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Abstract. Objective. This paper proposes machine learning models for mapping
surface electromyography (sEMG) signals to regression of joint angle, joint
velocity, joint acceleration, joint torque, and activation torque. Approach. The
regression models, collectively known as MuscleNET, take one of four forms:
ANN (Forward Artificial Neural Network), RNN (Recurrent Neural Network),
CNN (Convolutional Neural Network), and RCNN (Recurrent Convolutional
Neural Network). Inspired by conventional biomechanical muscle models, delayed
kinematic signals were used along with sEMG signals as the machine learning
model’s input; specifically, the CNN and RCNN were modeled with novel
configurations for these input conditions. The models’ inputs contain either raw
or filtered sEMG signals, which allowed evaluation of the filtering capabilities
of the models. The models were trained using human experimental data and
evaluated with different individual data. Main results. Results were compared
in terms of regression error (using the root-mean-square) and model computation
delay. The results indicate that the RNN (with filtered sEMG signals) and RCNN
(with raw sEMG signals) models, both with delayed kinematic data, can extract
underlying motor control information (such as joint activation torque or joint
angle) from sEMG signals in pick-and-place tasks. The CNNs and RCNNs were
able to filter raw sEMG signals. Significance. All forms of MuscleNET were found
to map sEMG signals within 2 ms, fast enough for real-time applications such as
the control of exoskeletons or active prostheses. The RNN model with filtered
sEMG and delayed kinematic signals is particularly appropriate for applications
in musculoskeletal simulation and biomechatronic device control.

Machine learning model, Muscle model, Electromyography, Myoelectric signals,
Myoelectric control, EMG-based control Submitted to: J. Neural Eng.
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1. Introduction

For volitional control, rehabilitation assessment, intent
detection, and power assist, biological signals are the
primary inputs of robotic prostheses, active exoskele-
tons, human-computer interfaces, and rehabilitation
robots [1]. One of the primary bio-signals for motion-
intention recognition is the electromyography (EMG)
signal, which measures the electric potential difference
triggered by the nervous system to command muscle
contraction [2]. Myoelectric control of biomechatronic
devices has encouraged the study of more advanced
sEMG control algorithms [3]. Accordingly, two main
strategies have been used: (a) detailed muscle model-
ing and (b) machine learning methods.

One way to convert the sEMG signal to the
muscle joint torque is to use a biomechanical muscle
model. The most commonly used model is the
three-component model, which takes inspiration from
the lumped-parameter model developed by A.V. Hill
for active and passive muscle tension behavior [4].
However, including a general muscle model within
a multibody model introduces various shortcomings
such as muscle redundancy, a need to specify complex
musculoskeletal geometry such as intricate muscle
wrapping pathways and, difficult-to-fit parameters for
each muscle, along with sensitivity to these additional
parameters. One method that alleviates the muscle
geometry, complexity, redundancy, and interpretation
of sEMG signals within a control framework uses a
machine learning model trained by experimental data.

The output of the machine learning method can
be categorized into two groups: (A) a set of decisions,
classes, or conditions [5–12], and (B) a data-driven
kinematic or kinetic prediction value (regression-based)
[13, 14]. The set of classes is usually used for state
control and requires a large window of data to make
the precise prediction class. Specifically, classification
is a post-processing technique that requires the motion
data after the motion task is completed. Thus, the
regression method has superiority over classification
method in terms of real-time processing. The
regression-based schemes provide the capability of
independent, simultaneous, real-time, and volitional
control of each degree of freedom (DoF).

From the general input perspective, the machine
learning models fall into two groups: (1) the single
instantaneous value of the sEMG signal [15] and (2)
pattern recognition techniques (discovering regularities

in the pattern of the data) [11,16–18] Due to the sEMG
signals’ stochastic and time-varying nature, sEMG
signal windows are utilized for pattern recognition
instead of a single instantaneous value. The insufficient
and stochastic nature of raw sEMG signals may be
solved partially by using a considerable amount of
training data and a complex machine learning model.

Transformation of a set or a window of sEMG
data into a more readily implemented decreased set
of features often uses two methods: (1) feature
engineering and (2) machine learning. Feature
engineering method’s performance relies on the choice
of features for extracting discriminative information
from the sEMG data [9, 19–24]. Since the sEMG
signal contains temporal or spectral information, the
learning algorithms should not rely on specific and
limited features. On the other hand, the deep-learning
solution uses a hierarchy representation, which learns
complex features by configuring and extracting stacks
of features [25]. Deep learning architectures, like
Recurrent Neural Networks (RNN)s, Convolutional
Neural Networks (CNN)s, and Recurrent CNNs
(RCNN)s, are primarily used in image analysis or
processing [26], speech recognition [27], and recently,
bioinformatics [28,29].

Owing to the CNN’s broad feature learning
capability, they have become the most popular deep
learning architectures that can perform classification
or regression using multi-dimensional data [30]. Lately,
CNNs have been applied in sEMG-based classification
of hand or wrist gestures [5, 6, 12, 17, 31, 32], and
limitedly in sEMG-based regression [33, 34]. Bao et
al. [33] used a CNN for wrist multi-DoFs kinematics
estimation. Ameri et al. [35] introduced a regression-
based CNN that was developed for real-time sEMG
based estimation of simultaneous wrist motions.

The RCNN is a particular type of CNN and can
mine sequential data or time-frequency information.
Chen et al. [13] used an RCNN as sEMG-to-Force
mapping for multi-DoFs finger force prediction. They
made significant improvements to the prediction
results with an RCNN consisting of Long Short-Term
Memory (LSTM) networks. Moreover, an RCNN
has been utilized for offline estimation of upper-limb
motions using sEMG frequency bands [36,37] and wrist
motion intention recognition using the time-frequency
spectrum of sEMG signals [38].

The main similarity of the previous studies is that
the estimators depend only on the sEMG signal as
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an input. However, by considering the biomechanical
muscle model, the muscle tension relies on the joint’s
kinematics in addition to the sEMG signals that
function as an activation. The joint angle, velocity,
and acceleration partially define the muscle’s tension,
with the joint angle specifically defining the muscle
fiber orientation. The fiber orientation indicates
the direction of tension applied on the bone, and
consequently the joint torque. Thus, we propose that
in addition to the sEMG signal, the joint’s kinematics
be used as input signals to a machine learning model.

