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Many fish and marine organisms are responding to our planet’s changing climate by shifting their 29 
distribution (i.e. where they are found). Such shifts can drive conflicts at the international scale and 30 
are highly problematic for the communities and businesses that depend on these living marine 31 
resources for income and nutrition. Advances in climate prediction mean that in some regions the 32 
state of the ocean, and thereby the drivers of these shifts, can be skilfully forecast up to a decade 33 
ahead. However, the potential for these forecasts to benefit ocean-dependent communities has yet to 34 
be realised. Here we show for the first time that marine climate predictions can be used to generate 35 
decadal-scale forecasts of shifts in the habitat and distribution of marine fish species, as exemplified 36 
by Atlantic mackerel, bluefin tuna and blue whiting. We show statistically significant forecast skill 37 
of individual years that outperform both persistence and climatological baseline forecasts for lead 38 
times of 3-10 years: multi-year averages perform even better, yielding correlation coefficients in 39 
excess of 0.90 in some cases. We also show that the habitat shifts underling recent conflicts over 40 
Atlantic mackerel fishing rights could have been foreseen on similar timescales. Our results show 41 
that climate predictions can be translated into information directly relevant to stakeholders and we 42 
anticipate that this tool will be critical in foreseeing, adapting to and coping with the challenges of a 43 
changing and variable future climate, particularly in the most ocean-dependent nations and 44 
communities. 45 
 46 
Our current understanding of the impacts of climate change typically focuses on the “climatic” time scale, 47 
i.e., 50 or 100 years into the future. While these timescales are of strategic value to governments and large 48 
international organisations, they are far from the seasonal, annual and decadal timescales on which 49 
regional bodies, local-governments, businesses and individuals make most of their decisions (Bruno 50 
Soares et al., 2018). The recent development of near-term climate predictions (Kirtman et al., 2013; 51 
Meehl et al., 2014; Merryfield et al., 2020) can potentially fill this gap and examples of such “climate 52 
services” can already be found on the sub-seasonal and seasonal timescales, primarily in terrestrial 53 
settings (Hewitt et al., 2012; Street, 2016; Buontempo and Hewitt, 2018). Progress on the key annual-to-54 
decadal timescales, where many strategic decisions are made, has been limited however and only the 55 
ocean currently has sufficient predictability (Yeager and Robson, 2017; Smith et al., 2020) to support 56 
such forecasts. Nevertheless, the high ocean-dependency, vulnerability and climate risk of many coastal 57 
communities and countries, particularly in the Global South (Barange et al., 2014; Golden et al., 2016; 58 
Blasiak et al., 2017), creates a pressing need for decadal-scale forecasts to support climate adaptation and 59 
sustainable development (IPCC, 2019).  60 
 61 
Realising the potential of oceanic decadal-predictability, however, requires converting climate prediction 62 
data into information that addresses the challenges directly faced by stakeholders. One such challenge, 63 
and one of the most commonly reported impacts of climate change in the ocean, is shifts in where species 64 
are found (i.e., their “distribution”). Distributional shifts have been reported from the lowest trophic levels 65 
to fish and top-predators (Poloczanska et al., 2016) and are occurring faster than on land due to the higher 66 
vulnerability of marine species to warming (Pinsky et al., 2019). Projections suggest that this trend will 67 
continue with impacts being felt globally (Barange et al., 2014; Blasiak et al., 2017; Pinsky et al., 2018; 68 
IPCC, 2019). As traditionally fished species disappear and new species arrive, local communities and 69 
fishers are required to adapt their fishing techniques, infrastructure, markets and even culinary 70 
preferences to the changed fishing opportunities. International conflicts over fishing rights can also arise 71 
as shifting fish stocks start to straddle international jurisdictions: transboundary stocks may impact as 72 
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many as 40% of exclusive economic zones in the future (Pinsky et al., 2018). Examples of such conflicts 73 
are already being seen (Spijkers et al., 2019) (e.g., the so-called North Atlantic “mackerel war” (Spijkers 74 
and Boonstra, 2017) between the European Union, Norway, Iceland and the Faroe Islands over access to 75 
Atlantic mackerel, Scomber scombrus) and are a leading cause of international disputes between 76 
democracies (Mitchell and Prins, 1999; Spijkers et al., 2019). The ability to foresee such shifts can 77 
therefore potentially hold the key to both avoiding conflict and adapting marine fisheries to a changing 78 
and variable climate. 79 
 80 
Here we demonstrate the ability to forecast shifts in the habitat and distributions of marine species on the 81 
decadal scale for the first time. We focus on three exemplar fish species in the North Atlantic that have 82 
shown well-documented distribution shifts in recent years. The Northeast Atlantic stock of mackerel 83 
supports one of the most valuable fisheries in Europe and recent distribution shifts into Icelandic and 84 
Greenlandic waters (Jansen et al., 2016) have driven the aforementioned conflict over fishing rights. 85 
Atlantic bluefin tuna (Thunnus thynnus) is a large commercially valuable and endangered top-predator: in 86 
recent years the species has shifted into the Irminger Sea and Denmark Strait (MacKenzie et al., 2014), 87 
opening up new fishing opportunities for Iceland and Greenland (Jansen et al., 2020). Blue whiting 88 
(Micromesistius poutassou) has at times been one of the world’s largest fisheries and its spawning 89 
distribution shifts regularly between the waters of the UK, Ireland, Faroe Islands and areas beyond 90 
national jurisdiction (Miesner and Payne, 2018), a potential problem in light of the UK’s departure from 91 
the EU. For each of these species we combined habitat models (MacKenzie et al., 2014; Jansen et al., 92 
2016; Miesner and Payne, 2018) (Extended Data Table 1) with existing climate prediction systems 93 
(Extended Data Table 2) to produce decadal-scale habitat predictions and verified these predictions 94 
against habitat estimated from ocean observations.  95 
 96 
We first show the ability to skilfully forecast the physical drivers that serve as inputs to the habitat models 97 
(see Methods). Sea surface temperature (SST) in the warmest month (August) is used in the mackerel and 98 
bluefin tuna predictions while sub-surface salinity (250-600 m) during the peak spawning month (March) 99 
is the primary environmental driver shaping blue whiting habitat. Predictive skill of these variables is 100 
generally high and statistically greater than zero in most parts of the domain (Fig.1), in line with more 101 
general results (e.g., annual averages) reported elsewhere (Yeager and Robson, 2017; Kushnir et al., 102 
2019). The skill also matches well with the regions relevant to each of the marine species that we 103 
consider, providing a solid base from which to develop ecological forecasts. Similar results are seen when 104 
considering the absolute error in the forecasts (Ext. Data Fig.1) rather than the correlation (Fig.1). 105 
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 106 
Fig.1|Physical forecast skill. Predictive skill of physical variables underlying ecological forecasts with a lead time of five years 107 
for a) mean August sea surface temperature (SST) and b) mean March sub-surface (250-600 m) salinity. Predictive skill is 108 
expressed as the Pearson correlation coefficient (r) between the forecast and observed values of each variable, with each grid 109 
point coloured according to the local value. Forecast skill is for the grand ensemble mean forecast, i.e., a forecast averaged across 110 
the individual realisations from all model systems. Regions where the correlation coefficient is not greater than 0 (at the 95% 111 
confidence level) are cross-hatched. Lines mark the polygons over which ecological forecasts are integrated in subsequent 112 
analyses. Ocean regions not represented by the models are shown in grey.  113 

