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Heterogeneity in single-cell RNA-seq (scRNA-seq) data is driven
by multiple sources, including biological variation in cellular state
as well as technical variation introduced during experimental pro-
cessing. Deconvolving these effects is a key challenge for prepro-
cessing workflows. Recent work has demonstrated the importance
and utility of count models for scRNA-seq analysis, but there is a
lack of consensus on which statistical distributions and parameter
settings are appropriate. Here, we analyze 58 scRNA-seq datasets
that span a wide range of technologies, systems, and sequencing
depths in order to evaluate the performance of different error mod-
els. We find that while a Poisson error model appears appropriate
for sparse datasets, we observe clear evidence of overdispersion for
genes with sufficient sequencing depth in all biological systems, ne-
cessitating the use of a negative binomial model. Moreover, we find
that the degree of overdispersion varies widely across datasets, sys-
tems, and gene abundances, and argues for a data-driven approach
for parameter estimation. Based on these analyses, we provide a set
of recommendations for modeling variation in scRNA-seq data, par-
ticularly when using generalized linear models or likelihood-based
approaches for preprocessing and downstream analysis.

Introduction

Single-cell RNA-sequencing (scRNA-seq) represents a pow-
erful approach for the unsupervised characterization of
molecular variation in heterogeneous biological systems (1,
2). However, separating biological heterogeneity across cells
that corresponds to differences in cell type and state from al-
ternative sources of variation represents a key analytical chal-
lenge in the normalization and preprocessing of single-cell
RNA-seq data (3, 4). Upstream analytical workflows typ-
ically aim to achieve two separate but related tasks. First,
data normalization aims to correct for differences in cellu-
lar sequencing depth, which collectively arise from fluctua-
tions in cellular RNA content, efficiency in lysis and reverse
transcription, and stochastic sampling during next-generation
sequencing (5). Second, variance stabilization aims to ad-
dress the confounding relationship between gene abundance
and gene variance, and to ensure that both lowly and highly
expressed genes can contribute to the downstream defini-
tion of cellular state. Although the use of unique molecu-
lar identifiers (UMIs), random sequences that label individ-
ual molecules, has been a promising approach to limit am-
plification bias (6, 7), variation due to sequencing depth still
arises in such datasets and can be a major source of techni-
cal variance. These challenges are not unique to single-cell
sequencing (8), but the sparsity of scRNA-seq data, coupled

with substantial diversity in profiling technologies, necessi-
tates the development and assessment of new methods.

While initial work focused on the development of cell
‘size-factors’ for normalization, recent methods have been
focused on the development and application of statistical
models for scRNA-seq analysis. In particular, two recent
studies proposed to use generalized linear models (GLMs),
where cellular sequencing depth was included as a covariate,
as part of scRNA-seq preprocessing workflows. Our sctrans-
form (9) approach utilizes the Pearson residuals from nega-
tive binomial regression as input to standard dimensional re-
duction techniques, while GLM-PCA (10) focuses on a gen-
eralized version of principal component analysis (PCA) for
data with Poisson-distributed errors. More broadly, multi-
ple techniques aim to learn a latent state that captures bio-
logically relevant cellular heterogeneity using either matrix
factorization or neural networks (11–13), alongside a defined
error model that describes the variation that is not captured
by the latent space.

Together, these studies demonstrate the importance and
potential of statistical models to assist in the normalization,
variance stabilization, and downstream analysis of scRNA-
seq data. However, each of these approaches requires an ex-
plicit definition of a statistical error model for scRNA-seq,
and there is little consensus on how to define or parameterize
this model. While multiple groups have utilized a Poisson
error model (10, 14–18), others argue that the data exhibit
evidence of overdispersion, requiring the use of a negative-
binomial (NB) distribution (5, 19–21). Even for methods
that assume a NB distribution, different groups propose dif-
ferent methods to parameterize their model. For example, a
recent study (22) argued that fixing the NB inverse overdis-
persion parameter θ to a single value is an appropriate esti-
mate of technical overdispersion for all genes in all scRNA-
seq datasets, while others (23) propose learning unique pa-
rameter values for each gene in each dataset. This lack of
consensus is further exemplified by the scvi-tools (11, 24)
suite, which supports nine different methods for parameter-
izing error models. The purpose of this error model is to
describe and quantify heterogeneity that is not captured by
biologically relevant differences in cell state, and highlights a
specific question: How can we model the observed variation
in gene expression for an scRNA-seq experiment conducted
on a biologically ‘homogeneous’ population?
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Results

Shallow sequencing masks overdispersion in
scRNA-seq data

We first explored whether a Poisson distribution was capable
of fully encapsulating heterogeneity in scRNA-seq data that
was independent of biological variation in the cellular state
(i.e., ‘independent of the latent space’ (25)). The rationale
behind a Poisson model assumes that homogeneous cells ex-
press mRNA molecules for a given gene at a fixed underlying
rate, and the variation in scRNA-seq results specifically from
a stochastic sampling of mRNA molecules, for example due
to inefficiencies in reverse transcription and PCR, combined
with incomplete molecular sampling during DNA sequenc-
ing (5, 25). The Poisson distribution constrains the variance
of a random variable to be equal to its mean, and has been
utilized for modeling UMI counts in multiple previous stud-
ies (15, 16). While the Poisson distribution is well suited
to capture variation driven by stochastic technical loss and
sampling noise, it cannot capture other sources of biological
heterogeneity between cells that are not driven by changes in
cell state, for example, intrinsic variation caused by stochas-
tic transcriptional bursts (26–28). These fluctuations would
cause scRNA-seq data to deviate from Poisson statistics, ex-
hibiting overdispersion that can be modeled using a negative
binomial distribution.

We therefore asked whether scRNA-seq data exhibited
evidence of overdispersion by exploring the mean-variance
relationship using technical controls (endogenous RNA and
spike-ins), cell line (HEK293 and NIH3T3), and hetero-
geneous (PBMC; mouse cortex; fibroblasts) datasets pro-
filed using multiple technologies (Supplementary Table S1).
These datasets have varying sequencing depths with median
UMIs per cell spanning from approximately 375 to more
than 195,000 (Supplementary Figure S1). In each dataset,
we performed a goodness-of-fit test, independently modeling
the observed counts for each gene to be Poisson distributed,
while accounting for differences in sequencing depth be-
tween individual cells (Supplementary Methods). For the
technical control datasets (8, 14), where the input to each
‘cell’ represented a uniform source of RNA, observed vari-
ation was largely consistent with the Poisson model (Figure
1B). In contrast, when analyzing a human PBMC dataset pro-
filed using Smart-seq3 (29), thousands of genes were poorly
fit by a Poisson distribution (Figure 1A and B), even after ac-
counting for cell-to-cell variation in sequencing depth (Sup-
plementary Table S2). While we expected to observe overdis-
persion for a subset of genes, particularly for those whose
expression varies across multiple cell types, we were sur-
prised to see that 97.6% of genes with average expression
> 1 UMI/cell failed the Poisson goodness-of-fit test. We ob-
served a similar phenomenon when analyzing data from ho-
mogeneous HEK293 cells profiled with the 10X Chromium
v2 system (HEK-r2; Figure 1A and B), with 93% of genes
exhibiting average abundance of> 1 UMI/cell demonstrating
evidence of overdispersion. In each of the 58 datasets we an-
alyzed, genes exhibiting Poisson variation were overwhelm-

ingly lowly expressed compared to genes that were overdis-
persed (Supplementary Figure S2). Moreover, when compar-
ing results for cell-line datasets where we expect low levels
of variation in cell state, we found that the global fraction
of genes deviating from a Poisson distribution was correlated
with the average sequencing depth of the dataset (Figure 1C).

