Abstract
How humans robustly interact with external dynamics is not yet fully understood. This work presents a hierarchical architecture of semi-autonomous controllers that can control the redundant kinematics of the limbs during dynamic interaction, even with delays comparable to the nervous system. The postural optimisation is performed via a non-linear mapping of the system kineto-static properties, and it allows independent control of the end-effector trajectories and the arms stiffness. The proposed architecture is tested in a physical simulator in the absence of gravity, presence of gravity, and with gravity plus a viscous force field. The data indicate that the architecture can generalise motor strategies to different environmental conditions. The experiments also verify the existence of a deterministic solution to the task-separation principle. The architecture is also compatible with Optimal Feedback Control and the Passive Motion Paradigm. The existence of a deterministic mapping implies that this task could be encoded in neural networks capable of generalisation of motion strategies to affine tasks.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
E-mail: c.tiseo{at}sussex.ac.uk
Some minor corrections have been made to the text to clarify the manuscript. Some typos have been corrected