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SUMMARY 
 
The brain is organized into networks at multiple resolutions, or scales, yet studies of functional 
network development typically focus on a single scale. Here, we derived personalized functional 
networks across 29 scales in a large sample of youths (n=693, ages 8-23 years) to identify multi-
scale patterns of network re-organization related to neurocognitive development. We found that 
developmental shifts in inter-network coupling systematically adhered to and strengthened a 
functional hierarchy of cortical organization. Furthermore, we observed that scale-dependent 
effects were present in lower-order, unimodal networks, but not higher-order, transmodal 
networks. Finally, we found that network maturation had clear behavioral relevance: the 
development of coupling in unimodal and transmodal networks dissociably mediated the 
emergence of executive function. These results delineate maturation of multi-scale brain 
networks, which varies according to a functional hierarchy and impacts cognitive development. 
 
Keywords: Multi-scale, personalized functional networks, neurodevelopment, executive 
function, cognitive development  
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INTRODUCTION 
 

Executive function (EF) is a broad cognitive domain encompassing top-down modulation 
of behavior and attention (Jurado & Rosselli, 2007; Gur et al., 2012; Miyake et al., 2000). 
Compared to earlier-developing cognitive domains, such as episodic memory and motor abilities, 
EF undergoes extensive, protracted development in youth prior to declining later in life (Fjell et 
al., 2017; Best & Miller, 2010; Simmonds et al., 2017). Deficits in the development of EF are 
associated with lower academic achievement (Arffa, 2007; Best et al., 2011), risk-taking 
behaviors (Casey et al., 2008), and most major psychiatric illnesses (Snyder et al., 2019; 
Shanmugan et al., 2016; Millan et al., 2012). Because EF requires functional coordination among 
networks of spatially distributed regions (Niendam et al., 2012; Rottschy et al., 2012; Tan et al., 
2018; Murphy et al., 2020), the development of EF is increasingly understood to be dependent on 
the maturation of multiple large-scale functional networks (Baum et al., 2017; Di Martino et al., 
2014; Luna et al., 2015). Consequently, understanding functional network development is 
essential for any account of how EF develops in youth.  

In adulthood, variability in functional network properties is parsimoniously explained by 
a sensorimotor to association axis (Sydnor et al., 2021); this axis captures variance in network 
architecture, the spatial ordering of networks on the cortex, and diversity in network-supported 
faculties and behaviors (Margulies et al., 2016). Further, this axis is thought to support 
hierarchical information propagation between unimodal networks involved in immediate 
perception to transmodal networks supporting complex cognition (Mesulam et al., 1998; Murphy 
et al., 2019; Murphy et al., 2018). Complex cognition, including EF, is hypothesized to partially 
depend on the segregation of networks located at the top of this functional hierarchy from 
primary somatosensory activity (Buckner & Krienen, 2013; Mesulam et al., 1998). Indeed, prior 
studies have reported that the default mode network (DMN; situated at the transmodal end of the 
axis) segregates from other networks during development, which in turn supports the 
development of EF (Barber et al., 2013; Sherman et al., 2014; Anderson et al., 2011; Owens et 
al., 2020). Nonetheless, results remain heterogenous, and the degree to which fundamental 
properties of cortical hierarchy impacts network development remains unclear (Zhong et al., 
2014; Marek et al., 2015; Reinenberg et al., 2015; Dwyer et al., 2014). This lack of consensus 
across existing work may arise due to two limitations that are shared across prior studies. 

First, nearly all studies of functional network development only examine a single network 
resolution, or scale. Typically, investigators use standard network atlases that specify a single 
number of functional networks (e.g., 7, 14, or 17). However, it is increasingly recognized that the 
brain is a multi-scale system, and that studies of a specific resolution of sub-networks may be 
limited (Brittin et al., 2021; Betzel and Bassett, 2017; Douglas and Martin, 2012; Eickhoff et al., 
2018; Breakspear and Stam, 2005). Rather, evidence suggests that brain network organization 
emerges from neural coordination across overlapping spatial scales (Yeo et al., 2014; Faskowitz 
et al., 2020; LaBar et al., 1999). Importantly, distinct brain-behavior relationships may be present 
at different scales (Betzel et al., 2019), with each scale potentially offering complementary 
information regarding multifaceted processes such as development. As a result, current accounts 
of brain development that rely on a single network scale are almost certainly incomplete and may 
hamper our ability to synthesize findings across studies where different scales were examined 
(de Reus & van den Heuvel, 2013; Arslan et al., 2018).  

A second key limitation of prior studies of functional network development is that they 
have not accounted for individual differences in the spatial layout of brain networks on the 
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cortical mantle. Multiple independent studies in adults using different datasets and distinct 
methods have provided convergent evidence that there is prominent between-individual 
variability in the spatial distribution (i.e., the functional topography) of large-scale networks on 
the anatomic cortex (Bijsterbosch et al., 2018; Kong et al., 2019; Li et al., 2019; Gordon et al., 
2017). In studies of adults, transmodal association networks tend to have the greatest variability 
in functional topography (Kong et al., 2019; Li et al., 2019; Gordon et al., 2017; Xu et al., 2016); 
recent work has shown that this is also true in children and adolescents (Cui et al., 2020). 
Accounting for such individual variation in functional topography may be critical for 
understanding the development of coupling between networks, as prior work has shown that 
differences in topography can be aliased into estimates of connectivity (Bijsterbosch et al., 2018; 
Burger et al., 2021). Furthermore, individual-specific–or “personalized”–networks may be 
particularly relevant when evaluating development at multiple scales, as individual variation in 
topography might depend in part on network resolution (Braga & Buckner, 2017; Steinmetz & 
Seitz, 1991). 

In this study, we sought to understand how multi-scale cortical networks, occupying 
diverse positions across the sensorimotor-association axis, mature with age to support EF. We 
evaluated the development of multi-scale personalized networks in a large sample of youth, with 
the goal of testing three interrelated hypotheses. First, we hypothesized that across scales, 
patterns of network development would vary across the sensorimotor-association axis, with 
transmodal networks exhibiting functional segregation relative to unimodal networks. Second, 
we predicted that transmodal network segregation would in part mediate the maturation of EF in 
adolescence. Finally, we expected to find evidence of multi-scale network development. 
Specifically, given the diverse functions supported by brain organization at different scales, we 
anticipated that different network scales would have distinct associations with both age and EF. 

 
 

RESULTS 
 
We studied 693 youths ages 8-23 years from the Philadelphia Neurodevelopmental 

Cohort, who completed functional MRI (fMRI) at 3T and had 27 minutes of high-quality data 
(Satterthwaite et al., 2014; Cui et al, 2020). To derive multi-scale personalized functional 
networks, we used a specialized adaptation of non-negative matrix factorization (NMF) that 
incorporates spatial regularization (see Methods, Figure S1; Lee and Seung, 1999, Li et al., 
2017). To ensure correspondence of personalized networks across participants, this process was 
initialized by creating a group atlas, which was then adapted to each individual’s data (see 
Methods). To evaluate multiple resolutions, group atlases that included between 2 and 30 
networks were created (Figure 1 and Figure S2A). Across this range of scales, reconstruction 
error declined smoothly (Figure S2B). 
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Figure 1: Group consensus functional networks at multiple scales. We used regularized non-negative matrix factorization 
(see Supplementary Figure 1) to derive personalized functional networks at 29 scales (2-30 networks). Tracking network 
membership of each vertex across scales reveals a nested structure where finer-grained networks gradually emerge from coarse 
networks (top). Scales 4, 7, 13, and 20 are chosen for visualization; see bottom panel for cortical projections. Colors reflect each 
network’s predominant overlap with a canonical atlas of 17 functional networks (Yeo et al., 2011).  
 