When outputs from the climate prediction systems are used in the habitat models, we see retrospective-114 
forecast skill on both multi-annual and decadal time scales. We first integrate forecast maps of habitat 115 
over the relevant regions of interest to produce metrics of habitat area. Pearson correlation coefficients 116 
between the forecast habitat indicators and those derived from observations are generally high, up to 0.75 117 
for the forecast including all ensemble members (“Grand ensemble”, Fig. 2). This skill remains high even 118 
at decadal lead times, and is significantly greater than zero (p < 0.05) for all leads and species. Individual 119 
modelling systems can have lower performance, but the combination of models into a grand ensemble 120 
generally gives the best performance.  121 
 122 
Importantly, our ecological forecast systems also outperform alternative simpler approaches. We consider 123 
a persistence forecast, where “tomorrow is the same as today”, as a much simpler and commonly used 124 
baseline system: a valuable forecast system should have skill over and above this reference forecast 125 
(Joliffe and Stephenson, 2012). For short lead times (e.g., one-two years), persistence forecasts are 126 
generally comparable to climate predictions (Fig. 2), reflecting the high inertia of the ocean. In these 127 
cases, the improvement in skill of ecological forecasts over persistence forecasts is generally not 128 
significant or at best weak. On the multi-annual scale, however, persistence skill starts to fade while the 129 
decadal prediction systems maintain their forecast skill. For all three fish stocks considered, forecast 130 
performance for leads of three or more years is significantly greater than persistence (p < 0.05 or better), 131 
and can therefore be considered skilful. Alternative skill metrics considering the absolute errors in the 132 
forecasts (via the mean-squared error skill score) and reliability of the predictive distributions (continuous 133 
ranked probability skill score) also show significant skill across all fish stocks and for multi-annual to 134 
decadal lead times (Extended Data Fig. 2). As is common in multi-model ensemble systems (Palmer et 135 
al., 2005), the grand-ensemble habitat forecast based on all 85 members weighted equally is also 136 
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consistently the amongst the best performing forecasts (Fig. 2) reiterating the value of large ensembles in 137 
climate prediction (Smith et al., 2020).  138 

 139 
Fig. 2|Habitat forecast skill. Skill for indicator metrics of a) mackerel, b) bluefin tuna, and c) blue whiting habitat. Forecast skill 140 
is given as the Pearson correlation coefficient (r) between the forecast habitat area and that derived from observational data, and 141 
is plotted as a function of forecast lead time into the future. Forecast skill is shown for the mean forecasts of the individual 142 
models (light weighted lines) and for the grand-ensemble forecast across all ensemble members (heavy red line). The skill of 143 
persistence forecasts (heavy blue lines) are also shown for reference. Shaded areas for both these key metrics denote the 90% 144 
confidence interval: 5% of the distribution is therefore above and 5% below the shaded areas. The hypothesis that the grand-145 
ensemble forecast outperforms persistence (i.e. a one-tailed test) is tested for each lead time, and denoted with symbols at the 146 
bottom of each panel. 147 

