control group and the number of interactions between HSCs, ECs, 560 
cholangiocytes and different intrahepatic immune cells showed an inter-group 561 
heterogeneity (Figure 6B and C; Supplementary Figure S8A and B). Moreover, we 562 
identified unique ligand-receptor pairs of the CCI in each model group compared with 563 
control and found differences in ligand-receptor pairs between model groups (Figure 564 
6D and Supplementary Figure S8C). Functions of unique ligand-receptor pairs in HSCs 565 
are mostly related to immunity, inflammatory response, cell proliferation, apoptosis, 566 
and transdifferentiation (Figure 6D). Surprisingly, expression level of the ligand-567 
receptor pair CCL5-GPR75 was specifically enhanced, the interaction between them 568 
was only observed between immune cells (especially NK and T cells) and HSCs in IR 569 
and HF-MCD groups (Figure 6D). These findings indicate the inter-group 570 
heterogeneity in the immune activation of non-immune cells. 571 
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 572 
Inter-group cell heterogeneity in transcriptional dynamics 573 
KCs are resident macrophages found throughout the mammalian liver and play 574 
essential roles in liver disease (47). To investigate the inter-group heterogeneity of KCs 575 
polarization process and of KCs transcriptional dynamics, we analyzed polarization 576 
trajectories of three KC subtypes using monocle2 and RNA velocity methods for 577 
pseudotime ordering. We observed a polarization trajectory from periodic KC subtype 578 
MP3 to MP1 to MP2 in all groups (except the APAP group, which had rarely population 579 
of KCs) (Figure 7A and B). A similar polarization trajectory was inferred using the 580 
RNA velocity method, with KCs polarization in the HF-MCD group being the most 581 
obvious (Figure 7B). Next, we investigated genes with dramatically perturbed 582 
expression along this trajectory in each group and identified 501 genes common to all 583 
groups (Figure 7C and D). Interestingly, we found that the expression of apoptosis-584 
related genes Bax and Bcl2a1b was up-regulated and of anti-proliferation factors Btg1 585 
and Btg2 was markedly reduced along the trajectory in the control group, while 586 
completely opposite trend was observed in HF-MCD, BDL, and APAP groups (Figure 587 
7E). Furthermore, as the trajectory changes, expression levels of inflammation-related 588 
genes (Ccl5, Ccrl2, Cxcl2, and Trem2) and fibrosis-related genes (Tgfb1 and Tgfbi) 589 
were markedly increased in HF-MCD, BDL, and APAP groups (Figure 7E). Together, 590 
these results indicate that the polarization of KCs in the healthy liver is highly correlated 591 
with periodic proliferation and apoptosis, while in disease, periodic KCs are polarized 592 
into functional KCs to play important roles in progression of liver disease. 593 
 594 
DISCUSSION 595 
Liver diseases, including DILI, cholestatic liver injury, liver IR injury, ALD, and NASH, 596 
are associated with extremely high morbidity and mortality worldwide, causing a huge 597 
social burden (2). APAP-induced DILI is the most common and clinically relevant 598 
model of intrinsic DILI (48). BDL is the most widely used classic experimental model 599 
of cholestasis (49). Liver IR injury has been considered as a potential mechanism 600 
responsible for organ dysfunction and injury after liver surgery such as liver 601 
transplantation (50). The ALD model was constructed based on a method published in 602 
Nature Protocols, which describes the generation of a simple and effective ALD model 603 
with no mortality rate, no liver fibrosis, marked elevation of alanine aminotransferase 604 
and steatosis (13). The pathology of NASH can be induced by the MCD diet rather than 605 
a high-fat diet (HFD) in C57BL/6J mice (14). MCD diet is a valuable tool for 606 
investigating the inflammatory effects in NASH due to its availability and 607 
simplification (51). Inadequate intake of methionine/choline can lead to defective 608 
lipoprotein secretion and oxidative stress caused by impaired b-oxidation in the liver, 609 
and further induce hepatic steatosis, inflammation and fibrosis (14,51). However, mice 610 
fed the MCD diet will not develop any metabolic diseases associated with obesity or 611 
insulin resistance, and even loss weight (52). Thus, the MCD diet cannot fully 612 
recapitulate the characteristics of NASH patients. Nonetheless, since at least 90% of 613 
Americans do not meet the recommended choline intake, and choline deficiency in 614 
NASH patients can lead to more severe fibrosis, we applied a 45% HF-MCD diet to 615 
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investigate characteristics of NASH (53,54). 616 
This study provided new insights into liver physiology and pathology through single-617 