Examination of multi-scale personalized brain networks revealed prominent differences 
in person-specific functional neuroanatomy at all scales (Figure 2A and Figure S3). Prior work 
at a single scale found that variability in functional neuroanatomy disproportionately localizes to 
transmodal association cortices (Kong et al., 2019, Cui et al., 2020). Here, to quantify individual 
variability in network topography, we calculated the median absolute deviation (MAD) of 
network loadings at each cortical vertex across participants. To verify that variability was 
consistently greater within transmodal cortex at multiple scales, we compared network MAD at 
each scale to a widely used map summarizing a unimodal sensorimotor to transmodal association 
axis of cortical organization, derived from the principal gradient of functional connectivity 
(Margulies et al., 2016). Using a conservative spin-based spatial randomization procedure that 
accounts for spatial auto-correlation (Alexander-Bloch et al., 2018), we found that MAD was 
positively correlated with the unimodal-to-transmodal axis in 27 of the 29 scales evaluated 
(Figure 2B; green). Furthermore, we found that topographic variability became increasingly 
correlated with this axis at finer scales (Figure 2C; r = 0.56, pboot < 0.001). These results 
demonstrate that variability in functional neuroanatomy is particularly prominent within 
transmodal cortices at finer-grained network resolutions. 
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Figure 2: Variability in personalized networks across scales. A) Variability in personalized networks is greatest in transmodal 
cortex across scales. Exemplar personalized networks at scales 4, 7, 13, and 20 are shown for three participants. Prominent 
individual differences in functional topography are present at all scales, as quantified by median absolute deviation (MAD) of 
functional network loadings across participants (bottom row, z-scored within each scale). B) Variability of functional topography 
aligns with a unimodal-to-transmodal axis. Spin-tests of the correlation between topographic variability and the principal 
functional connectivity gradient (Margulies et al., 2016) at each scale reveal that variability is significantly correlated with a 
unimodal-to-transmodal axis at most scales (green dots = significant correlations; yellow dots = non-significant correlations; 
black dots = spin-test null correlations). C) Greater alignment between a unimodal-to-transmodal axis and topographic variability 
is present at finer scales. Scatterplot depicts second-order correlation of variability (MAD) and the principal gradient (from B) 
across scales.   
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Brain network coupling develops according to a hierarchical unimodal-transmodal axis 
Having defined multi-scale personalized networks in a large sample of youth, we next 

sought to examine how network coupling evolves with age. To summarize functional coupling of 
each network to other networks, we averaged between-network connectivity values across all 
personalized networks at each scale (Figure S4). Given that the hierarchical sensorimotor to 
association axis represents a principal mode of functional coupling in adults (Margulies et al., 
2016), but not in infants (Larivière et al., 2020) or children (Dong et al., 2020; Nenning et al., 
2020), we hypothesized that age-related changes in between-network coupling would vary 
according to this axis. Specifically, we expected that functional network development should 
differ across the axis in a manner that differentiates coupling patterns in unimodal sensorimotor 
and transmodal association cortices. To test this hypothesis, we first evaluated each networks' 
position along this principal axis as the "transmodality" of that network, where higher values 
correspond to regions located in transmodal association cortices and lower values are assigned to 
regions in unimodal sensorimotor cortices (Figure 3A). Transmodality was operationalized by 
extracting the average value of a published map of the principal gradient of functional 
connectivity (Margulies et al., 2016) within each network’s boundaries. We related all network-
level age effects to this measure of transmodality.  

Across all participants and independent of age, average between-network coupling was 
positive in more unimodal cortices and negative in more transmodal cortices (Figure 3B). To 
rigorously model linear and nonlinear changes in coupling over development, we used 
generalized additive models (GAMs) with penalized splines to examine how between-network 
coupling of each network was associated with age. In these models, sex and in-scanner motion 
were also included as covariates. We found that age-related changes in between-network 
coupling were largely explained by a network’s position in the functional hierarchy. Between-
network coupling of unimodal cortex became more positive at older ages, indicative of greater 
network integration. In contrast, between-network coupling in association cortex became more 
negative, reflecting increasing segregation. A network’s position on the functional hierarchy 
explained most of the variance in observed developmental effects (Figure 3C; r = -0.84, pboot < 
0.001). Together, these results suggest that the development of between-network coupling in 
youth is largely described by dissociable processes of segregation and integration across the 
sensorimotor to association axis. 

Next, we sought to identify intervals of significant age-related change in network 
coupling. To accomplish this, we calculated the confidence interval of the derivative of the 
developmental curve for each model. We found that age-related changes in unimodal and 
transmodal functional networks occurred over different developmental periods: between-network 
coupling increased in unimodal areas over the entire age range studied, whereas decreases in 
between-network coupling in transmodal areas did not extend beyond adolescence (Figure 3D). 
Consequently, in addition to differences in the sign of developmental changes described above, 
the temporal span of maturation in network coupling also systematically varied across the 
principal axis of cortical organization.   
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Figure 3: Network development in youth unfolds along a functional hierarchy. A) We define functional hierarchy according 
to the widely used principal gradient of functional connectivity from Margulies et al. (2016), which describes each location on 
the cortex on a unimodal-to-transmodal continuum (referred to as the “transmodality” value). B) Between-network coupling is 
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modeled for every network at each scale using Generalized Additive Models (GAMs) with penalized splines to account for linear 
and nonlinear effects of age. Each solid line represents the developmental pattern of one network at one scale; colors indicate the 
average transmodality value within that network. Dashed lines and corresponding brain maps represent estimated between-
network coupling at each age, averaged across scales. Between-network coupling of unimodal networks (purple lines) increases 
with age, indicating increased integration. In contrast, the coupling of transmodal networks (yellow lines) declines with age, 
reflecting increased segregation. C) Age effects of each network (from B) are plotted versus their average transmodality (from 
A). Networks that do not display significant change over development are shaded in gray (QFDR > 0.05). The position of each 
network on the functional hierarchy explains the majority of variance in age effects (r = -0.840, β = -0.012, pboot < 0.001). D) We 
quantified the duration, magnitude, and direction of maturational changes in coupling for each network using the derivatives of 
the fitted splines (from B). Top: annualized change in between-network coupling at 10, 16, and 21 years old, averaged across 
scales. Bottom: change per year in average between-network coupling of each network across the age range studied; as in B, each 
line represents the developmental pattern of a given network at a single scale. While integration of unimodal networks increases 
over the entire age range sampled, segregation of transmodal networks generally plateaus near the end of adolescence. 
 

To provide a more nuanced understanding of the maturational changes in between-
network coupling described above, we next evaluated development of specific connections 
between networks. As between-network connections can link networks that have a similar 
position along the principal axis (i.e., two transmodal association networks) or may alternatively 
link a unimodal and transmodal network, we calculated the difference of the transmodality 
values of the two networks connected by each edge. As the principal axis captures variance in 
cortical coupling, we expected networks similarly positioned along this axis to share a degree of 
this variance. As expected, we found that networks with similar transmodality values had greater 
mean coupling, and networks with high transmodality differences tended to have weaker 
coupling across participants (r = -0.57, pboot < 0.001; Figure 4A). Critically, we additionally 
found that age-related changes in network edges were also explained by differences in network 
transmodality (r = -0.49, pboot < 0.001; Figure 4B). Specifically, unimodal-to-unimodal edges 
tended to strengthen with age, whereas edges that linked unimodal and transmodal networks 
weakened (Figure 4C; pboot < 0.001); developmental strengthening of transmodal-to-transmodal 
edges was present but less prominent. These results demonstrate that functional network 
development is characterized by increases in coupling between hierarchically similar networks 
and decreases in coupling between dissimilar networks — yielding increased differentiation 
along the functional hierarchy with development. 

It should be noted that previous studies have documented that the physical distance 
between two brain regions explains the patterning of functional maturation across network edges 
(Fair et al., 2007, Power et al., 2010; Ma et al., 2021). As the principal axis is related to the 
intrinsic geometry of the cortex (Oligschläger et al., 2017; Huntenburg et al., 2018), we sought to 
verify that the effects of transmodality difference described above were not better explained by 
physical distance. To do so, we compared the correlation between age effects and Euclidean 
distance with the relationship between age effects and transmodality difference. While the 
correlation between Euclidean distance and age effects was significant (r = -0.11, pboot < 0.001; 
Figure S5), it was substantially weaker than that observed for transmodality difference (r = -
0.49, pboot < 0.001) and the effect of transmodality difference remained significant while co-
varying for Euclidean distance (partial r = -0.45, p < 0.001). This result suggests that although 
the physical distance spanned by a functional connection is weakly related to its developmental 
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pattern, developmental effects are better explained by 
the functional distance that an connection spans across 
the sensorimotor to association axis. 
 
Figure 4: Maturation of between-network coupling aligns with the 
position of each network in the functional hierarchy. A) Mean 
between-network coupling is largely captured by relative position along 
the sensorimotor to association axis. The inter-network coupling of each 
pair of networks at each scale is modeled using a GAM to estimate their 
values at age 8. Here, those values are plotted versus the difference in 
the mean transmodality values of the two networks being connected. 
Each data point represents the coupling of a network pair at a given 
scale. Each half of the circle is colored according to constituent 
networks’ maximum overlap with the 7-network solution defined by 
Yeo et al. (2011); network pairs that do not significantly change with 
age after FDR correction (Q < 0.05) are shaded in gray. As expected, 
networks at a similar position along the unimodal-to-transmodal axis 
tend to have higher coupling (r = -0.568, β = -0.012, pboot < 0.001). B) 
Age effects quantifying the development of between-network coupling 
is similarly aligned with the relative position of networks along the 
unimodal to transmodal gradient. Age effects of every network pair at 
each scale are plotted versus their transmodality difference and colored 
as in A. Network pairs without significant age effects are plotted in gray. 
Developmental effects on pairwise coupling between networks are 
associated with the transmodality difference between networks (r = -
0.49, pboot < 0.001). C) Top: schematic summarizing developmental 
effects. Development is associated with strengthening of unimodal-to-
unimodal network coupling and weakening of unimodal-to-transmodal 
coupling; thicker lines represent greater functional coupling. Bottom: 
topographical plot of the observed age effect as a function of absolute 
(rather than relative) network transmodality values across all network 
pairs. Increased coupling with age between functionally similar 
networks is prominent for unimodal networks (bottom left), and less 
prominent for transmodal networks (top right). Age-related decreases in 
coupling occur in unimodal-transmodal network pairs (top left and 
bottom right). 
 