While we capture the majority of the variability when forecasting individual years, the forecasts perform 148 
even better when considering multiple years. We calculated multi-year means of habitat estimates derived 149 
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from both the climate prediction systems and observational data, and then re-evaluated the forecast skill 150 
(Fig. 3a-c). Improvements in skill are seen for all fish stocks, reaching correlation coefficients of 0.95, 151 
0.94 and 0.74 for predictions of the decadal average (9 year window) for mackerel, bluefin tuna and blue 152 
whiting respectively. Averaging also improves some persistence forecasts but the ecological forecast 153 
system continues to be significantly better (p < 0.01 for 9 year averages across all stocks). The ultimate 154 
choice of averaging window clearly depends on the needs of the decision maker using the forecast: short-155 
term tactical planning may need the individual years, while longer-term strategic planning may require 156 
the decadal averages or the statistical distribution. Importantly and reassuringly, we show significant 157 
decadal forecast skill of both the mean (pearson correlation, MSESS metrics) and the distribution (CRPSS 158 
metric), with and without averaging.  159 
 160 
The effect of multi-year averaging on our predictions is closely linked to the source of their skill. On short 161 
timescales, process originating from atmospheric dynamics (e.g. blocking highs) strongly influence 162 
oceanic variability, especially for SST: while these processes are present in climate models, they are not 163 
predictable beyond “weather” timescales due to their chaotic nature. On longer timescales, the North 164 
Atlantic sub-polar gyre, Atlantic Multidecadal Variability, and anthropogenic warming set the background 165 
oceanographic conditions (on top of which high-frequency variability is imposed): the representation of 166 
all of these aspects of Atlantic thermohaline circulation benefit from the initialisation process in climate 167 
prediction models and are well predicted (Smith et al., 2019). The ability to capture the lower-frequency 168 
variability of the physical system also propagates into our ecological forecasts, which are clearly better at 169 
capturing multi-annual variability than interannual (e.g. Fig. 3d-f). Multi-annual averaging improves these 170 
forecasts further by filtering out the high-frequency interannual-noise, thereby increasing the relative 171 
contribution of the predictable low-frequency components. The skill of our ecological forecasts is 172 
therefore primarily due to the strong low-frequency (decadal) variability in the system, together with the 173 
ability of initialised climate prediction models to capture these slower processes.  174 
 175 
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 176 
Fig. 3|Sources of forecast skill. The skill of multi-annual forecasts (panels a-c), as characterised by the Pearson correlation 177 
coefficient (r), is shown for the grand-ensemble and persistence forecasts. In addition to the single-year values also plotted in Fig. 178 
2 (solid lines), the skill of multi-year averages (3, 5, and 9 year centred means) are also shown (broken lines with symbols). Lead-179 
time is defined as the length of time from the issuing of the forecast (1 January) to the middle of the running mean window. 180 
Multi-year forecasts are significantly better than multi-year persistence for all lead times (p < 0.01). Time-series of habitat 181 
indicators (panels d-f) show observations (triangles connected by dotted line) with their three-year running means mean (solid 182 
black lines). Habitat metrics forecast by the grand-ensemble (solid red line) with a 5-year lead time are shown with the 183 
corresponding 90% range of realizations (shaded area). Time series are shown for the full range of years used to estimate the 184 
forecast performance (i.e., 1961-2018 for mackerel and bluefin tuna, 1985-2018 for blue whiting). Panels a) and d) show results 185 
for the area of mackerel habitat around south Greenland, panels b) and e) bluefin tuna habitat south of Iceland, and c) and f) blue 186 
whiting spawning habitat west of Great Britain and Ireland. 187 

The potential value of these forecasts to users can be illustrated by considering individual events. For 188 
example, the seas around Greenland supported very little (and at times no) water that was warm enough to 189 
act as mackerel habitat at the start of the 1990s (Fig. 4a). However, from 1990 to 2010, habitat availability 190 
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of Greenlandic waters increased four-fold, ultimately facilitating the expansion of mackerel into this 191 
region (Jansen et al., 2016). Decadal forecasts issued from 1990 onwards could have foreseen first the 192 
rapid expansion, and then its subsequent slowing after 2000. Decision makers deciding whether to pursue 193 
a commercial fishery after the first catches of Mackerel in Greenlandic waters in 2011 (Jansen et al., 194 
2016) could have been encouraged by decadal forecasts that (correctly) predicted that the expanded 195 
habitat would persist for the next decade. Decadal-scale ecological forecasts of habitat changes therefore 196 
clearly have a role to play in supporting strategic decision-making in the marine sector. 197 

 198 
Fig. 4| Forecasts of habitat and distribution changes. Habitat forecasts from the best performing CESM-DPLE model system 199 
started at select times (solid coloured lines) are shown with the corresponding 90% range of realizations in this model (shaded 200 
colours area) for the area of a) mackerel habitat around south Greenland and b) blue whiting spawning habitat. Habitat metrics 201 
based on observations (see Method) in a given year are shown (triangles connected by dotted grey line) together with a three-year 202 
centred running mean (dashed black line) of these values. For b), blue whiting, the distributional area estimated from scientific 203 
monitoring surveys (red dashed line) is shown together with the spawning stock biomass (bullets at bottom of figure) estimated 204 
by the stock-assessment. An illustrative subset of predictions is shown on both panels: the full set can be seen in Fig. 3d-f. 205 

