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Abstract  
We present RESEPT, a deep-learning framework for characterizing and visualizing tissue 
architecture from spatially resolved transcriptomics by reconstructing and segmenting a 
transcriptome mapped RGB image. RESEPT can identify the tissue architecture, and represent 
corresponding marker genes and biological functions accurately. RESEPT also provides critical 
insights into the underlying mechanisms driving the complex tissue heterogeneities in Alzheimer's 
disease and glioblastoma.  
 
Main 
Tissue architecture is the biological foundation of spatial heterogeneity within complex organs like 
the human brain1, and is thereby essential in understanding the underlying pathogenesis of 
human diseases, including cancer2 and Alzheimer's disease (AD)3. Recent advances in spatially 
resolved technologies such as 10x Genomics Visium provide spatial context together with high-
throughput gene expression for exploring tissue domains, cell types, cell-cell communications, 
and their biological consequences4. Some graph-based clustering methods (e.g., Seurat5 and 
Giotto6), statistical methods (e.g., BayesSpace7), or deep learning-based methods (e.g., stLearn8 
and SpaGCN9) can identify spatial architecture and interpret spatial heterogeneity. Intrinsic tissue 
architecture, however, often cannot be fully revealed using existing methods due to a lack of 
strong spatial representation for the biological context in tissues (Supplementary Note 1 
summarizes the challenges of existing tools). Therefore, it is still challenging to accurately 
characterize tissue architectures and the underlying biological functions from spatial 
transcriptomics.  
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We reasoned that spatial transcriptomics can be effectively represented and intuitively visualized 
as an image with expression abundance retaining the spatial context. To this end, we introduce 
RESEPT (REconstructing and Segmenting Expression mapped RGB images based on sPatially 
resolved Transcriptomics), a framework for reconstructing, visualizing, and segmenting an RGB 
image from spatial transcriptomics to reveal tissue architecture and spatial heterogeneity. We 
highlight the unique features of RESEPT as follows: (i) Spatial transcriptomics data are converted 
as an RGB image by mapping a low dimensional embedding to color channels via a spatial 
retained graph neural network. This image represents various spatial contexts together with 
expression abundance faithfully, and it resists robustly to noises due to limitations of measuring 
technology. (ii) An RGB image is segmented to predict spatial cell types using a pre-trained 
segmentation deep-learning model and an optional segmentation quality assessment protocol. 
(iii) RNA velocity can be integrated into image training, which is effective in revealing some tissue 
architectures. (iv) With a defined panel of gene sets representing specific biological pathways or 
cell lineages, RESEPT can recognize the spatial pattern and detect the corresponding active 
functional regions. (v) The functional zonation boundaries of AD and glioblastoma are determined 
effectively by the pre-trained image segmentation deep-learning model.  
 
Spatial transcriptomics data are represented as a spatial spot-spot graph by RESEPT. Each 
observational unit within a tissue sample containing a small number of cells, i.e., “spot”, is 
modeled as a node. The measured gene expression values of the spot are treated as the node 
attributes, and the neighboring spots adjacent in the Euclidean space on the tissue slice are linked 
with an undirected edge. This lattice-like spot graph is modeled by our graph neural network 
(GNN) based tool scGNN10, which learns a three-dimensional embedding to preserve the 
topological relationship between all spots in the spatial space of transcriptomics. The three-
dimensional embedding on gene expression is mapped to three color channels as Red, Green, 
and Blue in an RGB image, which is naturally visualized as an image of the spatial gene 
expression. Then a semantic segmentation can be performed on the image to identify the spatial 
architecture by classifying each spot into a spatially specific segment with a supervised 
convolutional neural network (CNN) model (Fig. 1a and Supplementary Fig. 1).  

We demonstrate that RESEPT can accurately characterize the spatial architecture of the human 
brain cortex region. Using manual annotations as the ground truth on 12 published samples11 and 
4 in-house samples sequenced on the 10x Genomics Visium platform, RESEPT was 
benchmarked on both raw and normalized expression matrices of the 16 samples (S2-S17 in Fig. 
1b and Supplementary Tables 1-2). Our results demonstrate RESEPT outperforms six existing 
tools, namely Seurat5, BayesSpace7, SpaGCN9, stLearn8, STUtility12, and Giotto6 on tissue 
architecture identification in terms of Adjusted Rand Index (ARI) (Fig. 1c). Additional 
benchmarking results with evaluation metrics, running time, and memory usage can be referred 
to Supplementary Figs. 2-3 and Supplementary Data 1-3. To validate the robustness of our 
model, we generated simulation data with decreasing sequencing depth based on two selected 
datasets (Fig. 1b). The RGB images at low read depth presented more intra-regional diversity in 
its color distribution (Supplementary Fig. 4 and Supplementary Data 4), and RESEPT was 
more robust than existing methods, particularly at a low read depth (Fig. 1d-e and 
Supplementary Fig. 5). It is noteworthy that RGB images generated from RNA velocity13,14 can 
reveal clear spatial separation between segments from the identified architecture on the AD 
sample S4, which is consistent with the brain development zonation (Fig. 1f). On the same sample, 
RESEPT reveals better tissue architecture than the other tools (Fig. 1g). More visualization 
results from different normalization methods can be referred to Supplementary Fig. 2 and 
Supplementary Data 5. All the data used in the study are summarized in Supplementary Tables 
1-2, while datasets on 10x Genomics, Spatial Transcriptomics (ST), and High-Definition Spatial 
Transcriptomics (HDST) platforms without manual annotations were analyzed by RESEPT 
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detailed in Supplementary Fig. 6. In summary, RESEPT benefits from the representation power 
of the learned embedding from the spatially constrained GNN (Supplementary Figs. 7-8), and 
sufficiently diverse training images (Supplementary Fig. 9).  We also validated the performance 
improvement with an increasing number of annotated training data (Supplementary Fig. 10). 
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Fig. 1 | The RESEPT workflow and performance. (a) The RESEPT schema. RESEPT takes gene 
expression or RNA velocity from spatial transcriptomics as the input. The input is embedded into 
a three-dimensional representation by a spatially constrained Graph Autoencoder, then linearly 
mapped to an RGB color spectrum to reconstruct an RGB image. A CNN image segmentation 
model is trained to obtain a spatially specific architecture (from whole-gene embedding) or spatial 
functional regions (from panel-gene embedding). (b) Mean and standard deviation of sequencing 
reads of 17 human brain datasets on 10x Visium platform. S2-S17 having manual annotations as 
the benchmark, S5 & S6 for simulation for high mean and low standard deviations of read depth, 
S1 & S4 for the case studies (more details in Supplementary Tables 1-2). (c) Performance of 
tissue architecture (with 7 clusters pre-defined) identification by six existing tools and RESEPT 
on criteria ARI. (d) Robustness of tissue architecture identification across sequencing depths on 
samples S6 using different tools. The Y-axis shows ARI performance, and the X-axis represents 
the sequencing depth with subsampling. (e) Normalized performance vs. sequencing depth on 
sample S6. Performance of full sequencing depth is set as 1.0. RESEPT_E1 using scGNN 
embedding, RESEPT_E2 using spaGCN embedding. (f) RGB image generated from RNA 
velocity reveals better architecture (Moran’s I = 0.920) than gene expression (Moran’s I = 0.787) 
on the AD sample S4. (g) Spatial domains on S4 detected by RESEPT, together with those 
identified by other tools. 
 