Development has dissociable signatures at different 
networks and scales   

The above results demonstrate that functional 
network development is largely captured by a 
network’s position on a hierarchical axis of unimodal-
to-transmodal function. However, these analyses are 
agnostic to the multi-scale nature of the personalized 
brain networks that we constructed. As a next step, we 
evaluated whether developmental effects were 
dependent on network scale. Initial inspection 
revealed that the relationship between age and 
between-network coupling varied systematically as a 
function of scale, with greater age effects in the 
somatomotor cortex at finer network scales (Figure 
5A). To quantify scale effects while controlling for 
within-subject correlations over scales, we used 
generalized estimating equations (GEEs) with 
exchangeable correlation structures at each cortical 
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vertex. We found that the effect of scale on between-network coupling was strongest in the 
somatomotor cortex (Figure 5B). Furthermore, we found evidence that scale moderated age 
effects, with maximal scale-by-age interactions being observed in the somatomotor cortex 
(Figure 5C). 

To further understand these scale-dependent age effects, we compared the age effect 
across scales for networks that fall at opposite ends of the sensorimotor-to-association axis. 
Specifically, at each scale we identified networks that aligned most closely with the 
somatomotor-A network and the default mode-B network from the commonly used atlas defined 
by Yeo et al. (Figure 5D). This comparison revealed that age effects within the somatomotor 
network were highly scale-dependent, with greater increases in between-network coupling with 
age at finer scales. In contrast, default mode networks demonstrated consistent developmental 
segregation across scales. These results suggest that age-related changes in network coupling are 
differentially impacted by scale across the principal axis.

 
 

Figure 5: Impact of network scale on development is maximal in somatomotor cortex. A) The effect of age on average 
vertex-wise between-network coupling at two scales (4 and 20). Age effects are modeled using GAMs with penalized splines; 
thresholded at QFDR < 0.05. Scale-dependent age effects can be observed in somatomotor cortex: while no developmental 
increase in between-network coupling was seen in somatomotor cortex at scale 4, such an increase is evident at scale 20. B) 
Across ages, between-network coupling of the somatomotor cortex is strongly influenced by scale. Generalized estimating 
equations (GEEs) reveal that the effect of scale (χ2) differentially influences the strength of between-network coupling across the 
cortex. Locations within unimodal somatomotor cortex exhibit the strongest scale-dependence in their mean between-network 
coupling (QFDR < 0.05). C) Scale differentially impacts age-dependent developmental associations with coupling across the 
cortex. GEEs are used to examine the degree of scale-moderated developmental effects (age-by-scale interaction; thresholded at 
Q < 0.05); maximal effects are present in the somatomotor cortex. D) Scale differentially impacts age-dependent developmental 
effects in transmodal and unimodal networks. Specifically, age effects in unimodal somatomotor networks tend to be more scale-
dependent than those in transmodal networks. The effect of age across scales is plotted for networks predominantly overlapping 
with the most unimodal (blue; Somatomotor A) and most transmodal (red; Default Mode B) networks. 
 
Multi-scale network coupling is associated with executive function 

Having delineated developmental changes in between-network coupling, we next sought 
to understand the implications for individual differences in executive function (EF). First, we 
modeled the association between network coupling and EF, controlling for developmental effects 
by including age as a penalized spline; other model covariates included sex and motion as in 
prior analyses. We found that the relationship between EF and between-network coupling was 
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quadratically related to transmodality (Figure 6A; pboot = 0.003); this quadratic pattern was 
markedly different than the linear relationship between transmodality and age effects (see Figure 
3C for comparison). Specifically, decreased between-network coupling at both extremes of the 
principal axis was associated with greater EF, with maximal effects being seen in somatomotor 
and default mode networks. In contrast, greater coupling of several visual, ventral attention, and 
fronto-parietal networks were associated with greater EF. 
 To further understand these effects, we next performed high-resolution analyses at each 
cortical vertex to better understand associations between EF and between-network coupling 
across scales. Consistent with network-level results, reduced between-network coupling in 
default mode regions like the medial prefrontal cortex and precuneus was associated with greater 
EF across scales (Figure 6B). In contrast, greater between-network coupling in the dorsolateral 
prefrontal cortex, anterior insula, and calcarine fissure were associated with greater EF across 
scales. Somatomotor cortices again exhibited scale-dependent associations: higher between-
network coupling in somatomotor cortex was associated with reduced EF, but only at finer 
scales. To further assess the impact of network scale, we used GEEs to examine whether there 
was an interaction between EF and scale on between-network coupling at each cortical location. 
This analysis revealed prominent scale effects, primarily in somatomotor cortices (Figure 6C). 
To further illustrate the differential effects of network scale, we again contrasted networks that 
lie at opposite ends of the unimodal-transmodal axis (Figure 6D). We found that network scale 
did not moderate the association between default mode network coupling and EF; greater default 
mode segregation was associated with better EF across all scales. However, somatomotor 
network associations with EF were highly dependent on network scale. 

Having found evidence of both scale-dependent and scale-independent associations 
between EF and network coupling, we next examined the degree to which these complex 
patterns of coupling could jointly predict individual differences in EF. To do so, we fit a 
multivariate ridge regression model to predict EF using data from all scales, while controlling for 
age and in-scanner motion. We found that this multivariate model accurately predicted EF in 
unseen data (see Methods; Figure 6E; r =0.524, ppermut < 0.001). These results emphasize that EF 
is supported by multi-scale patterns of functional coupling. 
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Figure 6: Multi-scale network coupling is associated with executive function. A) Network-level relationships between 
coupling and EF are quadratically related to transmodality. Specifically, segregation of both somatomotor and default-mode 
networks is associated with better EF. These associations with EF are dissociable from normative developmental effects (Figure 
3C) where default mode segregation and somatomotor integration are observed. B) Analyses at scales 4 and 20 reveal differing 
associations with EF. While between-network coupling of visual, insular, and dorsolateral prefrontal cortical areas is consistently 
associated with greater EF (QFDR < 0.05), opposite associations with EF were present in motor cortex at coarse and fine scales. C) 
Tests of age-by-scale interactions using GEEs reveal that scale effects are strongest in the somatomotor cortex. D) Scale 
differentially impacts EF associations with coupling in transmodal and unimodal networks. As for age, effects in unimodal 
somatomotor networks tend to be more scale-dependent than those in transmodal networks. The effect of age across scales is 
plotted for networks predominantly overlapping with the most unimodal (blue; Somatomotor A) and most transmodal (red; 
Default Mode B) of the Yeo 17 networks. E) Complex patterns of multi-scale coupling between personalized networks accurately 
predicts EF in unseen data. Cross-validated ridge regression with nested parameter tuning was used to predict EF of unseen data 
using each participant’s multivariate pattern of coupling across scales.  
 
Multi-scale network development mediates the development of executive function  
 The prior analyses revealed associations between coupling and EF while controlling for 
age. However, as in prior studies, we found EF develops dramatically in youth (Figure 7A; r = 
0.41, p < 0.001). Accordingly, we evaluated whether maturation in coupling between multi-scale 
personalized networks mediated the development of EF with age (Figure 7B). Critically, our 
prior results revealed that association networks become more segregated with age, and that 
greater segregation is associated with better EF. In contrast, somatomotor networks become 
more integrated with age, but greater integration is associated with lower EF. Consequently, we 
anticipated that networks at opposite ends of the unimodal-transmodal functional axis would 
have dissociable mediation effects. Mediation analyses revealed that while decreased coupling in 
more transmodal networks supports the development of EF, increased age-related coupling in 
more unimodal networks suppresses the development of EF (Figure 7C; r = 0.68, pboot < 0.001). 
Finally, we tested whether these mediation effects were scale dependent. We found that scale 
moderated these mediation effects within unimodal somatomotor networks. At finer scales, 
unimodal network integration attenuated developmental gains in EF (Figure 7D). Together, our 
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findings suggest that multi-scale development of network 
coupling mediates the development of EF. Notably, the 
impact of each network’s development on EF was 
explained by its position on the sensorimotor to 
association axis. 
 