cell transcriptomic technologies. Here, we obtained a comprehensive single-cell 618 
transcriptomic landscape of NPCs from livers of healthy and diseased mice, and 619 
constructed a website to provide simple access to all our data. Through analysis of 620 
distribution and proportions of ECs cluster in each group, we observed that the number 621 
of ECs was markedly reduced only in the HF-MCD group, even though both ALD and 622 
HF-MCD involve steatosis (Figure 1D, F, and G; Supplementary Figure S1A and E). 623 
Thus, ECs injury is a characteristic of the HF-MCD group, which is in agreement with 624 
a previous study (6), and ECs injury may related to the degree of liver steatosis and 625 
fibrosis. Furthermore, although ECs were greatly reduced in the HF-MCD group, the 626 
CCI between ECs and immune cells was notably increased (Figure 6B and 627 
Supplementary Figure S8A), indicating that ECs injury is associated with an 628 
enhancement in CCI. ECs injury in the HF-MCD group also showed regional 629 
heterogeneity, which represented that the damage to LSECs was greater than the 630 
damage to Endo-pc and Endo-pp, and the LSEC population was decreased compared 631 
with the Endo-pc and Endo-pp populations (Figure 3C). 632 

Neutrophils are considered as main mediators of the inflammatory response during 633 
tissue injury. Even though a dramatic infiltration of neutrophils was observed in both 634 
APAP and BDL groups, the number of MoMFs was only markedly increased in the 635 
BDL group (extremely low in the APAP group), implying that the main cell type 636 
involved in the inflammatory response is different in APAP- and BDL-induced liver 637 
injury (Figure 3I and Figure 4F). Recent evidence suggests that infiltrated neutrophils 638 
can polarize into a protective phenotype, which exerts an anti-inflammatory effect and 639 
restores homeostasis (55). Here, we verified the existence of protective neutrophil 640 
subtype and analyzed the polarization trajectory of neutrophils from Neu1 to Neu3 641 
subtype (Figure 3K and Supplementary Figure S4). The number of activated CD4+ and 642 
CD8+ T cells was greatly increased in the HF-MCD group (Figure 4C), which is 643 
consistent with clinical results suggesting that CD8+ T cells are increased in the livers 644 
of NASH patients (56). Moreover, NKT cells play a role in the fibrotic progression of 645 
NASH, and activation of CD8+ T cells and NKT cells can lead to NASH via crosstalk 646 
with hepatocytes (14), indicating that T cells play an important role in progressive 647 
NASH. In order to further explore the clinical application value of our data, we 648 
compared our data with publicly available bulk RNA-seq data from human liver 649 
diseases. Due to the limitations of analytical method, we only obtained the consistent 650 
result of the increase in the proportion of MoMFs at a lower resolution (Supplementary 651 
Figure S5A-C). We can further analyze to complement the present database, when 652 
human single-cell data of these liver diseases are available later.  653 

The CCI analysis demonstrated that immune activation of non-immune cells had 654 
heterogeneity between different disease groups. In comparison with the control, 655 
differences in specific ligand-receptor pairs involved in immune and non-immune cell 656 
interactions were observed in each model group. For instance, the interactions between 657 
CXCL10 and CXCR3, and CXCL10 and DPP4 (from HSCs to immune cells) were 658 
specific for the BDL group, while the interaction between CXCL10 and DPP4 (from 659 
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immune cells to HSCs) was specific to the HF-MCD group (Figure 6D). Tgfb2 660 
(transforming growth factor beta 2) is known as a positive regulator of liver fibrosis 661 
and is a participant in biliary-induced liver disease based on previous data obtained 662 
from a BDL mouse model (57). In agreement with these observations, our results 663 
demonstrate that only cholangiocytes in the BDL group showed a high expression of 664 
Tgfb2 and its receptor TgfbR2. However, in the HF-MCD group, ECs and HSCs (rather 665 
than cholangiocytes) showed a high expression of Tgfb2 and TgfbR2 (Figure 6A). 666 
Considering that liver fibrosis was obvious in both the BDL and HF-MCD groups, we 667 
investigated differences in the gene expression of Tgfb family members between these 668 
groups (Supplementary Figure S8D and E). Tgfb family genes were highly expressed 669 
in cholangiocytes in the BDL group, and in HSCs and ECs in the HF-MCD group. 670 
Moreover, while fibrosis-related CCIs between cholangiocytes and immune cells in the 671 
BDL group were stronger (compared with the HF-MCD group), CCIs between HSCs 672 
and immune cells were more obvious in the HF-MCD group (Figure S8F). These results 673 
indicate that cholangiocytes are mainly responsible for cholestatic liver fibrosis (58), 674 
while HSCs mainly contribute to the fibrosis in NASH. Although the total number of 675 
cells collected in the APAP group was the lowest, the reasons for the greatly reduced 676 
CCIs in the APAP group need to be explored further. 677 

