
Harmonic Passive Motion Paradigm

Carlo Tiseo1,2, Sydney Rebecca Charitos2, and Michael Mistry2

1 School of Engineering and Informatics, University of Sussex, Brighton, UK.
2 ECR, Institute of Perception Action & Behaviour, School of Informatics, University

of Edinburgh, Edinburgh, UK

E-mail: c.tiseo@sussex.ac.uk

Abstract. How humans robustly interact with external dynamics is not yet fully

understood. This work presents a hierarchical architecture of semi-autonomous

controllers that can control the redundant kinematics of the limbs during dynamic

interaction, even with delays comparable to the nervous system. The postural

optimisation is performed via a non-linear mapping of the system kineto-static

properties, and it allows independent control of the end-effector trajectories and the

arms stiffness. The proposed architecture is tested in a physical simulator in the

absence of gravity, presence of gravity, and with gravity plus a viscous force field.

The data indicate that the architecture can generalise motor strategies to different

environmental conditions. The experiments also verify the existence of a deterministic

solution to the task-separation principle. The architecture is also compatible with

Optimal Feedback Control and the Passive Motion Paradigm. The existence of a

deterministic mapping implies that this task could be encoded in neural networks

capable of generalisation of motion strategies to affine tasks.

1. Introduction

Animals can generate highly dexterous movements while dealing with kinematic

redundancy, singularities, non-linear dynamics, uncertainties of interaction and signal

delays. In contrast, all these scenarios are open problem in robotics, where available

methods are not yet able to achieve animal-like robustness of interaction [1–5]. The

fragility of the current model-based approaches can be related directly to the need for

accurate tracking of environmental interactions to guarantee the controllers’ stability

[6–8], thereby hindering the development of computational models capable of explaining

the nervous system capabilities.

Impedance control has been proposed as a solution to such issues by encoding

compliance into our control architectures by describing the desired behaviour in

terms of equivalent dynamics [1, 9–12]. In general, identifying optimal movements

and control is non-trivial and has resulted in the introduction of optimisation-based

frameworks to identify desirable trade-offs. Thus, these methods require the exploitation

of null-space projections and non-linear inverse optimisation that make them not
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robust to: singularities, model inaccuracy, information delay, and state discretisation

[4–8, 13]. Bioinspired learning algorithms have also been proposed to identify desirable

impedance behaviours to interact with external dynamics for specific tasks [2,3,14–16].

These optimised strategies, called dynamic primitives, are defined as learned dynamic

attractors required to produce the desired outcome [2, 3, 17, 18]. Recently, dynamic

primitives have also been proposed as an explanation to how the nervous system deals

with complex dynamic interactions [17]. Primitives are classified into three categories

rhythmic, discrete, and the combined behaviours. The first category includes all the

movements characterised by limit cycles; thus, encoding oscillatory motions. The

discrete behaviours are typical of point attractors and describe an action such as

reaching [14,17]. An example of a combined behaviour is playing drums.

Our recent work shows how adopting a hierarchical architecture of Fractal

Impedance Controllers (FIC) can generate a planar human-like trajectory for upper limb

reaching movements and wrist pointing trajectories [4,5]. The FIC is a well suited for this

application because it allows to generate a stable, smooth behaviour without the need

of using the projected inverse dynamics, which limits the controller robustness to delays

and makes the system unstable when passing through singularities [4, 9, 19]. The main

limitation is that most of the available control and planning algorithms rely on projected

dynamics and numerical solutions to the inverse kinematics; thus, it often requires to

alternative solutions to preserve such properties. This work refines and extends that

method to a 7-DoF arm (Figure 1) exploiting a recently introduced geometrical postural

optimisation and introducing delays into the control loop.

2. Background on Motor Control

The Central Nervous System (CNS) can accurately control the body in extremely

challenging dynamics conditions. It does so without being affected by redundancy,

singularities, and by the presence of noise and delays in the sensory feedback

[2,17,18,20–25]. It describes Optimal Feedback Control (OFC) [26–28] and the Passive

Motion Paradigm (PMP) [20,29,30]. The authors would like to remark that this section

provides a general overview required for the contextualisation of the proposed control

architecture. Thus, we refer the reader to the specialised literature for a detailed

understanding of the neurophysiology of motor control, such as [22,25,31].

2.1. Central Nervous System

The CNS is organised with a hierarchical structure starting at the cortical level and

reaching the Peripheral Nervous System (PNS) via the spinal cord. The hierarchical

organisation is essential to deal with the delay involved in the neural transmission

[2, 21, 22, 25, 31, 32]. For example, experimental results show that for balance tasks

cortical potentials are delayed 200− 400ms compared to en external stimulus [33], and

spinal cord reflexes intervene about 100 ms after a perturbation occurs [34–36].
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Figure 1. (a) Arm initial configuration in singularity. (b) Arm in the clock’s centre.

(c) In red the desired trajectory, and in blue the executed trajectory in presence of

gravity and a viscous force field applied at the end-effector. The black sheres are the

clock’s targets.