Figure 7: Multi-scale functional maturation mediates the development 
of executive function in youth. A) EF improves with age. As expected, age 
is significantly correlated with EF in youth (r = 0.41, p < 0.001). B) We 
evaluated a mediation model in which the association between age and EF is 
mediated by functional network refinement. C) Network-level mediation 
effects align with functional hierarchy. Negative mediation effects (AB 
coefficients) are present in unimodal networks, whereas positive mediation 
effects are present in transmodal networks. This pattern suggests that greater 
integration of unimodal networks with age is associated with lower EF, 
whereas greater segregation of transmodal networks is associated with 
higher EF. D) Mediation effects differ by scale in unimodal networks. 
Mediation weights are plotted as a function of scale for networks 
predominantly overlapping with the most unimodal and transmodal 
networks. Instances where network mediation effects do not survive FDR 
correction are denoted by desaturated points. Again, the strength of 
mediation effects is scale dependent in somatomotor networks. In 
somatomotor networks, the strength of negative mediation effects is greatest 
at finer scales. 
 
 
DISCUSSION 

 
In this study, we demonstrated that variation in 

the development of person-specific functional networks 
is intrinsically related to fundamental properties of brain 
organization. Specifically, we found that developmental 
patterns differentially unfold along the hierarchical 
sensorimotor to association axis of organization: 
unimodal somatomotor networks became more 
integrated with age, while transmodal association 
networks became more segregated. This dissociable 
pattern of maturation had unique relevance for the 
development of cognition: while greater segregation of 
association networks was associated with better EF, 
developmental integration of unimodal networks was 
associated with worse EF. By examining functional 
network development and associations with EF across a 
range of macroscale networks, we additionally identified 
scale-dependent effects, which were predominantly 
present in somatomotor networks. Taken together, these 
results provide a new framework that incorporates multi-
scale cortical organization for understanding how 
functional network maturation allows for the 
development of cognition in youth. 
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Functional network development differs by position in a unimodal to transmodal hierarchy 
Previous work in adults (Gordon et al., 2017; Kong et al., 2019; Li et al. 2019) has 

established that between-individual variability of functional topography is greatest in association 
cortex. In our prior report (Cui et al., 2020), we demonstrated that this is also true in youth. Such 
marked variability of functional topography in transmodal cortices may be a result of protracted 
and environmentally sensitive development in higher-order cortices, facilitating continuous 
adaptation to individual-specific needs (Buckner & Krienen, 2013; Vainik et al., 2020). Here, we 
extended prior findings by demonstrating that topographic variability aligns with a unimodal-to-
transmodal axis across multiple network scales. Furthermore, we found that variability of 
functional topography increasingly localizes to transmodal association cortex as the number of 
functional networks increases. As this scale-dependency might be just one of many shifts in 
between-participant variability over scales (Bijsterbosch et al., 2020; Betzel et al., 2019), our 
results highlight the importance of scale and precision functional mapping techniques for 
investigations of individual differences in functional network coupling. 

We found strong evidence that developmental changes in between-network coupling 
align with sensorimotor to association axis. Even prior to adolescence, unimodal networks 
tended to have greater between-network coupling, which was primarily driven by their coupling 
with other unimodal networks. In contrast, transmodal networks were more functionally 
segregated even among the youngest of our participants. From ages 8 to 23 years, this pattern 
became more prominent: between-network coupling further strengthened in unimodal networks 
and weakened with age in transmodal networks. Together, these developmental effects served to 
further distinguish the functional hierarchy that is now well described in adults, and broadly 
aligns with recent reports using independent methods and datasets (Dong et al., 2020; Nenning et 
al., 2020). This functional differentiation of cortical hierarchy over development is consistent 
with evidence that cortical myeloarchitecture further differentiates between unimodal and 
transmodal regions during adolescence (Paquola et al., 2019), and that transmodal structural 
networks become increasingly dissimilar from unimodal networks with age (Park et al., 2021). 
Coupling between hierarchically similar networks may be partially attributable to the 
propagation of cortical waves along functional hierarchies (Mitra and Raichle, 2016; Matsui et 
al., 2016; Gu et al., 2021); however, additional research is needed to examine how such waves 
evolve in development. Taken together, our results suggest that functional network development 
in youth both aligns with and strengthens the sensorimotor to association axis seen in adulthood.  
 
Functional network differentiation supports executive function 

EF is supported by coordinated recruitment of distributed networks of brain regions 
(Shine et al., 2019; Satterthwaite et al., 2013a; Tan et al., 2018; Murphy et al., 2020). We found 
that segregation of networks located at the two opposing ends of the sensorimotor to association 
axis (i.e., somatomotor and default mode networks) was associated with cognitive performance. 
Conversely, we demonstrated that increased integration of networks more centrally positioned 
within the axis supported EF. As such, two dissociable patterns of normative network 
development observed across the cortical functional hierarchy differentially impact the 
development of EF. Specifically, whereas normative developmental segregation of transmodal 
association networks was positively associated with EF, unimodal integration was positively 
associated with age but negatively associated with EF. These results in part explain the existing 
heterogeneous literature, which has reported that refinement of both functional network 
segregation and integration is important for neurocognitive development (Baum et al., 2017; 
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Sherman et al., 2014; Grayson and Fair, 2017; He et al., 2019). However, our results also specify 
that the degree to which developmental integration versus segregation is advantageous for EF 
may largely depend on a network’s role within the functional hierarchy. 

That both somatomotor and DMN segregation were associated with greater EF accords 
with recent work demonstrating that the overall balance of network activity shifts across the 
functional hierarchy when individuals are engaged in externally oriented versus internally guided 
cognition. Prior work has shown that localized activity within unimodal networks at the bottom 
of the hierarchy supports cognition when it is reliant on immediate perceptual input (Murphy et 
al., 2019). In contrast, greater segregation of unimodal networks from transmodal networks 
supports cognition that is dependent on internally-oriented processing, including memory or 
theory of mind (Barber et al., 2013; Murphy et al., 2018; Murphy et al., 2019). Furthermore, the 
association between EF and integration of control networks situated more centrally in the 
hierarchy is supported by prior literature emphasizing the role of these networks in top-down 
control (Niendam et al., 2012; Cole et al., 2013; Marek & Dosenbach, 2018). Speculatively, 
these results suggest that functional segregation at the extremes of the functional hierarchy, in 
tandem with integration of control networks situated in the middle of the hierarchy, may serve to 
reduce cross-modal interference (Sonuga-Barke & Castellanos, 2007; Bomyea et al, 2018) while 
facilitating coordination of brain networks specialized for top-down cognitive control (Cole et 
al., 2013; Marek & Dosenbach, 2018).  

This heterogeneous impact of functional network maturation on EF is particularly 
relevant when considered in the context of the broader lifespan. In late life, cortical networks re-
integrate, losing the segregation that is achieved earlier in the lifespan (Betzel et al., 2014; Chan 
et al., 2014, Park et al., 2004). Notably, reduced functional segregation has been shown to 
mediate cognitive decline in both normal aging and neurodegenerative disease (Goh, 2011; 
Geerligs et al., 2014; Cassady et al., 2021). In parallel to this literature in aging, we found 
evidence for integration of networks in youth in fine-grained somatomotor networks, which was 
similarly associated with reduced cognitive performance. A potential implication of these results 
is that network re-integration associated with cognitive decline in late life may begin far earlier 
than previously appreciated in fine-grained, early-maturing somatomotor networks. 
 
Multi-scale patterns of network development impact executive function 

Prior work has primarily investigated organizational regimes of 2 (Doucet et al., 2011), 3 
(Margulies et al., 2016), 4 (Shokri-Kojori et al., 2019), 5 (Seeley et al., 2009), 6 (Uddin et al., 
2019), 7 (Yeo et al., 2011), 13 (Gordon et al., 2014; Power et al., 2011), and 17 (Yeo et al., 
2011) functional subdivisions of the brain. Distinguishing the specific role of scale in brain 
organization is critical for studies of the developing functional hierarchy, as finer scales 
systematically capture shorter “neural bridges” (Mesulam, 1998) across the functional hierarchy. 
In other words, as higher network resolutions distinguish increasingly similar sub-networks, finer 
scales ultimately capture functional interactions between networks that are more proximate in the 
functional hierarchy. At the coarsest scale of two functional subdivisions, between-network 
coupling reflects interactions between only a single unimodal-like and transmodal-like network. 
At this resolution, network segregation between these two broad classes of cortices increased 
with age. In contrast, finer scales revealed that along with overall developmental segregation of 
unimodal and transmodal networks, there is prominent integration of functionally similar, finer-
grained networks.  
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We observed independent effects of scale on both development and cognition across the 
functional hierarchy. In development, integration of somatomotor networks was most prominent 
at finer scales. In contrast, no such scale dependence was seen in the most transmodal association 
networks. The scale-invariance of developmental effects in association networks like the DMN 
may underlie the relative consistency of reported DMN segregation in prior studies (Fair et al., 
2007; Sherman et al., 2014; Satterthwaite et al., 2013a). A divergent pattern of scale-dependence 
was present in associations with EF: whereas the normative integration of finer-grained 
somatomotor networks was associated with worse EF in development, normative segregation of 
transmodal networks across scales facilitated the development of EF. Notably, it would be 
difficult to observe such distinct effects if network coupling were only considered at a single 
scale.   
 