It is important to note that the ecological niche models used here represent the habitat of the individual 206 
species, and not their distribution. Habitat, in this context, corresponds to the range of potential spatial 207 
locations where the species could potentially be found, whereas distribution refers to where the species 208 
actually was (or will be) found. Many processes influence the way in which species do, or do not, use 209 
their available habitat, including competition, presence (or absence) of predators, schooling and 210 
migration, behavioural dynamics, and the need to close the life cycle (i.e. reproduce) (Guisan and 211 
Zimmermann, 2000). Furthermore, habitat is further constrained by environmental factors that are not 212 
included in these models (e.g. food quantity and quality). Forecasts of the presence of habitat should 213 
therefore be viewed as a necessary, but not sufficient, condition to observe a species at a given location: 214 
the presence of habitat does not guarantee the presence of fish. On the other hand, the absence of habitat 215 
does indeed guarantee the absence of fish. The real-world skill of predicting distribution shifts is therefore 216 
asymmetrical because these habitat models are much better at predicting absence than presence. 217 
 218 
The recent decline in the spawning habitat of blue whiting illustrates this interplay clearly (Fig. 4b). In the 219 
mid-2000s, when the blue whiting stock was at its highest recorded level, the observed area of the 220 
distribution closely corresponded to habitat estimated from oceanographic observations. While the 221 
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amount of this habitat slowly declined (a feature predicted by decadal forecast systems), the area of the 222 
distribution collapsed much more rapidly as the stock shrank due to a high fishing pressure. Recovery of 223 
the stock was accompanied by expansion of the distribution, but only back to 2/3 of the area seen earlier 224 
(as predicted by the forecast systems). Habitat forecasts can therefore be used to infer distributional 225 
changes in some instances. 226 
 227 
The interpretation of these results is influenced by the baseline forecast used. Here we used ”persistence” 228 
as our baseline, the simplest and most common ”model” for many decision makers. An alternative 229 
approach common in the scientific community is to use “uninitialized” climate projections (not 230 
predictions) as the baseline (e.g. Matei et al., 2012b). Making this comparison showed initialised 231 
forecasts to be consistently better than uninitialized forecasts for skill metrics that focus only on the mean 232 
value (i.e. Pearson correlation, MSESS), although the difference was only significant for blue whiting 233 
(p < 0.05 for lead times up to 8 years, Extended Data Fig. 3a, b). However, the ability of the initialised 234 
models to capture the probability distribution of habitat (as indicated by the CRPSS metric) was 235 
significantly better than the uninitialized forecasts (Extended Data Fig. 3c). This result is consistent with 236 
expectations (Kirtman et al., 2013): initialisation pushes the predictions towards observations and 237 
narrows their distribution compared to uninitialized models, yielding forecasts that are both more accurate 238 
and more precise. Given the well-established need to communicate both the most likely value and the 239 
potential range of values (i.e. uncertainty) together in a forecast (Bruno Soares and Dessai, 2016), the 240 
better probabilistic performance of initialised systems makes them clearly preferable to uninitialized 241 
models in these cases.  242 
 243 
While the ability to forecast habitat and distribution is potentially valuable to users, avoiding conflicts due 244 
to shifting distributions requires more than just reliable predictions. For example, stakeholders also need 245 
to have the ability to act on this information (Pfaff et al., 1999; Bruno Soares et al., 2018). Distribution 246 
shifts will often result in both “winners” and “losers” and there is therefore a natural tendency on the part 247 
of the negatively impacted party to resist change. International agreements for managing such 248 
transboundary stocks need to have sufficient flexibility to cope with distributional shifts, while at the 249 
same time ensuring the sustainability of both the agreement and the fish stock itself (Pinsky et al., 2018). 250 
Decadal forecasts of habitat and distribution can be integral to such agreements, allowing foresight and 251 
the development of adaptive measures. 252 
 253 
More generally, these results also highlight the emerging potential of marine-ecological forecasting as a 254 
climate change adaptation tool (IPCC, 2019). While we have focused here on the North Atlantic region, 255 
annual and multi-annual forecast skill is present in many other large marine ecosystems (Tommasi et al., 256 
2017) and can underpin the development of similar forecasts elsewhere. This technology is also 257 
particularly relevant to Small Island Developing States (SIDS) and the Global South, where ocean 258 
dependency and climate risk are amongst the highest in the world (Allison et al., 2009; Barange et al., 259 
2014; Blasiak et al., 2017). Regularly produced global-scale decadal-forecasts (Kushnir et al., 2019) can 260 
support relevant climate services and thereby the sustainable development and climate adaptation of these 261 
nations (IPCC, 2019), for example via the UN Decade of Ocean Science for Sustainable Development, 262 
with it’s clear focus on “A Predicted Ocean”. Decadal-scale forecasts of the ocean, and of the life in it, 263 
thereby represent a tremendous opportunity for cutting edge climate science to have a direct benefit for 264 
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the local communities, businesses and individuals that are most at risk from a changing and variable 265 
oceanic climate.  266 
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Methods  292 
 293 
Study Region We focus on the northern North Atlantic as the basis for this work. Decadal prediction 294 
experiments have shown this region to be one of the most predictable on the decadal scale (Kirtman et al., 295 
2013; Frölicher et al., 2020). Studies have shown multi-annual to decadal predictability for sea surface 296 
temperature (Matei et al., 2012b), upper ocean heat content (Yeager et al., 2012), the Atlantic Meridional 297 
Overturning Circulation (AMOC; (Matei et al., 2012a), CO2 uptake (Li et al., 2016), and the dynamics of 298 
the North Atlantic subpolar gyre (Wouters et al., 2013; Yeager and Robson, 2017; Yeager, 2020). This 299 
high underlying predictability of the physical system makes the North Atlantic an ideal candidate in 300 
which to develop decadal ecological forecasts and climate services (Payne et al., 2017; Tommasi et al., 301 
2017). 302 
 303 
Fish Species and Ecological Niche Models (ENMs) We focus on three fish species as case studies in the 304 
North Atlantic region (Extended Data Table 1); bluefin tuna (Thunnus thynnus), blue whiting 305 
(Micromesistius poutassou), and mackerel (Scomber scombrus), each of which has shown significant 306 
shifts in their spatial distribution in recent decades. For each of these species there is also an established 307 
body of knowledge and quantitative models that characterise the mechanisms underlying these shifts. 308 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.07.451446doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451446
http://creativecommons.org/licenses/by-nc/4.0/


