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 27 

Abstract  28 

Spatially resolved transcriptomics provides a new way to define spatial contexts and understand 29 

biological functions in complex diseases. Although some computational frameworks can 30 

characterize spatial context via various clustering methods, the detailed spatial architectures and 31 

functional zonation often cannot be revealed and localized due to the limited capacities of 32 

associating spatial information. We present RESEPT, a deep-learning framework for 33 

characterizing and visualizing tissue architecture from spatially resolved transcriptomics. Given 34 
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inputs as gene expression or RNA velocity, RESEPT learns a three-dimensional embedding with 35 

a spatial retained graph neural network from the spatial transcriptomics. The embedding is then 36 

visualized by mapping as color channels in an RGB image and segmented with a supervised 37 

convolutional neural network model. Based on a benchmark of sixteen 10x Genomics Visium 38 

spatial transcriptomics datasets on the human cortex, RESEPT infers and visualizes the tissue 39 

architecture accurately. It is noteworthy that, for the in-house AD samples, RESEPT can localize 40 

cortex layers and cell types based on a pre-defined region- or cell-type-specific genes and 41 

furthermore provide critical insights into the identification of amyloid-beta plaques in Alzheimer's 42 

disease. Interestingly, in a glioblastoma sample analysis, RESEPT distinguishes tumor-enriched, 43 

non-tumor, and regions of neuropil with infiltrating tumor cells in support of clinical and prognostic 44 

cancer applications. 45 

 46 

Introduction 47 

Tissue architecture is the biological foundation of spatial heterogeneity within complex organs like 48 

the human brain1 and is thereby essential in understanding the underlying pathogenesis of human 49 

diseases, including cancer2 and Alzheimer's disease (AD)3. Recent advances in spatially resolved 50 

technologies such as 10x Genomics Visium provide spatial context together with high-throughput 51 

gene expression for exploring tissue domains, cell types, cell-cell communications, and their 52 

biological consequences4. Some graph-based clustering methods5,6, statistical methods7, or deep 53 

learning-based methods8,9 can identify spatial architecture and interpret spatial heterogeneity. For 54 

example, Seurat10 and Giotto11 use a similar framework on variable gene selection, dimension 55 

reduction, followed by graph-based clustering (i.e., Louvain). STUtility12 uses non-negative matrix 56 

factorization to perform dimension reduction and then identifies tissue architecture based on the 57 

Seurat framework. SpaGCN9 proposes a convolutional graph network to integrate gene 58 

expression, spatial location, and histology in spatial transcriptomics data analysis. stLearn8 also 59 

integrates gene expression, spatial location, and histology information in the normalization 60 

method and applies the Louvain algorithm as a clustering method. Another approach, 61 

BayesSpace7 adopts a Bayesian statistical framework to adjust spatial neighborhoods for 62 

resolution enhancement and for clustering analysis. Even existing methods can provide some 63 

useful information, the intrinsic tissue architecture, however, often cannot be fully revealed due to 64 

a lack of strong spatial representation for the biological context in tissues, and these tools often 65 

do not take full advantage of spatial information and are limited in predicting tissue architectures. 66 

Therefore, it is still challenging to accurately characterize tissue architectures and the underlying 67 

biological functions from spatial transcriptomics.  68 
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 69 

We reasoned that spatial transcriptomics could be effectively represented and intuitively 70 

visualized as an image with expression abundance retaining the spatial context. To this end, we 71 

introduce RESEPT (REconstructing and Segmenting Expression mapped RGB images based on 72 

sPatially resolved Transcriptomics), a framework for reconstructing, visualizing, and segmenting 73 

an RGB image from spatial transcriptomics to reveal tissue architecture and spatial heterogeneity. 74 

We highlight the unique features of RESEPT as follows: (i) Spatial transcriptomics data are 75 

converted as an RGB image by mapping a low dimensional embedding to color channels via a 76 

spatial retained graph neural network. This image represents various spatial contexts together 77 

with expression abundance faithfully, and it resists robustly to noises due to limitations of 78 

measuring technology. (ii) An RGB image is segmented to predict spatial cell types using a pre-79 

trained segmentation deep-learning model and an optional segmentation quality assessment 80 

protocol. (iii) RNA velocity can be integrated into image training, which is effective in revealing 81 

some tissue architectures. (iv) With a defined panel of gene sets representing specific biological 82 

pathways or cell lineages, RESEPT can recognize the spatial pattern and detect the 83 

corresponding active functional regions. (v) The functional zonation boundaries of AD are 84 

determined effectively by the pre-trained image segmentation deep-learning model. (vi) RESEPT 85 

successfully recognized tumor architecture, non-tumor architecture, and infiltration tumor 86 

architecture in clinical and prognostic applications on glioblastoma. 87 

 88 

Results 89 

The architecture of RESEPT comprises representation learning and segmentation 90 

Spatial transcriptomics data are represented as a spatial spot-spot graph by RESEPT (Fig. 1). 91 

Each observational unit within a tissue sample containing a small number of cells, i.e., “spot,” is 92 

modeled as a node. The measured gene expression values of the spot are treated as the node 93 

attributes, and the neighboring spots adjacent in the Euclidean space on the tissue slice are linked 94 

with an undirected edge. This lattice-like spot graph is modeled by our graph neural network 95 

(GNN) based tool scGNN13, which learns a three-dimensional embedding to preserve the 96 

topological relationship between all spots in the spatial space of transcriptomics. The three-97 

dimensional embedding on gene expression is mapped to three color channels as Red, Green, 98 

and Blue in an RGB image, which is naturally visualized as an image of the spatial gene 99 

expression. Then a semantic segmentation can be performed on the image to identify the spatial 100 
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architecture by classifying each spot into a spatially specific segment with a supervised 101 

convolutional neural network (CNN) model.  102 

103 
Fig. 1 | The RESEPT schema. RESEPT takes gene expression or RNA velocity from spatial transcriptomics as the 104 
input. The input is embedded into a three-dimensional representation by a spatially constrained Graph Autoencoder, 105 
then linearly mapped to an RGB color spectrum to reconstruct an RGB image. A CNN image segmentation model is 106 
trained to obtain a spatially specific architecture (from whole-gene embedding) or spatial functional regions (from panel-107 
gene embedding). 108 