The prefrontal cortex holds the apical position in the hierarchy of the portion of

the CNS that is considered involved in motor control. It is believed to attend to the

control of voluntary movements and be involved in learning new skills [25]. The basal

ganglia provide the reward of performing an action by assessing the associated cost of the

action. The pre-motor cortex plays a key role in solving problems associated with visual

feedback and the generation of a task-space movement strategy [25, 31, 32]. The motor

cortex is involved in controlling the movement dynamics, based on the proprioceptive

feedback [2, 25, 32]. The parietal cortex processes the state estimation for both the

proprioceptive and the visual feedback, and it is strictly interconnected with the internal

models allocated in the cerebellum [2,25,32].

The commands issues from the motor cortex reach the Central Pattern Generators

in the spinal cord, which is in charge of synchronised oscillatory movements, and they

receive inputs from the motor cortex, cerebellum, and the afferent sensory information

arriving from the periphery [2, 25, 37, 38]. The spinal cord is also the loci of the spinal

cord reflexes that are the first intervention strategy in the spinal cord. These reflexes
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provide the first centralised response to proprioceptive feedback [2,21,36,37]. It is worth

noting that considering that the delays of these reflexes are in the order of 100 ms, the

modulation of the muscle-skeletal system dynamics is essential to movement stability

by filtering high-frequency perturbations.

2.2. Optimal Feedback Control & Separation Principle

The OFC exploits optimal control theory to explain how the nervous systems optimise

human movements, stabilise the task, and control the redundant degrees of freedoms

[26, 27, 31]. The OFC describes the nervous systems as a model-based continuous

feedback controller, which exploits multiple cost functions for different tasks [28, 39].

The framework was successfully used to model the separation principle by classifying

these controllers for dynamic and static tasks [20, 28, 30, 39]. Dynamic controllers deal

with the interaction with the dynamics forces (inertial and velocity-dependent forces),

and the static controllers compensate for the static forces (elastic fields and gravity) [28].

The model has been proven capable of mimicking human behaviour, capturing how

motor control adjusts to sensory feedback during task execution [28, 39]. However, the

nervous system deals with the non-holonomic manifolds generated from their joint-space

formulation, which is not compatible with the holonomic characteristics experimentally

observed in humans and described by Donders’Law [20,30,31].

2.3. Equilibrium Point Hypothesis & Passive Motion Paradigm

A well-known theory for movement generation is the Equilibrium Point Hypothesis

(EPH) which describes the generation of reaching movements as a gradual shift of

the equilibrium point [2, 20, 29, 30, 40]. Further evidence also shows that the brain

process separately deals with postural control (i.e., static forces) and motion dynamics,

known as the separation principle. The PMP is a control framework that utilises

this principle [2, 4, 5, 20, 30]. The λ0-PMP is a recently proposed extension of this

framework. It relies on a viscous force field to produce a constraint that limits the

projections of some of the joint torques in the task space while optimising posture in the

manipulator null-space [20,30]. Other studies show that a similar result can be obtained

by superimposing multiple task-space conservative non-linear impedance controllers to

generate virtual mechanical constraints along the kinematic chain. This approach relies

on a Fractal Impedance Controller (FIC) to define a non-linear impedance controller

around the desired state [4, 5, 41]. Differently from the λ0-PMP this latest approach

has the advantage that it does not rely on identifying a damping component and

matrix inversions, which is taken over by the introduction of a non-linear spring [5].

Therefore, the controller energy is a path independent potential field (i.e., holonomic);

thus, respecting Donders’s Law [5,20,30].

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 16, 2022. ; https://doi.org/10.1101/2021.07.06.451400doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.06.451400


Harmonic Passive Motion Paradigm 5

IK Non-Linear 
Map

Internal Models

ො𝑛 ො𝑔

𝑥𝑡𝑑 Postural 
Optimization

Task-Space 
Planning

𝑥𝑡𝑑

𝑥𝑡𝑤

𝑥𝑡𝑒

ሶ𝑥𝑑 ሶ𝑥𝑤 ሶ𝑥𝑒

∆𝑡

𝑥𝑑

𝑥𝑤

𝑥𝑒

∆𝑡

ො𝑔 ො𝜑

∆𝑡

𝐹𝑑

𝐹𝑤

𝐹𝑒

𝑞𝑡

Task-Space 
Controllers Jo

in
ts

’ A
ct

u
at

io
nJoint-Space 

Planning

Internal Models

Joint-Space 
Projections

෤𝑥𝑏 𝐾0 𝐹𝑚𝑎𝑥

∆𝑡

𝑞𝑑

𝜏𝑀

∆𝑡 𝑞

𝑥𝑣

∆𝑡

ሶ𝑞

Figure 2. The H-PMP architecture starts from the postural optimisation of the limb.