Limitations 

Several limitations to the current study should be noted. First, there are undoubtedly 
individual differences in the pace of brain development (Tooley et al., 2021). Future longitudinal 
studies will be critical for understanding individual deviations in network maturation and 
psychopathological consequences (Di Martino et al., 2014). Second, as children tend to move 
more during MRI scans, in-scanner head motion continues to be a concern for all neuroimaging 
studies of development (Satterthwaite et al., 2013b). Here, we rigorously followed the best 
practices for mitigating the influence of head motion on our results, including use of a top-
performing preprocessing pipeline and co-varying for motion in all hypothesis testing (Ciric et 
al., 2018). Use of these conservative procedures limits the possibility that reported findings are 
attributable to in-scanner motion. Third, we used data combined across three fMRI runs, 
including two where an fMRI task was regressed from the data (Fair et al, 2007). This choice 
was motivated by studies that have shown that functional networks are primarily defined by 
individual-specific rather than task-specific factors and that intrinsic networks during task 
performance are similarly organized to those at rest (Gratton et al., 2018). Importantly, by 
including task-regressed data, we were able to generate individualized networks with 27 minutes 
of high-quality data. Prior work suggests that parcellations created using a timeseries of this 
length show high concordance with those generated using 380 minutes of data (Laumann et al., 
2015). Fourth, we studied multi-scale organization in the spatial domain; the brain also exhibits 
multi-scale organization in the temporal domain (Palva & Palva, 2018; Buzsaki & Draguhn, 
2004; Smith et al., 2012, Vidaurre et al., 2017). Future investigations using tools with greater 
temporal resolution may be critical for simultaneously describing spatial and temporal multi-
scale organization. Finally, the maturation of subcortical structures is a critical component of 
neurodevelopment (Mills et al., 2014; Sommerville et al., 2009). Recent advances in precision 
functional mapping of subcortical regions (Greene et al., 2020; Sylvester et al., 2020) present a 
excellent opportunity to delineate the role of subcortical functional coupling in neurocognitive 
development. 
 
Conclusion 

We leveraged advances in machine learning to elucidate divergent patterns of functional 
network development and to establish their relevance for cognition. These results are important 
for understanding the developmental refinement of cortical hierarchy that is prominent in healthy 
adults. Moving forward, the process of this refinement may be critically important for 
understanding executive dysfunction in those affected by mental illness. Examining 
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abnormalities of functional network re-organization in longitudinal clinical samples will provide 
an important opportunity to test the hypothesis that insufficient maturational segregation of 
transmodal networks confers risk to diverse psychiatric disorders. Indeed, existing research 
suggests that abnormalities associated with cross-disorder psychopathology are predominantly 
present at the transmodal end of the functional hierarchy (Shanmugan et al., 2016; Romer et al., 
2020; Parkes et al., 2021), and that diverse psychopathology is associated with attenuated 
segregation of higher-order networks (Xia et al., 2018). Eventually, understanding the normative 
development of individualized networks may be a critical prerequisite for guiding personalized 
neuromodulatory interventions targeting both individual-specific functional neuroanatomy and 
developmental phases with amenable plasticity. 
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Figure S1: Non-negative matrix factorization (NMF) for functional brain networks. Overview of the NMF procedure. NMF 
leverages non-negative data, depicted here as values at each vertex over a functional time series, and performs matrix 
decompositions specialized for functional brain networks. Specifically, each matrix of vertex-level values is decomposed into 
two matrices: one representing latent functional network loadings across vertices, and the other representing loadings across time. 
Primarily, the cost function of NMF is reconstruction error: functional network distributions that minimize reconstruction error 
are preferred. In addition to reconstruction error, penalty terms encouraging spatial locality (λLocality) and groupwise spatial 
sparsity (λSparsity) are enforced.   
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Figure S2: Group consensus functional network atlases. A) Group consensus atlases for all scales not depicted in the main 
text. B) Reconstruction error associated with each topological scale, averaged across participants. Reconstruction error descends 
smoothly from K=2 to K=30, suggesting that no single scale predominantly captures functional network organization. Scales 
chosen for visualization in the main text are demarcated with circles.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.07.451458doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451458
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure S3: Exemplar personalized 
functional networks over scales. 
Personalized functional networks for 
all scales not displayed in the main 
text; the same example individuals 
from the main text are depicted in the 
same order. 
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Figure S4: Average functional coupling of personalized networks over example scales. Functional connectivity matrices at 
the network-level at each scale. Network labels are derived from the maximal spatial overlap exhibited by each network with the 
17-network solution from Yeo et al., 2011. 
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Figure S5: Transmodality difference and Euclidean distance between networks relates to developmental changes in 
between-network coupling. Functional network edge development co-varied with difference in transmodality values between 
networks (blue) as well as the physical distance between networks (teal). Euclidean distance is significantly negatively related to 
observed developmental effects, such that networks located near to each other tend to have increased coupling with age, more 
distant networks tend to decouple. However, these distant-dependent effects are much weaker than the effect of each network’s 
relative position on the sensorimotor to association axis, with transmodality difference being more strongly related to age effects 
across all bootstrap resamples. 
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METHOD DETAILS 
 
Participants 

A total of 1,601 participants were studied as part of the Philadelphia Neurodevelopmental Cohort 
(Satterthwaite et al., 2014). We excluded 340 participants due to treatment with psychoactive medications, prior 
inpatient psychiatric treatment, or incidentally encountered structural brain abnormalities. Among the 1,261 
participants eligible for inclusion, 54 more were excluded from analyses due to low quality T1-weighted images or 
low quality FreeSurfer reconstructions. Of the 1,207 subjects with useable T1 images and adequate FreeSurfer 
reconstructions, 514 more participants were excluded for missing functional data or poor functional image quality. 
For inclusion in analyses, all participants were required to have three functional runs that passed quality assurance. 
As prior, (Ciric et al., 2018; Satterthwaite et al., 2013a), a functional run was excluded if mean relative root mean 
square (RMS) framewise displacement was higher than 0.2mm, or it had more than 20 frames with motion 
exceeding 0.25mm. This set of exclusion criteria resulted in a final sample of 693 participants with a mean age of 
15.93 years (SD = 2.33); the sample included 301 males and 392 females. All subjects or their parent/guardian 
provided informed consent, and minors provided assent. All study procedures were approved by the institutional 
Review Boards of both the University of Pennsylvania and the Children’s Hospital of Philadelphia. 
 
Image acquisition 

As previously described (Satterthwaite et al., 2014), all MRI scans were acquired using the same 3T 
Siemens Trim Trio whole-body scanner and 32-channel head coil at the Hospital of the University of Pennsylvania. 
 
Structural MRI 

Prior to functional MRI acquisitions, a 5-minute magnetization-prepared, rapid acquisition gradient-echo 
T1-weighted (MPRAGE) image (TR = 1810 ms; TE= 3.51 ms; TI = 1100 ms, FOV = 180 x 240 mm2 , matrix = 192 
x 256, effective voxel resolution = 0.9 x 0.9 x 1 mm3) was acquired. 
 
Functional MRI 

We used one resting-state and two task-based (n-back and emotion identification) fMRI scans for the 
current study. All fMRI scans were acquired with the same single-shot, interleaved multi-slice, gradient-echo, echo 
planar imaging (GE-EPI) sequence sensitive to BOLD contrast with the following parameters: TR = 3000 ms; TE = 
32 ms; flip angle = 90°; FOV = 192 x 192 mm2, matrix = 64 x 64; 46 slices; slice thickness/gap = 3/0 mm, effective 
voxel resolution = 3.0 x 3.0 x 3.0 mm3. Resting-state scans consisted of 124 volumes, while the n-back and emotion 
recognition scans consisted of 231 and 210 volumes, respectively. Further details regarding the n-back 
(Satterthwaite et al., 2013b) and emotion recognition (Wolf et al., 2015) tasks have been described in prior 
publications. 
 
Field map 

A B0 field map was derived for application of distortion correction procedures, using a double-echo, 
gradient-recalled echo (GRE) sequence: TR = 1000ms; TE1 = 2.69ms; TE2 = 5.27ms; 44 slices; slice thickness/gap 
= 4/0 mm; FOV = 240mm; effective voxel resolution = 3.8 x 3.8 x 4 mm. 
 
Scanning procedure 

Before scanning, to acclimate subjects to the MRI environment, a mock scanning session where subjects 
practiced the task was conducted using a decommissioned MRI scanner and head coil. Mock scanning was 
accompanied by acoustic recordings of the noise produced by gradients coils for each scanning pulse sequence. 
During these sessions, feedback regarding head movement was provided using the MoTrack motion tracking system 
(Psychology Software Tools). Motion feedback was given only during the mock scanning session. To further 
minimize motion, before data acquisition, participants’ heads were stabilized in the head coil using a single foam 
pad over each ear and a third over the top of the head. 
 