Next, we investigated whether RESEPT could interpret and discover more spatially related 
biological insights on our in-house AD brain samples15. Human postmortem middle temporal 
gyrus (MTG) from an AD case (Sample S4) was spatially profiled on the 10x Visium platform, and 
RESEPT successfully identified the main architecture of the MTG comparing with the manual 
annotation as the ground truth (S3 ARI = 0.474; S4 ARI=0.409). With the RGB image generated 
from gene expression, we identified cortical layers 2 & 3, regions with excitatory neurons, and 
amyloid-beta (Aβ) plaques. For the AD sample on cortical layers 2 & 3 (ground truth as Fig. 2a-
b), well-defined marker genes (C1QL2, RASGRF2, CARTPT, WFS1, HPCAL1 for layer 2, and 
CARTPT, MFGE8, PRSS12, SV2C, HPCAL1 for layer 3) from the previous study16 were 
embedded and transformed to an RGB image instead of using whole transcriptomes (a full gene 
list in Supplementary Table 3). To validate the spatial specificity, module scores from Seurat5 
showed that these marker genes are statistically significantly enriched only on cortex layers 2 & 
3 among all the layers (p<0.0001 by Wilcoxon signed-rank test). Furthermore, RESEPT visually 
provided consistent colors for cortical layers 2 & 3. These spatial patterns were strengthened by 
filtering unrelated colors. More RGB images from other layer-specific marker genes can be found 
in Supplementary Fig. 11. To reveal critical cell-type distribution (i.e., excitatory neuron) 
associated with selective neuronal vulnerability in AD17, five well-defined excitatory neuron marker 
genes (SLC17A6, SLC17A7, NRGN, CAMK2A, and SATB2) in the cortex were obtained from our 
in-house database scREAD18 (other cell-type marker genes in Supplementary Table 3). The 
module score and optimized RGB image (Fig. 2c-d) showed statistically significant enrichment of 
excitatory neuron marker genes in cortical layers 2-6 (p<0.0001 by Wilcoxon signed-rank test), 
and the original and improved RGB image also localized the excitatory neurons (other cell types 
can be found in Supplementary Fig. 12). Moreover, the RGB image can reflect an important AD 
pathology-associated region, i.e., Aβ plaques-accumulated region. We conducted an 
immunofluorescence staining of Aβ on the adjacent AD brain section (see details in Methods) 
and identified the brain region with Aβ plaques (Fig. 2e). Among the gene module containing 57 
Aβ plaque-induced genes discovered from the previous study2, we validated those 20 upregulated 
genes showed the specific enrichment in the Aβ region compared to the non-Aβ region in terms 
of layers 2 & 3 (p<0.0001 by Wilcoxon signed-rank test, Fig. 2f). By comparing the color in Aβ 
region-associated spots with the RGB image (Fig. 2g), we observed Aβ region-associated spots 
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behaved a consistent color in layers 2 & 3. To evaluate RGB value variation quantitatively, we 
investigated the value range of channels R, G, and B for the Aβ region and non-Aβ region (Fig. 
2h). The result showed that the Aβ region had a tight dispersion compared to the non-Aβ region, 
which proved the RGB image can be potentially used to indicate the Aβ pathological region. 
Overall, with the evidence of images generated from hallmark panel genes, RESEPT can 
confidently reflect layer-specific, cell-type-specific, and pathological region-specific architecture, 
with well-studied marker genes and disease-associated genes. These results indicate significant 
potentials and strong applicative power of RESEPT to localize and present important spatial 
architecture contributing to AD pathology.    
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Fig. 2 | RESEPT identifies spatial cellular patterns in the human postmortem middle temporal 
gyrus (MTG). (a) The box plot shows the module score of the cortical layers 2 and 3 and other 
layers from Sample S3, where the x-axis shows layer categories and the y-axis represents scores. 
The second figure shows layer 2 and 3 architecture (red); the third figure shows an RGB image; 
the fourth figure is reconstructed by filtering out unrelated colors. (b) displays layers’ architecture 
for sample S4. (c) The box plot shows the module score of excitatory neurons from layers 2 to 6 
and other layers. The second figure shows the ground truth of layers 2 to 6; the third figure shows 
an RGB image; the fourth figure is reconstructed by filtering out unrelated colors. (d) displays the 
cell type localization for sample S4. (e) The left figure was generated by immunofluorescence 
assay to show Aβ plaques location, and the right figure highlights the spots with the accumulation 
of Aβ plaques. (f) The box plot shows scores for the Aβ region and the non-Aβ region split by six 
layers and white matter. (g) The left figure shows the RGB image from the 20 genes embedding 
results, and the right figure shows the RGB image cropped according to Aβ region and marked 
by layers 2&3 (encircled by the red line). (h) RGB channel shows the color value dispersion, 
where blue represents RGB values in the Aβ region and orange represents RGB values in the 
non-Aβ region. Abbreviation: white matter (WM). 

 
To demonstrate the clinical and prognostic applications of RESEPT in cancer, we analyzed a 
glioblastoma dataset published by 10x Genomics using the Visium platform (Fig. 3a, Sample S1). 
Glioblastoma, a grade IV astrocytic tumor with a median overall survival of 15 months19, is 
characterized by heterogeneity in tissue morphologies which range from highly dense tumor 
cellularity with necrosis to other areas with single tumor cell permeation throughout the neuropil. 
Assessment of tissue architecture represents a key diagnostic tool for patient prognosis and 
diagnosis. RESEPT identified eight segments (Fig. 3b-c, Supplementary Fig. 13) and 
distinguished tumor-enriched, non-tumor, and regions of neuropil with infiltrating glioblastoma 
cells. Based on the morphological features of Segment 3 in the Hematoxylin-Eosin (H&E) image 
(Fig. 3c), we observed pre-existing neurons, and many tumor cells located in this segment. 
Differentially expressed gene (DEG) analysis demonstrated that a pre-defined glioblastoma 
marker CHI3L120,21 was highly expressed in most of the spots in Segment 3 (Fig. 3d, 
Supplementary Data 6). By exploring the H&E image of Segment 6, we found this prominent 
area of the segment displayed blood cell morphological features, likely representing an area of 
acute hemorrhage during the surgical biopsy. This morphological observation was in line with the 
GO enrichment analysis, where DEGs were enriched in blood functionality pathways (Fig. 3e). 
Most interestingly, from the morphological features of Segment 7, we observed that this segment 
belongs to infiltrating glioblastoma cells characterized by elongate nuclei admixed with non-
neoplastic brain cells. Comparing DEGs with pre-defined infiltrating markers22, we found that 
infiltrating tumor marker genes KCNN3 and CNTN1 were expressed specifically in Segment 7 
(Fig. 3f). Overall, RESEPT successfully recognized tumor architecture, non-tumor architecture, 
and infiltration tumor architecture. This tool augments the morphological evaluation of 
glioblastoma by enabling an improved understanding of glioblastoma heterogeneity.  This 
objective characterization of the heterogeneity will ultimately improve oncological treatment 
planning for patients.  
 