In conclusion, we first have provided here, a comprehensive single-cell 678 
transcriptomic landscape of murine liver NPCs in health and 5 liver disease models 679 
(representing more than 70% incidence of liver disease). Although more disease models 680 
and the single-cell spatiotemporal heterogeneity of intrahepatic cells, including 681 
hepatocytes, should be considered in the future study, this study has prominently 682 
increased our understanding of the physiological and pathological mechanisms 683 
underlying liver function and dysfunction, and should contribute to the clinical 684 
diagnosis and therapeutics of liver diseases.  685 
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Figure 1. Single cell RNA-seq analysis of murine liver NPCs isolated from different 906 
groups. (A) Illustration of the study design. (B) t-SNE plot visualization of 12 major 907 
cell types based on 171,814 single-cell transcriptomes. MPs, mononuclear phagocytes; 908 
pDC, plasmacytoid dendritic cell; HSC, hepatic stellate cell; NK, nature killer cell. (C) 909 
Annotation by different groups. ALD, model of alcoholic liver disease; APAP, model 910 
of APAP-induced acute liver injury; BDL, model of bile duct ligation-induced 911 
cholestatic liver injury; IR, model of liver ischemia-reperfusion injury; MCD, model of 912 
non-alcoholic steatohepatitis. (D) Group proportions of the 12 major cell types. (E) 913 
Gene expression heatmap of the marker genes (logFC > 1.5) for each cell type. (F) 914 
Immunofluorescence staining of ECs markers (CD31 and LYVE1) in murine livers of 915 
control, ALD and MCD groups. Nuclei were stained using DAPI (blue). Scale bars, 50 916 
μm. (G) Immunohistochemistry of LYVE1 expression in murine livers of control, ALD 917 
and MCD groups. Scale bars, 50 μm. (H) Immunofluorescence staining of neutrophil 918 
marker S100A9 in murine livers of control, APAP and BDL groups. Nuclei were stained 919 
using DAPI (blue). Scale bars, 50 μm.  920 
 921 
  922 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 7, 2021. ; https://doi.org/10.1101/2021.07.06.451396doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.06.451396


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 7, 2021. ; https://doi.org/10.1101/2021.07.06.451396doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.06.451396


 