In the 10x Visium Genome platform, each spot has six adjacent spots, so the spatial retained spot 109 

graph has a fixed node degree six for all the nodes. On the generated spatial spot-spot graph, a 110 

graph autoencoder learns a node-wise three-dimensional representation to preserve topological 111 

relations in the graph. The encoder of the graph autoencoder composes two layers of graph 112 

convolution network (GCN) to learn the 3-dimensional graph embedding. The decoder of the 113 

graph autoencoder is defined as an inner product between the graph embedding, followed by 114 

sigmoid activation function. The goal of graph autoencoder learning is to minimize the difference 115 

between the input and the reconstructed graph (Fig. 2a).  116 

The segmentation architecture is comprised of a backbone network, an encoder module, and a 117 

decoder module. The backbone network employs an extra deep network ResNet10114 to provide 118 

basic visual features of the input RGB image. ResNet101 stacks one convolutional layer and 33 119 

residual blocks, each of which cascades 3 convolutional layers with a convolutional skip 120 

connection from the input signals to the output feature maps, for extracting sufficiently rich 121 

features. The encoder module utilizes atrous convolutional layers with various rates and sizes of 122 

filters and one global pooling layer respectively to detect multi-scale semantic features from 123 

ResNet101 feature maps. And the decoder module aligns the multi-scale features to the same 124 
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size and outputs a segmentation map classifying each spot into a specific spatial architecture. 125 

(Fig. 2b) 126 

 127 

Fig. 2 |The RESEPT framework. (a) A spatial retained spot graph is established by spatial distances of spots and their 128 
expression or velocity matrix. The graph autoencoder takes the adjacent distance matrix of the spot graph as the input. 129 
Its encoder learns a 3-dimensional embedding of a spatial cell graph. The decoder reconstructs the adjacent 130 
correlations among all cells by dot products of the 3-dimensional embeddings followed by a sigmoid activation function. 131 
The graph autoencoder is trained by minimizing the cross-entropy loss between the input spatial and the reconstructed 132 
graphs. The learned 3-dimensional embeddings are mapped to a full-color spectrum to generate an RGB image 133 
revealing the spatial architecture. (b) The segmentation model takes the RGB image as the input, which may be 134 
processed with an imputation operation if missing spots exist. Its backbone network ResNet101 consists of one 135 
convolutional layer and a series of residual blocks, in which one type of residual block named convolutional block stacks 136 
3 convolutional layers with a convolutional skip connection from the input signals to the output feature maps, and the 137 
other type of residual block identity block stacks 3 convolutional layers with a direct skip connection from the input 138 
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signals to the output feature maps. This extra deep network firstly extracts rich visual features of the input image. The 139 
encoder module further extracts multi-scale semantic features by applying four atrous convolutional with different rates 140 
and sizes of filters and one global pooling layer respectively to the basic visual feature maps. And the decoder module 141 
up-samples the multi-scale features to the same size with basic visual feature maps and then concatenates them 142 
together. After a softmax activation function, the decoder module outputs a segmentation map classifying each spot 143 
into a specific spatial architecture. 144 

RESEPT accurately characterizes the spatial architecture of the human brain cortex region. 145 

Using manual annotations as the ground truth on 12 published samples15 and four in-house 146 

samples16 sequenced on the 10x Genomics Visium platform, RESEPT was benchmarked on both 147 

raw and normalized expression matrices of the 16 samples (S2-S17 in Fig. 3a and Table 1). Our 148 

results demonstrate RESEPT outperforms six existing tools, namely Seurat10, BayesSpace7, 149 

SpaGCN9, stLearn8, STUtility12, and Giotto11 on tissue architecture identification in terms of 150 

Adjusted Rand Index (ARI) 0.706 ± 0.163 (Fig. 3b) based on tuned parameters (Supplementary 151 

Data 1). Additional benchmarking results in default parameter settings with different evaluation 152 

matrices, visualization of RESEPT outcome, running time, and memory usage can be referred to 153 

Fig. 3c, Supplementary Fig. 1, and Supplementary Data 2-3. To validate the stability of our 154 

model, we generated simulation data with gradient decreasing sequencing depth based on two 155 

selected datasets S5 and S6 (Fig. 3a). The RGB images at low read depth presented more intra-156 

regional diversity in their color distributions (Supplementary Fig. 2 and Supplementary Data 4). 157 

In the downsampling read depth gradients from very low depth to full depth, RESEPT 158 

demonstrated its robustness by ARI 0.454 ± 0.014 on S5, and ARI 0.809 ± 0.006 on S6 (Fig. 3d-159 

g).  It is noteworthy that RGB images generated from RNA velocity17,18 can reveal clear spatial 160 

separation between segments from the identified architecture on the AD sample S4 (Moran’s I 161 

0.920 vs 0.787), which is consistent with the brain development zonation (Fig. 3h). On the same 162 

sample, RESEPT reveals better tissue architecture than the other tools in ARI 0.409 (Fig. 3i). 163 

More visualization results from different normalization methods can be referred to 164 

Supplementary Fig. 1 and Supplementary Data 5. All the data used in the study are 165 

summarized in Supplementary Table 1, while datasets on 10x Genomics, Spatial 166 

Transcriptomics (ST), and High-Definition Spatial Transcriptomics (HDST) platforms without 167 

manual annotations were analyzed by RESEPT detailed in Supplementary Fig. 3.  168 
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 169 
Fig. 3 | The RESEPT workflow and performance. (a) show mean and standard deviation of sequencing reads of 17 170 
human brain datasets on 10x Visium platform. S2-S17 have manual annotations as the benchmark, S5 & S6 for 171 
simulation for high mean and low standard deviations of read depth, S1 & S4 for the case studies (more details in 172 
Supplementary Tables 1-2). (b) Performance of tissue architecture (with 7 clusters pre-defined) identification by six 173 
existing tools and RESEPT on criteria ARI. (c) Performance of tissue architecture (default parameters) identification by 174 
six existing tools and RESEPT on criteria ARI.  (d) Stability of tissue architecture identification across sequencing 175 
depths on samples S5 using different tools. The Y-axis shows ARI performance, and the X-axis represents the 176 
sequencing depth with subsampling. The lines are smoothed by the B-Spline smooth method. (e) Normalized 177 
performance vs. sequencing depth on sample S5. Performance of full sequencing depth is set as 1.0. RESEPT_E1 178 
using scGNN embedding, RESEPT_E2 using spaGCN embedding. (f) and (g) show the stability of ARI and normalized 179 
performance against grid sequencing depth for sample S6. (h) RGB image generated from RNA velocity reveals better 180 
architecture (Moran’s I = 0.920) than gene expression (Moran’s I = 0.787) on the AD sample S4. (i) Spatial domains on 181 
S4 detected by RESEPT, together with those identified by other tools. 182 

 183 

RESEPT benefits from the representation power of the learned embedding from the spatially 184 

constrained GNN comparing with spaGCN and UMAP (Supplementary Figs. 4-5). The 185 

sufficiently diverse training images (Supplementary Fig. 6) and fine-gained visual features 186 
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extracted from the extra deep CNN network also give strong discerning power to our 187 

segmentation model. We also validated the performance improvement with an increasing number 188 

of annotated training data (Supplementary Fig. 7). This improvement implied that as more 189 

annotated spatial transcriptomic data comes out, RESEPT will enhance its robustness 190 

accordingly.   191 

 192 

RESEPT interprets and discovers spatially related biological insights in AD  193 

With our in-house AD brain samples16, human postmortem middle temporal gyrus (MTG) from an 194 