Our results show RESEPT is a robust and high-performance tool, for spatial transcriptomics data 
analysis, visualization, and interpretation. It has the potential to provide specific spatial 
architectures in broader applications, including neuroscience, immuno-oncology, and 
developmental biology. 
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Fig. 3 | RESEPT identifies tumor regions in glioblastoma samples (Sample S1). (a) Original H&E 
staining image from the 10x Genomics. (b) RGB image generated from the RESEPT pipeline. (c) 
Labeled segmentation by RESEPT and Segments 3, 6, and 7 are cropped according to the 
segmentation result. Based on morphological features, our physiologist found Segment 3 contains 
large tumor from morphological features; Segment 6 contains a large number of blood cells; and 
Segment 7 contains infiltrating tumor cells. (d) Glioblastoma marker gene CHI3L1 is highly and 
broadly expressed in Segment 3 based on the logCPM normalization value. (e) Bar plot shows 
the results of GO enrichment analysis for Segment 6, indicating Segment 6 having a large 
proportion of blood cells with blood signature genes for gas transport. (f) Infiltrating glioblastoma 
signature marker genes KCNN3 and CNTN1 are highly expressed in Segment 7 based on the 
logCPM normalization. 
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Methods 
 
1. RESEPT pipeline 
RESEPT is implemented in two major steps: (i) reconstruction of an RGB image of spots using 
gene expression or RNA velocity from spatial transcriptomics sequencing data; (ii) implementation 
of a pre-trained image segmentation deep-learning model to recognize the boundary of specific 
spatial domains and performing functional zonation. Fig. 1a and Supplementary Fig. 1 
demonstrate the pipeline with conceptual description and technical details, respectively.  
 
1.1 Construct RGB image for spatial transcriptomics  

An RGB image is constructed to reveal the spatial architecture of a tissue slice using three-
dimensional embedding as the primary color channels. Besides gene expression, RESEPT can 
accept RNA velocity13 as the input. RNA velocity unveils the dynamics of RNA expression at a 
given time by distinguishing the ratio of unspliced and spliced mRNAs, reflecting the kinetics and 
potential influences of transcriptional regulations in the present to the future cell state. More 
discussion about the method and selecting gene expression vs. RNA velocity can be referred to 
Supplementary Note 2. The original BAM file of human studies is often unavailable to public 
users due to ethical reasons, and hence, in most cases, we only refer to expression derived RGB 
image in our study. The scGNN10 package is used to generate spatial embeddings for each spot 
based on the pre-processed expression matrix or RNA velocity matrix along with the 
corresponding meta-data. In practice, RESEPT can adapt any type of low dimensional 
representations, such as embedding from UMAP and spaGCN9. On benchmarks, scGNN 
embedding obtained better results in most cases, so RESEPT uses scGNN in default 
(Supplementary Fig. 8).  

Dimensional Reduction. After log-transformed and normalized library size by CPM, the spatial 
transcriptome expression or raw RNA velocity as the input is dimensionally reduced by learning 
a low dimensional embedding through an autoencoder. Both the encoder and the decoder consist 
of two symmetrically stacked layers of dense networks followed by the ReLU activation function. 
The encoder learns embedding 𝑋𝑋′  from the input matrix 𝑋𝑋, and the encoder reconstructs the 
matrix 𝑋𝑋� from the 𝑋𝑋, where 𝑋𝑋 can be either gene expression or RNA velocity. Thus, 𝑋𝑋,𝑋𝑋� ∈ ℝ𝑁𝑁×𝑀𝑀 
and 𝑋𝑋′ ∈ ℝ𝑁𝑁×𝑀𝑀′, where 𝑀𝑀 is the number of input genes from the spatial transcriptome, 𝑀𝑀′ is the 
dimension of the learned embedding, and 𝑀𝑀′ < 𝑀𝑀. 𝑁𝑁 is the number of spots of the spatial slide. 
The objective of the training is to achieve a maximum similarity between the original and 
reconstructed matrices through minimizing the mean squared error (MSE) ∑�𝑋𝑋 − 𝑋𝑋��2 as the loss 
function. Positional encoding23 using Euclidean distance between spots on the tissue slice is also 
incorporated in reconstructing the input matrix.  

Generating Spatial retained Spot Graph. The cell graph is a powerful mathematical model to 
formulate cell-cell relationships based on similarities between cells. In single-cell RNA sequencing 
(scRNA-seq) data without spatial information, the classical K-Nearest-Neighbor (KNN) graph is 
widely applied to construct such a cell-cell similarity network in which nodes are individual cells, 
and the edges are relationships between cells in the gene expression space. With the availability 
of spatial information in spots as the unit of observation arranged on the tissue slice, our in-house 
tool scGNN adopts spatial relation in Euclidean distance as the intrinsic edge in a spot-spot graph. 
Each spot in the spatial transcriptomics data contains one or more cells, and the captured 
expression or the calculated RNA velocity is the summarization of these cells within the spot. Only 
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directly adjacent spots in contact in the 2D spatial plane have edges between them, and hence, 
the lattice of the spatial spots comprises the spatial spot graph. For the generated spot graph 𝐺𝐺 =
(𝑉𝑉,𝐸𝐸), 𝑁𝑁 = |𝑉𝑉| denoting the number of spots and  𝐸𝐸  representing the edges connecting with 
adjacent neighbors. 𝐴𝐴 is its adjacency matrix and 𝐷𝐷 is its degree matrix, i.e., the diagonal matrix 
of number of edges attached to each node. The node feature matrix is the learned embedding 𝑋𝑋′ 
from the dimensional reduction autoencoder. In the 10x Visium platform, each spot has six 
adjacent spots, so the spatial retained spot graph has a fixed node degree six for all the nodes. 
Similar to the KNN graph derived from scRNA-seq, each node in the graph contains 𝑀𝑀′ attributes. 

Graph autoencoder. Given the generated spatial spot-spot graph, a graph autoencoder learns a 
node-wise three-dimensional representation to preserve topological relations in the graph. The 
encoder of the graph autoencoder composes two layers of graph convolution network (GCN) to 
learn the low dimensional graph embedding 𝑍𝑍 in Eq. (1).  

𝑍𝑍 = 𝐺𝐺𝐺𝐺𝑁𝑁(𝐺𝐺𝐺𝐺𝑁𝑁(𝑋𝑋′,𝐴𝐴),𝐴𝐴)
𝐺𝐺𝐺𝐺𝑁𝑁(𝑋𝑋′,𝐴𝐴) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(�̃�𝐴𝑋𝑋′𝑊𝑊) (1) 

where �̃�𝐴 = 𝐷𝐷−1/2𝐴𝐴𝐷𝐷−1/2 is the symmetrically normalized adjacency matrix and 𝑊𝑊  is a weight 
matrix learned from the training. The output dimensions of the first and second layers are set as 
32 and 3, according to the 3 color channels as RGB, respectively. The learning rate is set at 
0.001.  

The decoder of the graph autoencoder is defined as an inner product between the graph 
embedding 𝑍𝑍, followed by sigmoid activation function: 

�̂�𝐴 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑍𝑍𝑍𝑍𝑇𝑇) (2) 

where �̂�𝐴 is the reconstructed adjacency matrix of 𝐴𝐴.  

The goal of graph autoencoder learning is to minimize the cross-entropy 𝑅𝑅 between the input 
adjacency matrix 𝐴𝐴 and the reconstructed matrix �̂�𝐴.   