Our results suggest that scRNA-seq datasets commonly
exhibit biological variation that exceeds Poisson sampling,
but that the statistical power to detect these fluctuations re-
quires sufficient sequencing depth. For example, when ob-
serving molecular counts in the deeply sequenced PBMC
dataset (median 8,288 UMI/cell), highly expressed genes
such as TPT1, RPS19 exhibited particularly strong devi-
ations from Poisson variability (Figure 1D). However, we
found that when artificially downsampling the same dataset
to 1,000 UMI/cell, a depth that is common to shallowly se-
quenced scRNA-seq datasets, deviations from a Poisson dis-
tribution were strongly reduced (Figure 1E). After downsam-
pling, only 0.5% genes failed the Poisson goodness-of-fit
test, demonstrating that reducing cellular sequencing depth
can artificially create the appearance of Poisson variation. We
conclude that the Poisson error model may represent an ac-
ceptable approximation for scRNA-seq datasets with shallow
sequencing, but as the sensitivity of molecular profiling con-
tinues to increase, error models that allow for overdispersion
are required for scRNA-seq analysis. Furthermore, we reit-
erate that the use of a Poisson error model does not account
for the possibility of intrinsic stochastic noise in single-cell
datasets, though this type of noise has been extensively de-
scribed and does not correlate with changes in cell type or
state.

The level of overdispersion varies substantially
across datasets

We next focused on the application of negative binomial er-
ror models, and considered different strategies for parameter-
izing the level of overdispersion associated with each gene.
Recent work (22) suggested that a negative binomial model
with a fixed parameterization (for example, inverse overdis-
persion parameter θ = 100) could be applied to all scRNA-
seq datasets to achieve effective variance stabilization. To
explore whether a single value of θ could be applied to di-
verse scRNA-seq datasets, we first independently fit θ esti-
mates for each gene in each dataset using a GLM with nega-
tive binomial errors (NB GLM), using library size as an off-
set to account for variation in cellular sequencing depth. We
observed substantial differences in the magnitude of the es-
timated θ across different datasets, though replicate datasets
from the same study yielded concordant results (Figure 2A
and B). Consistent with our previous results (Figure 1B), θ
values for each dataset varied across different biological sys-
tems, technologies, and sequencing depths.

We next tested the ability for a single value of θ to
perform effective variance stabilization across a range of
datasets. We processed each of our 58 datasets using an
NB GLM after fixing θ to a single value for all genes in
the dataset (for example, θ=100). We found that no sin-

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.07.451498doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451498
http://creativecommons.org/licenses/by-nc-nd/4.0/


<0.01

>0.01

>0.1

>1

>5

>10

>25

>50

>100

Te
ch

C
tr

l1
 (

C
hr

om
iu

m
V

1)
Te

ch
C

tr
l2

 (
C

hr
om

iu
m

V
1)

Te
ch

C
tr

l (
in

D
ro

ps
)

3T
3 

(C
hr

om
iu

m
V

3)
3T

3−
r1

 (
C

E
L−

se
q2

)
3T

3−
r1

 (
C

hr
om

iu
m

V
2)

3T
3−

r1
 (

D
ro

p−
se

q)
3T

3−
r1

 (
in

D
ro

ps
)

3T
3−

r1
 (

sc
i−

R
N

A
−

se
q)

3T
3−

r2
 (

C
E

L−
se

q2
)

3T
3−

r2
 (

C
hr

om
iu

m
V

2)
3T

3−
r2

 (
D

ro
p−

se
q)

3T
3−

r2
 (

in
D

ro
ps

)
3T

3−
r2

 (
sc

i−
R

N
A

−
se

q)
H

E
K

 (
C

hr
om

iu
m

V
3)

H
E

K
 (

S
m

ar
t−

se
q3

)
H

E
K

−
r1

 (
C

E
L−

se
q2

)
H

E
K

−
r1

 (
C

hr
om

iu
m

V
2)

H
E

K
−

r1
 (

D
ro

p−
se

q)
H

E
K

−
r1

 (
in

D
ro

ps
)

H
E

K
−

r1
 (

sc
i−

R
N

A
−

se
q)

H
E

K
−

r2
 (

C
E

L−
se

q2
)

H
E

K
−

r2
 (

C
hr

om
iu

m
V

2)
H

E
K

−
r2

 (
D

ro
p−

se
q)

H
E

K
−

r2
 (

in
D

ro
ps

)
H

E
K

−
r2

 (
sc

i−
R

N
A

−
se

q)
H

E
K

−
m

 (
C

E
L−

se
q2

)
H

E
K

−
m

 (
C

hr
om

iu
m

V
2)

H
E

K
−

m
 (

C
hr

om
iu

m
V

2_
sn

)
H

E
K

−
m

 (
dd

S
eq

)
H

E
K

−
m

 (
D

ro
p−

se
q)

H
E

K
−

m
 (

in
D

ro
ps

)
H

E
K

−
m

 (
M

A
R

S
−

se
q)

H
E

K
−

m
 (

m
cS

C
R

B
−

se
q)

H
E

K
−

m
 (

Q
ua

rt
z−

S
eq

2)
C

or
te

x−
r1

 (
C

hr
om

iu
m

V
2)

C
or

te
x−

r1
 (

D
ro

N
c−

se
q)

C
or

te
x−

r1
 (

sc
i−

R
N

A
−

se
q)

C
or

te
x−

r2
 (

C
hr

om
iu

m
V

2)
C

or
te

x−
r2

 (
D

ro
N

c−
se

q)
C

or
te

x−
r2

 (
sc

i−
R

N
A

−
se

q)
F

ib
ro

bl
as

ts
 (

S
m

ar
t−

se
q3

)
P

B
M

C
−

r1
 (

C
E

L−
se

q2
)

P
B

M
C

−
r1

 (
C

hr
om

iu
m

V
2A

)
P

B
M

C
−

r1
 (

C
hr

om
iu

m
V

2B
)

P
B

M
C

−
r1

 (
C

hr
om

iu
m

V
3)

P
B

M
C

−
r1

 (
D

ro
p−

se
q)

P
B

M
C

−
r1

 (
in

D
ro

ps
)

P
B

M
C

−
r1

 (
S

eq
−

W
el

l)
P

B
M

C
−

r2
 (

C
E

L−
se

q2
)

P
B

M
C

−
r2

 (
C

hr
om

iu
m

V
2)

P
B

M
C

−
r2

 (
D

ro
p−

se
q)

P
B

M
C

−
r2

 (
in

D
ro

ps
)

P
B

M
C

−
r2

 (
S

eq
−

W
el

l)
P

B
M

C
68

k 
(C

hr
om

iu
m

V
1)

P
B

M
C

 (
C

hr
om

iu
m

V
3)

P
B

M
C

 (
S

m
ar

t−
se

q3
)

F
et

al
 (

sc
i−

R
N

A
−

se
q3

)