24 
 

Figure 2. Changes in cellular transcription factor-target gene network in different 923 
groups. (A) Rose diagrams visualization of the number “on/off” regulons of each cell 924 
type in different groups. (B and C) Heatmap showing the activity of regulons of ECs 925 
(B) and neutrophils (C) in different groups. Numbers between brackets indicate the 926 
potential (extended) target genes for respective TFs. (D and E) Network visualization 927 
of the inferred transcription factor-target gene networks in ECs (D) and neutrophils (E). 928 
The octagons represent TFs and the ellipses represent genes. Model-specific TFs 929 
showed on (B) are represented by different colors. GO analysis of genes regulated by 930 
model-specific TFs showing the different functional enrichment.  931 
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Figure 3. Subcluster analysis of endothelial cell, HSC, and neutrophil. (A) t-SNE plot 934 
of 36,999 ECs, color-coded by cell subtypes. (B) Pie plot showing the proportion of 935 
different ECs subtypes. (C) Complex heatmap of selected marker genes in each 936 
endothelial cell subtype. Top: average expression of known ECs markers; Middle: 937 
model proportions of each subtype; Bottom: relative expression of marker genes 938 
associated with each cell subtype. LSEC, liver sinusoidal endothelial cell; PC, 939 
pericentral endothelial cell; PP, periportal endothelial cell. (D) t-SNE plot of 3,122 940 
HSCs, color-coded by cell subtypes. (E) Pie plot showing the proportion of different 941 
HSC subtypes. (F) Complex heatmap of selected marker genes in each HSC subtype. 942 
Top: average expression of known HSC markers; Middle: model proportions of each 943 
subtype; Bottom: relative expression of marker genes associated with each cell subtype. 944 
(G) t-SNE plot of 10,760 neutrophils, color-coded by cell subtypes. (H) Pie plot 945 
showing the proportion of different neutrophil subtypes. (I) Complex violin plot of 946 
selected marker genes in each neutrophil subtype. Left: expression of marker genes 947 
associated with each cell subtype; Middle: model proportions of each subtype; Right: 948 
average expression of known neutrophil markers. (J) Ingenuity Pathway Analysis of 949 
each neutrophil subtype. (K) Pseudotime analysis of neutrophils showing the trajectory 950 
from N1 to N2. 951 
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Figure 4. Subcluster analysis of T cell, MPs, and cholangiocyte. (A) t-SNE plot of 954 
30,120 T cells, color-coded by cell subtypes. (B) Pie plot showing the proportion of 955 
different T cell subtypes. (C) Complex heatmap of selected marker genes in each T cell 956 
subtype. Top: average expression of known T cell markers; Middle: model proportions 957 
of each subtype; Bottom: relative expression of marker genes associated with each cell 958 
subtype. NKT, nature killer T cell; Cd4+, Cd4+ T cell; Cd8+, Cd8+ T cell. (D) t-SNE plot 959 
of 61,704 MPs, color-coded by cell subtypes. (E) Pie plot showing the proportion of 960 
different MPs subtypes. (F) Complex heatmap of selected marker genes in each MPs 961 
subtype. Top: average expression of known MPs markers; Middle: model proportions 962 
of each subtype; Bottom: relative expression of marker genes associated with each cell 963 
subtype. Kupffer, kupffer cell; MoMF, recruited monocyte-derived macrophage; DC, 964 
dendritic cell. (G) Ingenuity Pathway Analysis of each MoMF subtype. (H) t-SNE plot 965 
of 6,517 cholangiocytes, color-coded by cell subtypes. (I) Pie plot showing the 966 
proportion of different cholangiocyte subtypes. (J) Complex heatmap of selected 967 
marker genes in each cholangiocyte subtype. Left: relative expression of marker genes 968 
associated with each cell subtype; Middle: model proportions of each subtype; Right: 969 
average expression of known cholangiocyte markers.  970 
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Figure 5. Disease-specific metabolic reprogramming of each cell type. (A) Metabolic 973 
pathway activities of each cell type in different groups. For each metabolic pathway, 974 
the pathway activity scores larger than 1 or smaller than 1 means significantly 975 
upregulated or downregulated. (B) Metabolic pathway activities in HSC (left), MPs 976 
(top right) and NK (bottom right) in different groups. (C) Mountain map visualization 977 
of the expression of glycolysis/gluconeogenesis pathway related genes (top) and retinol 978 
metabolism pathway related genes (bottom) in HSC in different groups. Color-coded 979 
by cell density. (D) Mountain map visualization of the expression of 980 
glycolysis/gluconeogenesis pathway related genes in MPs in different groups. Color-981 
coded by cell density.  982 
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Figure 6. The CCI network between non-immune cells and immune cells in murine 985 
livers. (A) Heatmap showing the relative expression of immune genes in non-immune 986 
cells (endothelial cell, HSC, cholangiocyte) in different groups. (B) The number of 987 
interaction pairs between non-immune cells and other six immune cells (B cell, MPs, 988 
neutrophil, NK, pDC and T cell) in different groups. (C) An overview of interaction 989 
network between different cells (top) and the interactions between HSC and immune 990 
cells (bottom). The line thickness is proportional to the number of interactions between 991 
two cell types. (D) Dot plot displaying the specific ligand-receptor interactions between 992 
HSC and immune cells in different groups. Size of the dot represents statistical 993 
significance of the indicated interactions and color of the dot represents the total mean 994 
of the individual partner average expression values in the corresponding interacting 995 
pairs of cell types. 996 
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Figure 7. Trajectory analysis of KCs in different groups. (A and B) Trajectory 999 
inference of 3 KC subtypes (MP1, MP2 and MP3) using monocle (A) and RNA velocity 1000 
(B), colored by cell types or pseudotime. RNA velocity field (black arrows) were 1001 
visualized on t-SNE plot of 3 KC subtypes. (C) The number of genes significantly 1002 
differentially expressed along the pseudotime in different groups (q-value < 0.05). (D) 1003 
Upset plot of intersections between the genes showed in (C) in each group. Blue bar: 1004 
501 intersecting genes in 6 groups, some of which relate to apoptosis, inflammation 1005 
and fibrosis were list in blue. (E) Expression profiles of apoptosis-related genes (left), 1006 
inflammation-related genes (middle) and fibrosis-related genes (right) along the 1007 
pseudotime in 6 groups. 1008 
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