𝑅𝑅�𝐴𝐴, �̂�𝐴� = −
1

𝑁𝑁 × 𝑁𝑁
� � (𝑎𝑎𝑖𝑖𝑖𝑖 ∗ 𝑙𝑙𝑠𝑠𝑠𝑠�𝑎𝑎�𝑖𝑖𝑖𝑖� + �1 − 𝑎𝑎𝑖𝑖𝑖𝑖� ∗ 𝑙𝑙𝑠𝑠𝑠𝑠 (1 − 𝑎𝑎�𝑖𝑖𝑖𝑖))

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1
(3) 

where 𝑎𝑎𝑖𝑖𝑖𝑖 and 𝑎𝑎�𝑖𝑖𝑖𝑖 are the elements of adjacency matrix 𝐴𝐴 and �̂�𝐴,1 ≤ 𝑠𝑠 ≤ 𝑁𝑁, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁. As there 
are 𝑁𝑁 nodes as the number of spots in the slide, 𝑁𝑁 × 𝑁𝑁 is the total number of elements in the 
adjacency matrix.  

Reconstruct RGB Image. The learned embedding 𝑍𝑍 ∈ ℝ𝑁𝑁×3  is capable of representing and 
preserving the underlying relationships in the modelled graph from spatial transcriptomics data. 
Meanwhile, the three-dimensional embedding can also be intuitively mapped to Red, Green, and 
Blue channels in the RGB space of the image. Normalized to an RGB color space accordingly to 
a full-color spectrum (pixel range from 0 to 255) as Eq. (4), the embedding of each spot is 
assigned a unique color for exhibiting the expression or velocity pattern in space.  

𝑦𝑦𝑖𝑖,𝑖𝑖 = 255 ×
𝑍𝑍𝑖𝑖,𝑖𝑖 − 𝑍𝑍𝑚𝑚𝑖𝑖𝑚𝑚

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑍𝑍𝑚𝑚𝑖𝑖𝑚𝑚
 (4) 

where 𝑦𝑦 ∈ ℝ𝑁𝑁×3 and 𝑦𝑦𝑖𝑖,𝑖𝑖 is its transformed color of the 𝑠𝑠-th spot in the 𝑗𝑗-th channel, 1 ≤ 𝑠𝑠 ≤ 𝑁𝑁, 𝑗𝑗 ∈
{𝑅𝑅,𝐺𝐺,𝐵𝐵}. 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑍𝑍𝑚𝑚𝑖𝑖𝑚𝑚 represent the maximum and minimum of all embedding values in the 
RGB channels, respectively. With their coordinates and diameters at the full resolution provided 
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from 10x Visium, we are able to plot all spots with their synthetic colors on a white drawing panel 
and reconstruct a full-size RGB image explicitly describing the spatial expression or velocity 
properties in the original spatial coordinate system. For the spatial transcriptomic data sequenced 
in lattice from other techniques as ST platform, RESEPT allows users to specify a diameter to 
capture appropriate relations between spots in the RGB image accordingly.     

1.2 RGB image segmentation model 
The RGB image makes the single-cell spatial architecture perceptible in human vision. With the 
constructed image, we treat the potential functional zonation partition as a semantic segmentation 
problem, which automatically classifies each pixel of the image into a spatially specific segment. 
Such predictive segments reveal the functional zonation of spatial architecture.  
 
Image segmentation model architecture. We trained an image-segmentation model based on a 
deep architecture DeepLabv3+ 24,25, which includes a backbone network, an encoder module, and 
a decoder module (Supplementary Fig. 1).  

Backbone network. The backbone network provides dense visual feature maps for the following 
semantic extraction by any deep convolutional network. Here, ResNet-10126 is selected as the 
underlying model for the backbone network, which consists of a convolutional layer with 64-
channels in 7 × 7 size of filters and 33 residual blocks, each of which stacks one convolutional 
layer with multi-channel (including 64, 128, 256 and 512) in 3 × 3 size of filters and two 
convolutional layers with multi-channel (including 64, 128, 256, 512, 1024 and 2048) 1 × 1 size of 
filters. The generated RGB image is mapped into a 𝑐𝑐 -channel feature map by the first 
convolutional layer and gradually fed into the following residual blocks to produce rich visual 
feature maps for describing the image from different perspectives. Here, 𝑐𝑐 equals 64. In each 
residual block, the feature map generated from the previous block 𝑦𝑦 ∈ ℝ𝑁𝑁×3 is updated to 𝑦𝑦� ∈
ℝ𝑁𝑁×𝑐𝑐 in Eq. (5). 

𝑦𝑦� = � 𝐹𝐹(𝑦𝑦,𝑊𝑊𝑖𝑖) + 𝑦𝑦
𝐹𝐹(𝑦𝑦,𝑊𝑊𝑖𝑖) + 𝑦𝑦𝑊𝑊1×1

   𝑠𝑠 = 1,4,8,31
𝑠𝑠𝑜𝑜ℎ𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑅𝑅 (5) 

where 

 𝐹𝐹(∗) is the activation function, and we use ReLU 27 in this study. 
 𝑊𝑊𝑖𝑖 represents the learning convolutional weights in the ith block,1 ≤ 𝑠𝑠 ≤ 33. 
 𝑊𝑊1×1 represents the learning weights of the convolutional layer with 1×1 kernel 

size. 

Element-wise addition operation 𝐹𝐹 +  𝑦𝑦 in Eq. (5) enables a direct shortcut to avoid the vanishing 
gradient problem in this deep network. In the 1st, 4th, 8th, and 31th blocks of the 33 residual blocks, 
their input and output dimensions do not match up due to different filter settings from their previous 
layers. Accordingly, the projection shortcut with an additional 1×1 convolution in Eq. (5) is used 
to align dimensions in these blocks, which are also named identity blocks. The rest blocks stacked 
on the previous blocks with the same filter settings employ a direct shortcut. We leveraged 
ResNet-101 as a basic visual feature provider and sent the most informative feature maps from 
the last convolutional layer before logits to the following encoder module.  

Encoder module. The aim of the encoder module is to capture multi-scale contextual information 
based on the dense visual feature maps from the backbone. To achieve the multi-scale analysis, 
atrous convolution24 is adopted in the encoder to extend the size of the respective field. For the 
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generated RGB image with width 𝑠𝑠 and length 𝑛𝑛, the total number of spots 𝑁𝑁 = 𝑠𝑠 × 𝑛𝑛. Given the 
input signal from Eq. (5) as 𝑦𝑦 ∈ ℝ𝑚𝑚×𝑚𝑚×𝑐𝑐 with a 𝑐𝑐′-channel filter 𝑒𝑒 ∈ ℝ𝐾𝐾×𝐾𝐾×𝑐𝑐′, the output feature 
signal 𝑦𝑦′ ∈ ℝ𝑚𝑚×𝑚𝑚×𝑐𝑐′ is defined as follows: 

𝑦𝑦′[𝑖𝑖,𝑖𝑖] = �𝑦𝑦[𝑠𝑠 + 𝑒𝑒 × 𝑘𝑘, 𝑗𝑗 + 𝑒𝑒 × 𝑘𝑘]𝑒𝑒[𝑘𝑘,𝑘𝑘]
𝐾𝐾

𝑘𝑘=0

(6) 

where 

 𝑦𝑦[𝑠𝑠, 𝑗𝑗] represents the input signal at the location (i, j) with c-channel values. 0 ≤
𝑠𝑠 ≤ 𝑠𝑠, 0 ≤ 𝑗𝑗 ≤ 𝑛𝑛 . 𝑒𝑒 is the stride rate in atrous convolution. 