AD case (Sample S4) was spatially profiled on the 10x Visium platform, and RESEPT successfully 195 

identified the main architecture of the MTG comparing with the manual annotation as the ground 196 

truth (S3 ARI = 0.474; S4 ARI=0.409). With the RGB image generated from specific gene 197 

expression, we distinguish cortical layers 2 & 3 from other layers and identified regions enriched 198 

with excitatory neurons and amyloid-beta (Aβ) plaques. For the AD sample on cortical layers 2 & 199 

3 (ground truth16 as Fig. 4a-b), well-defined marker genes (C1QL2, RASGRF2, CARTPT, WFS1, 200 

HPCAL1 for layer 2, and CARTPT, MFGE8, PRSS12, SV2C, HPCAL1 for layer 3) from the 201 

previous study19 were embedded and transformed to an RGB image instead of using whole 202 

transcriptomes (a full gene list in Supplementary Table 2). To validate the spatial specificity, 203 

module scores from Seurat10 showed that these marker genes are statistically significantly 204 

enriched only on cortex layers 2 & 3 among all the layers (p<0.0001 by Wilcoxon signed-205 

rank test). Furthermore, RESEPT visually provided consistent colors for cortical layers 2 & 3. 206 

These spatial patterns were strengthened by filtering unrelated colors. More RGB images from 207 

other layer-specific marker genes can be found in Supplementary Fig. 8. To reveal critical cell-208 

type distribution (i.e., excitatory neuron) associated with selective neuronal vulnerability in AD20, 209 

five well-defined excitatory neuron marker genes (SLC17A6, SLC17A7, NRGN, CAMK2A, and 210 

SATB2) in the cortex were obtained from our in-house database scREAD21 (other cell-type marker 211 

genes in Supplementary Table 2). The module score and optimized RGB image (Fig. 4c-d) 212 

showed statistically significant enrichment of excitatory neuron marker genes in cortical layers 2-213 

6 (p<0.0001 by Wilcoxon signed-rank test), and the original and improved RGB image also 214 

localized the excitatory neurons (other cell types can be found in Supplementary Fig. 9). 215 

Moreover, the RGB image can reflect an important AD pathology-associated region, i.e., Aβ 216 

plaques-accumulated region. We conducted an immunofluorescence staining of Aβ on the 217 

adjacent AD brain section (see details in Methods) and identified the brain region with Aβ 218 

plaques16 (Fig. 4e). Among the gene module containing 57 Aβ plaque-induced genes discovered 219 

from the previous study2, we validated those 20 upregulated genes showed the specific 220 
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enrichment in the Aβ region compared to the non-Aβ region in terms of layers 2 & 3 (p<0.0001 by 221 

Wilcoxon signed-rank test, Fig. 4f). By comparing the color in Aβ region-associated spots with 222 

the RGB image (Fig. 4g), we observed Aβ region-associated spots behaved a consistent color in 223 

layers 2 & 3. To evaluate RGB value variation quantitatively, we investigated the value range of 224 

channels R, G, and B for the Aβ region and non-Aβ region (Fig. 4h). The result showed that the 225 

Aβ region had a tight dispersion compared to the non-Aβ region, which proved the RGB image 226 

can be potentially used to indicate the pathological regions with Aβ plaques. Overall, with the 227 

evidence of images generated from hallmark panel genes, RESEPT can confidently reflect layer-228 

specific, cell-type-specific, and pathological region-specific architecture, with well-studied marker 229 

genes and disease-associated genes. These results indicate significant potentials and strong 230 

applicative power of RESEPT to localize and present important spatial architecture contributing 231 

to AD pathology. 232 
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Fig. 4 | RESEPT identifies spatial cellular patterns in the human postmortem middle temporal gyrus (MTG). (a) The 234 
box plot shows the module score of the cortical layers 2 and 3 and other layers from Sample S3, where the x-axis 235 
shows layer categories and the y-axis represents scores. The second figure shows layer 2 and 3 architecture (red); the 236 
third figure shows an RGB image; the fourth figure is reconstructed by filtering out unrelated colors. (b) The box plot 237 
shows the module score of excitatory neurons from layers 2 to 6 and other layers. The second figure shows the ground 238 
truth of layers 2 to 6; the third figure shows an RGB image; the fourth figure is reconstructed by filtering out unrelated 239 
colors. (c) and (d) display the same layer architecture and cell type localization for sample S4. (e) The left figure was 240 
generated by immunofluorescence assay to show Aβ plaques location, and the right figure highlights the spots with the 241 
accumulation of Aβ plaques. (f) The box plot shows scores for the Aβ region and the non-Aβ region split by six layers 242 
and white matter. (g) The left figure shows the RGB image from the 20 genes embedding results, and the right figure 243 
shows the RGB image cropped according to the Aβ region and marked by layers 2&3 (encircled by the red line). (h) 244 
RGB channel shows the color value dispersion, where blue represents RGB values in the Aβ region and orange 245 
represents RGB values in the non-Aβ region. 246 

 247 

The clinical and prognostic applications of RESEPT in cancer.  248 

To demonstrate the clinical and prognostic applications of RESEPT in the oncology field, we 249 

analyzed a glioblastoma dataset published by 10x Genomics using the Visium platform (Fig. 5a, 250 

Sample S1). Glioblastoma, a grade IV astrocytic tumor with a median overall survival of 15 251 

months22, is characterized by heterogeneity in tissue morphologies which range from highly dense 252 

tumor cellularity with necrosis to other areas with single tumor cell permeation throughout the 253 

neuropil. Assessment of tissue architecture represents a key diagnostic tool for patient prognosis 254 

and diagnosis. RESEPT identified eight segments (Fig. 5b-c, Supplementary Fig. 10) and 255 

distinguished tumor-enriched, non-tumor, and regions of neuropil with infiltrating glioblastoma 256 

cells. These segmented areas show similarities to secondary structures of Scherer23.  Based on 257 

the morphological features of Segment 3 in the Hematoxylin-Eosin (H&E) image (Fig. 5c), we 258 

observed cells with large cytoplasm and nuclei with prominent nucleoli, a morphology consistent 259 

with cortical pyramidal neurons, and many tumor cells located in this segment showing neuronal 260 

satellitosis. Differentially expressed gene (DEG) analysis demonstrated that a pre-defined 261 

glioblastoma marker CHI3L124,25 was highly expressed in most of the spots in Segment 3 (Fig. 262 