It takes into input the end-effector target for the hand xtd, and an internal model of

the task in terms of motion plane n̂ and grasp direction ĝ. The postural optimisation

generates targets for the wrist (xw) and the elbow (xe). These three targets are the

input of the task-space planners, which based on the desired velocities associated with

the task’s internal model (ẋd, ẋw and ẋe) generate the limbs’ trajectories. The limbs’

trajectories are delayed on an interval ∆t and, subsequently, passed as input to both

the IK and the task-space controllers. The IK is solved using a non-linear map which

depends from ĝ, ẋd, ẋw, ẋe, and the unit vector for wrist pronosupination φ̂, and

its output is passed to the joints’ trajectory planners to derive the desired joints’

trajectories (qd). The three task space controllers input are the desired end-effector

trajectories, their delayed visual feedback (xv), and the models’ parameters of the

non-linear impedance (x̃b, K0 and Fmax). The output forces are passed to derive the

desired joints’ torques (τM), which requires the knowledge of the joints’ configuration q.

Lastly, the qd and τM are the input of the joints’ actuation modelling the coordinated

actions of the muscle groups.

3. Harmonic Passive Motion Paradigm

The Harmonic Passive Motion Paradigm (H-PMP) is a controller architecture describing

communication from the motor cortex to its related muscle groups. The H-PMP can

integrate haptic control, but this functionality is omitted for simplicity in this work.

The H-PMP architecture is schematised in Figure 2.

3.1. Cartesian-Space Harmonic Trajectory Planning

Cartesian trajectory planning is traditionally associated to a Cost-To-Go of the basal

ganglia, usually implemented via optimisation to generate minimum jerk trajectories.

We have recently proposed a planner which employs the FIC to generate harmonic

trajectories that have been proven to capable of generating human-like kinematics on

planar arm kinematics in [4,5,13,42]. Harmonic trajectories are preferable because they

require a lower peak power compared to minimum jerk trajectories for generating the

same average velocity [4, 5]. An independent planner for each of the task-space DoF is
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implemented as an Model Predictive Controller (MPC) per unit of mass. The desired

trajectory is computed via the integration of the desired acceleration (ẍd) output from

the controller.

xd =

∫∫ t

t0

ẍd (t) dt2 (1)

where t0 is the initial time, and t is the current time. The acceleration is derived from

the following equation:

ẍd (t) =


sign (x̃t) min

(
K

Md

|x̃t| , amax

)
, Div

2Amax

x̃T0

(
xd (t− 1)−

x̃T0

2

)
, Conv

(2)

where x̃t = xt − xd (t− 1), Amax = 2v2max/x̃T0 is the acceleration computed at the

maximum displacement (x̃T0) reached in the previous divergence phase, and vmax =

1.596vd is the maximum velocity of the harmonic trajectory generating the desired

velocity vd.

3.2. Arm Postural Optimisation

The arm postural optimisation and IK exploit a recently introduced geometrical solution,

described by one of the functions of the motor cortex. We have chosen this approach

because it generates a deterministic non-linear mapping robust to singularities between

the task-space and the joint-space exploiting the kineto-static duality [43], and could be

performed by the nervous system relying on an internal model present in the cerebellum.

The definition of the optimal posture can be identified by aligning the arm plane of

motion with the task dynamics, leading to manipulability properties equivalent to a

planar 3-link arm [43].

Let us define the following unit vectors requires by the formulations of the postural

optimisation and inverse kinematics:

• x̂e is the direction of the arm link

• x̂w is the direction of the wrist vector

• x̂d is the direction of end-effector vector

• ĝ is the pointing direction

• φ̂ is the direction controlling the hand-pronosupination

• la is the arm length

• lfa is the forearm length

• lh is the hand length

• n̂ as the unit vector orthogonal to the task’s plane
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The postural optimisation equations for a left-arm can now be written as follows:

xw = xd − lhĝ
~h = x̂w × n̂

ĥ =
~h

||~h||

k =
lfa

la

l
′
a =
||xw||

2
+
l2a(1− k2)

2||xw||
µ =

√
l′ 2
a − l2

xe =

−µĥ+ l
′
ax̂w,

(
ĥ2 < 0 & xd ≥ 0

)
∧
(
ĥ2 ≤ 0 & xd ≤ 0

)
+µĥ+ l

′
ax̂w, Otherwise

(3)

The equation for the right arm can be easily obtained by inverting the signs of µĥ. The

joint angle can be derived from the following equations:

qt1 = arctan(x̂e ·R0
1y, x̂e ·R0

1x)

qt2 = arctan(x̂e ·R1
2y, x̂e ·R1

2x)

qt3 = arctan(x̂e ·R2
3y, x̂e ·R2

3x)

qt4 = arctan((x̂w − x̂e) ·R3
4y, (x̂w − x̂e) ·R3

4x)

α = ĝ × (φ̂× ĝ)

qt5 = arctan(α ·R4
5y, α ·R4

5x)

qt6 = arctan(ĝ ·R5
6y, ĝ ·R5

6x)

qt7 = arctan(ĝ ·R6
7y, ĝ ·R6

7x)

(4)

where qti is the ith joint angle of the target, Ri is the rotation matrix of the base from

of the ith link, and Ri−1
i is the base frame of the ith joint.