In summary, this work’s distinguishing character-
istics and novelties are (1) regression-based mapping
for intent recognition, muscle modeling, and volitional
control of biomechatronic devices, such as exoskeletons,
prostheses, and assistive/resistive robots; (2) real-time
mapping of sEMG signals by using optimum layers
in the machine learning model; (3) proposing a novel
structure of CNN and RCNN for filtering raw sEMG
signals and feature learning of muscle dynamics; and
(4) using delayed joint kinematics as a second input
type, inspired by biomechanical muscle models. The
proposed MuscleNET (defined as the machine learning
muscle models of sEMG signals to regression of kine-
matic and dynamic biomechanical variables) has sev-
eral applications, including representing muscles in a
musculoskeletal simulation, sports biomechanics simu-
lation, controlling active exoskeletons and prostheses,
developing model-based assistive/resistive robots, and
post-rehabilitation analysis.

In this paper, firstly, the data preparation steps
are described. Secondly, the configuration of the
machine learning models is introduced. Finally,
the training results of 80 models are discussed and
compared.

2. Data Preparation

This section presents data collection [39, 40] and
processing methods. The data preparation steps have
been visualized in Figure 1. The processed data
was used for training the machine learning models,
as detailed in section 3. The data is available upon
reasonable request from the corresponding author [39,
40]. Due to ethical and privacy restrictions, the data
is not publicly available.

2.1. Subjects

Seventeen healthy right-handed young individuals (9
Females and 8 Males; 23 ± 4 years; 1.66 ± 0.16 (m)
height; 72.25±29.85 (kg) mass) free of upper extremity
injury provided informed consent and performed the
experimental tasks. The university office of research
ethics approved the data collection study.

2.2. Instrumentation

Surface EMG signals were measured from 11 sites
over muscles of the right upper-limb, similar to those
suggested by Avers et al. [41]: the Serratus Anterior
(SERR), Middle Deltoid (MDEL), Supraspinatus
(SUPR), Infraspinatus (INFR), Posterior Deltoid
(PDEL), Pectoralis Major (PECC), Latissimus Dorsi
(LATS), Anterior Deltoid (ADEL), Middle Trapezius
(MTRA), Upper Trapezius (UTRA), and Lower
Trapezius (LTRA). A ground electrode was positioned
over the clavicle. Skin sites were shaved and
swabbed with an isopropyl alcohol wipe prior to
electrode placement. Noraxon Bipolar Surface Ag-
AgCl circular electrodes (Noraxon Inc, Arizona, USA)
with a fixed 2.0 cm inter-electrode distance were used
for placement, and a Noraxon T2000 telemetered
system, TeleMyo, (Noraxon Inc, Arizona, USA) was
used for collecting signals. We placed the single
bipolar electrode over each muscle. Then, we verified
signal quality by observing the signal as participants
performed isometric contractions in postures that elicit
activity in the muscle of interest. Then, the raw sEMG
signals were amplified (common-mode rejection ratio ≥
100 dB at 60 Hz, input impedance 100 MΩ), sampled
at a rate of 1500 Hz, and finally, digitalized (16-bit
A/D card, maximum ±10 V).

Nine reflective markers and rigid clusters were
attached to the subjects on the torso, humerus, and
forearm segments. The reflective markers were also
installed on targets specific to the task, and the load
was controlled by the hand (a bottle). The markers’ 3D
position data was recorded by 8 Vicon MX20+ cameras
(Vicon Motion Systems, Oxford, U.K.) and sampled at
a rate of 50 Hz.

2.3. Subject Task Protocol

The data was collected during pick and place tasks
[39, 40]. Consequently, the subjects were requested to
gradually lift an object from the desk, place it on the
upper target, and vice versa, 15 times in 60 seconds
(Figure 2). Subjects were asked to rest at the lower
and upper target for about 2 seconds. During the
mentioned task, the motion of the upper-limb and
sEMG signals of muscles were recorded. Participants
were asked to sit with their right arm at roughly 30◦

elevation, 45◦ external rotation for the thoracohumeral,
120◦ flexion for the elbow, and the hand grasping the
object (the positions of the lower and upper target were
adjusted for each participant). The object was a bottle
with a 14.9±6.6 (N) weight (each subject used a bottle
scaled to their individual shoulder elevation strength,
while resulting in different external forces and therefore
a more general muscle model [39].)
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Figure 1. Schematic of data preparation for training of MuscleNET. The inputs of MuscleNET are delayed kinematics and raw
and filtered sEMG signals. The output of the MuscleNET may be chosen from the joint angle θ, joint velocity θ̇, joint acceleration
θ̈, joint torque τh, or activation torque τact.

2.4. Kinematic Data Analysis and Estimation

Position data was digitally low-pass filtered using a
2nd order Butterworth filter with a cut-off frequency
of 10 Hz. Then, re-sampled with the higher sample
rate of the sEMG data, 1500 Hz, using 1-D data cubic
interpolation of the neighboring grid’s position values
with four-position trajectory instances.

The joint angles of the thoracohumeral and

forearm were estimated using the cluster markers’ 3D
position as well as an anatomical calibration matrix
that interprets the correlation between the cluster and
coordinate system of the body segment [42]. The
angles of the torso to the global and elbow joint
were determined according to the International Society
of Biomechanics Standard (ISB) recommendations, a
Z-X-Y rotation sequence [43]. However, an X-Z-Y
sequence (Plane Elevation, Elevation, Axial Rotation)
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Lift

Lower

Figure 2. A depiction of the repetitive object manipulation task performed for data collection. The participants lifted and lowered
a weighted object between two target locations.

was used for thoracohumeral angles [44] instead of the
Y-X-Y recommended by ISB.

The lifting and lowering motions were recognized
using the position and velocity of the object. Precisely,
the object was estimated at one of the resting targets
when its absolute velocity was less than 10 mm/s for
more than 40 milliseconds [45].

The joints’ velocity was obtained first using the
numerical first derivative of joint angles. Secondly, by
the transformation of position derivative to velocity
using equation (1). Finally, using a low-pass second-
order Butterworth filter with a cut-off frequency of 20
Hz. In the equation (1), h is the right-hand side of
the transformation between q̇ (the vector of all joints
position derivatives) and p (the vector of all joints
velocities).

q̇− h (p,q, t) = 0 (1)

The acceleration of joints was estimated by the
numerical first derivative of joint velocities and a low-
pass filter using a 2nd order Butterworth filter with a
cut-off frequency of 30 Hz.