These so-called ecological niche models (also known as species distribution models) parameterise the 309 
relationship between observations of the species and the physical environment, and are most commonly 310 
used to generate projections of habitat and distributional shifts of species under a changing climate. Their 311 
extension to predictive settings is therefore a natural one, and several applications on the near-real time 312 
and seasonal forecast scale are already established operationally (Hobday et al., 2011; Eveson et al., 2015; 313 
Payne et al., 2017; Hazen et al., 2018). 314 
 315 
Recent shifts in the distribution of mackerel are amongst the most well-known examples of fish 316 
distributional shifts. The feeding distribution of mackerel expanded northwards and westwards to Iceland 317 
in 2007 (Astthorsson et al., 2012) and Greenland in 2011 (Jansen et al., 2016), leading to international 318 
conflicts over fishing rights on this species (Spijkers and Boonstra, 2017). A wide variety of explanations 319 
for these shifts can be found, with the effects of climate change and density-dependent expansion being 320 
the most common (Olafsdottir et al., 2016; van der Kooij et al., 2016; Nikolioudakis et al., 2018). 321 
However, the distribution of mackerel is also clearly limited by temperature, with 8.5°C serving as a 322 
lower threshold (Jansen et al., 2016; Nikolioudakis et al., 2018). We therefore used the 8.5°C August-323 
mean isotherm as a threshold for the habitat of this species. We focused on the waters around Greenland 324 
(specifically the exclusive economic zone south of 70°N) as a study region: being at the range limit of 325 
mackerel, this region is the most exposed to variations in the distribution of the species. 326 
 327 
Bluefin tuna are pelagic top-predators that are widely distributed throughout the North Atlantic. The 328 
thermally suitable feeding habitat of this species expanded by 800 000 km2 from the mid-1980s to the 329 
early 2010s, leading to the first-ever observation of the species in Denmark Strait in 2012 (MacKenzie et 330 
al., 2014). Unusually for fish, they have the ability to regulate their body temperature: their core body 331 
temperature is therefore often above the surrounding waters. Data-storage tags measuring both internal 332 
and external temperatures  show that the species can dive into colder waters during the day for short 333 
periods to feed (e.g., horizontally across fronts or vertically across the thermocline), during which time 334 
the core temperature starts to drop, but then return to surface waters during the night to rest and warm-up 335 
again (Walli et al., 2009). Such studies suggest that the species therefore needs access to surface waters of 336 
at least 10-11°C to support foraging, which can be interpreted as a natural limitation on the distribution of 337 
the species and definition of habitat (MacKenzie et al., 2014). These conclusions are also seen in the 338 
results of empirical ecological niche models (Fromentin et al., 2014; Druon et al., 2016; Muhling et al., 339 
2017), that arrive at similar thresholds based on observations. Entirely independently, mechanistic 340 
bioenergetics modelling of the oxygen requirements and aerobic capacity of the species also reached a 341 
similar result (Muhling et al., 2017). Like others (MacKenzie et al., 2014; Jansen et al., 2020), we 342 
therefore employ the 11°C isotherm for the August mean (the warmest month in the region) to define the 343 
maximum limit of thermally-suitable feeding habitat for this species in the northern North Atlantic.  344 
 345 
Blue whiting is a small mesopelagic species found widely throughout the eastern North Atlantic. The 346 
species supports a large commercial fishery, primarily for industrial uses, that has varied greatly over 347 
time: in 2004 it was the world’s third largest fishery, with catches of 2.4 million tonnes (FAO, 2007). 348 
While smaller sub-populations exist, the largest stock, and the one that supports the majority of the 349 
fishery, migrates between its feeding grounds in the Norwegian Sea and spawning grounds to the west of 350 
Great Britain and Ireland in the Rockall Trough region. Spawning takes place from February to April 351 
(Pointin and Payne, 2014) and the spawning distribution varies substantially between years, expanding 352 
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and contracting on and off the Rockall Plateau (Hátún et al., 2009a). Initial work linked these changes to 353 
the large-scale dynamics of the North Atlantic sub-polar gyre (Hátún et al., 2009b); however, more recent 354 
work has narrowed this view down to the local salinity conditions (Miesner and Payne, 2018) (which in 355 
turn is shaped by the basin-scale dynamics of the gyre). This work was based on approximately 34 000 356 
observations (1100 presences) of blue whiting larvae in this region from 1951-2005 from the Continuous 357 
Plankton Recorder (CPR), which, in addition to the planktonic species for which it is best known, also 358 
regularly captures fish larvae (Corten and Lindley, 2003; Edwards et al., 2011). An ecological niche 359 
model was developed and parameterized based on this data, using latitude, day of year, bathymetry, the 360 
solar elevation angle and environmental variables (averaged over 250-600 m) as predictors. The 361 
likelihood of observing blue whiting larvae in the CPR was found to have a dome-shaped response to 362 
salinity, with larvae occurrence limited to salinities between 35.3 and 35.5 psu. This model shows good 363 
agreement with independent observations from both scientific surveys and the fishery on the stock, and 364 
currently forms the basis of operational forecasts of the spawning distribution (ICES, 2018). The full 365 
ecological niche model (Miesner and Payne, 2018) was applied here to define suitable spawning habitat 366 
for this species, but was focused on the northern component (Pointin and Payne, 2014) where most of the 367 
variability has been observed.  368 
 369 
Physical Observations Two different datasets were used as the basis for observations of the physical 370 
environment. Sea surface temperature estimates were based on the HadISST v1.1 product (Rayner et al., 371 
2003), while sub-surface salinity estimates were based on the EN4 product (v4.2.1 analysis, with 372 
Gouretski and Reseghetti (2010) corrections to the source profile data (Good et al., 2013)), both from the 373 
UK Met Office. Both products are high-quality, internationally recognized estimates of the state of the 374 
ocean covering an extended time period (HadISST: from 1860, EN4 from 1900) and are presented on a 375 
regular 1° grid as monthly averages.  376 
 377 
Decadal Forecast Models An ensemble of five decadal prediction systems was collated for this analysis: 378 
all models followed the CMIP6 Decadal Climate-Prediction Project (DCPP) protocol (Boer et al., 2016). 379 
For each decadal prediction system, a database of retrospective forecasts was available based on annual 380 
initialisations. For each of these initialisations, a fully-coupled (ocean, sea ice, land, atmosphere) model 381 
was run freely from the given starting point to generate forecasts up to 10 years after the initialisation. 382 
Multiple realisations were available for each of the initialisations for each of the model systems, to give a 383 
grand ensemble of 85 members. Details are given in the relevant references (Extended Data Table 2).  384 
 385 
Uninitialized projections. We used uninitialized climate projections from the IPCC’s CMIP6 experiment 386 
(Eyring et al., 2016) as one form of reference forecast. We selected a temporal subset of SST and salinity 387 
model outputs for the “historical” (covering the years 1960-2014) and “ssp585” (2015-2020) experiments. 388 
We used one realization from each model system, with the “Variant Label” identifier being maintained 389 
between the two experiments. Only models that fully covered the comparison period (1960-2018) were 390 
retained. Model outputs presented on sigma or density vertical axes or unstructured horizontal grids were 391 
excluded due to difficulties in incorporating them into the processing chain. Native model resolution (grid 392 
label “gn”) was used as the first preference, where available, followed by lower-resolution regridded 393 