 𝑒𝑒[𝑘𝑘,𝑘𝑘] represents the convolutional weights with c’-channel values, 0 ≤ 𝑘𝑘 ≤ 𝐾𝐾. K 
is the kernel size of the convolutional filter. 

 𝑦𝑦′[𝑠𝑠, 𝑗𝑗] represents the output signal at the location (i, j) with c’-channel values. 

Compared to the standard convolution, the atrous convolution samples the input signal 𝑦𝑦 with the 
stride r rather than using direct neighbors inside the convolutional kernel. Therefore, the standard 
convolution is a special case of atrous convolution with r = 1. By using multiple rate value settings 
(rate = 1, 6, 12 and 18), we separately apply one standard convolutional layer with 256-channel 
1 × 1 size of filters (i.e., the atrous convolutional layer with rate = 1), three atrous convolutional 
layers with 256-channel 3 × 3 size of filters and an additional average pooling layer to produce 
high-level multi-scale features. These semantic features are then merged into the decoder 
module. 

Decoder module. In the decoder, the input high-level features are bilinearly up-sampled and 
concatenated with the basic visual features for recovering the segment boundaries and spatial 
dimension. A standard convolutional layer with 256-channel 3 × 3 size of filters is applied to 
outweigh the importance of the merged features and obtain sharper segmentation results. 
Eventually, an additional bilinear up-sampling operation forms the output of decoder to a 
𝑠𝑠 × 𝑛𝑛 × 256 matrix, where 𝑠𝑠 and 𝑛𝑛 denote the width and height of the input image, respectively. 
The following convolution layer with d-channel 1 × 1 size of filters squeezes the feature matrix 
along the channel axis to 𝑠𝑠 × 𝑛𝑛 × 𝑠𝑠  shape, where 𝑠𝑠  is the pre-defined maximum number of 
categories. The softmax28 function is then applied to generate its predictive segmentation map, 
which takes a matrix with the same size of the input image recording the segment category of 
each pixel on it. The pixels falling into a certain category in the segmentation map point to a 
segmented spatial region. Our modeling objective is to minimize the cross-entropy29 between the 
predictive segmentation map �̂�𝑆 and labeled spatial functional regions 𝑆𝑆: 

𝑅𝑅�𝑆𝑆, �̂�𝑆� = −
1

𝑠𝑠 × 𝑛𝑛
� � (𝑠𝑠𝑖𝑖𝑖𝑖 ∗ 𝑙𝑙𝑠𝑠𝑠𝑠��̂�𝑠𝑖𝑖𝑖𝑖� + �1 − 𝑠𝑠𝑖𝑖𝑖𝑖� ∗ 𝑙𝑙𝑠𝑠𝑠𝑠 (1 − �̂�𝑠𝑖𝑖𝑖𝑖))

𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1
(7) 

where 𝑠𝑠𝑠𝑠𝑗𝑗 and 𝑠𝑠�𝑠𝑠𝑗𝑗 are the segment categories of the pixel at the 𝑠𝑠-th row and the 𝑗𝑗-th column for 
the input images with 𝑠𝑠 × 𝑛𝑛 pixels. 𝑠𝑠𝑖𝑖𝑖𝑖 ∈ [1,𝑠𝑠], �̂�𝑠𝑖𝑖𝑖𝑖 ∈ [1,𝑠𝑠]. 
 
Training set data preparation. We performed scGNN using various autoencoder dimensions 
(𝑀𝑀′= 3, 10, 16, 32, 64, 128, and 254) and multiple positional encoding intensity parameters 
(𝑃𝑃𝐸𝐸𝑃𝑃= 0.1, 0.2, 0.3, 0.5, 1.0, 1.2, 1.5, and 2.0), resulting in 56 embeddings used to generate 
diverse RGB images for each sample in the training set (see image results on 
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https://github.com/OSU-BMBL/RESEPT). In this study, we performed a 16-fold Jackknife cross-
validation, each of which formed all but one observation as the training set. The one sample was 
left to evaluate the trained model in each fold.  
 
Model training. We implemented the training procedure on the MMSegmentation platform30, which 
is an open-source semantic segmentation toolbox based on PyTorch. The weights of 
DeepLabv3+ were initialized by the pre-trained weights from Cityscapes dataset provided by 
MMSegmentation. To introduce diversity to the training data and improve the generalization of 
our model, we applied transforms defined in MMSegmentation, including the random cropping, 
rotation and photometric distortions, to augment the training RGB images. 400 × 400 sized 
patches are randomly cropped to provide different regions of interest from the whole RGB images. 
A random rotation (range from -180 degrees to 180 degrees) was further conducted to fit the 
potential irregular layout of spatial architectures. Some photometric distortions such as 
brightness, contrast, hue and saturation changes were also utilized to training samples when 
loading to MMSegmentation. Stochastic gradient descent (SGD)31 was chosen as the optimization 
algorithm, and its learning rate was set to 0.01. The training procedure iterated 30 epochs, and 
the checkpoint among all epochs with the best Moran’s I autocorrelation index32 on the testing 
data was selected as the final model. 
 
Image segmentation inference. Once a model completes training, it is capable of predicting the 
functional zonation on the tissue from its RGB images. On the inference, RESEPT performs 
scGNN with the same parameter combinations with the training settings resulting in 56 candidate 
RGB images for each input sample. RESEPT infers all the segmentation maps on these 56 
images and scores them using the Moran’s I metric (details in Supplementary Fig. 9) to assess 
the quality of segmentations. The segmentation maps of 5-top ranked images in terms of Moran’s 
I are returned for user selection. We found that such a quality assessment protocol results in 
segmentation results with higher accuracy than the default one, and enhances the robustness of 
RESEPT.  
 
2 Data analysis 
 
2.1 Experiment preparation, data generation, and processing 
Experiment preparation and data generation. Four postmortem human brain samples of the 
middle temporal gyrus were obtained from the Banner Sun Health Research Institute in Sun City 
and the New York Brain Bank at Columbia University15. Two of them are from non-AD cases at 
Braak stage I-II, namely Samples S2 and S5 in the study, and the other two are from early-stage 
AD cases at Braak stage III-IV, namely Samples S4 and S3 in the study. The region of AD cases 
was chosen based on the presence of Aβ plaques and neurofibrillary tangles.  The 10x Genomics 
Visium Spatial Transcriptome experiment was performed according to the User Guide of 10x 
Genomics Visium Spatial Gene Expression Reagent Kits (CG00239 Rev D). All the sections were 
sectioned into 10 µm thick and mounted directly on the Visium Gene Expression (GE) slide for 
H&E staining and the following cDNA library construction for RNA-Sequencing. Besides the 
section mounted on the GE slide, one of the adjacent sections (20 µm away from GE section) 
from AD samples persevered for the Aβ immunofluorescence staining. The method of 
immunofluorescence staining of Aβ on persevered section was the same as previously 
described17.  The image of Aβ staining was used as the ground truth and was aligned to H&E 
staining on GE slides using the “Transform/Landmark correspondences” plugin in ImageJ33.  
 