In this paper, the joint angle, joint velocity, and
joint acceleration are defined for the shoulder joint’s
elevation.

2.5. Delayed Kinematic Data

Since the muscle model relies on the kinematic values
as well as the sEMG signal, the kinematic data was
used as one of the inputs to MuscleNET. No prior
research has combined the kinematic signals with the
sEMG signals. Practically acquiring the kinematic
values such as angle, velocity, and acceleration has
a delay. Thus, we considered a specific amount of
delay for these signals. The delay itself has two
primary sources: electrical delay and computation
delay. The electrical delay relates to the speed of
connecting, sampling rate, and computer delay. The

computation delay relates to the calculation method
delay. For example, since most robots have rotary
encoders for measuring the angle, velocity can be
calculated using previous angle values with more delay
than the joint angle. In other words, the velocity
value is not real-time and is based on the previous
angle value. In this project, the electrical delay was
assumed to be 0.1 s, and the computation delay was
0.05 s, 0.1 s, and 0.15 s for the angle, the velocity, and
the acceleration signal, respectively. Thus, in total,
the joint angle, joint velocity, and joint acceleration
delays of 0.15 s, 0.2 s, and 0.25 s, respectively,
from the shoulder joint’s elevation angle may be one
set of inputs for the machine learning models. In
the biomechatronic control application, the mentioned
delay is automatically applied to the signal; thus, it is
unnecessary to add additional delay.

The assumed total delay is more than a typical
experimental delay because we wanted to analyze the
signals in more adverse conditions. The delay for
biomechanical simulation is not necessary because real-
time performance or processing is not required.

The delayed shoulder elevation joint angle,
velocity, and acceleration are θ (t′), θ̇ (t′′), and θ̈ (t′′′),
respectively.

2.6. Modeling and Inverse Dynamics Simulation

An adapted model performed inverse dynamic simula-
tions. We generated a skeletal model to represent the
human upper-limb. We simplified the 3D Stanford VA
skeletal arm model [46], which has 10-DoF without the
wrist joint. For simplicity, no translational freedom
was allowed at the shoulder, only flexion/extension
and axial rotation (pronation/supination) at the elbow,
and a rigid wrist joint. Thus, our 3D arm model has
5-DoF (three rotations at the shoulder, two rotations
at the elbow/forearm). In the 3D model, the shoulder
was modeled by three revolute joints with intersect-
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ing axes by the Euler coordinate definition. The body
segment inertial parameters (BSIP) for the upper-arm
(humerus), forearm (ulna and radius), and hand are
taken from Dumas et al. [47]. These body segment pa-
rameters (dimension, inertia, and joint axes) have been
incorporated for modeling by MapleSim. By using the
Multibody Analysis Apps of MapleSim, we have ex-
tracted motion equations of the skeletal arm as follows:

M (q)ṗ = Q + F (p,q ) (2)

where M is the mass matrix, F is the right-hand side
of the dynamic equations, which consist of Coriolis,
centrifugal, and gravitational effects, Q is the applied
force/torque to the joints, and ṗ is the vector of all
joints’ accelerations. For the given system motion
(kinematics), the required forces and torques were
calculated by equation (2), which is called inverse
dynamic analysis. In this research, the joint torque
τh is the torque necessary for applying the elevation
motion. Specifically, the shoulder elevation joint angle,
velocity, and acceleration are θ, θ̇, and θ̈, respectively.

2.7. MTG (Muscle Torque Generators)

Utilizing machine learning requires significant data
(angle /orientation data, velocity data, and external
wrench data). Nasr and McPhee showed that using the
Muscle Torque Generator (MTG) model [48] requires
a smaller amount of data for training the MuscleNET
[49]. In other words, these models simulate
components of muscle modeling (i.e., orientation
constraint of the joint and velocity constraint of the
muscle) in joint torque estimation; individual muscles
are not explicitly modeled. As an introduction, the
MTG model consists of the human joint torque τh, the
activation torque τact, the position-scaling function τa,
the velocity-scaling function τv, and the passive torque
function τp as shown in equation (3) [48,50].

τh = τactτV τA + τP (3)

2.8. EMG Data Filtering

In this research, the inputs of the MuscleNET are
sEMG signals. To evaluate the ability of each model,
we have used both raw sEMG and filtered sEMG. The
following five steps achieved filtering of the raw signals:
1) A second-order band-pass digital Butterworth filter
with a normalized cut-off frequency of 20-500 Hz was
used to remove heart rate artifacts and high-frequency
content [51, 52] (signals below 20 Hz were cleaned to
remove the motion artifacts, and sEMG signals above
500 Hz were cleaned as they had minor power spectral
density [53]). 2) A second-order band-stop digital
Butterworth filter (notch filtered) with a normalized
cut-off frequency of 55-65 Hz was applied to eliminate
the 60 Hz noise from the measurement unit. 3) The

absolute value of the signal amplitude or rectifying the
signal was used. 4) A second-order low-pass digital
Butterworth filter with a normalized cut-off frequency
of 7 Hz [52] was used to smooth the signal as evaluated
and analyzed by Nasr et al. [54]. 5) Normalization
to the trial maximum signal amplitude was used.
Extra filtering was extraneous since MuscleNET is a
machine learning model for mapping signals (not a
mathematical muscle model). A sample of the raw
and filtered sEMG in the time and frequency domain is
shown in Figure 3. Studying signal loss was out of the
research scope; therefore, the data measurement was
repeated in case of signal disconnection.

3. Machine Learning Models

This section describes the four different machine learn-
ing models: ANN (Forward Artificial Neural Network),
RNN (Recurrent Neural Network), CNN (Convolu-
tional Neural Network), and RCNN (Recurrent Con-
volutional Neural Network). Configuration differences
related to input type are described in detail. The ma-
chine learning models’ output can be the joint angle,
joint velocity, joint acceleration, joint torque τh, and
activation torque τact signals. The outputs were nor-
malized by the maximum value for each subject. The
performance was reported with the computation of:

R = [
DTRN∑

Di

(
1−

√
MSETRN

)
+

DV LD∑
Di

(
1−

√
MSEV LD

)
+

DTST∑
Di

(
1−

√
MSETST

)
]× 100

(4)

where MSE is the mean squared error between the
output values and target values, D is the amount of
data, and the subscripts TRN , V LD, and TST are
training, validation, and testing volume, respectively.