Image processing 
Preprocessing 

Structural images were processed with FreeSurfer (version 5.3) to allow for the projection of functional 
timeseries to the cortical surface (Fischl, 2012). Functional images were processed using a top-performing 
preprocessing pipeline implemented using the eXtensible Connectivity Pipeline (XCP) Engine (Ciric et al., 2018), 
which includes tools from FSL (Jenkinson et al., 2012; Smith et al., 2004) and AFNI (Cox, 1996). This pipeline 
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included (1) correction for distortions induced by magnetic field inhomogeneity using FSL’s FUGUE utility, (2) 
removal of the initial volumes of each acquisition, (3) realignment of all volumes to a selected reference volume 
using FSL’s MCFLIRT, (4) interpolation of intensity outliers in each voxel’s time series using AFNI’s 3dDespike 
utility, (5) demeaning and removal of any linear or quadratic trends, and (6) co-registration of functional data to the 
high-resolution structural image using boundary-based registration (Greve & Fischl, 2009). Images were de-noised 
using a 36-parameter confound regression model that has been shown to minimize associations with motion artifact 
while retaining signals of interest in distinct sub-networks (Ciric et al., 2017). This model included the six 
framewise estimates of motion, the mean signal extracted from eroded white matter and cerebrospinal fluid 
compartments, the mean signal extracted from the entire brain, the derivatives of each of these nine parameters, and 
quadratic terms of each of the nine parameters and their derivatives. Both the BOLD-weighted time series and the 
artifactual model time series were temporally filtered using a first-order Butterworth filter with a passband between 
0.01 and 0.08 Hz to avoid mismatch in the temporal domain (Hallquist et a., 2013). Furthermore, to derive time 
series that were more comparable across runs, the task activation model was regressed from n-back and emotion 
identification fMRI data (Fair et al., 2007b). The task activation model and nuisance matrix were regressed out using 
AFNI’s 3dTproject. 
 For each modality, the fMRI timeseries of each participant was projected to their own FreeSurfer surface 
reconstruction and smoothed on the surface of this reconstruction with a 6-mm full-width half-maximum kernel. The 
smoothed data was projected to the fsaverage5 template, which has 10,242 vertices on each hemisphere (18,715 
total vertices after removing the medial wall). Finally, we concatenated the three fMRI acquisitions, yielding a 
timeseries of 27 minutes and 45 seconds in total (555 volumes). As prior, we removed vertices with low signal-to-
noise ratio (SNR; Gordon et al., 2016; Ojemann et al., 1997; Wig et al, 2014). We used the same SNR mask as in 
our prior work, which used the same dataset (Cui et al., 2020). After masking, 17,734 vertices remained for 
subsequent analyses.  
 
Regularized non-negative matrix factorization 

As previously described in detail (Li et al., 2017), we used non-negative matrix factorization (NMF; Lee 
and Seung, 1999) to derive personalized functional networks. The NMF method decomposes the time series by 
positively weighting cortical vertices that covary, leading to a highly specific and reproducible parts-based 
representation (Lee and Seung, 1999; Soritas et al., 2017). Our approach was enhanced by a group consensus 
regularization term that preserves inter-individual correspondence, as well as a data locality regularization term to 
mitigate imaging noise, improve spatial smoothness, and enhance functional coherence of personalized functional 
networks (se Li et al., 2017 for details of the method; see also:  
 https://github.com/hmlicas/Collaborative_Brain_Decomposition). As NMF requires non-negative input, we shifted 
the timeseries of each vertex linearly to ensure all values were positive. Finally, all vertex timeseries were 
normalized to their maximum values such that all values ranged between 0 and 1. 
 Given a group of n subjects, each having fMRI data Xi ∈ R×, i = 1, … , n, consisting of S vertices and T 
time points, we aimed to find K non-negative functional networks Vi = (Vis,k)∈RS×K and their corresponding time 
courses Ui = (Uit,k)∈RT×K for each subject, such that 
 

𝑋# ≈ 𝑈#(𝑉#)′ + 𝐸#, 𝑠. 𝑡. 𝑈# ≥ 0, ∀1 ≤ 𝑖 ≤ 𝑛, 
(Equation 1) 

 
Where (𝑉#)′ is the transpose of (𝑉#) and 𝐸# is independently and identically distributed residual noise following a 
gaussian distribution. Both Ui and Vi were constrained to be non-negative so that each functional network did not 
contain anti-correlated functional units. A group consensus regularization term was applied to ensure inter-
individual correspondence, which was implemented as a group-sparsity term on each column of Vi and formulated as  
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=,...,>
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C@=
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(Equation 2) 
 
The data locality regularization term was applied to encourage spatial smoothness and coherence of the functional 
networks using graph regularization techniques (Cai et al., 2011). The data locality regularization term was 
formulated as 
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𝑅G# = 𝑇𝑟((𝑉#)′𝐿G# 𝑉#), 
(Equation 3) 

 
where 𝐿G# = 𝐷G# −𝑊G

#  is a Laplacian matrix for subject i, 𝑊G
#  is a pairwise affinity matrix to measure spatial 

closeness or functional similarity between different vertices, and 𝐷G#  is its corresponding degree matrix. The affinity 
between each pair of spatially connected vertices (here, vertices a and b) was calculated as (1 + corr(𝑋N# , 𝑋O# ))/2, 
where corr(𝑋N# , 𝑋O# ) is the Pearson correlation coefficient between time series 𝑋N#  and 𝑋O# ; the pairwise affinity 
between non-connected vertices was set to zero so that 𝑊G

#  would be sparse. We identified personalized functional 
networks by optimizing a joint model with integrated data fitting and regularization terms formulated as 
 

QRS
TUV,WVX  ∑ (𝑋# − 𝑈#(𝑉#′))YA>

#@= + 𝜆G ∑ 𝑅[#>
#@= + 𝜆8𝑅8, 

 
𝑠. 𝑡. 𝑈# ≥ 0, 𝑉.,<	\# = 1, ∀1 ≤ 𝑘 ≤ 𝐾,∀1 ≤ 𝑖 ≤ 𝑛 

 
(Equation 4) 

 
Where 𝜆G = 	𝛽 × (𝑇/𝐾 × 𝑛[) and 𝜆8 = 𝛼 ⋅ (𝑛 ⋅ 𝑇/𝐾) are used to balance the data fitting, data locality, and group 
consensus regularization terms, 𝑛[ is the number of neighboring vertices, and 𝛼 and 𝛽 are free parameters. For this 
study, we used previously validated parameters (𝛼,𝛽 = 1,10 for group consensus partitions, 𝛼, 𝛽 = 10,1 for 
individualized partitions; Li et al., 2017; Cui et al., 2020) across 29 values of K (K=2 to K=30) corresponding to 29 
scales of cortical organization. 
 
Defining personalized networks 

Our approach for defining personalized networks included three steps. In the first two steps, a group 
consensus atlas was created. In the third step, this group atlas was used to initialize network personalization for each 
participant at each scale. Although individuals exhibit distinct network topography, broad consistencies exist from 
individual-to-individual (Gordon et al., 2017b, Gratton et al., 2018). By first generating a group atlas for 
personalization initialization, we ensured spatial correspondence across all subjects and scales. This strategy has also 
been applied in other studies of personalized networks (Kong et al., 2019; Wang et al., 2015). For computational 
efficiency and to avoid outlier-driven group atlases, a bootstrap strategy was utilized to perform the group-level 
decomposition multiple times on a subset of randomly selected participants. Subsequently, the resulting 
decompositions were fused to obtain one robust initialization. As prior (Li et al., 2017; Cui et al., 2020), we 
randomly selected 100 subjects and temporally concatenated their timeseries, resulting in a timeseries matrix with 
55,500 rows (time-points) and 17,734 columns (vertices). We applied the above-mentioned regularized non-negative 
matrix factorization method with a random initialization to decompose this group-level matrix (Lee and Seung, 
1999). A group-level network loading matrix V was acquired, which had K rows and 17,734 columns. Each row of 
this matrix represents a functional network, while each column represents the loadings of a given cortical vertex. As 
prior, (Li et al., 2017; Cui et al., 2020), this procedure was repeated 50 times, each time with a different subset of 
subjects. Accordingly, this process yielded 50 different group atlas estimations for each value of K. 
 Next, we combined the 50 group network atlases to obtain one robust group network atlas with spectral 
clustering at each value of K. Specifically, we concatenated the 50 group parcellations together across networks to 
obtain a matrix with 50	 × 𝐾 rows (functional networks) and 17,734 columns (vertices). Next, we calculated inter-
network similarity as 
 