FASTQ generation, alignment and count. BCL files were processed by sample with the 
SpaceRanger (v.1.2.2) to generate FASTQ files via spaceranger mkfastq. The FASTQ file was 
then aligned and quantified based on the reference GRCh38 Reference-2020-A via spaceranger 
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count. The functions spaceranger mkfastq and spaceranger count were used for demultiplexing 
sample and transcriptome alignment via the default parameter settings. 
 
2.2 Data preprocessing 
To standardize the raw gene expression matrix and spot metadata, the different spatial 
transcriptomics data were preprocessed as follows.  

For the 10x Visium data, the filtered feature-barcode matrix (HDF5 file) was reshaped into a two-
dimensional dense matrix in which rows represent spots and columns represent genes. The 
dense matrix was further added with spots’ spatial coordinates by merging them with the 
‘tissue_positions_list’ file, containing tissue capturing information, row, and column coordinates. 
The mean color values of the RGB channels for each spot’s circumscribed square and annotation 
label were also added to the dense matrix after processing the Hematoxylin-Eosin (H&E) image. 
The gene expression as part of the dense matrix was stored in a sparse matrix format. Other 
information describing the spots’ characteristics was stored as individual metadata.  

For the HDST data, the expression matrix and spots’ coordinates were reshaped into the dense 
matrix, which was similar to 10x Visium preprocessing. The expression matrices from dense 
matrices were formed into the individual sparse matrices, and other information was stored as 
metadata.  

For the ST data, the expression matrix was reshaped into the two-dimensional dense matrix, and 
spots’ spatial coordinates were added to the dense matrix by merging with the 
spot_data_selection file. The color values of each spot were added to the dense matrix after 
processing the H&E image (if available). The remaining steps were the same as for the 10x Visium 
data. 

2.3 Data normalization and denoising 
Data normalization. The raw read counts were used as formatted input to generate normalization 
matrices. Seven normalization methods were used in the study, including DEseq234 (v.1.30.1), 
scran35 (v.1.18.5),  sctransform36 (v.0.3.2), edgeR37 (v.3.32.1), transcripts per million (TPM), reads 
per kilobase per million reads (RPKM), and log-transformed counts per million reads38 (logCPM). 
We used Seurat (v.4.0.1) to generate the sctransform and the logCPM normalized matrices. 
edgeR was used to generate TMM37 normalized matrices.  The gene length was used for 
calculating TPM and RPKM was obtained from biomaRt (v.2.46.3) by using useEnsemble function 
and parameters setting as dataset="hsapiens_gene_ensembl" and GRCh=38. All normalized 
matrices for whole transcriptomics were eventually calculated via the following default settings 
and converted into sparse matrices. RNA velocity was calculated for the whole transcriptomics 
via velocyto13 (v.0.17.17) and scVelo14 (v.0.1) followed by their default settings. RNA velocity 
matrices were converted into sparse matrices. 
 
Missing spots imputation. In practice, several spots may have missing expression in some tissue 
slices due to imperfect technology, which leads to blank tiles at the locations of these spots on 
the RGB images. Such blank tiles as incompatible noises may skew the following boundary 
recognition of spatial architecture. We assume the near neighbors are more likely to have similar 
values to the missing spot, and impute these missing spots by applying the weighted average to 
the pixels of their valid 6 neighboring spots. Since these missing spots are colored while in default 
as the same with the background out of tissue, we need to distinguish them from all-white pixels 
according to a topological structural analysis39. Firstly, all contours (including outer contours of 
tissue and inner contours caused by missing spots) of tissue are detected from the border 
following procedure39. The contour with the largest area is determined as the outer contour of 
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tissue. Then, all pixels in white inside the tissue contour are replaced by imputation from their 
neighbors. Given missing spot coordinates, we search their nearest k valid spots 𝑠𝑠𝑖𝑖 (i =1, 2,..., k) 
to calculate the imputation value 𝑥𝑥𝑠𝑠 of target missing spot s as: 

𝑥𝑥𝑠𝑠 = �𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑎𝑎𝑥𝑥 �
1

𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖, 𝑠𝑠)� × 𝑠𝑠𝑖𝑖

𝑘𝑘

𝑖𝑖=1

(8) 

where 𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖, 𝑠𝑠) represents the Euclidean distance between target spot s and a certain neighbor 
𝑠𝑠𝑖𝑖 in spatial space. The softmax function normalizes all distance reciprocals of s and its k (we set 
k=6 by default) neighbors si to the weights ranging from 0 to 1. The imputation of s is the weighted 
average on all si. If a tissue slice is detected without missing spots, RESEPT skips this imputation 
process. 
 
Parameter setting. Parameters in scGNN to generate embedding are referred to the previous 
study10. In the case study of the AD sample, in analysis on cortical layers 2 & 3, the expressions 
of 8 well-defined marker genes were log-transformed and embedded by spaGCN with 0.65 
resolution. In the analyses of cortical layer 2 to layer 6, PCA (n.PCs=3) was firstly utilized to 
extract the principal components of their expressions of marker genes for highlighting the 
dominant signals, and then they were embedded by spaGCN with 0.65 resolution. In the 
exploration of tumor regions in glioblastoma samples, their marker gene expressions were 
preprocessed by logCPM normalization and PCA (n.PCs=50). The processed data was 
emebedded by spaGCN with 0.35 resolution. In the analyses of AD-associated critical cell types, 
marker gene expressions were preprocessed by log-transform and PCA (n.PCs=3) as well, and 
then embedded by spaGCN with 0.65 resolution. For investigating Aβ pathological regions, log-
transform to the expressions of validated 20 upregulated genes were applied and their embedding 
were generated by spaGCN with 0.65 resolution. 

 
3 Benchmarking evaluation 
All the benchmarking tasks were run on a Red Hat Enterprise Linux 8 system with 13 T storage, 
2x AMD EPYC 7H12 64-Core Processor, 1TB RAM 1TB DDR4 3200MHz RAM, and 2x NVIDIA 
A100 GPU with 40GB RAM. The usage of the existing tools and their parameter settings in our 
benchmarking evaluation were described below. 

Seurat (v.4.0.1) identifies tissue architecture based on graph-based clustering algorithms (e.g., 
Louvain algorithm). Creating Seurat object, identification of highly variable features, and scaling 
of the data was performed using default parameters. The PCs were set to 128 to match our 
framework default setting. The FindNighbors and FindClusters functions with default parameters 
were used for tissue architecture identification. To further evaluate the robustness of the 
combination of the different parameters, we used 16 samples and selected three important 
parameters, including the number of PCs (dims = 10, 32, and 64), the value of 𝑘𝑘  for the 
FindNeighbor function (k.parm = 20, 50 and 100), and the resolution in the FindClusters function 
(res = 0.1 to 1, step as 0.1). 