The initial architecture of machine learning
models was adopted from prior researches [13, 28, 33,
35–37, 55]. The number of hidden layers, neurons
in each hidden layer, feedback delay, input delay,
convolution filtering size, pooling size, and strides were
selected by trial and error (Figure 4) to have the
highest regression accuracy. The CNN and RCNN
MuscleNET with delayed kinematics have a novel
configuration, which are introduced in section 3.3.2.

1560000 pairs of inputs and outputs (1560000 = 17
subjects ×60 seconds ×1500 Hz sample rate) were used
for training, validating, and testing the MuscleNET.
To evaluate the amount of experimental data required
for the machine learning model, a complete estimation
was done on the test subject who did not participate in
the training and validation of the model. In situations
where the model had more than 85% regression
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Figure 3. A sample of raw and filtered sEMG signals in the time domain and frequency domain.
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Figure 4. Schematic of MuscleNET models configuration
optimization loop.

accuracy, the capability of tuning the general model to
estimate a test subject’s biomechanical variables was
demonstrated.

The regression proficiency of the machine learning
model depends on the training algorithm (Figure 5).
Dividing data for training, validation, and testing

MuscleNET Training

Input and Output Data

Training
Set

DTRN

Validation
Set

DV LD

Test
Set
DTST

Training MuscleNETi Model with
Training Set of Input and Output Signal

Evaluate MuscleNETi

Model on Validation Set

Tweak MuscleNETi Model According
to Best Results on Validation Set

Pick MuscleNETi With Minimum
MSEi on Validation Set

Confirm Estimation Proficiency
of MuscleNET on Test Set

Figure 5. Schematic of training MuscleNET with training,
validation, and testing sets of the input and output signal.

is controversial and depends on the nature of the
datasets, the number of variables, and the machine
learning model architecture. There is no strict rule
for dividing, and therefore each method should be
evaluated separately as intrinsic characteristics vary
(model architecture, data nature, and model purpose).
Using more data sets for training and less data
for validation and testing can increase the risk of
overfitting [56]. We have added a discussion of this
issue to the paper in section 4.
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3.1. ANN (Forward MuscleNET)

One of the first and simplest machine learning models
for modeling a muscle is the forward artificial learning
model. According to Nasr et al. [55], this multilayer
model should be wide and shallow to map the
sEMG to activation torque with minimal error and
high accuracy. Their recommended architecture [55]
was adopted, and different configurations (number of
hidden layers and neurons in each hidden layer) were
tested using the data sets to obtain the optimized
configuration (for maximum accuracy cost function).
The optimized configuration had the highest regression
accuracy in the same training condition and is
described in the following.

If the sEMG signal was raw, the number of hidden
layers was set at 2, and if the sEMG was filtered, it was
set at 1. One additional layer was added to the Nasr et
al. [55] model for the described approach as more layers
filtered the raw signal. Since the delayed kinematics
provided valuable data for the model, the number of
neurons in each layer was set to 4 times the number of
input signals (for example, for 11 sEMG signals and 3
delayed kinematic signals, the number of neurons is 4
times 14 or 56). When the inputs were purely sEMG
signals, the number of neurons in each layer was set
at 5 times the number of input signals (for example,
for 11 sEMG signals, the number of neurons is 5 times
11 or 55). ANN MuscleNET configuration details are
summarized in Table 1.

The training method was a Levenberg-Marquardt
backpropagation. The maximum epoch was set to
2000. The maximum elapsed time was set to 6 hours.

3.2. RNN (Recurrent MuscleNET)

Since the muscle dynamics and joint motion rely
on motion history, we hypothesized that Recurrent
Neural Networks might have better accuracy in muscle
modeling. This model has feedback from the output to
the inputs. After training the nonlinear autoregressive
with external input (NARX) networks, the output
time series was predicted with the past output values
(the feedback input) and the external input time
series (sEMG signal and delayed kinematics). The
general architecture [13,28] was adopted, and different
configurations (number of hidden layers, neurons in
each hidden layer, feedback delays, and input delays)
were tested using the data sets to obtain the optimized
configuration. The following optimized configuration
had the highest regression accuracy in the same
training condition.

The number of hidden layers was 2. The number
of neurons was 3 times the number of input signals
when the inputs had delayed kinematic signals and 4
times the input signals when the inputs did not consist

Sequence Input with 11 × 1 Dimension

Fully Connected Layer with 42 Neurons
Activation Function: Linear

Fully Connected Layer with 42 Neurons
Activation Function: Linear

Fully Connected Layer with 1 Neurons
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1× 42
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Figure 6. Schematic of the RNN MuscleNET for combined
input of 11 filtered sEMG and three delayed kinematic signals.

of the delayed kinematics. The feedback delays were
then set to the last 7 signal values. Since different input
delays did not impact accuracy, we set the input delays
to zero or used the current input value. The details of
the RNN MuscleNET configuration are summarized in
Table 2, and an example of RNN MuscleNET for 11
filtered sEMG signals and 3 delayed kinematic signals
is depicted in Figure 6. The maximum epoch training
method and the maximum elapsed time were the same
as for the ANN.

3.3. CNN (Convolutional MuscleNET)

We initially adopted the CNN and RCNN configura-
tion from prior work [31, 33, 37] and tested different
configurations (number of convolutional layers, convo-
lution filtering size, pooling size, strides, neurons in
fully connected layer, activation function) using the
data sets to obtain the following configuration. This
configuration had the highest regression accuracy in
the same training condition. The configuration of CNN
and RCNN MuscleNET with a delayed kinematic sig-
nal is novel in terms of parallel structure for delayed
kinematic signal input.

Since there were two different input signals (sEMG
signals and delayed kinematic signals), the CNN
models’ configurations were categorized into 4 different
shapes based on the input’s conditions. First, we
describe the CNN generic configuration and then the
different configurations in the following paragraph.