5d, differentially expressed gene of each segment can be found Supplementary Data 6). By 263 

exploring the H&E image of Segment 6, we found this prominent area of the segment with 264 

erythrocytes, likely representing an area of acute hemorrhage during the surgical biopsy. This 265 

morphological observation was in line with the GO enrichment analysis, where DEGs were 266 

enriched in blood functionality pathways (Fig. 5e). Most interestingly, from the morphological 267 

features of Segment 7, we observed that this segment belongs to infiltrating glioblastoma cells 268 

characterized by elongate nuclei admixed with non-neoplastic brain cells. Glioblastoma cells 269 
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showing elongated nuclei are characteristic of invasion along white matter tracts23.  Comparing 270 

DEGs with pre-defined infiltrating markers26, we found that infiltrating tumor marker genes KCNN3 271 

and CNTN1 were expressed specifically in Segment 7 (Fig. 5f). Overall, RESEPT successfully 272 

recognized tumor architecture, non-tumor architecture, and infiltration tumor architecture. This 273 

tool augments the morphological evaluation of glioblastoma by enabling an improved 274 

understanding of glioblastoma heterogeneity. This objective characterization of the heterogeneity 275 

will ultimately improve oncological treatment planning for patients.  276 

 277 
Fig. 5 | RESEPT identifies tumor regions in glioblastoma samples (Sample S1). (a) Original H&E staining image from 278 
the 10x Genomics. (b) RGB image generated from the RESEPT pipeline. (c) Labeled segmentation by RESEPT and 279 
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Segments 3, 6, and 7 are cropped according to the segmentation result. Based on morphological features, our 280 
physiologist found Segment 3 contains large tumors from morphological features; Segment 6 contains a large number 281 
of blood cells; Segment 7 contains infiltrating tumor cells. (d) Glioblastoma marker gene CHI3L1 is highly and broadly 282 
expressed in Segment 3 based on the logCPM normalization value. (e) Bar plot shows the results of GO enrichment 283 
analysis, indicating Segment 6 having a large proportion of blood cells with blood signature genes for gas transport. (f) 284 
Infiltrating glioblastoma signature marker genes KCNN3 and CNTN1 are highly expressed in Segment 7 based on the 285 
logCPM normalization. 286 

 287 

Conclusion and Discussion 288 

Our results show RESEPT is a robust and high-performance tool, for spatial transcriptomics data 289 

analysis, visualization, and interpretation. Powered by representation learning with graph neural 290 

networks in a spatial spot-spot graph model, the spatial transcriptomics is visualized as an RGB 291 

image. RESEPT formulates the problem as image segmentation and uses a deep-learning model 292 

to detect the tissue architecture. It has the potential to provide specific spatial architectures in 293 

broader applications, including neuroscience, immuno-oncology, and developmental biology. 294 

 295 

RESEPT allows taking one of the two types of input, gene expression or RNA velocity. An RGB 296 

image generated from RNA velocity may have a different biological meaning from gene 297 

expression but is appropriate for some contexts, such as well-differentiated architectures in the 298 

spatial slice. For example, our study suggests well-structured brain cortical datasets like AD 299 

samples may have better performance in RNA velocity as input than gene expression. We will 300 

investigate the guideline on how and when to choose RNA velocity as the input instead of gene 301 

expression.  302 

 303 

Besides RGB channels as the default setting, RESEPT can be adjusted to most mixing color 304 

pallets in graphic design, such as CMYK (Cyan, Magenta, Yellow, and blacK), HSV (Hue, 305 

Saturation, and Value), and hexadecimal colors. These alternative color systems may provide a 306 

broader color spectrum and enough variation in hue and brightness to present complex 307 

embedding. With these styles of visualization layouts as options, tissue architectures might be 308 

more accessible and distinguishable in some cases. 309 

 310 

In the future, RESEPT will expand the methodology from lattice-based sequencing technologies 311 

including 10x and ST platform to fluorescence in situ hybridization (FISH) technologies, such as 312 

seqFISH and multiplexed error-robust FISH. With the availability of spatial multi-omics, RESEPT 313 
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will also integrate other modals of information as histology image pixels together with the spatial 314 

coordinates and gene expression.   315 

 316 

Meanwhile, RESEPT will be colorblind accessible with a ‘colorblind safe’ mode in visualization, in 317 

which all output images will be replaced with predefined color-blind palettes to avoid problematic 318 

color combinations. For different types of color blindness, RESEPT will offer corresponding 319 

narrow-down palettes accordingly. In addition, different patterns/labels instead of colors can be 320 

mapped in the image to distinguish among clusters. 321 
 322 

Methods 323 

1. RESEPT pipeline 324 

RESEPT is implemented in two major steps: (i) reconstruction of an RGB image of spots using 325 

gene expression or RNA velocity from spatial transcriptomics sequencing data; (ii) implementation 326 

of a pre-trained image segmentation deep-learning model to recognize the boundary of specific 327 

spatial domains and to perform functional zonation. Fig. 1 and Fig. 2 demonstrate the pipeline 328 

with conceptual description and technical details, respectively.  329 

 330 

1.1 Construct RGB image for spatial transcriptomics  331 

An RGB image is constructed to reveal the spatial architecture of a tissue slice using three-332 

dimensional embedding as the primary color channels. Besides gene expression, RESEPT can 333 

accept RNA velocity17 as the input. RNA velocity unveils the dynamics of RNA expression at a 334 

given time by distinguishing the ratio of unspliced and spliced mRNAs, reflecting the kinetics and 335 

potential influences of transcriptional regulations in the present to the future cell state. The original 336 

BAM file of human studies is often unavailable to public users due to ethical reasons, and hence, 337 

in most cases, we only refer to expression-derived RGB images in our study. The scGNN13 338 

package is used to generate spatial embeddings for each spot based on the pre-processed 339 

expression matrix or RNA velocity matrix along with the corresponding meta-data. In practice, 340 

RESEPT can adapt any type of low dimensional representations, such as embedding from UMAP 341 

and spaGCN9. On benchmarks, scGNN embedding obtained better results in most cases, so 342 

RESEPT uses scGNN in default (Supplementary Fig. 8).  343 

Dimensional Reduction. After log-transformed and normalized library size by CPM, the spatial 344 

transcriptome expression or raw RNA velocity as the input is dimensionally reduced by learning 345 

a low dimensional embedding through an autoencoder. Both the encoder and the decoder consist 346 
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of two symmetrically stacked layers of dense networks followed by the ReLU activation function. 347 

The encoder learns embedding 𝑋𝑋′  from the input matrix 𝑋𝑋, and the encoder reconstructs the 348 

matrix 𝑋𝑋� from the 𝑋𝑋, where 𝑋𝑋 can be either gene expression or RNA velocity. Thus, 𝑋𝑋,𝑋𝑋� ∈ ℝ𝑁𝑁×𝑀𝑀 349 

and 𝑋𝑋′ ∈ ℝ𝑁𝑁×𝑀𝑀′, where 𝑀𝑀 is the number of input genes from the spatial transcriptome, 𝑀𝑀′ is the 350 

dimension of the learned embedding, and 𝑀𝑀′ < 𝑀𝑀. 𝑁𝑁 is the number of spots of the spatial slide. 351 