3.3. Joint-Space Harmonic Trajectory Planning

Joint space planners are based on a variation of the model used for the Task-Space

planning in subsection 3.1. The maximum angular acceleration and velocity are

descriptive of the maximum mechanical characteristics of each joint.

qdi =

∫∫ t

t0

q̈di (t) dt
2 (5)

The acceleration is derived from the following equation:

q̈d (t) =


sign (q̃ti) min

(
K

Md

|q̃ti| , ω̇max-i

)
, Div

2ω̇max-i

q̃T0i

(
qdi (t− 1)−

q̃ti

2

)
, Conv

(6)
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where q̃ti = qti − qdi (t− 1), ω̇max-i = 2ω2
max-i/q̃T0i is the maximum acceleration that

can be computed known the maximum angular velocity (ωmax-i) and the maximum

displacement reached in the previous divergence phase (q̃T0i).

3.4. Task-Space Interaction Control

The Task-Space interaction is a variation superimposition of multiple Fractal Impedance

controllers based on the methods tested in [4, 41]. Task-space controllers are assigned

to control the pronosupination and each of the 3-links composing the arm. They will

prescribe the effort along the kinematic chain determining the response to external

dynamics and mechanical losses. The projection of such information in joint space will

be explained in the next section.

The FIC effort (i.e, force or torque) is computed according to the following equation:

Fξ(x̃) =


Fc(x̃), Divergence

2Fc(x̃max)

x̃max

(
x̃−

x̃max

2

)
Convergence

(7)

where Fc is a generic continuous and upper-bounded force profile, x̃ is the pose error,

x̃max is maximum pose error reached during the previous divergence phase [4, 11, 42].

The chosen force profile is single sigmoidal force saturation enclosing a region of linear

impedance around the desired pose, based on the formulation proposed in [4, 42].

Fc =


K0x̃ = K0 (xd(t)− x) , x̃ ≤ 0.95x̃b
∆F

2

(
tanh

(
x̃− x̃b
Sx̃b

+ π

)
+ 1

)
+ F0, o/w

(8)

where K0 is the constant stiffness, x̃ is the end-effector pose error, ∆F = Fmax − F0,

F0 = 0.95K0x̃b, and S = 0.008 controls the saturation speed to be completed between

the last 5 % of x̃b.

3.5. Joint-Space Projections

Joint coordination is believed to be addressed via the central pattern generators of the

spinal cord, which is also responsible for the control of the reflexes due to its proximity to

the periphery. This role is modelled in the proposed method as a geometric projection of

the desired task-space forces determined by the task-space controllers shown in Figure 2.

Additionally, We have allocated this logic for the generation of the torque commands

a low level, to reduce the delay in the transmission of postural information used to

compute the Jacobians. It is worth noting that although we have omitted the reflex in

this work for simplicity, they could be implemented using the haptic algorithm presented

in [42]. The desired forces Fξ from Equation 7 are computed for the elbow Fe, the wrist

Fw, and the end-effector Fd before projecting them in the joint space using the respective
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geometric Jacobians (Je, Jw and Jd).

τe = |Je(q)T
(
FT
e 01×3

)T |
τw = |Jw(q)T

(
FT
w 01×3

)T |
τh = |Jd(q)T

(
FT
d 01×3

)T | (9)

Meanwhile the pronosupination control directly generates a torque τPS acting only on the

fifth joint controlling the pronosupination. The four torques vectors are then combined

to control the maximum torque of the joints’ actuation presented in the following section.

τM =



max(τe1, τw1, τd1)

max(τe2, τw2, τd2)

max(τw3, τd3)

max(τw4, τd4)

max(τd5, |τPS|)
τd6
τd7


(10)

where τei, τwi, τdi are the ith components of the respective vectors. This strategy

guarantees the maximum rigidity of the arm based on the output of the 4 independent

task-space controllers (3 links plus wrist pronosupination).

3.6. Joints’ Controller

The proposed control architecture describes the overall joint actuation resulting from

the muscle activity in each joint. These controllers coupled with the torque projections

described in subsection 3.5 models the muscle groups, which are coordinated muscles

that are synchronously activated to generate movement strategies and they can influence

multiple joints [44]. Therefore, each of the joints are controlled using a fractal impedance

controller generating the following joint command:

τi =


τc-i(q̃i), Divergence

2τc-i(q̃i)

q̃max-i

(
q̃i −

q̃max-i

2

)
Convergence

(11)

where τc-i is a continuous upper-bounded torque profile, q̃i = q̃d-i−qi is the error between

the current and the desired angle, q̃max-i is the maximum angular error reached during

the previous divergence phase. The torque profile (τc-i) used in this paper is:

τc-i(q̃i) =


τM-i

δqi
q̃i, |q̃i| ≤ δqi

τM-i, δqi < |q̃i| ≤ kδqi
τmax−i, |q̃i| ≥ kδqi

(12)

where τmax−i is the maximum actuation torque, δqi is angular accuracy, and k a scaling

factor. The chosen formulation allows to model the muscular activities as a change of the
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equilibrium position of a potential field generated by the agonist and antagonist muscles.