Generally, the typical configuration consists of an
input group, the convolution groups, and an output
group. First, the input group is a sequence input
layer that gets an image from the input signals.
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Table 1. Detail of ANN MuscleNET Model Configuration.
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1 X 11×1 1 55 Tan-sigmoid Tan-sigmoid 1×1 716
2 X 11×1 2 55 Tan-sigmoid Tan-sigmoid 1×1 3796
3 X X 14×1 1 56 Tan-sigmoid Tan-sigmoid 1×1 897
4 XX 14×1 2 56 Tan-sigmoid Tan-sigmoid 1×1 4089

Table 2. Detail of RNN MuscleNET Model Configuration.
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5 X 11×1 2 44 1 7 Tan-sigmoid Tan-sigmoid 1×1 2024
6 X 11×1 2 44 1 7 Tan-sigmoid Tan-sigmoid 1×1 2024
7 X X 14×1 2 42 1 7 Tan-sigmoid Tan-sigmoid 1×1 1848
8 XX 14×1 2 42 1 7 Tan-sigmoid Tan-sigmoid 1×1 1848

Secondly, the first layer of convolution groups is a
folding sequence layer, and the last one is an unfolding
sequence layer. Finally, the output group consists of 4
layers: the flatten layer, a fully connected layer with an
output size of 50 neurons, a fully connected layer with
an output size of 1 neuron, and finally, the regression
layer.

Precisely, the number of signals made the image’s
height (for example, for 11 sEMG signals and 3 delayed
kinematic signals, the image’s height was 14). The
image’s width is relevant to the history of sEMG signals
that we want to filter by CNN or RCNN. Since the
maximum human motion frequency is roughly 6 Hz
[57], we recommend using a maximum of 7 Hz. We did
not propose to use less than 5 Hz since the number of
data points increases for the CNN or RCNN, slowing
model processing. For data with a 1500 Hz sample rate,
we used 250 points for the image’s width, which is 6
Hz of the data. In summary, the input image size was
11 by 250 for the sEMG signals input and was 14 by
250 for inputs consisting of sEMG signals plus delayed
kinematics (Figure 7). The current data is located on
the image’s right, and the 249 previous data is located
at the left of the image. The sequential input layer
handled importing this 1D image. It is noteworthy that
signals should not have the same rate as the sampling
rate when making the images from the signals. Since
the model’s delay might be around 0.05 sec or 20 Hz, we
used a slower rate of making images. We used 0.1 sec
for making the images, and at each time, must use the

current signals and 249 of the previous signals to make
the image, then wait for 0.1 sec to make the following
image. This way, we considered the model’s delay and
system to use the model for model-based control of
biomechatronic devices. Using an image composed of
sEMG signals and delayed kinematic signals is a novel
approach.

The training method was Adam (adaptive mo-
ment estimation) optimizer with a unit threshold for
the gradient. The learning rate used for training was
set to 0.001. The maximum epoch was set to 500. The
mini-batch size (a subset of the training set) for each
training iteration was set to 2000.

The convolution groups were unique for the
different input signals (with or without delayed
kinematics and raw or filtered sEMG signals). In the
following sections, the CNN models are explained in
detail for each input signal combination.

3.3.1. Without Delayed Kinematic Signals When
only the raw sEMG signals were the input image’s
constructor, there were 8 layers in the convolutional
groups, and they were taken serially (Figure 8). All
groups had a 2-D convolutional layer that was applied
to slide convolutional filters with a filter size of height
1 and width 3. The output of this layer had the
same size as the input when the stride equaled 1.
The step size for traversing the input was 1 vertically
and was 1 horizontally. Groups 1, 2, 7, and 8 had
16 neurons, and groups 3 to 6 had 64 neurons in
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Figure 7. A sample of the input image made from sEMG signals and delayed kinematic signals used as the input of the CNN
or RCNN configuration of MuscleNET. The delayed shoulder elevation joint angle, velocity, and acceleration are θ(t′), θ̇(t′′), and
θ̈(t′′′), respectively (t′, t′′, and t′′′ are the delayed times).

the convolutional layer (the number of channels or
feature maps). All 8 groups had a batch normalization
layer that normalized each input channel across a
mini-batch size. We used this batch normalization
layer to accelerate the networks’ learning and reduce
the network initialization sensitivity. Moreover, all
8 groups had a Rectified Linear Unit (ReLU) layer
that implemented a threshold operation to each input
element, where any negative value was set to zero.
Only the first 5 groups had average pooling layers for
down-sampling by dividing the input into rectangular
pooling areas and calculating each area’s average
values. The pooling region’s dimensions had a height
of 1 and a width of 3. The vertical step size was 1, and
the horizontal step size was 3. The vertical unit size
for the pooling layer’s stride was utilized because the
sEMG signals should be filtered separately.

All in all, the first 5 groups had a 2-D convolution
layer, a batch normalization layer, a ReLU layer, and
a 2-D average pooling layer. The 6 to 8 groups had
a 2-D convolution layer, a batch normalization layer,
and a ReLU layer.

For input images constructed with the filtered
sEMG signals, group 7 was removed, and group
6 was connected to group 8. The convolutional
neural network configuration for raw sEMG signal and
without the delayed kinematics signal was quite similar
to the model proposed by Ameri et al. [35], which
allowed for a direct comparison with our new model.

3.3.2. With Delayed Kinematic Signals Since the
origin of the delayed kinematic and sEMG signals are
different, they first should be filtered with different
convolutional layers separately. To this end, we
innovated a parallel structure with two separate
bridges. The first bridge handles filtering the sEMG
signals, and the second one relates to delayed kinematic
usage. Finally, both bridges intersect, and all data was

used for modeling the mapping of the input (sEMG
and delayed kinematic signals) to the output signals.
This novel configuration for separating different signals
from the image is shown in Figure 9.