products (“gr”,”gr1”). After this selection process, 35 models of salinity and 44 models of SST were 394 
incorporated into the analysis (Extended Data Table 3).  395 
 396 
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Data Processing Model and observational ocean (temperature and salinity) data were processed in the 397 
same manner. Data stored at multiple model levels (i.e., sub-surface salinity) were first extracted and then 398 
thickness-averaged over the 250-600-m depth range to produce two-dimensional fields for each time-step 399 
on the native model grid. The months of interest were then extracted from all fields and regridded using 400 
bilinear interpolation onto a common regular 0.5° latitude-longitude grid covering the region of interest.  401 
 402 
Observational Climatologies Extracted and regridded observational data were used to generate monthly 403 
climatologies by grid-point averaging based on the 30-year period from 1985-2014 (inclusive). This 404 
period was chosen to cover the first 30 years for which predictions were used for all three fish case 405 
studies. 406 
 407 
Bias correction. Processed model outputs were corrected for bias. Climate model outputs often show 408 
systematic biases relative to observed values that are spatially variable. In the case of climate prediction 409 
systems, these biases can also vary as a function of forecast lead time due to the “forecast drift” 410 
phenomenon associated with adjustment from the initialized state to the model attractor (Magnusson et 411 
al., 2013). Model outputs were bias-corrected following the “full field” approach, irrespective of the 412 
model initialisation technique applied (Choudhury et al., 2017). Briefly, the climatological field of each 413 
variable (salinity and SST) was calculated for a given model and forecast lead time by grid-point 414 
averaging over the same 30 year period as the observational climatologies. The individual members of the 415 
forecast ensemble were then converted into a forecast anomaly based on this climatology for a given lead. 416 
Bias-adjusted full-field forecasts were then produced by adding the appropriate observational climatology 417 
to the forecast anomaly.  418 
 419 
Ensemble Means Mean forecasts of environmental parameters for each model system were produced by 420 
averaging the forecast fields across the realisations for that forecast model. The mean across all 85 421 
realisations in the ensemble was also calculated to produce a grand-ensemble mean forecast (“Grand 422 
Ens.”): in this way, each realisation was given equal weighting in the forecast, irrespective of the model 423 
system it came from or the number of “siblings” it may have. We also considered the mean-of-model-424 
means approach, where each the mean-forecasts from each climate prediction were averaged, thereby 425 
giving each model system equal weight. However, the performance of this approach was indistinguishable 426 
from (or worse than) the grand ensemble approach, and is not presented here.  427 
 428 
Habitat Statistics The skill of the near-term forecasts was evaluated based on retrospective forecasting 429 
(also known as hindcasting: the meaning of this term can differ between fields and so is avoided here). 430 
The ecological niche models (ENM) described above were applied to the bias-corrected full-field 431 
forecasts to generate a comparable set of retrospective habitat forecasts. Where the ENM gave a binary 432 
outcome (suitable / unsuitable habitat), the total area of suitable habitat was calculated directly. The blue 433 
whiting ENM (Miesner and Payne, 2018) however returned the probability of observing larvae and 434 
calibration is therefore needed prior to calculating the spawning habitat area for the observation of adult 435 
fish: the threshold was chosen to ensure agreement between the upper quartile of the annual adult 436 
distribution areas observed and the corresponding habitat estimates. The ENMs were also applied to 437 
observational datasets to generate observationally-based estimates of the area of habitat in a given year 438 
(“observed habitat” in Figures). 439 
 440 
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Persistence and Binned Forecasts Persistence forecasts used as the primary  choice of reference 441 
forecast: a forecast is viewed as skillful if it can outperform such a baseline (Joliffe and Stephenson, 442 
2012). Persistence forecasts were generated by propagating the habitat statistics calculated in a given year 443 
forward for up to a maximum of the 10-year forecast horizon considered here. Binned forecasts (i.e., the 444 
average over a multi-year period) were calculated based on 3, 5, 7, and 9-year windows of habitat 445 
statistics from all data sources (observations, persistence, uninitialized models and forecast models), and 446 
assigned a lead time corresponding to the centre of the mean window. The skill of both binned and 447 
persistence forecasts was then assessed in the same manner as for other data sources.  448 
 449 
Forecast Verification and Skill Forecast skill was assessed by comparing the estimates of habitat based 450 
on observed environmental variables with forecasts of habitat based on the various forecast approaches. 451 
The retrospective forecast databases available differ in their length, and a common comparison period 452 
was chosen as 1961-2018 (inclusive) for SST-based variables, based on the intersection of available 453 
model-coverage. Initial explorations of salinity forecasts, however, revealed substantial inconsistencies 454 
between observational products prior to the mid-1980s that propagated into the initial conditions used to 455 
initialise the forecasts. In the absence of agreement between observational products about salinity in this 456 
region, we therefore limited the salinity comparison period to 1985-2018 (inclusive).  457 
 458 
Forecast skill was quantified using multiple metrics including the Pearson correlation coefficient (r), the 459 
Mean Squared Error Skill Score (MSESS) and the Continuous Ranked Probability Skill Score (CRPSS) 460 
between “observed” and “predicted” habitat statistics (Joliffe and Stephenson, 2012). Skill-scores were 461 
calculated relative to the mean and standard deviation of the habitat statistics over the climatological 462 
period. CRPSS scores were calculated for the grand ensemble by considering the forecasts across all 85 463 
ensemble members. Confidence intervals around each of these metrics were generated for each lead time 464 
by 1) pairwise resampling of years with replacement; 2) recalculating the appropriate metric; and 3) 465 
repeating the process 1000 times.  466 
 467 
Distribution and Abundance Data Observations of distribution shifts suitable for verifying forecasts can 468 
be challenging to obtain: scientists rarely monitor a species in an area where it is not normally found. 469 
While we were unable to find suitable datasets for bluefin tuna and mackerel, the distribution of blue 470 
whiting has been the subject of routine scientific monitoring surveys since the early 1980s: since 2004 471 
these surveys have been coordinated and standardised as the International Blue Whiting Spawning Stock 472 
Survey (ICES, 2015). Observations of blue whiting from this survey on a regular 2° x 1° grid were first 473 
used to identify the core 99% of the distribution in each year and the area occupied was then calculated. 474 
Estimates of the spawning stock biomass were obtained from the ICES Standard Graph Database 475 
(http://standardgraphs.ices.dk/) for the most recent stock assessment performed in 2020.  476 
 477 
Data availability Climate predictions and projections analysed in this study are available from the CMIP 478 
data archives https://esgf-node.llnl.gov/projects/cmip6/. CESM-DPLE data are available from 479 
http://www.cesm.ucar.edu/projects/community-projects/DPLE/. HadISST data is available from 480 
https://www.metoffice.gov.uk/hadobs/hadisst/ and EN4 data from 481 
https://www.metoffice.gov.uk/hadobs/en4/  482 
 483 
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Code availability The code used during the current study is available from the corresponding author on 484 
reasonable request. 485 
 486 
 487 
 488 
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  668 