𝑆#d = exph−
𝑑#dA

𝜎Ak, 

(Equation 5) 
 
where 𝑑#d = 1 − 𝑐𝑜𝑟𝑟T𝑁𝑒𝑡𝑤𝑜𝑟𝑘#,𝑁𝑒𝑡𝑤𝑜𝑟𝑘dX, 𝑐𝑜𝑟𝑟T𝑁𝑒𝑡𝑤𝑜𝑟𝑘#,𝑁𝑒𝑡𝑤𝑜𝑟𝑘dX is a Pearson correlation coefficient 
between Networki and Networkj, and 𝜎 is the median of dij across all possible pairs of functional networks. Then, we 
applied normalized-cut-based spectral clustering (Cai et al., 2011) to group the 50	 × 𝐾 functional networks into K 
clusters. For each cluster, the functional network with the highest overall similarity with all other networks in the 
same cluster was selected as the most representative. The final group network atlas was composed of these 
maximally representative network estimations at each of the 29 resolutions studied. 
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 In the final step, we derived each individual’s specific network atlas using NMF, initializing each 
participant-specific solution on the group consensus atlas for any given scale and optimizing NMF in accordance 
with each individual’s specific fMRI time series (a 555 x 17,734 matrix). See Li et al., (2017) for further 
optimization detail. This procedure yielded loading matrix Vi (K x 17,734 matrix) for each participant, where each 
row is a functional network, each column is a vertex, and the value in each cell quantifies the extent to which each 
vertex belongs to each network. This probabilistic (soft) definition was converted into discrete (hard) network 
definitions for display and calculation of network statistics by labeling each vertex in accordance with its highest 
loading.  This procedure was repeated for all 29 network resolutions. 
 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
 
Calculation of variability and spatial alignments of personalized networks 

In order to quantify cross-subject spatial variability in personalized networks, we calculated the median 
absolute deviation (MAD) of personal network loadings at each vertex across participants. MAD is a non-parametric 
measure of variance that does not assume a normal distribution. First, we calculated MAD for each network at each 
scale. Next, MAD was averaged across K networks to obtain a single value of MAD at each vertex for any given 
scale K.  
 
Principal gradient 

In order to quantify cortices in terms of their position within a functional hierarchy, we used a widely 
adopted principal gradient of functional connectivity (Marguiles et al., 2016; 
https://github.com/NeuroanatomyAndConnectivity/gradient_analysis). The principal gradient is derived from the 
primary component of variance in patterns of whole-brain functional connectivity, and it reflects a unimodal-to-
transmodal continuum of cortical function. As such, at each cortical vertex, the value of this gradient reflects the 
loading of that vertex onto the unimodal-to-transmodal continuum, with higher principal gradient values 
corresponding to higher transmodality. This map was transformed to fsaverage5 space using metric-resample from 
Connectome Workbench. Transmodality values for each network were quantified as the average principal gradient 
value of each vertex within each network in group-consensus space. These network-wise transmodality values were 
used to analyze the spatial distribution of the effects of age and executive function, as described below. 
 
Reference networks 

To allow for comparison with previously estimated cortical systems, we quantified the overlap of each 
group-consensus network with a commonly used 7 and 17-functional network parcellation (Yeo et al., 2011). To 
illustrate this overlap, we assigned colors to group and individualized networks in accordance with their maximum 
overlap with networks from the 7 and 17-network parcellations.  
 
Spatial permutation testing (spin test) 

In order to evaluate the significance of the localization of between-participant variability (MAD) to 
transmodal cortical areas, we used a spatial permutation procedure called the spin test (Alexander-Bloch et al., 2018; 
Gordon et al., 2016; Sotiras et al., 2017; Vandekar et al., 2015; https://github.com/spin-test/spin-test). The spin test 
is a spatial permutation method based on angular permutations of spherical projections at the cortical surface. 
Critically, the spin test preserves the spatial covariance structure of the data, providing a more conservative and 
realistic null distribution than randomly shuffling locations. Due to varying spatial covariance structure across 
scales, we conducted separate spin tests at each scale.  

 
Modeling the association of scale with MAD-principal gradient co-localization 
 To account for potential non-independence of MAD-principal gradient correlations across scales, 
significance testing was performed using non-parametric bootstrap resampling. Specifically, we re-calculated MAD 
and the subsequent spatial correlation with the principal gradient at each scale across 1,000 bootstrap resamples to 
generate a bootstrapped confidence interval of the second-order relationship between network scale and the MAD-
principal gradient correlations.  
 
Quantification of between-network coupling 

We used functional connectivity (FC) to quantify inter-regional coupling in processed BOLD signal. 
Specifically, we calculated between-network FC at three levels of analysis: network, edge, and vertex. At all levels, 
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FC was quantified as the Pearson correlation between BOLD timeseries. At the network level, between-network 
connectivity was quantified as a network’s mean correlation with all other networks. At the edge level, between-
network connectivity was quantified as the mean vertex-by-vertex correlation between vertices in both networks. At 
the vertex-level, we evaluated each vertex’s average correlation to vertices from all other networks. Between-
network coupling at each level was quantified separately at each scale for each participant. 
 
Developmental analyses 
Developmental modeling 

Developmental effects were estimated using generalized additive models (GAMs; Wood, 2001, 2004) with 
penalized splines in R (Version 3.6.3) using the mgcv package (R Core Team, 2013; Wood, 2011). To avoid over-
fitting, nonlinearity was penalized using restricted maximum likelihood (REML). Participant sex and in-scanner 
head motion were included as covariates within each GAM. Head motion was quantified as the mean framewise 
root-mean-square displacement across the three functional runs for each subject. Age was modeled using a penalized 
thin-plate regression spline; covariates were modeled as parametric regressors.  This model can summarized using 
the formula in equation 6: 

 
𝐹𝐶	~	𝑠(𝑎𝑔𝑒) + bCvw + bxvNy	[z{#z>  

(Equation 6) 
 

 To quantify the effect sizes of each age spline, we calculated the change in adjusted R2 (DR2adj.) between 
the full model and a nested model that did not include an effect of age. Statistical significance was assessed using 
analysis of variance (ANOVA) to compare the full and nested models. Because DR2adj. describes effect size but not 
direction (i.e., increasing or decreasing FC with age), we extracted and applied the sign of the age coefficient from 
an equivalent linear model as in prior work (Cui et al., 2020). To estimate windows of significant age-related change 
for each network-level model, we calculated the age range for which the 95% confidence interval of estimated age 
splines did not include 0 (Larsen et al., 2020; Pines et al., 2020). To calculate the intervals, we used the gratia 
package in R (Simpson, 2018). Multiple comparisons were controlled for with the false discovery rate (FDR) 
correction (q < .05).  
 
Modeling the distribution of developmental effects across the principal gradient 
 After analyzing the effect of age on between-network FC, we sought to evaluate the spatial distribution of 
age effects along the principal gradient. At the network level, we extracted the mean transmodality value for each 
network at each scale and regressed these values on the corresponding pattern of age effects (Equation 7). 
 

𝐴𝑔𝑒	𝐸𝑓𝑓𝑒𝑐𝑡	(∆𝑅Nyd.A )	~	b��N>C[zyN�#{�  
 

(Equation 7) 
 
 To account for potential non-independence of age effects across scales, significance testing was performed 
using non-parametric bootstrap resampling. Specifically, we re-calculated the age effects for each network and the 
resulting transmodality relationship across 1,000 bootstrap resamples to generate a bootstrapped confidence interval. 
The effect size of the second-order model was also described as a Spearman’s correlation coefficient. 

We next evaluated how the magnitude of the age effects corresponded to the span of each edge (between-
network connection) across the transmodality gradient. We modeled this effect in two ways. First, we calculated the 
difference in the transmodality gradient values for each pair of networks at each scale (“transmodality difference”) 
and regressed this difference on the age effects from the edge-wise developmental models (Equation 8).  
 

𝐴𝑔𝑒	𝐸𝑓𝑓𝑒𝑐𝑡	(∆𝑅Nyd.A )	~	b��N>C[zyN�#{�	�#��v�v>8v  
(Equation 8) 

 
As above, significance was evaluated using non-parametric bootstrap resampling. As a sensitivity analysis, we 
repeated this procedure using the average Euclidean distance between vertices in the two networks comprising each 
edge. Second, we sought to visualize the interaction between transmodality difference and age-related changes in 
coupling across network edges spanning different portions of the principal gradient. In order to continuously model 
the relation between age-related changes in coupling and transmodality difference across the principal gradient, we 
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fit a bivariate smooth interaction. Specifically, we modeled the effect of transmodality on the edge-level age effects 
using a tensor product smooth (Wood, 2006) as in equation 9. 