G
en

e 
m

ea
n

Non−poisson fraction 0.25 0.50 0.75 1.00A

TechCtrl1
(ChromiumV1)

TechCtrl
(inDrops)

HEK
(ChromiumV3)

PBMC
(Smart−seq3)

0.001 0.1 100
0.001 0.1 100

0.001 0.1 100
0.001 0.1 100

2.5

5.0

7.5

10.0

Gene mean

V
ar

ia
nc

e 
of

 q
ua

nt
ile

 r
es

id
ua

ls

B

0.0

0.2

0.4

0.6

10K 100K

Median total UMI per cell

N
on

−
po

is
so

n 
pr

op
or

tio
n

3T3 HEK

C

TPT1

Original  8,288 UMI/cell

TPT1

Sampled 5,000 UMI/cell

TPT1

Sampled 1,000 UMI/cell

0 100 200 300 0 25 50 75 100 0 5 10 15 20
0.0

0.1

0.2

0.0

0.1

0.2

0

0

RPS19

Original  8,288 UMI/cell

RPS19

Sampled 5,000 UMI/cell

RPS19

Sampled 1,000 UMI/cell

0 50 100 150 0 20 40 60 0 5 10 15

0

0

Counts

D
en

si
ty

D

Sampled
10,000
UMI/cell

Sampled
7,500

UMI/cell

Sampled
5,000

UMI/cell

Sampled
2,000

UMI/cell

Sampled
1,000

UMI/cell

0.001 0.1 100
0.001 0.1 100

0.001 0.1 100
0.001 0.1 100

0.001 0.1 100
0

5

10

15

Gene mean

V
ar

ia
nc

e 
of

 q
ua

nt
ile

 r
es

id
ua

ls

E

Figure 1. Shallow sequencing masks overdispersion in scRNA-seq data. A) Proportion of genes that fail a goodness-of-fit test for a Poisson GLM (Supplementary
Methods), as a function of gene abundance, for 58 scRNA-seq datasets. For visual clarity, both the color and diameter of each dot correspond to the fraction of genes that
exhibit overdispersion. Y-axis represents non-cumulative gene abundance bins between two consecutive labels (for example,> 1 refers to all genes with average abundance
> 1 UMI and ≤ 5 UMI). Values are listed in Supplementary Table S2. B) Relationship between average gene abundance and quantile residual variance, after applying a
Poisson GLM (Supplementary Methods). Results are shown for datasets profiling endogenous RNA (’technical controls’), a HEK293 cell line (’biological controls’), and human
PBMC (’heterogeneous’). C) In datasets profiling cell lines, the fraction of genes that exhibit overdispersion is correlated with average sequencing depth. D) Distribution of
molecular counts for highly expressed genes in the PBMC Smart-seq3 dataset after downsampling to two different sequencing depths. The expected density assuming a
Poisson distribution is shown in red. E) Same as (A) but after downsampling the PBMC Smart-seq3 dataset to five different sequencing depths.
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Figure 2. Overdispersion varies across datasets. A), B) Distribution of per-gene values for the estimated inverse overdispersion θNB of a NB GLM across a range of cell
lines (A) and heterogeneous datasets (B). We estimated parameters only for genes where the variance of counts exceeds the mean. Vertical bar indicates the median of the
distribution, which varies substantially across datasets, but is concordant across replicate experiments within the same study. C) Relationship between gene mean and the
variance of Pearson residuals resulting from an NB GLM with θ = 10 or θ = 100. Each dot is a gene and the trendline (LOESS) is shown in red. D) Same as (C), but shown
for additional datasets and for θ =∞ (Poisson). Only trendlines are shown for visual clarity.
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gle value of θ could achieve effective variance stabilization
across all datasets. For example, a negative binomial error
model with θ = 100 resulted in clear heteroskedasticity in
multiple datasets (Figure 2C), as we observed a strong re-
lationship between the mean expression of a gene, and its
residual variance. This will artificially boost the weight of all
highly expressed genes in downstream analysis such as di-
mensional reduction and clustering. We repeated the analysis
with two alternative models, setting θ =∞ and θ = 10, both
of which revealed similar shortcomings in multiple datasets
(Figure 2D and Supplementary Figures S3 - S10). We con-
clude that fixing a single value of θ may achieve effective
performance in certain cases, but is unlikely to generalize
across the diversity of systems and technologies represented
by scRNA-seq data.

Gene overdispersion varies as a function of
abundance

An alternative strategy for parameterizing θ leverages a well-
characterized strategy for modeling counts in bulk RNA-seq
data, where per-gene dispersion estimates have repeatedly
been found to vary as a function of expression abundance
(30–36). In sctransform (9), we aim to estimate a global rela-
tionship between gene abundance and θ by employing a reg-
ularization procedure where parameters are first fit for each
gene individually, but information from genes with similar
average abundances is subsequently pooled together in order
to improve the robustness of parameter estimates. The under-
lying rationale for this choice is the non-decreasing relation-
ship between gene abundance and θ that has been repeatedly
observed in bulk RNA-seq studies (30–36). When analyzing
each of the technologies and biological systems explored in
this manuscript, we identified the same global patterns relat-
ing gene abundance and overdispersion levels (Supplemen-
tary Figures S11 - S14).

We also considered the findings from (22), which pro-
posed that θ values should not vary as a function of gene
abundance, and suggested that the relationship between these
two variables was driven entirely by biases in the parameter
estimation procedure, especially when analyzing lowly ex-
pressed genes. We first confirmed that lowly expressed genes,
particularly those with average abundance < 0.1 UMI/cell,
posed difficulties for parameter estimation. This is because
the vast majority of count values for these genes are 0, cre-
ating inherent challenges in maximum likelihood estimation.
When estimating parameters on simulated data drawn from
a negative binomial with fixed θ, we confirmed a bias for
these genes that resulted in decreased parameter estimates for
θ (Supplementary Figure S15). However, using two comple-
mentary analyses, we found that this bias was not sufficient to
explain the true relationships we observed in biological data.
First, we observed a non-decreasing relationship between
gene abundance (µ) and dispersion (θ) even when moving be-
yond the threshold for lowly expressed genes, which we did
not observe when analyzing simulated data (Supplementary
Figure S16). Additionally, we attempted to increase (‘up-
sample’) the depth of single cell datasets by pooling together

molecular counts from cells with similar molecular profiles
(Supplementary Methods) as inspired by the MetaCell frame-
work (37). We repeated the parameter estimation procedure
on metacells generated either from single-cell data, or using
our simulation framework (Methods). Increasing the depth of
sampling removed the effects of bias when analyzing simu-
lated data, but preserved the observed relationship between µ
and θ on real biological datasets (Supplementary Figure S16).
We conclude that when modeling scRNA-seq data using a
negative binomial distribution, the inverse overdispersion pa-
rameter θ does vary as a function of gene abundance, but the
true nature of this relationship can be masked for genes with
low molecular counts.