This choice is based on theoretical and experimental data showing that the antagonist

muscles group are responsible for the modulation of the joints’ impedance [4, 45].

3.7. Comparison of H-PMP with other Theories

The things that OFC and the PMP approach to motor control have in common are

that they are trying to describe the optimisation and stability of human movement by

looking at the system’s energy. However, they are choosing different representations for

the system energy, which affects both the stability of the problem and its numerical

complexity.

The OFC relies on the more general formulation Optimal Control Theory.

Therefore, the representation of the energy is detached the physical meaning of the

energy function (i.e., cost function) and does not necessarily consider the simplification

introduced by intrinsic characteristics of the physical world [26–28]. For example, does

not a priory consider that Newtonian physics is limited to Euclidean geometry; therefore,

if the system dynamics can be described in Newtonian physics, the energy can be

regarded as a priori bounded to that geometry. On the contrary, the Optimal Control

Theory is a general framework that can rely on the more general formulation for the

metric space. However, this formulation requires the introduction of constraints to bind

the solution to the physical property of the world. The non-linear dynamic constraints

of the task-space projection in the generalise coordinate (i.e., joint space) requires

introducing the projected dynamics into the problem formulation [6–8]. Therefore,

resulting in a numerical problem that is susceptible to singularity, and the identified

solution are path-dependent and cannot be generalised.

The PMP methods use a subset of Optimal Control Theory bounding the

representation to a mechanical impedance, which implies that the problem formulation

is bounded to the Riemannian Geometry of the system Lagrangian (i.e., energy) in

generalised coordinate (i.e., joint-space) [20, 29]. The main problem now is to identify

the equivalent dynamics of the system for any given task, which is mostly resolved using

projected dynamics leading to the same limitations of the OFC. For example, [20] relies

on a non-linear inverse optimisation to identify the λ0 term of the equation that is used

to introduce the task-separation principle.

The main benefit of the H-PMP is that it does not require any explicit formulation

of the system dynamics to guarantee stability, and it relies on geometric projections

based on the kineto-static duality for going back and forward from between the joint

and task space. The generated algorithm is computationally efficient because it does

not rely on numerical optimisation and projected dynamics. This is possible because the

dynamics constraints of the system’s physical properties are embedded in the controller,

and the trajectory exploits the physical space fabric to determine the optimal trajectory

for energy transport (i.e., harmonic trajectory). It is worth reminding that physical

systems are Riemmanian manifolds, which implies that by definition, the optimal way
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to transfer energy is using harmonic oscillations, and any trajectory can be described

as a superimposition of harmonics [46]. However, using the proposed approach requires

an architecture that relies on only the projection of efforts (force and torques) from the

task to the joint space and, consequently, only the projection of kinematics from the

joint to the task space. Additionally, it also requires the identifications of geometrical

solutions that are designed ad hoc on the system mechanism [42, 43]. Essential to

solving this problem is the FIC because it provides an algorithmic representation of a

stable, conservative non-linear oscillator that can be online tuned to oscillate with a

harmonic trajectory at the desired frequency and, consequently, control the movement

velocity. This characteristics are also preserved across non-linear projections [5,42], and

in presence of delays [9, 10].

To summarise, the proposed architecture in Figure 2 can be seen as an algorithmic

representation of a system composed of coordinated adjustable oscillators efficient to run

on silicon, which moves between equilibrium states using harmonic trajectories. The

hypothesis is that the motor commands arise thanks to a similar architecture where

the synchronisation occurs between neural circuits that behave as non-linear adjustable

oscillators rather than between Fractal Impedance Controllers.

4. Validation Method

The H-PMP has been validated on two arm simulators in Simulink (Mathworks, USA)

developed using the Simscape library for physics simulations, using the ode-45 solver

with a maximum time step of 1 s. The first simulator evaluates the proposed method

without accounting for the information delay. The second simulator evaluates the H-

PMP performance in the presence of delays comparable with the nervous system without

using a state estimator.

4.1. Arm Model

The arm is modelled as a 7-dof manipulator with a spherical-revolute-spherical joint

configuration. The shoulder joint has a ZYX configuration; meanwhile, the wrist joint

has an XYZ configuration. The lengths of the arm, forearm and hand are la = 0.37 m,

la = 0.32 m and lh = 0.1 m , respectively .Their masses are Ma = 4.1 kg, Mfa = 2.4 kg,

and Mh = 1 kg. Each joint has a friction coefficient of Kµ = 0.5 Nms/ deg.

4.1.1. Planner & Controller Parameters The task-space planners have been set

with a reference velocity vd = 0.5 m s−1 with a minimum Amax = 0.1 m/s2, and

K/Md = 4000 s−2 The joint-space planners have been set with a reference velocity

ωd = 0.1π rad s−1, and K/Md = 4000 s−2. The pronosupination unit vector φ̂ is fixed

at (0 0 1)T for all experiments. Similarly the pointing unit vector ĝ is also been kept

constant at (1 0 0)T for all the experiment.