BayesSpace (v.1.0.0) identifies tissue architecture based on the Gaussian mixture model 
clustering and Markov Random Field at an enhanced resolution of spatial transcriptomics data. 
Creating the SingleCellExperiment object is implemented to the following analysis by loading 
normalized expression data and position information for barcodes. Then, we set 128 as the 
number of PCs in spatialPreprocess function and parameter log.normalize was set FALSE due to 
the normalized data input. Lastly, tissue architecture was identified by running qTune and 
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spatialCluster functions. We followed official tutorial and adopted k-means as initial methods while 
other parameters were from the default based on prior information. In the process of assessing 
the robustness of BayesSpace, we set the cluster number as seven, the parameter n.PCs in 
spatialPreprocess function (n.PCs = 10, 64, and 128), and the parameter nrep in spatialCluster 
function (nrep = 5000, 10000, and 150000) for 16 samples. 

SpaGCN (v.0.0.5) can integrate gene expression, spatial location, and histology to identify spatial 
domains and spatially variable genes by graph convolutional network. SpaGCN was used to 
generate 3D embedding and tissue architecture and includes three procedures, including loading 
data, calculating adjacent matrix, and running SpaGCN. In the first step, both expression data 
and spatial location information were imported. Second, adjacent matrices were calculated using 
default parameters. Lastly, we selected 128 PCs, the initial clustering algorithm as Louvain, and 
other parameters used default settings. To evaluate the robustness of the parameters and enable 
comparison with other tools, three parameters, the number of PCs (num_pcs = 20, 30, 32, 40, 50, 
60, 64), the value of k for the k-nearest neighbor algorithm (n_neighbors = 20, 30, and 40), and 
the resolution in the Louvain algorithm (res = 0.2, 0.3, and 0.4) for 16 samples were adjusted. 

stLearn (v.0.3.2) is designed to comprehensively analyze ST data to investigate complex 
biological processes based on Deep Learning. stLearn highlights innovation to normalize data. 
Therefore, we input expression data, location information as well as images. stLearn consists of 
two steps, i.e., preparation and run stSME clustering. In preparation, loading data, filtering, 
normalization, log-transformation, pre-processing for spot image, and feature extraction were 
implemented. In the following module, PCA dimension reduction was set to 128 PCs, applying 
stSME to normalize log-transformed data and Louvain clustering on stSME normalized data using 
the default parameters. To evaluate the robustness of the parameters and enable comparison 
with other tools, three parameters were considered to be adjusted for 16 samples, the number of 
PCs (n_comps = 10, 20, 30, 32, 40, and 50), the value of k for the kNN algorithm (n_neighbors = 
10, 20, 30, 40, and 50), and the resolution in the Louvain algorithm (resolution = 0.7, 0.8, 0.9 and 
1). 

STUtility (v0.1.0) can be used for the identification of spatial expression patterns alignment of 
consecutive stacked tissue images and visualizations. We implemented STUtility as a tissue 
architecture tool based on the Seurat framework. RunNMF was carried out as the dimension 
reduction method. The number of factors was set to 128 for matching our framework default 
setting. FindNeighbors and FindClusters were used to identify tissue architecture. To further 
evaluate the robustness of the combination of the different parameters, we used 16 samples and 
selected three important parameters for tuning, including the number of factors (nfactors = 10, 32, 
and 64), the value of 𝑘𝑘 for FindNeighbor function (k.parm = 20, 50, 100, 200, and 250), and the 
resolution in FindClusters function (res =0.05, 0.1, 0.2, 0.3, 0.5, and 0.7, 0.9). 

Giotto (v.1.0.3) is a comprehensive and multifunction computational tool for spatial data analysis 
and visualization. We implemented Giotto as the issue architecture identification tool in this study 
via using default settings. Giotto first identified highly variable genes via calculateHVG function, 
then performed PCA dimension reduction using 128 PCs, constructed the nearest neighbor 
network via createNearestNetwork, and eventually identified tissue architecture via 
doLeidenCluster. To further evaluate the robustness of the combination of the different 
parameters, we used 16 samples and selected three important parameters for tuning, including 
the number of PCs (npc = 10, 32, and 64), the value of k for createNearestNetwork function (k = 
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20, 50 and 100), and the resolution in doLeidenCluster function (resolution = 0.1, 0.2, 0.3, 0.4, 
and 0.5).  

Downsampling simulation for read depth. Comparing the mean and standard deviation of 16 10x 
visium datasets, samples S5 and S6 were selected to generate simulation data with decreasing 
sequencing depth. Let matrix 𝐺𝐺 be the 𝑁𝑁 ×  𝑀𝑀 expression count matrix, where 𝑁𝑁 is the number 
of spots and 𝑀𝑀 is the number of genes. Define the spot-specific sequencing depths 𝑐𝑐𝑖𝑖 = ∑ 𝐺𝐺𝑖𝑖𝑖𝑖𝑀𝑀

𝑖𝑖 =1 , 

i.e., the column sums of 𝐺𝐺. Thus, the average sequencing depth of the experiment is 𝑐𝑐̅  =  ∑ 𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖 = 1
𝑁𝑁

. 
Let 𝑜𝑜 <  𝑐𝑐̅ be our target downsampled sequencing depth and let 𝐺𝐺∗ be the 𝑁𝑁 × 𝑀𝑀 downsampled 
matrix. We perform the downsampling as follows: 

For each spot 𝑠𝑠 =  1, … ,𝑁𝑁: 
1) Define the total counts to be sampled in the spot 𝑠𝑠 as 𝑜𝑜𝑖𝑖  =  𝑡𝑡 ×𝑐𝑐𝑖𝑖

𝑐𝑐̅
. 

2) Construct the character vector of genes to be sampled as 𝐺𝐺𝑖𝑖 =
 {1, . . . ,1��� ,

𝐶𝐶𝑖𝑖1

2, . . . ,2��� ,
𝐶𝐶𝑖𝑖2

. . . ,𝑀𝑀, . . . ,𝑀𝑀�����
𝐶𝐶𝑖𝑖𝑖𝑖

}. 

3) Sample 𝑜𝑜𝑖𝑖 elements from 𝐺𝐺𝑖𝑖 without replacement and define 𝑁𝑁𝑖𝑖  as the number of times 
gene 𝑗𝑗 was sampled from 𝐺𝐺𝑖𝑖 for 𝑗𝑗 =  1, . . . ,𝑀𝑀. 

4) Let 𝐺𝐺𝑖𝑖𝑖𝑖∗  = 𝑁𝑁𝑖𝑖. 
Using this method, the average downsampled sequencing depth is:  

𝐺𝐺 
∗

=
𝑡𝑡
𝑐𝑐�𝑐𝑐1 + 𝑡𝑡𝑐𝑐�𝑐𝑐2+...+𝑡𝑡𝑐𝑐�𝑐𝑐𝑛𝑛

𝑁𝑁
 =  

𝑡𝑡
𝑐𝑐�  ∑ 𝑐𝑐𝑖𝑖𝑁𝑁

𝑖𝑖 =1

𝑁𝑁
 =  𝑡𝑡

𝑐𝑐̅
× 𝑐𝑐̅  =  𝑜𝑜 , 

as desired.  Note also that this method preserves the relative total counts of each spot, i.e., spots 
that had higher sequencing depths in the original matrix have proportionally higher depths in the 
downsampled matrix. 