The left bridge, dedicated to filtering the sEMG
signals, had 4 groups for raw sEMG signals. The first
group had a transposed 2-D convolution layer with
an additional feature of cropping the image. This
new feature shaved the input image (that is, the
combination of sEMG and delayed kinematic signals).
The transposed 2-D convolution layer’s output size was
reduced by cropping from the bottom of the input by 3
units since the last 3 pixels are relevant to the delayed
kinematic signals. The transposed 2-D convolution
layer and 2-D convolutional layers at groups 2 and 3
had a filter size of the height of 1 and the width of
1. All convolutional layers had 40 neurons each. The
step size for traversing the input was 1 vertically and
was 1 horizontally for all convolutional layers. The
first two groups had a ReLU layer and average pooling
layers for down-sampling. Both pooling layers had a
pooling region’s dimensions with a height of 1 and a
width of 25. However, the first one’s stride at the first
layer was 10, and the second one at the second layer
was 5 in the horizontal direction. The vertical unit
size for stride of both pooling layers arose because the
sEMG signals should be filtered separately. The last
group only had a 2-D convolutional layer with different
filter sizes of the height of 11 (since there are 11 sEMG
signals) and the width of 5 with the same stride. As
shown in Figure 9, since the output size of group 3
was 11x5x40, it is evident that the 250 pixels were
converted to 5 pixels. We have tried to have these 5
pixels for pattern detection purposes. Since the sEMG
signal was not converted to one signal and had 5 pixels,
it can provide more timing information.

For input images constructed with the filtered
sEMG signals, group 3 was removed, and group 2
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Figure 8. Schematic of the convolutional MuscleNET for
raw sEMG signal input only, including convolutional layers,
average pooling layers, and fully connected layer. The batch
normalization and the rectified linear unit after the convolutional
layers in each group have not been shown for simplicity. The
convolutional layers and the average pooling layers have the same
padding.

connected to group 4.
The right bridge, which is dedicated to acquiring

the delayed kinematic signals, had 2 layers. The first
layer had a transposed 2-D convolution layer with a
cropping feature from the top of the input image by
11 units (since the first 11 pixels are relevant to the
sEMG signals) and from the left of the input image by
249 units (since the last column is the recent signals).
Precisely, the cropping converted the 14 by 250 image

size to a 3 by 1 image size. The transposed 2-D
convolution layer had a filter size of the height of 1
and the width of 1 with 1 neuron. The second layer
had a regular 2-D convolutional layer with a filter size
of the height of 3 and the width of 1.

The signals from two bridges intersected with a
depth concatenation layer. The depth concatenation
layer received inputs with the same height of 1 and
width of 1 and concatenated them alongside the depth
dimension. In this way, both signals of sEMG and
delayed kinematics were stacked to an image with 1
width, 1 height, and 43 depth.

3.4. RCNN (Recurrent Convolutional MuscleNET)

The RCNN’s configuration approximates the CNN; the
only difference is in the output group’s layers. The fully
connected layer with an output size of 50 neurons in
the CNN was changed to a Long Short-Term Memory
(LSTM) layer with 50 hidden units. Additionally,
the output of the LSTM was the last time step of
the sequence in the RCNN. The activation function
to update the cell and hidden state was set to be
the hyperbolic tangent function, and the activation
function to apply to the gates was the sigmoid.

The schematic of the RCNN MuscleNET for the
combined input of raw sEMG and delayed kinematic
signals has been shown in Figure 10. The input image,
the input group, and the general output group were
introduced in section 3.3. The details of the sEMG
signal processing and kinematic signal processing have
been presented in section 3.3.2.

4. Results and Discussion

This section presents the data ratio analysis for the
training, validation, and testing of subject-specific and
general models. Second, the volume of experimental
data for complete estimation with a general model
was assessed. Third, 80 different machine learning
configurations of MuscleNET with different input
conditions (raw or filtered sEMG signal, without or
with delayed kinematic signals) and different outputs
(5 different biomechanical signals) were compared in
terms of the performance, training time, and maximum
inference time. Finally, samples of complete estimation
for random subjects were presented. For training of
the MuscleNET, a personal computer with an Intel®

CoreTM i7-3370 CPU @ 3.40GHz processor and 16.0
GB memory was used.

4.1. Dividing Ratio and Data Volume

To study the division of data for training, validation,
and testing concerning maximum estimation accuracy
without overfitting, we trained the models with
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Figure 9. Schematic of the convolutional MuscleNET for combined input of raw sEMG and delayed kinematic signals, including
convolutional layers, average pooling layers, and fully connected layer. The batch normalization and the rectified linear unit after
the convolutional layers in groups 2 and 3 have not been shown for simplicity.

different ratios. We have assessed the different ratios,
and two combinations were ideal for the subject-
specific and general models (Figure 11). The subject-
specific model was tuned for maximum estimation
accuracy of validation data with 94.1% of data for
training, 5.9% of data for exporting-and-validation
(validation has overlap with training set), and 5.9%
unique data for testing. The general model was
achieved with 94.1%, 23.5%, and 5.9% of data
for training, exporting-and-validation, and testing,
respectively (again, the validation sets have overlap
with training sets). The overlap of validation and
training sets may decrease in the case of reach
experimental data availability.

For the subject-specific model, 16 subjects (94.1%
of total data) were selected for training, and one
of them (5.9% of total) was present in training and
validation simultaneously. This subject plays the role

of stopping the training process and signaling the
export of the final model with the lowest MSE. The
other subject which did not participate in training and
validation was selected as the test set. We observed
that the regression accuracy for the validation subject
increased to 99.7% (Figure 12). However, the test
result was not entirely successful (97.7%). In other
words, since the training stopped and was exported
based on the regression of one subject validation, the
model is subject-specific for the validation subject and
a less general model for testing data sets. The machine
learning model has less regression accuracy for testing
with different data sets (any subjects other than those
used for validation). Although this trained MuscleNET
with one validation subject’s data has high regression
accuracy for the validation subject, the model is
subject-specific and should not be used for general
purposes. If the EMG signals were not stochastic
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Figure 10. Schematic of the RCNN MuscleNET for combined input of raw sEMG and delayed kinematic signals, including
convolutional layers, average pooling layers, and a Long Short-Term Memory (LSTM) layer. The batch normalization and the
rectified linear unit after the convolutional layers in groups 2 and 3 have not been shown for simplicity.

and time-varying, the regression would be far more
than the amount reached already. In addition, from a
biomechanical perspective, the maximum muscle force,
muscle attachment configuration, muscle passive and
active functions (biomechanical muscle features) are
different between different subjects. Thus, selecting
a small amount of data for validation (for example,
only one subject) decreases the reach and broad
biomechanical muscle features of different subjects
and increases the validation accuracy for the subject-
specific model.