Recommendations for modeling heterogeneity in
scRNA-seq datasets

Our findings highlight how the extensive diversity of scRNA-
seq datasets poses challenges in identifying uniform proce-
dures for the preprocessing and normalization of scRNA-seq
data. Sparsely sequenced datasets may appear to be compat-
ible with the use of Poisson error models, but datasets with
additional sequencing depth reveal clear evidence of overdis-
persion. The level of overdispersion, exemplified by the NB
parameter θ, also can vary substantially across datasets, tech-
nologies and systems, and even varies within a dataset as a
function of gene abundance. However, the estimation of ro-
bust parameter estimates for θ can be challenging for lowly
expressed genes, especially when analyzing datasets with
sparse sequencing. We therefore considered recommenda-
tions for balancing these considerations, providing the flexi-
bility to learn error models that can be robustly applied to our
full spectrum of scRNA-seq datasets.

We first recommend the use of negative binomial
observation model as an alternative to the Poisson distri-
bution. Our analyses show that the Poisson distribution is
a reasonable approximation for technical-control datasets
consisting of endogenous or spike-in RNA, as well as for
some scRNA-seq experiments with shallow sequencing.
However, scRNA-seq datasets from cell lines exhibit clear
evidence of overdispersion at higher sequencing depths,
even for genes that do not correlate with changes in cell
type or state. At least some of this overdispersion likely
originates from ‘intrinsic’ noise, stochastic cellular variation
that is inherent to the processes of mRNA transcription and
degradation, and will affect the expression heterogeneity of
all genes. While this variation is not a result of measurement
error, it is not the primary focus of downstream scRNA-seq
analyses, including the identification of cell types and states,
and the inference of developmental trajectories. We therefore
recommend that this variation be modeled independently
of the latent space, which requires the use of a negative
binomial error model. We note that the Poisson distribution
is a special case of the negative binomial, and therefore the
NB model can be successfully applied for datasets with very
shallow sequencing, with appropriate parameter settings.

Second, we recommend learning negative binomial pa-
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rameters separately for each dataset, rather than fixing them
to a single value across all analyses. Moreover, we rec-
ommend allowing θ to vary across genes within a dataset,
as a function of average gene abundance. The relationship
between µ and θ has been repeatedly demonstrated in bulk
RNA-seq, and is apparent across diverse scRNA-seq datasets
as well, particularly for genes with sufficient sequencing
depth. Using a fixed θ to parameterize all genes in a scRNA-
seq dataset leads to ineffective variance stabilization and re-
sults in a global relationship between expression level and
expression variance (Figure 2 and Supplementary Figures S3
and S4). We note that the recommendations described above
relate not only to GLM-based preprocessing workflows, but
also probabilistic or likelihood-based models (11, 24, 38).

Our analyses highlighted that lowly expressed genes with
particularly sparse molecular counts often lacked sufficient
information content to robustly detect overdispersion. We
therefore designed a modified regularization procedure for
learning GLM parameter estimates (Supplementary Meth-
ods). First, following the recommendations from (22), we
fix the slope of the NB GLM to its analytically derived solu-
tion of ln(10), so that only the overdispersion and intercept
parameters are estimated for each gene. Second, we reasoned
that for genes with very low expression (µ< 0.001), or where
the variance of their molecular counts does not exceed the
mean (i.e. σ2 ≤ µ), we do not have sufficient evidence for
overdispersion to fit negative binomial parameters. We there-
fore removed these genes from the regularization process and
fixed their θ parameter to∞, exemplifying a Poisson distri-
bution. For example, in the scRNA-seq dataset of HEK cells
profiled with SMART-Seq3, we removed 1,577 genes (8.5%)
at this stage, the majority of which were lowly expressed
(66.64%< 0.1 UMI/cell). We found that our modified regu-
larization enables us to reproducibly learn gene-specific pa-
rameters even when using a subset of cells in the estimation
procedure. This indicates increased robustness (Figure 3A),
and allows us to learn a regularized relationship between µ
and θ using only a subset of cells that achieves nearly iden-
tical results (Figure 3B) with increased computational effi-
ciency (Figure 3C).

To test the broad applicability of this procedure, we ap-
plied it to each of the 58 datasets examined in this manuscript.
In each case, we achieved effective variance stabilization as
we observed no global relationship between gene expres-
sion levels and the variance of the resulting Pearson residuals
(Supplementary Figures S17 - S20). Moreover, in each case,
genes with the highest residual variance were distributed
across a range of expression levels and - when analyzing
heterogeneous samples - represented markers that have been
strongly associated with individual cell types. As a result,
application of this preprocessing pipeline will give the great-
est weight to these markers, while downweighting fluctua-
tions in the most highly expressed genes, which often appear
to exhibit extensive heterogeneity in the absence of variance
stabilization. These results indicate that our preprocessing
workflow has sufficient flexibility to accurately model a wide
variety of scRNA-seq datasets and serves as a basis for our

recommendations in this manuscript.

Discussion

The application of statistical count models for preprocessing
of scRNA-seq data overcomes important challenges that can-
not be addressed by using linear size or scaling factor-based
normalization. However, these techniques require the selec-
tion of an appropriate error distribution and accompanying
parameter settings. Here, we explore these questions through
the analysis of a wide diversity of scRNA-seq datasets vary-
ing across technologies, biological systems, and sequencing
depths.

Our analyses revealed three key insights. First, we
found that all scRNA-seq datasets exhibited clear evidence
of overdispersion (i.e. deviation from a Poisson distribution),
even after accounting for differences in sequencing depth,
once exceeding a minimum expression level. This threshold
varied across datasets as a function of average sequencing
depth. This result strongly supports the use of negative bino-
mial error models when analyzing UMI datasets. Second, we
found that the negative binomial overdispersion parameter θ
varied substantially across datasets, arguing against the use of
a fixed θ estimate. Finally, we found that all datasets exhib-
ited a dependence between gene abundance and overdisper-
sion estimates. This result is robust even when considering
potential biases in the overdispersion parameter estimation,
and supports an empirical approach to learn regularized pa-
rameter estimates, as is commonly performed in bulk RNA-
seq analysis.

Taken together, these results are compatible with the idea
that cell-to-cell variation in scRNA-seq count data can be de-
composed into multiple broad categories. The first represents
variation in cell type and state which is biologically driven
and encoded in cellular transcriptomes. This heterogeneity is
the primary interest and focus of downstream analysis, and
is typically represented in a latent space that can be learned
via linear or non-linear dimensional reduction techniques. A
second source represents technical measurement error arising
from the stochastic loss of molecules during library prepara-
tion and sequencing. This sampling error can be modeled
using a Poisson distribution and, particularly for shallowly
sequenced datasets, represents a substantial source of remain-
ing heterogeneity.