The objective of the training is to achieve a maximum similarity between the original and 352 

reconstructed matrices through minimizing the mean squared error (MSE) ∑�𝑋𝑋 − 𝑋𝑋��
2 as the loss 353 

function. Positional encoding27 using Euclidean distance between spots on the tissue slice is also 354 

incorporated in reconstructing the input matrix.  355 

Generating Spatial retained Spot Graph. The cell graph is a powerful mathematical model to 356 

formulate cell-cell relationships based on similarities between cells. In single-cell RNA sequencing 357 

(scRNA-seq) data without spatial information, the classical K-Nearest-Neighbor (KNN) graph is 358 

widely applied to construct such a cell-cell similarity network in which nodes are individual cells, 359 

and the edges are relationships between cells in the gene expression space. With the availability 360 

of spatial information in spots as the unit of observation arranged on the tissue slice, our in-house 361 

tool scGNN adopts spatial relation in Euclidean distance as the intrinsic edge in a spot-spot graph. 362 

Each spot in the spatial transcriptomics data contains one or more cells, and the captured 363 

expression or the calculated RNA velocity is the summarization of these cells within the spot. Only 364 

directly adjacent spots in contact in the 2D spatial plane have edges between them, and hence, 365 

the lattice of the spatial spots comprises the spatial spot graph. For the generated spot graph 𝐺𝐺 =366 

(𝑉𝑉,𝐸𝐸), 𝑁𝑁 = |𝑉𝑉| denoting the number of spots and  𝐸𝐸  representing the edges connecting with 367 

adjacent neighbors. 𝐴𝐴 is its adjacency matrix and 𝐷𝐷 is its degree matrix, i.e., the diagonal matrix 368 

of number of edges attached to each node. The node feature matrix is the learned embedding 𝑋𝑋′ 369 

from the dimensional reduction autoencoder. In the 10x Visium platform, each spot has six 370 

adjacent spots, so the spatial retained spot graph has a fixed node degree of six for all the nodes. 371 

Similar to the KNN graph derived from scRNA-seq, each node in the graph contains 𝑀𝑀′ attributes. 372 

Graph autoencoder. Given the generated spatial spot-spot graph, a graph autoencoder learns a 373 

node-wise three-dimensional representation to preserve topological relations in the graph. The 374 

encoder of the graph autoencoder composes two layers of graph convolution network (GCN) to 375 

learn the low dimensional graph embedding 𝑍𝑍 in Eq. (1).  376 

𝑍𝑍 = 𝐺𝐺𝐺𝐺𝑁𝑁(𝐺𝐺𝐺𝐺𝑁𝑁(𝑋𝑋′,𝐴𝐴),𝐴𝐴)
𝐺𝐺𝐺𝐺𝑁𝑁(𝑋𝑋′,𝐴𝐴) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(�̃�𝐴𝑋𝑋′𝑊𝑊) (1) 377 
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where �̃�𝐴 = 𝐷𝐷−1/2𝐴𝐴𝐷𝐷−1/2 is the symmetrically normalized adjacency matrix and 𝑊𝑊  is a weight 378 

matrix learned from the training. The output dimensions of the first and second layers are set as 379 

32 and 3, according to the 3 color channels as RGB, respectively. The learning rate is set at 380 

0.001.  381 

The decoder of the graph autoencoder is defined as an inner product between the graph 382 

embedding 𝑍𝑍, followed by a sigmoid activation function: 383 

�̂�𝐴 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑍𝑍𝑍𝑍𝑇𝑇) (2) 384 

where �̂�𝐴 is the reconstructed adjacency matrix of 𝐴𝐴.  385 

The goal of graph autoencoder learning is to minimize the cross-entropy 𝑅𝑅 between the input 386 

adjacency matrix 𝐴𝐴 and the reconstructed matrix �̂�𝐴.   387 

𝑅𝑅�𝐴𝐴, �̂�𝐴� = −
1

𝑁𝑁 ×𝑁𝑁
� � (𝑎𝑎𝑖𝑖𝑖𝑖 ∗ 𝑙𝑙𝑠𝑠𝑠𝑠�𝑎𝑎�𝑖𝑖𝑖𝑖�+ �1 − 𝑎𝑎𝑖𝑖𝑖𝑖� ∗ 𝑙𝑙𝑠𝑠𝑠𝑠 (1− 𝑎𝑎�𝑖𝑖𝑖𝑖))

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1
(3) 388 

where 𝑎𝑎𝑖𝑖𝑖𝑖 and 𝑎𝑎�𝑖𝑖𝑖𝑖 are the elements of adjacency matrix 𝐴𝐴 and �̂�𝐴,1 ≤ 𝑠𝑠 ≤ 𝑁𝑁, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁. As there 389 

are 𝑁𝑁 nodes as the number of spots in the slide, 𝑁𝑁 × 𝑁𝑁 is the total number of elements in the 390 

adjacency matrix.  391 

Reconstruct RGB Image. The learned embedding 𝑍𝑍 ∈ ℝ𝑁𝑁×3  is capable of representing and 392 

preserving the underlying relationships in the modeled graph from spatial transcriptomics data. 393 

Meanwhile, the three-dimensional embedding can also be intuitively mapped to Red, Green, and 394 

Blue channels in the RGB space of the image. Normalized to an RGB color space accordingly to 395 

a full-color spectrum (pixel range from 0 to 255) as Eq. (4), the embedding of each spot is 396 

assigned a unique color for exhibiting the expression or velocity pattern in space.  397 

𝑦𝑦𝑖𝑖,𝑖𝑖 = 255 ×
𝑍𝑍𝑖𝑖,𝑖𝑖 − 𝑍𝑍𝑚𝑚𝑖𝑖𝑚𝑚

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑍𝑍𝑚𝑚𝑖𝑖𝑚𝑚
 (4) 398 

where 𝑦𝑦 ∈ ℝ𝑁𝑁×3 and 𝑦𝑦𝑖𝑖,𝑖𝑖  is its transformed color of the 𝑠𝑠-th spot in the 𝑗𝑗-th channel, 1 ≤ 𝑠𝑠 ≤ 𝑁𝑁, 𝑗𝑗 ∈399 

{𝑅𝑅,𝐺𝐺,𝐵𝐵}. 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑍𝑍𝑚𝑚𝑖𝑖𝑚𝑚 represent the maximum and minimum of all embedding values in the 400 