 669 
Extended Data Fig. 1| Absolute physical forecast skill. As for Fig.1 but showing mean squared-error skill score (MSESS) 670 
(rather than Pearson correlation) as a measure of forecast skill. Predictive skill of physical variables underlying ecological 671 
forecasts showing a) sea surface temperature (SST) in August and b) sub-surface (250-600 m) salinity in March with a lead time 672 
of five years. Each grid point is coloured according to the local MSESS estimate. Forecast skill is for the grand ensemble mean 673 
forecast, i.e., averaged across the individual realisations from all model systems. Regions where the MSESS is not significantly 674 
greater than 0 (at the 95% confidence level) are cross-hatched. Lines mark the polygons over which ecological forecasts are 675 
integrated in subsequent analyses. 676 
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 679 

Extended Data Fig. 2| Additional metrics. As for Fig. 2 but showing additional metrics of forecast performance. The ability to 680 
correctly estimate the absolute habitat area is indicated by the Mean Squared Error skill score (MSESS) (panels a-c), while the 681 
Continuous Ranked Probability skill score (CRPSS) (panels d-f) indicates the probabilistic skill of the forecast distribution. Skill 682 
is shown for the habitat area of mackerel (panels a and d), bluefin tuna (b and e) and blue whiting (c and f). Skill metrics between 683 
the forecast and observed indicator values are plotted as a function of forecast lead-time into the future. Forecast skill is shown 684 
for the individual members of the model ensemble (light weighted lines) and for the grand-ensemble forecast (heavy red line). 685 
The skill of persistence forecasts (heavy blue lines) are also shown for reference where it can be defined (i.e. for MSESS): shaded 686 
areas for both these key metrics denote the 90% confidence interval. The hypothesis that the ensemble mean forecast outperforms 687 
persistence (i.e. a one-tailed test) is tested for each lead time, and denoted with symbols at the bottom of each panel. Both 688 
MSESS and CRPSS skill scores are calculated relative to the climatological statistics of each metric. 689 
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 691 

Extended Data Fig. 3|Significance levels against uninitialized forecasts. The significance of decadal forecast skill when 692 
compared against the skill of uninitialized forecasts (rather than persistence forecasts) for lead times of 0-10 years is shown for 693 
all species and for a) pearson correlation coefficient, b) the mean-squared error skill score (MSESS) and c) continuous ranked 694 
probability skill scores (CRPSS). Significance levels (1 - p values) are plotted on the vertical axis for a one-sided test that the 695 
given skill of the decadal forecast system is greater than the uninitialized skill. Note the non-linear (probit) scale on the vertical 696 
axis. Significance levels outside the axis ranges are plotted at the top or bottom of each panel.  697 
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Extended Data Table 1| Ecological niche models used in this study 699 

 700 

 701 

Extended Data Table 2|Forecast systems and ensemble sizes used in this study 702 

 703 

  704 

Species Region  Environmental 
Variable and Month 
of Interest 

Ecological Niche 
Model (ENM) 

References 

Mackerel 
(Scomber 
scombrus) 

Greenlandic 
exclusive economic 
zone, south of 
70°N 

Sea surface 
temperature in 
warmest month 
(August) 

Suitable habitat is 
warmer than 11°C 

(Jansen et al., 2016; 
Nikolioudakis et al., 
2018) 

Bluefin tuna 
(Thunnus 
thynnus) 

Irminger Sea, 
Denmark Strait and 
waters south of 
Iceland. 