For the general model, we found that exporting
required 23.5% of data (4 subjects) for validation
instead of 5.9% of data (1 subject) for subject-specific

cases. The general model estimated the biomechanical
signals of the test data set with regression of 99.1%
(Figure 13). In other words, less data for validation
and more data for training decreased the regression
of the general model for testing. This issue is called
overfitting in supervised machine learning and prevents
generalized machine learning models from properly
fitting observed data on training data, along with
unobserved data on validation and testing sets [56].
Thus, we proposed that the validation data sets should
be more than one person data to have a general
machine learning model, ignoring the overfitting issue.

For stochastic and time-varying sEMG signal
inputs in the machine learning model, it is essential
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Figure 11. Visual representation of dividing data base into training, validation, and testing sets for subject-specific and general
models.
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Figure 12. The machine learning training, validation, and testing regression of a subject-specific model of RNN MuscleNET with
filtered sEMG and delayed kinematic signals input and joint angle output. The test subject did not participate in training and
validation.

to have rich data to extract and validate the model
and configure the model architecture. Designing
a machine learning model with many layers and
millions of variables requires very large datasets.
The combination of training, validation, and testing
datasets with 1530000 pairs of inputs and outputs were

sufficient for MuscleNET (a shallow neural network
with three layers and a deep neural network with eight
convolutional layers and a small filtering size).
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Figure 13. The machine learning training, validation, and testing regression of a general model of RNN MuscleNET with filtered
sEMG and delayed kinematic signals input and joint angle output. The test subject did not participate in training and validation.

4.2. Models Comparison

The comparison of models focuses on their configura-
tion identity, input types, outputs, and the delay time.
For consistent accuracy comparison, the outputs were
normalized by the maximum value for each subject.
The comparison of 80 configurations allows consistent
comparison and directions for future research. Based
on the comparison of results in Table 3, the preferred
model for (I) offline simulation of a musculoskeletal
model and (II) real-time control of a biomechatronic
device is presented.

4.2.1. Models’ Topology From a topology viewpoint
(Table 3), the machine learning method with the
recurrent topology or the feedback outperforms
the feed-forward mapping (RNN and RCNN had
average regression accuracy of 89.5% and 95.7%,
respectively, while ANN and CNN had lower average
regression accuracy of 85.7% and 90.0%, respectively).
Previously, Chen et al. [13] reported that the recurrent-
based models, RCNN consisting of Long Short-Term
Memory (LSTM) networks, were much better than a
CNN consisting of a Fully Connected (FC) network,

which agrees with our conclusion based on current
results (Table 3). The reason behind this is associated
with the relation of sEMG to the motion. According
to the active and passive muscle tension behavior
utilized for the Hill-type muscle dynamic model [4], the
relationship is not straightforward and has a second-
order differential equation. The recurrent topology
of the RCNN uses the previous output signals as
the inputs; therefore, it can model a higher-order
differential equation.

4.2.2. Models’ Outputs In terms of the models’
outputs (Table 3), accuracy varied. In comparison
to Bao et al. [33] which used a CNN for regression
of only wrist joint angle, we have evaluated different
output signals (Kinematic and Dynamic Biomechanical
Variables) and calculated relative accuracy, which
helps improve the future application of MuscleNET
for myoelectric-based control. The general accuracy
of the outputs in ascending order is: output joint
angle, activation torque, joint torque, output joint
velocity, and output joint acceleration (with average
regression accuracy of 93.9%, 91.9%, 90.1%, 89.1%,
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Table 3. Comparison of regression accuracy for 80 models: 16 MuscleNET configuration times 5 output signals.
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Figure 14. The RCNN training (solid) and validation (dashed) rates for 1000 iterations. However, the training procedure could
be stopped at 500 iterations.

and 86.0%, respectively). This order concurs with
mathematical muscle models. The muscle pennation
angle, muscle wrapping, muscle-tendon length, and
passive muscle torque are functions of the joint angle
[4]. In addition, the relation of muscle velocity and
activation dynamic of muscle has been seen in the
MTG (muscle torque generator) models or activation

torque [48]. The maximum muscle force was relevant
to the joint torque [4]. Thus, the first three dominant
output signals correspond to the primary variables in
classical muscle models. Thus, we propose using the
sEMG signal to control biomechatronic devices using
the joint angle or activation torque. In this regard,
since most robotic servo motors have a PID position
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Figure 15. The performance of RNN and RCNN MuscleNET on random test data for users’ joint angle (top) and joint torque
trajectory (bottom).

control, using the sEMG as the input of the control
algorithm and the joint angle as a command to the low-
level actuator control is more straightforward. Another
method is using a force/torque-based control algorithm
for biomechatronic devices. With the sEMG used as
the input, the machine learning model can estimate
the activation torque using an MTG model [50]. The
joint torque can be calculated and commanded to the
low-level control loop or the robot actuator. The
activation torque’s superiority over joint torque arises
from consideration of the passive and active torque
impact of muscle in the MTG model [48,50].

4.2.3. Models’ Inputs From the kinematic input
standpoint, using the delayed kinematic signals along
with the sEMG signals positively affected the model’s
accuracy (using delayed kinematic signals resulted in
an average regression accuracy of 92.9% while not using
those signals resulted in a lower average regression
accuracy of 87.6%). It is noteworthy to mention
that the Hill-type muscle model’s inputs [4] are the
joint angle, velocity, and acceleration, along with the
sEMG signal. Thus, using the kinematic signals along
with the sEMG signal, for the first time, is novel
and increased model accuracy. Indeed, incorporating
the delayed kinematic signals decreased the regression
error from 50% to 20%. For example, using the delayed
kinematic signals in row 12 in Table 3 provides more
accuracy than row 10, which results from the model
proposed by Ameri et al. [35]. Using the delayed

signals instead of the current signals reflects the
need to consider electrical and computational delays.
Moreover, for real-time control of an actual bio-robot,
the delay must be considered in the modeling. For
the simulation of the musculoskeletal model, delayed
signals are unnecessary.