RGB channels, respectively. With their coordinates and diameters at the full resolution provided 401 

from 10x Visium, we are able to plot all spots with their synthetic colors on a white drawing panel 402 

and reconstruct a full-size RGB image explicitly describing the spatial expression or velocity 403 

properties in the original spatial coordinate system. For the spatial transcriptomic data sequenced 404 

in lattice from other techniques as ST platform, RESEPT allows users to specify a diameter to 405 

capture appropriate relations between spots in the RGB image accordingly.     406 
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1.2 RGB image segmentation model 407 

The RGB image makes the single-cell spatial architecture perceptible in human vision. With the 408 

constructed image, we treat the potential functional zonation partition as a semantic segmentation 409 

problem, which automatically classifies each pixel of the image into a spatially specific segment. 410 

Such predictive segments reveal the functional zonation of spatial architecture.  411 

 412 

Image segmentation model architecture. We trained an image-segmentation model based on a 413 

deep architecture DeepLabv3+ 28,29, which includes a backbone network, an encoder module, and 414 

a decoder module (Fig. 2).  415 

Backbone network. The backbone network provides dense visual feature maps for the following 416 

semantic extraction by any deep convolutional network. Here, ResNet-10130 is selected as the 417 

underlying model for the backbone network, which consists of a convolutional layer with 64-418 

channels in 7 × 7 size of filters and 33 residual blocks, each of which stacks one convolutional 419 

layer with multi-channel (including 64, 128, 256, and 512) in 3 × 3 size of filters and two 420 

convolutional layers with multi-channel (including 64, 128, 256, 512, 1024 and 2048) 1 × 1 size of 421 

filters. The generated RGB image is mapped into a 𝑐𝑐 -channel feature map by the first 422 

convolutional layer and gradually fed into the following residual blocks to produce rich visual 423 

feature maps for describing the image from different perspectives. Here, 𝑐𝑐 equals 64. In each 424 

residual block, the feature map generated from the previous block 𝑦𝑦 ∈ ℝ𝑁𝑁×3 is updated to 𝑦𝑦� ∈425 

ℝ𝑁𝑁×𝑐𝑐 in Eq. (5). 426 

𝑦𝑦� = � 𝐹𝐹(𝑦𝑦,𝑊𝑊𝑖𝑖) + 𝑦𝑦
𝐹𝐹(𝑦𝑦,𝑊𝑊𝑖𝑖) + 𝑦𝑦𝑊𝑊1×1

   𝑠𝑠 = 1,4,8,31
𝑠𝑠𝑜𝑜ℎ𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑅𝑅

(5) 427 

where 428 

 𝐹𝐹(∗) is the activation function, and we use ReLU 31 in this study. 429 

 𝑊𝑊𝑖𝑖 represents the learning convolutional weights in the ith block,1 ≤ 𝑠𝑠 ≤ 33. 430 

 𝑊𝑊1×1 represents the learning weights of the convolutional layer with 1×1 kernel size. 431 

Element-wise addition operation 𝐹𝐹 +  𝑦𝑦 in Eq. (5) enables a direct shortcut to avoid the vanishing 432 

gradient problem in this deep network. In the 1st, 4th, 8th, and 31st blocks of the 33 residual blocks, 433 

their input and output dimensions do not match up due to different filter settings from their previous 434 

layers. Accordingly, the projection shortcut with an additional 1×1 convolution in Eq. (5) is used 435 

to align dimensions in these blocks, which are also named identity blocks. The rest blocks stacked 436 

on the previous blocks with the same filter settings employ a direct shortcut. We leveraged 437 
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ResNet-101 as a basic visual feature provider and sent the most informative feature maps from 438 

the last convolutional layer before logits to the following encoder module.  439 

Encoder module. The aim of the encoder module is to capture multi-scale contextual information 440 

based on the dense visual feature maps from the backbone. To achieve the multi-scale analysis, 441 

atrous convolution28 is adopted in the encoder to extend the size of the respective field. For the 442 

generated RGB image with width 𝑠𝑠 and length 𝑛𝑛, the total number of spots 𝑁𝑁 = 𝑠𝑠 × 𝑛𝑛. Given the 443 

input signal from Eq. (5) as 𝑦𝑦 ∈ ℝ𝑚𝑚×𝑚𝑚×𝑐𝑐 with a 𝑐𝑐′-channel filter 𝑒𝑒 ∈ ℝ𝐾𝐾×𝐾𝐾×𝑐𝑐′, the output feature 444 

signal 𝑦𝑦′ ∈ ℝ𝑚𝑚×𝑚𝑚×𝑐𝑐′ is defined as follows: 445 

𝑦𝑦′[𝑖𝑖,𝑖𝑖] = �𝑦𝑦[𝑠𝑠 + 𝑒𝑒 × 𝑘𝑘, 𝑗𝑗 + 𝑒𝑒 × 𝑘𝑘]𝑒𝑒[𝑘𝑘,𝑘𝑘]
𝐾𝐾

𝑘𝑘=0

(6) 446 

where 447 

 𝑦𝑦[𝑠𝑠, 𝑗𝑗] represents the input signal at the location (i, j) with c-channel values. 0 ≤ 𝑠𝑠 ≤ 𝑠𝑠, 0 ≤448 

𝑗𝑗 ≤ 𝑛𝑛 . 𝑒𝑒 is the stride rate in atrous convolution. 449 

 𝑒𝑒[𝑘𝑘,𝑘𝑘]  represents the convolutional weights with c’-channel values, 0 ≤ 𝑘𝑘 ≤ 𝐾𝐾 . K is the 450 

kernel size of the convolutional filter. 451 

 𝑦𝑦′[𝑠𝑠, 𝑗𝑗] represents the output signal at the location (i, j) with c’-channel values. 452 

Compared to the standard convolution, the atrous convolution samples the input signal 𝑦𝑦 with the 453 

stride r rather than using direct neighbors inside the convolutional kernel. Therefore, the standard 454 

convolution is a special case of atrous convolution with r = 1. By using multiple rate value settings 455 

(rate = 1, 6, 12 and 18), we separately apply one standard convolutional layer with 256-channel 456 

1 × 1 size of filters (i.e., the atrous convolutional layer with rate = 1), three atrous convolutional 457 

layers with 256-channel 3 × 3 size of filters and an additional average pooling layer to produce 458 

high-level multi-scale features. These semantic features are then merged into the decoder 459 

module. 460 

Decoder module. In the decoder, the input high-level features are bilinearly up-sampled and 461 

concatenated with the basic visual features for recovering the segment boundaries and spatial 462 

dimension. A standard convolutional layer with 256-channel 3 × 3 size of filters is applied to 463 

outweigh the importance of the merged features and obtain sharper segmentation results. 464 

Eventually, an additional bilinear up-sampling operation forms the output of the decoder to a 465 