Our analyses suggest a third level of variation that should
be accounted for: fluctuations in gene expression which are
driven by the noise that is inherent to the processes of mRNA
transcription and degradation (i.e. ‘intrinsic noise’) and man-
ifests as overdispersion in scRNA-seq data. The presence
of intrinsic noise has been extensively characterized and is
an inevitable consequence of the gene regulatory process.
Therefore, no two cells can generate mRNA molecules at ex-
actly the same rate (an assumption of a Poisson process), even
if they originate from the same ‘homogeneous’ population.
Our analyses demonstrate that intrinsic noise is readily de-
tectable for genes with sufficient sequencing depth, but can
be masked in shallow datasets (Figure 1E). While intrinsic
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Figure 3. A modified regularization procedure improves the robustness of parameter estimates. A) Left: Estimated parameter estimates for θ on the Fetal sci-RNA-
seq3 dataset (39), using the original regularization procedure from (9) (v1 regularization). Regularized estimates were learned using all cells (purple line), or downsampled
cell subsets. Right: Same as (A), but using a modified procedure where the GLM slope was fixed, and genes where σ2 ≤ µ and µ< 0.001 were excluded from regularization
(v2 regularization) which improves robustness, and enables us to learn parameter estimates from a subsample of 2,000 cells. B) Correlation of Pearson residual variance
after applying a NB GLM with v2 regularization where parameters were estimated from all 377,456 cells (x-axis), and a subsample of 2,000 cells (y-axis). C) Green curve:
total sctransform run time as a function of dataset size, using all cells to estimate parameters. Orange curve: total runtime when using a subsample of 2,000 cells, which
increases computational efficiency for large datasets.

noise it is not driven by measurement error, it should also
be modeled independently of the latent space. Therefore, as
the sensitivity and depth of scRNA-seq datasets continue to
increase, the use of negative binomial error models will be-
come increasingly important. Moreover, the level of intrinsic
noise can vary across biological systems and gene abundance
levels, motivating the use of a data-driven regularization pro-
cedure to learn gene-level overdispersion parameters.

Our analyses highlight the importance of considering a
diversity of datasets when evaluating the statistical proper-
ties of new data types. While our results are therefore appli-
cable to scRNA-seq measurements, they cannot be directly
applied to new single-cell modalities, including protein mea-
surements (i.e. CITE-seq (40)), chromatin accessibility pro-
files (i.e. scATAC-seq (41)), and DNA interaction maps (i.e.
scCUT&TAG (42, 43)). As with cellular transcriptomes,
these modalities can be profiled using multiple technologies
that vary in their sensitivity and sparsity. We anticipate excit-
ing future work that will characterize and parameterize het-
erogeneity in these data types, to achieve effective prepro-
cessing and normalization.

Availability of materials and data

Raw datasets used in the main text are available
from public URLs listed in Supplementary Table
S1. Scripts to reproduce the analyses are available at
https://github.com/saketkc/scRNA_NB_comparison.

Source code for sctransform along with the modifications
described in this manuscript is available in the forked reposi-
tory at https://github.com/saketkc/sctransform. A Python im-
plementation that interfaces with the Scanpy (44) package is
available at https://github.com/saketkc/pysctransform.

To invoke ‘v2’ regularization in SCTransform using
Seurat (45):

library(Seurat)

object <- CreateSeuratObject(counts = counts)
object <- SCTransform(object, vst.flavor=‘v2’)

Analogously, to use SCTransform in Python (using
Scanpy (44)):

from pysctransform import SCTransform
adata = sc.read_h5ad("anndata_object.h5ad")
residuals = SCTransform(adata, vst_flavor=‘v2’)
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Supplementary Methods

Data sources and preprocessing

All datasets were obtained as preprocessed count matrices from Gene expression omnibus (GEO), EBI ArrayExpress, or
author’s website. In each case, we utilized cells that had passed the QC thresholds set by the original study authors. However,
to minimize the effect of potential cell outliers in our data, we filtered out cells that fell outside of the 5% to 95% UMI quantiles
in each dataset. Additionally, we removed all cells where more than 15% of reads mapped to mitochondrial transcripts. We did
not perform any filtering for the Fetal sci-RNA-seq3 dataset as it had already been filtered and annotated by the authors. The
dataset source and associated publication are available in Supplementary Table S1.

Goodness of Fit test using a Poisson GLM

To explore whether a Poisson distribution represents an appropriate error model for UMI-based scRNA-seq data, we fit
a Poisson GLM adjusting for differences in library size modeled as an offset. To reduce the computational complexity, we
subsampled 1,000 cells in a density dependent manner from the count matrices of each dataset: the probabilty of select-
ing a cell c is 1

d(log10Nc) , where d is the density estimate of all log10-transformed total cell UMIs and Nc is the total UMI
counts in cell c. These subsampled count matrices were then used to fit a Poisson GLM for each gene UMI vector with
total UMI content of each cell modeled as an offset vector (glm.fit(gene_umi ∼ 1, offset=log(total_umi),
family=Poisson(link="log")) in R. We then performed a goodness of fit test on the randomized quantile residuals (46)
of this GLM model fit calculated using statmod::qresid(model). If the data is well-described by the model, the sum
of squares of the quantile residuals is expected to follow a Chi-squared distribution with degrees of freedom = Ncells−1 where
Ncells represents the total number of cells in the dataset. We chose quantile residuals to measure the goodness of fit, as they
have lower type-I error and higher power in comparison to other residuals for identifying misspecification (47). To calculate p-
values, we used the pchisq function in R (pchisq(qresid, df=model$df.residual, lower.tail=FALSE)).
To control for multiple testing, we adjusted p-values using the qvalue method available through the qvalue package (48).
We used a q-value threshold of 0.01 to accept or reject the fit to the Poisson model. Library sizes reflected in Figure 1E were
calculated based on the subset count matrices.

Assessing overdispersion after downsampling sequence depth

In Figure 1D-E we assess the level of dispersion in the PBMC Smart-seq3 dataset, after downsampling the dataset to
different sequencing depths. The full dataset contains 2,629 cells with a median UMI/cell of 8,288 with a maximum coverage
of 20,463 UMI/cell. When downsampling to 10,000 UMI/cell, we first excluded 1,837 cells where < 9,900 UMIs were
detected in the dataset. For the remaining cells, we randomly sampled molecules at a proportion expected to yield 10,000
UMI/cell on average and retained only cells that contained UMIs in the range 10,000±100 to minimize the effect of differences
in sequencing depth. We repeated this process for multiple sequencing depths shown in Figure 1D-E.

Comparing levels of overdispersion across datasets

In Figure 2A-B, we fit NB GLM to each gene in each dataset, in order to estimate the inverse overdispersion param-
eter θ. We model the observed counts for each gene using the following model gene_umi ∼ 1, and estimate parame-
ters using glmGamPoi::glm_gp(gene_umi, model, offset=log(total_umi), size_factors=FALSE)
using the glmGamPoi package (49). We perform this procedure for all genes where the variance of the observed counts exceeds
the mean.

Modeling scRNA-seq datasets with sctransform

For clarity, we restate the modeling framework used in sctransform (9). In sctransform, UMI counts across cells in a dataset
are modeled using a generalized linear model (GLM). The total UMI count per cell is used as an offset in the GLM. Thus, for
a given gene g in cell c, we have

xgc ∼ NB(µgc,θg)
lnµgc = βg0 + lnnc,

where θg is the gene-specific dispersion parameter, nc =
∑
g xgc is the total sequencing depth and the variance of the

negative binomial (NB) is given by µgc+µ2
gc/θg .
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We perform three steps to remove technical noise and perform variance stabilization. In the first step, the inverse overdisper-
sion parameter θ is individually estimated using a subset of genes (2000 by default), which are sampled in a density-dependent
manner according to their average abundance. In the next step, we calculate a smoothed curve that characterizes the global
relationship between µ and θ, thereby regularizing θ estimates as a function of gene mean. We perform the same regularization
for the intercept parameter. We use the geometric mean to estimate gene abundance, which is more robust to outlier values
in scRNA-seq. As outlier values can originate from multiple sources including the presence of cell doublets, errors in UMI
collapsing, or ambient RNA, we have empirically improved performance when using the geometric mean instead of the arith-
metic mean. Although sctransform supports multiple estimators for θ, we recommend the use of glmGamPoi (49), an alternate
estimator that is more robust and faster.