From the sEMG input perspective, the result
provided two distinct conclusions regarding other input
conditions: raw or filtered sEMG signal. First, for
the ANN and RNN models, the models’ accuracy
was much better when the inputs were filtered signals
(filtered sEMG signals yielded average regression
accuracy of 91.1%, while raw signals yielded average
regression accuracy of 84.4%). Hence, the ANN and
RNN models should not be used for filtering the
raw signals. The results revealed the capability of
the convolutional models in filtering the signals and
confirm the superiority of using raw sEMG signals as
the inputs of the CNN and RCNN models.

4.2.4. Models’ Delay Since real-time control of
biomechatronic devices requires a minimal delay, this
factor should be considered. Comparison of the
system’s delay is controversial since the signal filtering
delay should be considered as well. Subsequently,
filtering the raw sEMG signal has a specific delay
due to low-pass filtering. The delay in filtering the
raw signals should be considered with the model
delay to compute the total delay. In this regard,
the models’ delay with the filtered sEMG signals
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Figure 16. The test of RNN and RCNN MuscleNET for second random non-used user data for training users’ joint angle (top)
and joint torque trajectory (bottom).

Dynamic Model of Human Skeletal System
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Figure 17. Schematic of a musculoskeletal model simulation (for example, for sport engineering purposes or musculoskeletal
analysis). MuscleNET acts as a muscle model using the filtered sEMG, joint position, velocity, and acceleration. MuscleNET’s
output is the joint torque τh supplied to the dynamic model for forward dynamic simulation.

exceeds expectations. All the control methods had an
operation delay of less than 2 milliseconds (Table 3)
because of shallow configuration (not having too many
layers), which is quick for real-time control purposes.
Compared to sEMG frequency-based input [36,37], the
MuscleNET is much faster and works in real-time since
prior research [36, 37] initially converted sEMG signal
to sEMG frequency bands, which is an offline and
time-consuming conversion. Moreover, sEMG-based
classification of hand or wrist gestures [5,6,12,17,31,32]
requires additional sEMG history compared to RNN
MuscleNET which mainly uses the signal value and a
faster regression. The Ameri et al. [35] model also has
five times more variables than CNN MuscleNET with
delayed kinematic input, indicating that MuscleNET

incurs less computation cost and has less delay than
that model [35].

4.3. Testing and Demonstration

These findings motivated re-learning of two specific
models and comparison of their results. In those
models, the outputs were the joint angle and activation
torque. The two models were (I) RNN with filtered
sEMG signals plus delayed kinematics and (II) RCNN
with raw sEMG signals plus delayed kinematics. For
re-training of the RNN, the maximum elapsed time
was set to 12 hours. For re-training of the RCNN
MuscleNET, the maximum epoch was set to 1000.
The rest of the training options were the same as the
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Figure 18. Schematic for controlling an exoskeleton, a prosthesis, or a rehabilitation robot using MuscleNET as a muscle model
for converting the raw sEMG, joint feedback position θf , velocity θ̇f , and acceleration θ̈f to activation torque τact. The low-level
controller is responsible for controlling the mechatronic system by desired torque τe or angle θe according to the output from mid-level
controller.

previous training step. As an example, the RCNN
training and validation error rates for 1000 iterations
are presented (Figure 14). The performance of RNN
and RCNN MuscleNET for (a) joint angle and (b)
activation torque trajectory with a user dataset that
had not been used for training is shown in Figure
15. The RCNN MuscleNET followed the target values,
which were the normalized joint angle and joint torque.
Another random subject data was used to evaluate
the model (Figure 16). This complete estimation of
the biomechanical signals of random subjects, who did
not participate in training and validation of the model,
had 96.9% accuracy. The result showed that the novel
model configuration, using delayed kinematic signals,
the optimum model configuration, the given amount of
data, and the optimum division for training, validation,
and testing successfully achieved the goal. The amount
of experimental data (1530000 pairs of inputs and
outputs) was sufficient to reach this regression accuracy
for estimation tests.

4.4. Application

Two specific applications for (i) RNN MuscleNET and
(ii) RCNN MuscleNET emerge from these findings:

(i) Using RNN MuscleNET with inputs of filtered

sEMG and delayed kinematic signals could replace
muscles in musculoskeletal models.
The output of the MuscleNET can be joint
elevation torque or activation torque, and the
output of the MuscleNET should be used as the
input of the skeletal dynamic model. MuscleNET
and the skeletal model’s total system can be
used in the forward dynamic simulation of a
musculoskeletal model (for example, for clinical or
sport engineering purposes) (Figure 17).

(ii) For biomechatronic purposes, the RCNN Muscle-
NET, with raw sEMG and delayed kinematic sig-
nals, can be used as an interpreter of the sEMG
signals.
The output of RCNN MuscleNET is commanded
to the low-level control loop of biomechatronic sys-
tems (Figure 18). Applications of the method may
include controlling assistive/resistive robots, ex-
oskeletons, or prostheses [1, 58].

5. Conclusion

An alternative solution to mathematical muscle mod-
eling using regression RNN and CNN-based sEMG sig-
nals is proposed. The model’s performance and qual-
ity metrics were compared across 80 different machine

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.07.451532doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451532
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pr
ep
rin
t

MuscleNET: Mapping Electromyography to kinematic and dynamic biomechanical variables 20

learning regression-based schemes with various condi-
tions. The conditions consisted of (I) different kinds
of outputs: 3 kinematic signals (joint angle, velocity,
and acceleration) and 2 dynamic signals (joint torque
and activation torque), (II) different input conditions:
using delayed kinematic signals, raw, or filtered sEMG
signals, and (III) different kinds of neural network con-
figurations: ANN, RNN, CNN, and RCNN. The two
models of (A) RNN with delayed kinematic signal and
filtered sEMG signals inputs and (B) RCNN with de-
layed kinematic and raw sEMG signal inputs outper-
formed the other schemes in terms of estimation accu-
racies. The high performance of the recurrent-based
models demonstrated their ability to learn necessary
motor information from sEMG signals. Further, the
signal filtering capability of the CNN-based models was
established. MuscleNET was more accurate in estimat-
ing joint angles and activation torque signals than joint
velocity, joint acceleration, and joint torque.

Future work should study the robustness of
MuscleNET to factors such as electrode shift and
electrodes that disconnect during a motion. Moreover,
the practical application of MuscleNET to control
an active exoskeleton or prostheses is currently being
pursued by the authors, and should lead to refinements
in the method.
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