𝑠𝑠 × 𝑛𝑛 × 256 matrix, where 𝑠𝑠 and 𝑛𝑛 denote the width and height of the input image, respectively. 466 

The following convolution layer with d-channel 1 × 1 size of filters squeezes the feature matrix 467 
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along the channel axis to 𝑠𝑠 × 𝑛𝑛 × 𝑠𝑠  shape, where 𝑠𝑠  is the pre-defined maximum number of 468 

categories. The softmax32 function is then applied to generate its predictive segmentation map, 469 

which takes a matrix with the same size of the input image recording the segment category of 470 

each pixel on it. The pixels falling into a certain category in the segmentation map point to a 471 

segmented spatial region. Our modeling objective is to minimize the cross-entropy33 between the 472 

predictive segmentation map �̂�𝑆 and labeled spatial functional regions 𝑆𝑆: 473 

𝑅𝑅�𝑆𝑆, �̂�𝑆� = −
1

𝑠𝑠 × 𝑛𝑛
� � (𝑠𝑠𝑖𝑖𝑖𝑖 ∗ 𝑙𝑙𝑠𝑠𝑠𝑠��̂�𝑠𝑖𝑖𝑖𝑖� + �1− 𝑠𝑠𝑖𝑖𝑖𝑖� ∗ 𝑙𝑙𝑠𝑠𝑠𝑠 (1− �̂�𝑠𝑖𝑖𝑖𝑖))

𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1
(7) 474 

where 𝑠𝑠𝑠𝑠𝑗𝑗 and 𝑠𝑠�𝑠𝑠𝑗𝑗 are the segment categories of the pixel at the 𝑠𝑠-th row and the 𝑗𝑗-th column for 475 

the input images with 𝑠𝑠 × 𝑛𝑛 pixels. 𝑠𝑠𝑖𝑖𝑖𝑖 ∈ [1,𝑠𝑠], �̂�𝑠𝑖𝑖𝑖𝑖 ∈ [1,𝑠𝑠]. 476 

 477 

Training set data preparation. We performed scGNN using various autoencoder dimensions 478 

(𝑀𝑀′= 3, 10, 16, 32, 64, 128, and 254) and multiple positional encoding intensity parameters 479 

(𝑃𝑃𝐸𝐸𝑃𝑃= 0.1, 0.2, 0.3, 0.5, 1.0, 1.2, 1.5, and 2.0), resulting in 56 embeddings used to generate 480 

diverse RGB images for each sample in the training set (see image results on 481 

https://github.com/OSU-BMBL/RESEPT). In this study, we performed 16-fold Jackknife cross-482 

validation, each of which formed all but one observation as the training set. The one sample was 483 

left to evaluate the trained model in each fold.  484 

 485 

Model training. We implemented the training procedure on the MMSegmentation platform34, which 486 

is an open-source semantic segmentation toolbox based on PyTorch. The weights of 487 

DeepLabv3+ were initialized by the pre-trained weights from the Cityscapes dataset provided by 488 

MMSegmentation. To introduce diversity to the training data and improve the generalization of 489 

our model, we applied transforms defined in MMSegmentation, including the random cropping, 490 

rotation and photometric distortions, to augment the training RGB images. 400 × 400 sized 491 

patches are randomly cropped to provide different regions of interest from the whole RGB images. 492 

A random rotation (range from -180 degrees to 180 degrees) was further conducted to fit the 493 

potential irregular layout of spatial architectures. Some photometric distortions such as 494 

brightness, contrast, hue, and saturation changes were also utilized to training samples when 495 

loading to MMSegmentation. Stochastic gradient descent (SGD)35 was chosen as the optimization 496 

algorithm, and its learning rate was set to 0.01. The training procedure iterated 30 epochs, and 497 

the checkpoint among all epochs with the best Moran’s I autocorrelation index36 on the testing 498 

data was selected as the final model. 499 
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 500 

Image segmentation inference. Once a model completes training, it is capable of predicting the 501 

functional zonation on the tissue from its RGB images. On the inference, RESEPT performs 502 

scGNN with the same parameter combinations with the training settings resulting in 56 candidate 503 

RGB images for each input sample. RESEPT infers all the segmentation maps on these 56 504 

images and scores them using the Moran’s I metric (details in Supplementary Fig. 9) to assess 505 

the quality of segmentations. The segmentation maps of 5-top ranked images in terms of Moran’s 506 

I are returned for user selection. We found that such a quality assessment protocol results in 507 

segmentation results with higher accuracy than the default one and enhances the robustness of 508 

RESEPT.  509 

 510 

2 Data analysis 511 

2.1 Experiment preparation, data generation, and processing 512 

Experiment preparation and data generation. Four postmortem human brain samples of the 513 

middle temporal gyrus16 were obtained from the Arizona Study of Aging and Neurodegenerative 514 

Disorders/Brain and Body Donation Program at Banner Sun Health Research Institute37 and the 515 

New York Brain Bank at Columbia University Medical Center38. Two of them are from non-AD 516 

cases at Braak stage I-II, namely Samples S2 and S5 in the study, and the other two are from 517 

early-stage AD cases at Braak stage III-IV, namely Samples S4 and S3 in the study. The region 518 

of AD cases was chosen based on the presence of Aβ plaques and neurofibrillary tangles.  The 519 

10x Genomics Visium Spatial Transcriptome experiment was performed according to the User 520 

Guide of 10x Genomics Visium Spatial Gene Expression Reagent Kits (CG00239 Rev D). All the 521 

sections were sectioned into 10 µm thick and mounted directly on the Visium Gene Expression 522 

(GE) slide for H&E staining and the following cDNA library construction for RNA-Sequencing. 523 

Besides the section mounted on the GE slide, one of the adjacent sections (20 µm away from GE 524 

section) from AD samples persevered for the Aβ immunofluorescence staining. The method of 525 

immunofluorescence staining of Aβ on persevered section was the same as previously 526 

described20.  The image of Aβ staining was used as the ground truth and was aligned to H&E 527 

staining on GE slides using the “Transform/Landmark correspondences” plugin in ImageJ39.  528 

 529 

FASTQ generation, alignment, and count. BCL files were processed by sample with the 530 