In the final step, we use the regularized parameter estimates to calculate Pearson residuals Zgc. For each gene-cell combi-
nation, the Pearson residuals Zgc are given by

Zgc−
xgc−µgc
σgc

µgc = expβg0 + lnnc

σgc =

√
µgc+

µ2
gc

θgc
,

The ‘residual variance’ for a gene represents the remaining variation in gene expression that is not explained by the sctrans-
form model, and is defined as:

residual varianceg = 1
C−1

C∑
c=1

(Zgc− Z̄g)2

Z̄g =
C∑
c=1

Zgc,

where C represents the number of total cells in the dataset.

Evaluating the performance of a GLM with fixed θ

In Figure 2C-D, as well as associated supplementary figures (S3 - S10) we model each of the scRNA-seq datasets using a
NB GLM with a fixed value of θ for each gene in each dataset. To test this, we utilize the ‘offset’ model as described by Lause
et al. in (22). We repeated the analysis with three different values for the fixed overdispersion parameter, θ =∞, θ = 100, and
θ = 10.

Improving the robustness of parameter regularization

In Figure 3 we explore a modified regularization procedure to improve the robustness of NB parameter estimates, particu-
larly for lowly expressed genes, and to increase computational efficiency. We make two changes to the estimation procedure
described in (9). First, we fix the slope parameter of the GLM to ln(10) with log10(total UMI) used as the predictor. As
described in (22), this value represents the analytically derived solution for this parameter, and closely mirrors the regularized
values we had obtained for the slope parameter in the original sctransform procedure. While (22) also recommends fixing the
intercept parameter for the GLM, an approximate solution to the maximum likelihood estimate of this parameter can only be
obtained for large values of θ. As our data-driven estimates for θ demonstrate that this parameter can vary substantially across
datasets, we continue to set the intercept parameter for the GLM through regularization.

As a second modification, we remove a subset of genes prior to performing regularization. In particular, we reasoned that for
genes with either very low abundance (µ< 0.001), or where the variance of count values did not exceed the average abundance
(i.e. σ2 ≤ µ), we lacked sufficient information to learn robust NB parameter estimates. We therefore exclude these genes from
the regularization procedure, and set their θ parameter estimates to∞ for all downstream analyses. We note that this filtration
step occurs rapidly, as the per-gene mean and variance can be efficiently calculated. For this filtration step, we use the arithmetic
mean to set abundance, as this value should be compared with gene variance to determine evidence of overdispersion. For these
genes, the regularized intercept (β̂poisson

g0 ) is set to the analytically derived solution from (22), with a fixed slope of ln(10):

β̂
poisson
g0 = ln

(∑
c

xgc

)
− ln

(∑
c

nc

)
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Simulation of UMI counts with fixed overdispersion

To explore the potential bias of maximum-likelihood (ML) estimators, we simulated an scRNA-seq dataset with fixed levels
of overdispersion. We fixed θ to different values {0.001,0.01,0.1,1,10,100}, and simulated scRNA-seq counts from an NB
distribution, using gene means that were taken from the PBMC Smart-Seq3 dataset. We next estimated parameter values for θ
using both the v1 and v2 versions of our sctransform regularization procedure using glmGamPoi (49) as an estimation engine.
We also estimated a maximum likelihood of θ using glmGamPoi without explicitly accounting for library size (MLE). To create
an ‘upsampled’ dataset where the sequencing depth is higher, we multiplied the estimated means xgc by a factor of 500, and
repeated the sampling procedure.

Increasing sequencing depth by creating metacells

In order to ‘upsample’ the PBMC Smart-seq3 dataset, we ran MetaCells v0.3.5 (37) for three different values of ‘K’ pa-
rameter (200, and 300, and 400) with all other parameters as defaults. UMI counts of cells belonging to one metacell were
consolidated to create a metacell count, resulting in a higher sequencing depth. These metacells were then used as input to
sctransform to estimate per gene θ.
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Supplementary Figures & Tables
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Figure S1. UMI statistics for the 58 datasets analyzed in this manuscript. A) Distribution of total UMI per cell across datasets B)
Distribution of mean UMI per gene across datasets (technical control = endogeneous or spike-in RNA; cell line = HEK293 and 3T3 cell
lines; heterogeneous = samples consisting of multiple cell types).
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Figure S2. Genes that exhibit Poisson heterogeneity are more lowly expressed. In each dataset, we performed a per-gene
goodness-of-fit test based on a GLM with a Poisson error model (Supplementary Methods). Shown are the distribution of gene
abundances (average UMI/gene) for genes that passed (blue) and failed (red) the goodness-of-fit test.
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Figure S3. Relationship between gene abundance and the variance of Pearson residuals. Values shown are resulting from an
NB GLM with three different values of θ. Same as Figure 2D but with per-gene estimates highlighted instead of smoothed curves.
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Figure S4. Relationship between gene abundance and the variance of Pearson residuals. Same as Figure 2D but additionally
showing results for sctransform (v2 regularization).
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Figure S5. Evaluating variance stabilization for different error models. Same as in Figure 2C, but with additional datasets 1-10.
Also shown are results from sctransform (v2 regularization). 15
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Figure S6. Evaluating variance stabilization for different error models. Same as in Figure 2C, but with additional datasets 11-20.
Also shown are results from sctransform (v2 regularization).16
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Figure S7. Evaluating variance stabilization for different error models. Same as in Figure 2C, but with additional datasets 21-30.
Also shown are results from sctransform (v2 regularization). 17
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Figure S8. Evaluating variance stabilization for different error models. Same as in Figure 2C, but with additional datasets 31-40.
Also shown are results from sctransform (v2 regularization).18
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Figure S9. Evaluating variance stabilization for different error models. Same as in Figure 2C, but with additional datasets 41-50.
Also shown are results from sctransform (v2 regularization). 19
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Figure S10. Evaluating variance stabilization for different error models. Same as in Figure 2C, but with additional datasets 51-58.
Also shown are results from sctransform (v2 regularization).20
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Figure S11. Relationship between inverse overdispersion parameter θ and gene abundance µ. Overdispersion was estimated
using all cells after accounting for library size using a negative-binomial GLM. The red curve indicates a LOESS fit. All datasets exhibit
a relationship between gene mean and θ [Datasets 1-15].
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Figure S12. Relationship between inverse overdispersion parameter θ and gene abundance µ. Overdispersion was estimated
using all cells after accounting for library size using a negative-binomial GLM. The red curve indicates a LOESS fit. All datasets exhibit
a relationship between gene mean and θ [Datasets 16-30].
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Figure S13. Relationship between inverse overdispersion parameter θ and gene abundance µ. Overdispersion was estimated
using all cells after accounting for library size using a negative-binomial GLM. The red curve indicates a LOESS fit. All datasets exhibit
a relationship between gene mean and θ [Datasets 31-45].
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Figure S14. Relationship between inverse overdispersion parameter θ and gene abundance µ. Overdispersion was estimated
using all cells after accounting for library size using a negative-binomial GLM. The red curve indicates a LOESS fit. All datasets exhibit
a relationship between gene mean and θ [Datasets 46-58].