The parameters of the hand’s task-space controller are K0 = 10 000 N m−1, x̃b =
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5 mm, and Fmax = 200 N. The parameters of the wrist’s task-space controller are

K0 = 6000 N m−1, x̃b = 5 mm, and Fmax = 200 N. The parameters of the elbow’s

task-space controller are K0 = 1000 N m−1, x̃b = 10 mm, and Fmax = 100 N. The

torsional reference pronosupination torque τPS has been kept constant at 15 N m, being φ̂

constant. The parameters of the joints’ controllers are k = 5, δqi = 0.0175 rad ∀i ∈ [1, 7],

and τmax = (300 300 150 150 50 50 50)TN m.

4.1.2. Information Delays The ∆t used between the task-space planning and the IK

against the task-space controller in Figure 2 is 100 ms. The delay introduced between

the joint-space planning and the joints’ actuation is also 100 ms. The delay between the

task-space controllers and the joint-space projections is 40 ms. Consequently, the delay

between the latter component and the joints’ actuation is 60 ms. The delay of the visual

feedback (xv in Figure 2) has been set to 200 ms, and the delay for the proprioceptive

feedback to the joint-space projections is 40 ms.

4.2. Clock Experiment

The clock experiment experiment is a common tool used for studying human movements

and the motor control framework [20, 28, 30, 47]. The centre of the clock is in

(0.500 0 − 0.300)m and has a radius of 15 cm. Thus, the coordinates of the 8

targets are: (0.500 0.106 − 0.406)m, (0.500 0 − 0.450)m, (0.500 − 0.106 − 0.406)m,

(0.500 − 0.150 − 0.300)m, (0.500 − 0.106 − 0.194)m, (0.500 0 − 0.150)m,

(0.500 0.106 − 0.194)m, and (0.500 0.150 − 0.300)m.

The experiment has been performed three times for each simulator to evaluate the

effect on external force fields on the arm stability, and the tracking performances. All

the simulations started from a fully extended posture aligned with the x-axis. The three

conditions are: without gravity, with gravity, and with gravity plus viscous force field

applied to the hand’s end-effect.

The formulation of the viscous force field is:

Fv =

 0 100 −100

−100 0 100

100 −100 0

 ẋe (13)

4.3. Data Analysis

The Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) are

computed for the trajectories of the task-space and joint-space controllers. The MAE

is used to evaluate the average tracking accuracy. Meanwhile, the RMSE quantifies the

impact of sporadic large errors (i.e., outliers) on the tracking performance.

The mean and the standard deviation of the ratio between the average and the peak

velocity (C = max(ẋ)/mean(ẋ)) of the task-space trajectories have been computed and

compared with the human range of CH = 1.805±0.153 [4,40,48] to validate the similarity

with human movements.
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5. Results

Figure 3. Reaching trajectories in the three considered conditions for the H-PMP

with and without delay. The trajectories in the absence of gravity are on the left.

The data recorded for the gravity scenario are in the centre. The trajectories for the

scenario of gravity plus viscous force field are on the right. We observe a general

reduction of accuracy moving from right to left.

The planned and the executed trajectories in Figure 3 show that the arm always

reaches, but there is a reduction of the tracking accuracy with the perturbation increase.

The MAE and the RMSE are reported in Table 1. The RMSE is higher, suggesting the

sporadic occurrence of large errors during the trajectory tracking. The two tracking

errors increase when introducing the delays, which is expected due to the increased

time-shift between the issuing of the command and its execution. The data also show

that the accuracy at the elbow end-effector is constrained to x̃b, but it degenerates

beyond x̃b for both the wrist and the hand controllers. Thus, suggesting that it might

be related to the accumulation of the joints’ position errors and can be compensated

by introducing a state estimator. The MSA and the RMSA in the joint-space (Table 2)

show that the errors of the first five joints are always constrained within the accuracy

set in the controllers. Meanwhile, the sixth and the seventh joints are consistently

beyond suggesting a need for an increase in the system stiffness to achieve the desired

accuracy. The joints’ errors also confirm that the task-space accuracy can be improved

by introducing a state estimator to compensate for the systematic error.