 
𝐴𝑔𝑒	𝐸𝑓𝑓𝑒𝑐𝑡	(D𝑅A𝑎𝑑𝑗. )	~	𝑡𝑒(𝑇𝑟𝑎𝑛𝑠𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦�v{�z�<	�	, 𝑇𝑟𝑎𝑛𝑠𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦�v{�z�<	�) 

(Equation 9) 
 

To verify the statistical significance of this model, we performed the same non-parametric bootstrap procedure as 
above using a simplified linear interaction model.  
 
Modeling scale-dependent developmental effects 

In order to quantify and localize the scale-dependence of developmental changes in between-network 
coupling, we modeled the impact of scale on coupling at each vertex. Model formulas and initial model fits were 
estimated using GAMs (Equation 10). 

 
𝑁𝑒𝑡𝑤𝑜𝑟𝑘	𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔	~	𝑠(𝑆𝑐𝑎𝑙𝑒) + bCvw + bxvNy	[z{#z> 

(Equation 10) 
 

GAM-derived coefficient estimates for scale, sex, and head motion were used to initialize generalized estimating 
equations (GEEs). GEEs enabled us to account for the covariance between same-subject measurements across scales 
without assuming independence of these observations. At each vertex, the effect of scale was assessed for statistical 
significance via a joint Wald test that compared the full model to a nested model that did not include an effect of 
scale.  

Age-by-scale interactions were modeled using the same procedure. First, GAMs were used to generate 
initial model fits. Age-by-scale interactions were modeled as a bivariate tensor product interaction (ti in mgcv) as in 
equation 11.  
 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘	𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔	~	𝑠(𝑆𝑐𝑎𝑙𝑒) + 𝑠(𝐴𝑔𝑒)+ 𝑡𝑖(𝑆𝑐𝑎𝑙𝑒, 𝐴𝑔𝑒) + bCvw + bxvNy	[z{#z>  
(Equation 11) 

 
Again, GEEs were used to account for the covariance between same-subject measurements across scales without 
assuming independence. Statistical significance was evaluated with a joint Wald test that compared the full model to 
a nested model that did not include a bivariate interaction term. 
 Finally, to further understand scale-dependent age effects within areas exhibiting age-by-scale interactions, 
we compared network level developmental effects across scales for networks that fall at opposite ends of the 
principal axis. We grouped networks by their maximum overlap with the higher-resolution reference atlas (the 17 
network solution provided by Yeo et al.) and calculated average transmodality values for each group of reference 
networks. The lowest (Somatomotor-A) and highest (Default mode-B) transmodality networks were chosen to 
depict differential scale-dependence across the principal gradient. To illustrate the effect of scale, we fit a penalized 
spline to the relationship between scale and observed age effects for each network within each group.  
 
Analyses of executive function 
 
Cognitive assessment 

The Penn computerized neurocognitive battery (Penn CNB) was administered to all participants as part of a 
session separate from neuroimaging. The CNB consists of 14 tests adapted from tasks applied in functional 
neuroimaging to evaluate a broad range of cognitive domains (Gur et al., 2012). These domains include executive 
function (abstraction and mental flexibility, attention, working memory), episodic memory (verbal, facial, spatial), 
complex cognition (verbal reasoning, nonverbal reasoning, spatial processing), social cognition (emotion 
identification, emotion differentiation, age differentiation), and sensorimotor speed. Accuracy for each test was z-
transformed. As previously described in detail, factor analysis was used to summarize these accuracy scores into 
three factors (Moore et al., 2015), including executive and complex cognition, episodic memory, and social 
cognition. Here, we focused on the executive and complex cognition accuracy factor score.  
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Cognitive modeling 
Analyses of associations with cognition were executed using GAMs, as described above for developmental 

analyses. Specifically, EF was modeled using a penalized regression spline, while covarying for age using a 
penalized regression spline;  participant sex and mean head motion were included as linear covariates (Equation 12). 

 
𝐹𝐶	~	𝑠(𝐸𝐹) + 𝑠(𝑎𝑔𝑒) + bCvw + bxvNy	[z{#z> 

(Equation 12) 
 

As for developmental analyses, we calculated the effect size as the change in adjusted R2 between the full model and 
a nested model that did not include the effect of EF (DR2adj.). 
 
 
 
Linking associations with EF to the principal gradient of brain organization 
 After analyzing the effect of cognition on between-network FC, we sought to evaluate the distribution of EF 
effects across the sensorimotor to association axis. At the network level, we extracted the mean transmodality value 
for each network at each scale and compared these values to the corresponding pattern of associations between 
between-network coupling and EF. As for previous developmental analyses, in order to assess the statistical 
significance of EF effect-transmodality correspondence, we also evaluated a second-order model over 1,000 bootstrap 
resamples. However, here we also included quadratic term (Equation 13). 
 

𝐸𝐹	𝐸𝑓𝑓𝑒𝑐𝑡	(D𝑅A𝑎𝑑𝑗. )	~	b��N>C[zyN�#{� + b��N>C[zyN�#{��  
(Equation 13) 

 
The resulting bootstrapped confidence intervals for b��N>C[zyN�#{� and b��N>C[zyN�#{�� 	were then used for significance 
testing of these second-order effects.  
 
Modeling scale-dependent cognitive effects 

In order to quantify and localize the scale-dependence of associations between EF and between-network 
coupling, we modeled the impact of scale at each vertex. EF-by-scale interactions were modeled using the same 
procedure as for developmental models. First, GAMs were used to generate initial model fits. EF-by-scale 
interactions were modeled as a bivariate tensor product interaction (ti in mgcv) as in equation 14.  
 

𝐹𝐶	~	𝑠(𝐸𝐹) + 𝑠(𝑆𝑐𝑎𝑙𝑒) + 𝑠(𝐴𝑔𝑒)+ 𝑡𝑖(𝑆𝑐𝑎𝑙𝑒, 𝐸𝐹)+ 𝑡𝑖(𝑆𝑐𝑎𝑙𝑒, 𝐴𝑔𝑒) + bCvw + bxvNy	[z{#z>  
(Equation 14) 

 
Again, GEEs were used to account for the covariance between same-subject measurements across scales without 
assuming independence. Statistical significance was evaluated with a joint Wald test that compared the full model to 
a nested model that did not include a bivariate interaction term. 
 Finally, to further understand scale-dependent cognitive effects within areas exhibiting EF-by-scale 
interactions, we compared network level cognitive effects across scales for networks that fall at opposite ends of the 
principal axis. To model the effect of scale, we fit a penalized spline to the relationship between scale and observed 
cognition effects for the lowest (Somatomotor-A) and highest (Default mode-B) transmodality networks. 
 
Multivariate EF predictions 

As a final step, we sought to assess the degree to which multivariate patterns of functional edge coupling 
across scales jointly explains individual differences in executive function. To do this, we used ridge regression. We 
iteratively fit a regression model to two thirds of our sample (462 participants) and predicted executive function 
scores from functional coupling data in the left-out testing third of participants (231 participants). In each iteration, 
we used nested parameter optimization. Specifically, coefficients for each edge were fit with the 1st third of the 
sample and then the L2 penalty term was selected based on predictions in the 2nd third of the sample. Finally, the 
degree to which functional coupling explains EF was calculated using the unseen 3rd third of the sample. In that left-
out data that was not used in model training, we calculated the correlation between actual and predicted EF, as well 
as the mean squared error (MSE). We repeated this process 100 times to ensure that specific sample splits were not 
driving results, and averaged predictions across iterations. To evaluate statistical significance of these predictions, 
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we used permutation testing.  Specifically, we repeated this process 1000 times, and compared our outcome measure 
(correlation of predicted vs. actual EF) versus a distribution of models where EF scores had been permuted across 
participants.  
 
Mediation analyses 
 

To test mediation effects, we applied a product-of-paths mediation framework where developmental 
changes in between-network coupling mediated age-related increases in EF (see Figure 7B). Specifically, for each 
network, we posited that the effect of age on EF (c pathway) was mediated by the effect of age on between-network 
coupling (a pathway) and the effect of between-network coupling on EF (b pathway). All mediation pathways were 
estimated with linear models in the lavaan package in R. We estimated the mediation effect for each network at each 
scale as the product of the a and b pathways (a pathway * b pathway). Sex and in-scanner motion were included as 
covariates in all mediation models.  

Finally, in order to evaluate the relationship between the principal gradient and observed mediation effects, 
we regressed network transmodality values on the AB path coefficients across networks and scales using equation 
15.  
 

𝐴𝐵	𝑃𝑎𝑡ℎ	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	~	b��N>C[zyN�#{�  
(Equation 15) 

 
As prior, statistical significance was evaluated using non-parametric bootstrap resampling (1,000 iterations). 
 
DATA AND CODE AVAILABILITY 
 

The PNC data is publicly available in the Database of Genotypes and Phenotypes: accession number: 
phs00607.v3.p2; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2. All 
analysis code is available here https://github.com/PennLINC/multiscale, with detailed explanation provided at 
https://pennlinc.github.io/multiscale/. 
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