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.07.451498doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451498
http://creativecommons.org/licenses/by-nc-nd/4.0/


MLE SCT(v1) SCT(v2)

0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100

0.001

0.01

0.1

1

10

100

Gene arithmetic mean

θ

θtrue 0.001 0.01 0.1 1 10 100 1000

Figure S15. Estimation of dispersion in simulated datasets. Using mean counts distribution from PBMCs profiled using Smart-
seq3, synthetic counts matrices were generated using a fixed θ = {0.001,0.01,0.1,1,10,100}. There is a bias in estimated θ from
all the three methods: MLE (glmGamPoi (49)), SCT (sctransform) and SCT2 (sctransform, v2 regularization). The bias arises from
difficulty in estimating the true θ when µ < 1 and µ < θ. We note that the variance of the NB model is given by µgc +µ2

gc/θg . The
second term approaches 0 for small values of µ, which is where we observe this bias. Therefore, the bias in parameter estimation has
minimal impact on both the expected NB variance, and the final Pearson residuals (50).
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Figure S16. Effect of ‘upsampling’ on µ−θ relationship Relationship between gene mean and dispersion observed in PBMC Smart-
seq3 dataset, simulated dataset with different true dispersions (θsim = 10 and 100) and Metacells (M20, M14, M12). The simulated
datasets were generated using mean counts from the observed PBMC Smart-seq3 dataset, but by ‘upsampling‘ the means to be 500
times larger. Metacells were generated using MetaCell (37) using different parameters of K for the KNN graph. M20, M14, and M12
represents 20, 14, and 12 metacells constructed using K = 200, 300, and 400 respectively.
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Figure S17. Variance stabilization achieved by sctransform2 across datasets. Y-axis shows variation of pearson residuals as
estimated by sctransform (v2 regularization) for datasets 1-15. Top 10 genes with highest residual variances are highlighted.
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Figure S18. Variance stabilization achieved by sctransform2 across datasets. Y-axis shows variation of pearson residuals as
estimated by sctransform (v2 regularization) for datasets 16-30. Top 10 genes with highest residual variances are highlighted.
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Figure S19. Variance stabilization achieved by sctransform2 across datasets. Y-axis shows variation of pearson residuals as
estimated by sctransform (v2 regularization) for datasets 31-45. Top 10 genes with highest residual variances are highlighted.
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Figure S20. Variance stabilization achieved by sctransform2 across datasets. Y-axis shows variation of pearson residuals as
estimated by sctransform (v2 regularization) for datasets 46-58. Top 10 genes with highest residual variances are highlighted.
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Sample name Technology Tissue Datatype Raw data Reference
TechnicalControl1 (ChromiumV1) ChromiumV1 TechnicalControl technical-control link (8, 51)
TechnicalControl2 (ChromiumV1) ChromiumV1 TechnicalControl technical-control link (8, 51)
TechnicalControl (inDrops) inDrops TechnicalControl technical-control link (14, 51)
3T3 (ChromiumV3) ChromiumV3 3T3 cell line link (51)
3T3-r1 (ChromiumV2) ChromiumV2 3T3 cell line link (52)
3T3-r1 (Drop-seq) Drop-seq 3T3 cell line link (52)
3T3-r1 (inDrops) inDrops 3T3 cell line link (52)
3T3-r1 (sci-RNA-seq) sci-RNA-seq 3T3 cell line link (52)
3T3-r2 (CEL-seq2) CEL-seq2 3T3 cell line link (52)
3T3-r2 (ChromiumV2) ChromiumV2 3T3 cell line link (52)
3T3-r2 (Drop-seq) Drop-seq 3T3 cell line link (52)
3T3-r2 (inDrops) inDrops 3T3 cell line link (52)
3T3-r2 (sci-RNA-seq) sci-RNA-seq 3T3 cell line link (52)
HEK (ChromiumV3) ChromiumV3 HEK cell line link (51)
HEK (Smart-seq3) Smart-seq3 HEK cell line link (29)
HEK-r1 (CEL-seq2) CEL-seq2 HEK cell line link (52)
HEK-r1 (ChromiumV2) ChromiumV2 HEK cell line link (52)
HEK-r1 (Drop-seq) Drop-seq HEK cell line link (52)
HEK-r1 (inDrops) inDrops HEK cell line link (52)
HEK-r1 (sci-RNA-seq) sci-RNA-seq HEK cell line link (52)
HEK-r2 (CEL-seq2) CEL-seq2 HEK cell line link (52)
HEK-r2 (ChromiumV2) ChromiumV2 HEK cell line link (52)
HEK-r2 (Drop-seq) Drop-seq HEK cell line link (52)
HEK-r2 (inDrops) inDrops HEK cell line link (52)
HEK-r2 (sci-RNA-seq) sci-RNA-seq HEK cell line link (52)
HEK-m (CEL-seq2) CEL-seq2 HEK cell line link (53)
HEK-m (ChromiumV2) ChromiumV2 HEK cell line link (53)
HEK-m (ChromiumV2_sn) ChromiumV2 HEK cell line link (53)
HEK-m (ddSeq) ddSeq HEK cell line link (53)
HEK-m (Drop-seq) Drop-seq HEK cell line link (53)
HEK-m (inDrops) inDrops HEK cell line link (53)
HEK-m (MARS-seq) MARS-seq HEK cell line link (53)
HEK-m (mcSCRB-seq) mcSCRB-seq HEK cell line link (53)
HEK-m (Quartz-Seq2) Quartz-Seq2 HEK cell line link (53)
Cortex-r1 (ChromiumV2) ChromiumV2 Cortex heterogeneous link (52)
Cortex-r1 (DroNc-seq) DroNc-seq Cortex heterogeneous link (52)
Cortex-r1 (sci-RNA-seq) sci-RNA-seq Cortex heterogeneous link (52)
Cortex-r2 (ChromiumV2) ChromiumV2 Cortex heterogeneous link (52)
Cortex-r2 (DroNc-seq) DroNc-seq Cortex heterogeneous link (52)
Cortex-r2 (sci-RNA-seq) sci-RNA-seq Cortex heterogeneous link (52)
Fibroblasts (Smart-seq3) Smart-seq3 Fibroblasts heterogeneous link (29)
PBMC-r1 (CEL-seq2) CEL-seq2 PBMC heterogeneous link (52)
PBMC-r1 (ChromiumV2A) ChromiumV2 PBMC heterogeneous link (52)
PBMC-r1 (ChromiumV2B) ChromiumV2 PBMC heterogeneous link (52)
PBMC-r1 (ChromiumV3) ChromiumV3 PBMC heterogeneous link (52)
PBMC-r1 (Drop-seq) Drop-seq PBMC heterogeneous link (52)
PBMC-r1 (inDrops) inDrops PBMC heterogeneous link (52)
PBMC-r1 (Seq-Well) Seq-Well PBMC heterogeneous link (52)
PBMC-r2 (CEL-seq2) CEL-seq2 PBMC heterogeneous link (52)
PBMC-r2 (ChromiumV2) ChromiumV2 PBMC heterogeneous link (52)
PBMC-r2 (Drop-seq) Drop-seq PBMC heterogeneous link (52)
PBMC-r2 (inDrops) inDrops PBMC heterogeneous link (52)
PBMC-r2 (Seq-Well) Seq-Well PBMC heterogeneous link (52)
PBMC68k (ChromiumV1) ChromiumV1 PBMC heterogeneous link
PBMC (ChromiumV3) ChromiumV3 PBMC heterogeneous link (51)
PBMC (Smart-seq3) Smart-seq3 PBMC heterogeneous link (29)
Fetal (sci-RNA-seq3) sci-RNA-seq3 Fetus heterogeneous link (39)