The distribution of the C values for the planned trajectory (Figure 4) are consistent

with the value of the harmonic trajectories (CHT = 1.596), and the distribution have

little variance which does not overlap with the interval measured for human movements
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MAE(x̃e) [mm] MAE(x̃w) [mm] MAE(x̃d) [mm]

No Gravity (0.3 0.2 1.1)T (6.8 2.3 3.4)T (6.8 2.3 3.4)T

Gravity (1.6 0.4 1.5)T (6.5 1.3 4.5)T (6.5 1.6 4.5)T

Viscous Field (1.7 0.6 1.5)T (6.5 1.6 4.7)T (6.5 1.6 4.7)T

No Gravity & Delay (1.5 3.6 1.8)T (7.5 6.0 6.0)T (7.5 6.0 6.0)T

Gravity & Delay (2.5 3.7 2.1)T (7.5 6.1 7.5)T (7.5 6.1 7.5)T

Viscous Field & Delay (2.7 3.8 2.1)T (6.8 6.4 8.0)T (6.8 6.4 8.0)T

RMSE(x̃e) [mm] RMSE(x̃w) [mm] RMSE(x̃d) [mm]

No Gravity (0.8 0.6 3.0)T (10.6 5.6 5.3)T (10.5 8.9 7.8)T

Gravity (2.1 0.7 3.1)T (10.5 2.8 6.0)T (10.5 8.0 9.6)T

Viscous Field (2.2 1.3 3.2)T (10.4 2.4 6.3)T (10.4 7.2 9.4)T

No Gravity & Delay (3.6 6.6 3.6)T (11.5 8.6 8.3)T (11.5 11.9 8.4)T

Gravity & Delay (4.1 6.6 3.8)T (11.4 8.8 9.5)T (11.4 12.0 10.9)T

Viscous Field & Delay (4.5 6.6 3.8)T (10.4 8.9 10.2)T (10.4 12.3 11.4)T

Table 1. The MEA and RMSE for the task-space controllers.

CH = 1.805 ± 0.153 [40]. Figure 5 presents the data for the executed trajectories

showing a substantial overlap with CH. The One-Way ANOVA has shown no significant

difference in the C values recorded in the six experimental conditions. The test p-value is

0.9442. The data considered as belonging to a single population are compared with the

human data in Figure 6, which confirms the overlap. The data in Figure 5 and Figure 6

show that the data from our simulation show a higher variability compared to both the

human data and our preliminary results obtained for a 3-link planar arm [4]. It indicates

that this variability could be related to sudden velocity peaks due to perturbation or

not optimal coordination between the different architectural components. This analysis

is confirmed by the data on the end-effector tangential velocity in Figure 7, showing

that the executed trajectories have an expected trend of a 10 to 15% increase in peak

velocity compared to the planned trajectories. However, the data also show that there

are episodically peaks that are substantially higher, which supports the hypothesis

mentioned above that they are related to local conditions due to perturbations and

lack of coordination.

6. Discussion

The results show that the H-PMP can generate human-like movements without the need

for numerical optimisation and regression of the controller parameters from the human

data. The architecture is also robust to the communication delay intrinsic to neuronal

transmission. However, the results are not perfect, and they show that the proposed

method has a higher variability of the C values compared to both human data and
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MAE(q̃) [mrad]

No Gravity (2.2 0.0 8.3 6.3 2.1 69.4 76.4)T

Gravity (1.3 4.9 3.9 5.8 2.1 69.3 76.5)T

Viscous Field (3.8 5.3 4.9 6.6 2.1 69.7 72.0)T

No Gravity & Delay (1.6 0.5 3.7 1.8 2.2 69.4 76.5)T

Gravity & Delay (1.4 4.7 3.7 4.9 2.2 70.5 76.6)T

Viscous Field & Delay (2.5 5.1 3.2 5.0 2.2 69.1 71.9)T

RMSE(q̃) [mrad]

No Gravity (7.0 0.7 20.7 11.8 3.4 72.7 79.6)T

Gravity (2.9 6.1 9.9 9.7 3.4 74.7 79.6)T

Viscous Field (10.4 6.7 12.3 10.6 3.4 73.9 76.2)T

No Gravity & Delay (4.4 1.0 9.3 3.6 3.5 72.7 79.7)T

Gravity & Delay (3.6 7.1 11.2 9.0 3.5 75.1 79.7)T

Viscous Field & Delay (5.5 8.2 6.8 9.0 3.5 73.5 76.0)T

Table 2. The MSA and RMSE for joint-space controllers.

earlier results obtained on a 3-link arm without delays [4,40]. The data analysis suggests

that this difference might be related to the need for better tuning of the architectural

parameters and better coordination in issuing the motor command. Additionally, the

analysis tracking errors reported in Tables I and II indicate that a state estimator is

needed to reduce the accumulation of error which increases the errors for x̃d beyond the

selected task’s accuracy, set with x̃b.

Nevertheless, these issues mentioned above are beyond the scope of this manuscript,

which focuses on the analysis of the feasibility and the stability of the proposed method.

Consequently, we will continue to further investigate methods which can improve the

coordination between the different architectural components and reduce systematic

errors. It is worth mentioning that the data is compared against the data of young,

healthy individuals [40] during the execution of a trivial reaching task. Therefore, these

human subjects can be assumed to be at the best of their performances considering

the health and their motor training. In fact, research data comparing hand trajectories

post-stroke and healthy subjects show how the number and relative magnitude of the

velocity peaks (i.e., sub-movements) are correlated with the pathological severity [49].