 
4 Evaluation metrics 
 
4.1 Benchmark performance evaluation criteria 
Adjusted Rand index (ARI) measures the agreement between two partitions. Given a set 𝑆𝑆 
consisting of 𝑛𝑛 elements, ℱ1 = {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑟𝑟 } and ℱ2 = {𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑠𝑠} are two partitions of 𝑆𝑆; that 
is, 𝑆𝑆 =∪𝑖𝑖 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑖𝑖 ∩ 𝑋𝑋𝑖𝑖 = ∅, so does ℱ2. 𝑋𝑋𝑖𝑖 can be interpreted as a cluster generated by some 
clustering method. In this way, ARI can be described as follow: 

𝐴𝐴𝑅𝑅𝐴𝐴 =
∑ �𝑚𝑚𝑖𝑖𝑖𝑖2 � − �∑ �𝑚𝑚𝑖𝑖2 �∑ �𝑏𝑏𝑖𝑖2 �𝑖𝑖𝑖𝑖 �/�𝑚𝑚2�𝑖𝑖𝑖𝑖

1
2 �∑ �𝑚𝑚𝑖𝑖2 � + ∑ �𝑏𝑏𝑖𝑖2 �𝑖𝑖𝑖𝑖 � − �∑ �𝑚𝑚𝑖𝑖2 �∑ �𝑏𝑏𝑖𝑖2 �𝑖𝑖𝑖𝑖 �/�𝑚𝑚2�

(9) 

where 𝑛𝑛𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖 ∩ 𝑌𝑌𝑖𝑖, denotes the number of objects in common between 𝑋𝑋𝑖𝑖 and 𝑌𝑌𝑖𝑖; 𝑎𝑎𝑖𝑖 = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖  and 
𝑏𝑏𝑖𝑖 = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 . Besides, 𝐴𝐴𝑅𝑅𝐴𝐴 ∈ [−1, 1], the higher 𝐴𝐴𝑅𝑅𝐴𝐴 reflects the higher consistency. The bs function 
of the splines package (v.4.0.3) was used for smoothing ARI generated from grid effective 
sequencing depth data via default settings. 

Other metrics as Rand index (RI), Fowlkes–Mallows index (FM), Adjusted mutual information 
(AMI) are also used to evaluate the performances. The formulation of these criteria details in 
Supplementary Note 3.  
 
4.2 RGB image and 3D embedding evaluation  
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We modified the metric peak signal-to-noise ratio (PSNR) 40, whose original version is commonly 
used to measure the reconstruction loss of image compression, to assess the similarity between 
the color distribution of an RGB image and its corresponding labeled segmentation map. We re-
used its basic concept to calculate the PSNR from each labeled segment, and then applied 
weighted sum to the PSNRs from all 𝑝𝑝 segments according to their area:   

𝑃𝑃𝑆𝑆𝑁𝑁𝑅𝑅 =
∑ 𝑃𝑃𝑆𝑆𝑁𝑁𝑅𝑅𝑖𝑖 × 𝑎𝑎𝑖𝑖
𝑝𝑝
𝑖𝑖=1

∑ 𝑎𝑎𝑖𝑖
𝑝𝑝
𝑖𝑖=1

=
∑ 10 𝑙𝑙𝑠𝑠𝑠𝑠10 �

𝑀𝑀𝐴𝐴𝑋𝑋𝑖𝑖2
𝑀𝑀𝑆𝑆𝐸𝐸𝑖𝑖

�× 𝑎𝑎𝑖𝑖
𝑝𝑝
𝑖𝑖=1

∑ 𝑎𝑎𝑖𝑖
𝑝𝑝
𝑖𝑖=1

(10) 

where:  

 𝑎𝑎𝑖𝑖 is the number of pixels located in the ith segment, 1 ≤ 𝑠𝑠 ≤ 𝑝𝑝 
 𝑀𝑀𝐴𝐴𝑋𝑋𝑖𝑖 is the maximum pixel-value of the ith segment, 0 ≤ 𝑀𝑀𝐴𝐴𝑋𝑋 ≤ 255 
 𝑀𝑀𝑆𝑆𝐸𝐸𝑖𝑖 is the pixel-wise mean squared error of the ith segment. 
The larger PSNR Implies the better the RGB image can indicate the labeled spatial architectures, 
and further demonstrates the better quality its corresponding 3-dimensional embeddings achieve. 

4.3 Predicted Segmentation Map Quality assessment.  

Differed from the Moran’s I auto-correlation index32  using for revealing a single gene’s spatial 
auto-correlation, we modified Moran’s I in Geo-spatiality41 to evaluate a predictive segmentation 
map without known ground truth. The metric analyzes the heterogeneity of predictive inter-
segments by measuring the pixel contrast cross any two predicted adjacent segments per 
channel: 

𝑀𝑀𝑠𝑠𝑒𝑒𝑎𝑎𝑛𝑛′𝑠𝑠 𝐴𝐴 = ��
𝑁𝑁∑ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)�𝑦𝑦𝑖𝑖 − 𝑦𝑦���𝑁𝑁

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1

3 × �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1 ��∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖 �

3

𝑐𝑐=1

(11) 

where 

 𝑎𝑎𝑖𝑖𝑖𝑖 is the binary spatial adjacency of the ith segment and jth segment . 1 ≤ 𝑠𝑠 ≤ 𝑁𝑁, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁 
  𝑦𝑦𝑖𝑖,𝑐𝑐 ∈ ℝ3 denotes the mean pixel values at 𝑐𝑐𝑡𝑡ℎ channels in Red, Green and Blue of the ith 

segment, 1 ≤ 𝑐𝑐 ≤ 3, 
 𝑦𝑦𝑐𝑐� ∈ ℝ3 denotes the mean pixel values at channel Red, Green and Blue of the whole image. 
 
4.4 Module score calculation and differential expression analysis.  

The module score for specific marker genes was calculated based on the Seurat function 
AddModuleScore, which calculated the average expression levels of genes for specific spot 
groups. The DEG analysis was conducted by the Seurat function FindAllMarkers based on 
RESEPT predicted seven segments via default settings. Based on the identified DEGs, the 
enrichment analyses of GO terms (Biological Process) and KEGG were performed via the R 
package clusterProfile (v.3.18.0) using the functions of enrichGO and enrichKEGG. The 
enrichment analysis results were filtered out if the adjusted p-value was greater than 0.05.  For 
KEGG analysis, gene database Org.Hs.eg.Db was used for transferring SYMBOL to ENREZID 
via function bitr. R package ggplot2 (v.3.3.2) was used for the visualizations. 
 
Data availability 
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The 10x Visium datasets (10 from Spatial Gene Expression 1.0.0; 14 from Spatial Gene 
Expression 1.1.0, 13 from Spatial Gene Expression 1.2.0; including S1) can be accessed from 
https://www.10xgenomics.com/products/spatial-gene-expression. Our own AD datasets (S2-S5) 
are available from Dr. Hongjun Fu upon request. The datasets (S6-S17) used for training model 
and benchmarking can be accessed via endpoint “jhpce#HumanPilot10x” on Globus data transfer 
platform at http://research.libd.org/globus/. The HDST datasets are available as accession 
number SCP420 in the Single Cell Portal via link https://singlecell.broadinstitute.org/single_cell. 
The ST and 10x Visium data (squamous cell carcinoma) can be accessed from the GEO database 
with an accession number GSE144239. More details of datasets can be found in the 
Supplementary Table 1.  
 
Code availability 
RESEPT is freely available as an open-source Python package at https://github.com/OSU-
BMBL/RESEPT.  
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