Table S1. List of datasets used in this study. Raw data can be downloaded from the hyperlinks under ‘raw data‘ column. Similar
sample names with ‘-r1’ and ‘-r2’ denote replicates from Ding et al.(52) study.
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Sample name <0.01 >0.01 >0.1 >1 >5 >10 >25 >50 >100

TechCtrl1 (ChromiumV1) 0.000 0.01 0.10 0.70
TechCtrl2 (ChromiumV1) 0.000 0.000 0.018 0.51 0.93
TechCtrl (inDrops) 0.000 0.01 0.04 0.13 0.41 0.67 0.93
3T3 (ChromiumV3) 0.002 0.007 0.066 0.49 0.99 1.00 1.00 1.00
3T3-r1 (CEL-seq2) 0.007 0.007 0.118 0.37 0.84 0.98 1.00 1.00 1.00
3T3-r1 (ChromiumV2) 0.004 0.011 0.196 0.82 1.00 1.00 1.00 1.00
3T3-r1 (Drop-seq) 0.002 0.001 0.054 0.60 1.00 1.00
3T3-r1 (inDrops) 0.001 0.001 0.046 0.78 1.00 1.00
3T3-r1 (sci-RNA-seq) 0.001 0.003 0.056 0.50 0.99 1.00 1.00
3T3-r2 (CEL-seq2) 0.008 0.009 0.104 0.39 0.77 0.95 1.00 1.00 1.00
3T3-r2 (ChromiumV2) 0.008 0.006 0.143 0.74 1.00 1.00 1.00 1.00
3T3-r2 (Drop-seq) 0.001 0.039 0.47 0.95 1.00
3T3-r2 (inDrops) 0.001 0.001 0.029 0.48 0.97 1.00
3T3-r2 (sci-RNA-seq) 0.005 0.008 0.209 0.87 1.00 1.00 1.00
HEK (ChromiumV3) 0.003 0.006 0.076 0.51 0.97 1.00 1.00 1.00 1.00
HEK (Smart-seq3) 0.012 0.012 0.172 0.70 0.94 0.99 1.00 1.00 1.00
HEK-r1 (CEL-seq2) 0.008 0.092 0.38 0.76 0.94 1.00 1.00 1.00
HEK-r1 (ChromiumV2) 0.005 0.018 0.158 0.85 1.00 1.00 1.00 1.00
HEK-r1 (Drop-seq) 0.000 0.003 0.038 0.47 1.00 1.00 1.00
HEK-r1 (inDrops) 0.001 0.001 0.020 0.54 1.00 1.00
HEK-r1 (sci-RNA-seq) 0.005 0.007 0.076 0.52 0.97 1.00
HEK-r2 (CEL-seq2) 0.005 0.008 0.085 0.45 0.90 0.98 1.00 1.00 1.00
HEK-r2 (ChromiumV2) 0.006 0.019 0.203 0.91 1.00 1.00 1.00 1.00
HEK-r2 (Drop-seq) 0.001 0.003 0.059 0.62 1.00 1.00 1.00
HEK-r2 (inDrops) 0.001 0.003 0.028 0.60 1.00 1.00
HEK-r2 (sci-RNA-seq) 0.006 0.018 0.265 0.91 1.00 1.00
HEK-m (CEL-seq2) 0.019 0.136 0.61 0.93 0.99 1.00 1.00 1.00
HEK-m (ChromiumV2) 0.188 0.204 0.675 0.97 1.00 1.00 1.00 1.00 1.00
HEK-m (ChromiumV2_sn) 0.005 0.17 0.73
HEK-m (ddSeq) 0.222 0.479 0.912 0.99 1.00 1.00
HEK-m (Drop-seq) 0.006 0.014 0.291 0.98 1.00 1.00
HEK-m (inDrops) 0.008 0.25 0.69 1.00
HEK-m (MARS-seq) 0.010 0.209 0.80 0.99 1.00 1.00
HEK-m (mcSCRB-seq) 0.007 0.334 0.94 1.00 1.00
HEK-m (Quartz-Seq2) 0.103 0.133 0.525 0.96 1.00 1.00 1.00 1.00 1.00
Cortex-r1 (ChromiumV2) 0.001 0.009 0.124 0.77 1.00 1.00
Cortex-r1 (DroNc-seq) 0.001 0.007 0.200 0.91 1.00
Cortex-r1 (sci-RNA-seq) 0.001 0.011 0.258 0.97 1.00 1.00
Cortex-r2 (ChromiumV2) 0.001 0.006 0.104 0.80 1.00 1.00
Cortex-r2 (DroNc-seq) 0.002 0.007 0.204 0.92 1.00
Cortex-r2 (sci-RNA-seq) 0.001 0.010 0.218 0.99 1.00
Fibroblasts (Smart-seq3) 0.048 0.274 0.799 0.99 1.00 1.00 1.00 1.00 1.00
PBMC-r1 (CEL-seq2) 0.001 0.001 0.017 0.31 0.95 1.00
PBMC-r1 (ChromiumV2A) 0.000 0.004 0.109 0.87 0.98 1.00
PBMC-r1 (ChromiumV2B) 0.001 0.002 0.079 0.80 0.98 1.00 1.00
PBMC-r1 (ChromiumV3) 0.002 0.011 0.145 0.78 1.00 1.00 1.00
PBMC-r1 (Drop-seq) 0.000 0.002 0.128 0.83 1.00
PBMC-r1 (inDrops) 0.000 0.003 0.189 0.97
PBMC-r1 (Seq-Well) 0.001 0.005 0.214 0.96
PBMC-r2 (CEL-seq2) 0.001 0.013 0.30 0.95 1.00
PBMC-r2 (ChromiumV2) 0.000 0.001 0.061 0.74 0.98 1.00
PBMC-r2 (Drop-seq) 0.001 0.004 0.206 0.92 1.00 1.00
PBMC-r2 (inDrops) 0.001 0.005 0.145 0.96 1.00 1.00
PBMC-r2 (Seq-Well) 0.000 0.095 0.93
PBMC68k (ChromiumV1) 0.000 0.003 0.069 0.76 0.98 1.00
PBMC (ChromiumV3) 0.002 0.011 0.111 0.66 0.95 1.00 1.00 1.00
PBMC (Smart-seq3) 0.031 0.359 0.894 0.97 1.00 1.00 1.00
Fetal (sci-RNA-seq3) 0.116 0.617 0.990

Table S2. Proportion of non-poisson genes across different gene-mean bins. Columns indicate non-cumulative gene abundance
bins between two consecutive labels (for example, > 1 refers to all genes with mean > 1 and ≤ 5). Each cell entry summarizes the
total proportion of genes belonging to a mean abundance bin that were detected to be non-poisson for a dataset.
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