The performance of the H-PMP indicates that the proposed method is capable

of robustly generalising movements across different environmental dynamics, and it

can induce human-like movements without regression from human data. The H-PMP

integrates into a single computationally inexpensive architecture the task-separation

principle, the uncontrolled manifold hypothesis, and the EPH without using projected

dynamics and non-linear optimisation. In contrast, the λ0-PMP and the OFC rely
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Figure 4. The C value of the planned trajectories is consistent with harmonic

trajectories (CHT = 1.596) [4], which is significantly lower compared to the human

values of CH = 1.805± 0.153 [40,48], reported in green.

on numerical optimisation and projected dynamics, meaning their optimised strategies

couple the system and the task dynamics, affecting the generality of the solution.

The H-PMP is composed of a series of hierarchically semi-autonomous controllers

and planner and a deterministic non-linear mapping for postural optimisation robust

to singularities [5, 43]. The planners and controller are stable non-linear oscillators

(i.e., fractal attractor) that can be tuned online, and are robust to delays and model

uncertainties [4, 5, 9, 10, 42]. Moreover, it is also an algorithmic representation of a

Liénard system (i.e., Van der Pol oscillators and CPG) [5], which have been observed in

biological systems [2,25,37]. The non-linear mapping used for the postural optimisation

(Equation 3 and Equation 4) solves the static component of the task-separation

principle, while the Task-Space Interaction Controllers (Equation 7) account for the

dynamic interaction. This implies there exists a deterministic solution to the task

separation principle that can be learned by neural networks generating non-linear maps.

Additionally, motor strategies could be classified based on the affinity between the

network input state, which agrees with the experimental observation of the motor

synergies [50, 51]. These two characteristics are also compatible with the Adaptive

Resonance Theory (ART), which is a neural network framework capable of explaining

how the nervous system learns, classifies and adapt in changing environmental conditions

by building a non-linear representation of the knowledge [52].

In regards of the dynamic primitives, they are a concept originated in robotics

to describe robot control strategies regressed by the desired task-space dynamics and

recently borrowed by computational neuroscience to explain motor primitives in the
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Figure 5. The C value of the executed trajectories increases compared to the values

of the planner trajectories. The data show high variability of the values probably

connected to velocity peaks due to local perturbation, considering the tracking errors

reported in Table 1. The human values of CH = 1.805 ± 0.153, [40], are reported

in green, and their mean value is contained within the standard deviation in all the

experimental conditions.

contest of dynamic interaction [1, 2, 14, 17, 18]. This parallel has been suggested based

on the observation that humans synchronise with external dynamics [3, 50,53], and the

dynamic primitives provide a model-based method to regress the interaction with the

external dynamics [1, 54]. However, this also implies that the motor primitive stability

and accuracy depend on the quality of the environmental dynamics model, and they are

difficult to generalise due to the coupling of the body and environmental dynamics. An

equivalent form of regression of the control law from the desired task-space dynamics to

solve the task-separation principle is performed by both the OFC and the λ0-PMP via

numerical optimisation and projected dynamics [20, 28].

In contrast, the H-PMP deterministic mapping suggests that the dynamics

primitives can be explained by exploiting the postural optimisation to achieve the

desired alignment of the limb mechanical property with the principal direction

of the environmental attractor. Meanwhile, trajectory desired velocity and limb

stiffness modulation can be used to achieve synchronisations and desired reluctance

to perturbation, respectively. This interpretation is supported by the data collected

for studying how humans learn external dynamics, which shows that task performance

increases with the synchronisation of the human strategy with the attractor of the

external dynamics [3, 50, 55–58]. The process can be divided into three subtasks: 1)

Understanding the direction of the energy flow (i.e., attractor principal directions).
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Figure 6. Cd are the values from the planner, C indicates the values for the executed

trajectories. The One-Way ANOVA confirmed that the C values of the measured

trajectories from the different experimental condition are from the same population

(p = 0.9442). The human values of CH = 1.805 ± 0.153, [40], are reported in green.

Confirming a substantial overlap of the trajectories distributions.

2) Synchronisation with the autonomous dynamics (i.e., getting the timing right). 3)

Control the tracking accuracy (i.e., impedance modulation). It should be noted that

these are the same experiment, which used to justify the regression-based approach

mentioned above.

7. Conclusion

The H-PMP explains how the nervous system can robustly control the human body

in challenging dynamic conditions despite the substantial information delays. The

model achieves these results without any formal modelling of either the limb and

the environment dynamics. In the future, the architecture’s performance could be

further improved by introducing the haptic feedback, the state estimator and learning

algorithms for the online tuning and synchronisation of the architecture planner and

controllers.
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Figure 7. Comparing the absolute values of the desired and measured end-effector

tangential velocities in the six experiments in Figure 3. The data from the experiment

without delay are on the top row, the No Gravity experiment is on the left, the

experiments with just gravity are on the centre, and the viscous force field results

are reported on the right. The data show the characteristic bell-shaped profile;

however, the measured trajectories show sporadic peaks that are probably generated

by a combination of local perturbation and the limitations in motion coordination

introduced by fixing the controller parameters.
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