Sea surface 
temperature in 
warmest month 
(August) 

Suitable habitat is 
warmer than 8.5°C 

(MacKenzie et al., 
2014; Muhling et al., 
2017; Jansen et al., 
2020) 

Blue whiting 
(Micromesistius 
poutassou) 

Rockall Trough and 
Rockall Bank, west 
of Great Britain 
and Ireland 

Salinity between 250 
and 600 m depth 
(March) 

Empirical model. 
Optimal salinity 
between 35.3 and 35.5 
psu 

(Hátún et al., 2009b; 
Pointin and Payne, 
2014; Miesner and 
Payne, 2018) 

Forecast Centre Model Name  Ocean Resolution Start dates 
Ensemble size 

References 

Bjerknes Center for 
Climate Research, 
Norway 

NorCPM1 Tripolar, 1° grid, 53 
vertical levels on density 
coordinates 

1960-2018 
20 members 

(Bethke et al., 2021) 

Danish Meteorological 
Institute, Denmark 

EC-Earth3 Tripolar 1° grid with 
meridional refinement 
down to 1/3° in the 
tropics; 75 levels 

1960-2018 
10 members 

 

(Döscher et al., 
2021) 

Max Planck Institute 
for Meteorology, 
Germany 

MPI-ESM-1.2-HER Tripolar, ~ 0.4° grid. 40 
vertical levels. 

1960-2018 
5 members 

(Müller et al., 2018; 
Mauritsen et al., 
2019) 

Met Office Hadley 
Centre, UK. 

HadGEM3-GC31-
MM 

Tripolar ~0.25° grid, 
75 vertical levels 

1960-2018 
10 members 

(Williams et al., 
2018) 

National Center for 
Atmospheric 
Research, USA 

CESM DPLE Nominal 1° horiz. with 
meridional refinement 
down to ~0.3° at the 
Equator; 60 vertical 
levels 

1955-2018 
40 members 

(Yeager et al., 2018; 
Yeager, 2020) 
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Extended Data Table 3|CMIP6 models and representative variants used as uninitialized models. Ticks indicate that the 705 
given model, variant and gridded product were used for uninitialized forecasts of either sea surface temperature (SST) or 706 
salinity. In total, 35 models were used for salinity and 44 for SST. 707 

Source ID Institution ID Variant Label Grid Label SST Salinity 
ACCESS-CM2 CSIRO-ARCCSS r1i1p1f1 gn �  
ACCESS-ESM1-5 CSIRO r1i1p1f1 gn �  
BCC-CSM2-MR BCC r1i1p1f1 gn � � 

CAMS-CSM1-0 CAMS r1i1p1f1 gn � � 

CanESM5 CCCma r1i1p1f1 gn � � 

CanESM5-CanOE CCCma r1i1p2f1 gn � � 

CAS-ESM2-0 CAS r1i1p1f1 gn �  
CESM2 NCAR r4i1p1f1 gn �  
CESM2-WACCM NCAR r1i1p1f1 gn �  
CESM2-WACCM NCAR r1i1p1f1 gr 

 � 

CIESM THU r1i1p1f1 gn � � 

CMCC-CM2-SR5 CMCC r1i1p1f1 gn � � 

CMCC-ESM2 CMCC r1i1p1f1 gn � � 
CNRM-CM6-1 CNRM-CERFACS r1i1p1f2 gn � � 
CNRM-CM6-1-HR CNRM-CERFACS r1i1p1f2 gn � � 
CNRM-ESM2-1 CNRM-CERFACS r1i1p1f2 gn � � 
EC-Earth3 EC-Earth-Consortium r1i1p1f1 gn � � 
EC-Earth3-CC EC-Earth-Consortium r1i1p1f1 gn � � 
EC-Earth3-Veg EC-Earth-Consortium r1i1p1f1 gn � � 
EC-Earth3-Veg-LR EC-Earth-Consortium r1i1p1f1 gn � � 
FGOALS-f3-L CAS r1i1p1f1 gn � � 
FGOALS-g3 CAS r1i1p1f1 gn � � 
FIO-ESM-2-0 FIO-QLNM r1i1p1f1 gn � � 
GFDL-CM4 NOAA-GFDL r1i1p1f1 gn � � 
GFDL-ESM4 NOAA-GFDL r1i1p1f1 gn � � 
GISS-E2-1-G NASA-GISS r1i1p1f2 gn � � 
HadGEM3-GC31-LL MOHC, NERC r1i1p1f3 gn � � 
HadGEM3-GC31-MM MOHC r1i1p1f3 gn � � 

IITM-ESM CCCR-IITM r1i1p1f1 gn �  
INM-CM4-8 INM r1i1p1f1 gr1 � � 

INM-CM5-0 INM r1i1p1f1 gr1 � � 

IPSL-CM6A-LR IPSL r1i1p1f1 gn � � 

KACE-1-0-G NIMS-KMA r1i1p1f1 gr �  
KIOST-ESM KIOST r1i1p1f1 gr1 �  
MCM-UA-1-0 UA r1i1p1f2 gn � � 

MIROC-ES2L MIROC r1i1p1f2 gn �  
MIROC6 MIROC r1i1p1f1 gn �  
MPI-ESM1-2-HR MPI-M, DWD, DKRZ r1i1p1f1 gn � � 
MPI-ESM1-2-LR MPI-M, AWI, DKRZ r1i1p1f1 gn � � 
MRI-ESM2-0 MRI r1i1p1f1 gn � � 
NESM3 NUIST r1i1p1f1 gn � � 
NorESM2-LM NCC r1i1p1f1 gn �  
NorESM2-LM NCC r1i1p1f1 gr 

 � 
NorESM2-MM NCC r1i1p1f1 gn �  
NorESM2-MM NCC r1i1p1f1 gr 

 � 
TaiESM1 AS-RCEC r1i1p1f1 gn � � 

UKESM1-0-LL 
MOHC, NERC, NIMS-KMA, 
NIWA 

r1i1p1f2 gn � � 
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