SpaceRanger (v.1.2.2) to generate FASTQ files via spaceranger mkfastq. The FASTQ file was 531 

then aligned and quantified based on the reference GRCh38 Reference-2020-A via spaceranger 532 
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count. The functions spaceranger mkfastq and spaceranger count were used for demultiplexing 533 

sample and transcriptome alignment via the default parameter settings. 534 

 535 

Table 1: Details of 10x Visium data used in the study. The table lists 17 samples of information. The Sample 536 
column indicates the sample number in this study. The Protocol column indicates the revision number of 537 
two Visium protocols. The Tissue column indicates the sample disease's status. The # of spot column 538 
indicates the number of spots. The Mean reads column indicates the number of reads for each spot from 539 
the bam file. The Median gene column indicates the median number of detected genes for each spot. The 540 
Total reads column indicates the total number of each sample calculated from the expression matrix. The 541 
Mean reads column indicates the mean read of each spot from the expression matrix. The SD reads column 542 
indicates the standard deviation of each spot calculated from the expression matrix. Abbreviations: 543 
Alzheimer's disease (AD), CG000239 -Visium Spatial Gene Expression Reagent Kits- User Guide Rev D, 544 
Oct.2020 (Rev D), CG000239 -Visium Spatial Gene Expression Reagent Kits- User Guide Rev A, Nov. 545 
2019 (Rev A). 546 

Sample Protocol Tissue 
Web reported Expression matrix 

#spot 
Mean 
reads 

Median 
gene 

Total reads 
Mean 
reads 

SD reads  

S1 Rev D Tumor 3,468 11,596 4,326 43,841,318 12,641.670 7,204.035 

S2 Rev D Health brain 4,701 42,484 3,022 43,225,942 9,195.053 8,771.039 

S3 Rev D AD 3,445 36,569 3,722 30,383,719 8,819.657 4,275.528 

S4 Rev D AD 4,832 33,660 3,664 41,180,024 8,522.356 4,789.882 

S5 Rev D health brain 4,225 43,186 3,458 33,815,249 8,003.609 3,527.456 

S6 Rev A health brain 3,672 223,921 2,610 21,699,243 5,907.771 2,848.429 

S7 Rev A Health brain 3,641 82,583 2,113 16,701,265 4,589.520 2,356.537 

S8 Rev A Health brain 4,111 118,826 1,854 16,042,438 3,903.270 1,955.168 
S9 Rev A Health brain 3,459 92,729 1,813 13,391,960 3,870.509 1,931.687 

S10 Rev A Health brain 4,634 58,483 1,344 13,823,583 3,775.904 1,920.972 

S11 Rev A Health brain 4,021 69,839 1,742 14,590,115 3,633.902 1,789.643 

S12 Rev A Health brain 3,592 65,000 1,695 12,923,757 3,597.928 1,988.986 

S13 Rev A Health brain 3,499 65,523 1,607 12,007,005 3,432.534 1,772.158 

S14 Rev A Health brain 4,226 76,928 1,384 10,955,668 2,592.444 1,198.877 

S15 Rev A Health brain 4,787 58,813 1,407 12,243,054 2,556.495 1,250.268 

S16 Rev A Health brain 3,662 91,654 1,736 11,356,262 2,450.639 1,150.815 
S17 Rev A Health brain 4,383 60,244 1,159 9,325,211 2,127.101 1,046.434 

 547 

2.2 Data preprocessing 548 
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To standardize the raw gene expression matrix and spot metadata, the different spatial 549 

transcriptomics data were preprocessed as follows.  550 

For the 10x Visium data (Table 1), the filtered feature-barcode matrix (HDF5 file) was reshaped 551 

into a two-dimensional dense matrix in which rows represent spots and columns represent genes. 552 

The dense matrix was further added with spots’ spatial coordinates by merging them with the 553 

‘tissue_positions_list’ file, containing tissue capturing information, row, and column coordinates. 554 

The mean color values of the RGB channels for each spot’s circumscribed square and annotation 555 

label were also added to the dense matrix after processing the Hematoxylin-Eosin (H&E) image. 556 

The gene expression as part of the dense matrix was stored in a sparse matrix format. Other 557 

information describing the spots’ characteristics was stored as individual metadata.  558 

For the HDST data, the expression matrix and spots’ coordinates were reshaped into the dense 559 

matrix, which was similar to 10x Visium preprocessing. The expression matrices from dense 560 

matrices were formed into the individual sparse matrices, and other information was stored as 561 

metadata.  562 

For the ST data, the expression matrix was reshaped into the two-dimensional dense matrix, and 563 

spots’ spatial coordinates were added to the dense matrix by merging with the 564 

spot_data_selection file. The color values of each spot were added to the dense matrix after 565 

processing the H&E image (if available). The remaining steps were the same as for the 10x Visium 566 

data. 567 

 568 
2.3 Data normalization and denoising 569 

Data normalization. The raw read counts were used as formatted input to generate normalization 570 

matrices. Seven normalization methods were used in the study, including DEseq240 (v.1.30.1), 571 

scran41 (v.1.18.5),  sctransform42 (v.0.3.2), edgeR43 (v.3.32.1), transcripts per million (TPM), reads 572 

per kilobase per million reads (RPKM), and log-transformed counts per million reads44 (logCPM). 573 

We used Seurat (v.4.0.1) to generate the sctransform and the logCPM normalized matrices. 574 

edgeR was used to generate TMM43 normalized matrices.  The gene length was used for 575 

calculating TPM, and RPKM was obtained from biomaRt (v.2.46.3) by using useEnsemble 576 

function and parameters setting as dataset="hsapiens_gene_ensembl" and GRCh=38. All 577 

normalized matrices for whole transcriptomics were eventually calculated via the following default 578 

settings and converted into sparse matrices. RNA velocity was calculated for the whole 579 

transcriptomics via velocyto17 (v.0.17.17) and scVelo18 (v.0.1) followed by their default settings. 580 

RNA velocity matrices were converted into sparse matrices. 581 
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 582 

Missing spots imputation. In practice, several spots may have missing expression in some tissue 583 

slices due to imperfect technology, which leads to blank tiles at the locations of these spots on 584 

the RGB images. Such blank tiles as incompatible noises may skew the following boundary 585 

recognition of spatial architecture. We assume the near neighbors are more likely to have similar 586 

values to the missing spot and impute these missing spots by applying the weighted average to 587 

the pixels of their valid six neighboring spots. Since these missing spots are colored while in 588 

default as the same with the background out of tissue, we need to distinguish them from all-white 589 

pixels according to a topological structural analysis45. Firstly, all contours (including outer contours 590 

of tissue and inner contours caused by missing spots) of tissue are detected from the border 591 

following procedure45. The contour with the largest area is determined as the outer contour of 592 

tissue. Then, all pixels in white inside the tissue contour are replaced by imputation from their 593 

neighbors. Given missing spot coordinates, we search their nearest k valid spots 𝑠𝑠𝑖𝑖 (i =1, 2,..., k) 594 

to calculate the imputation value 𝑥𝑥𝑠𝑠 of target missing spot s as: 595 

𝑥𝑥𝑠𝑠 = �𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑎𝑎𝑥𝑥 �
1

𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖 , 𝑠𝑠)�× 𝑠𝑠𝑖𝑖

𝑘𝑘

𝑖𝑖=1

(8) 596 

where 𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑖𝑖 , 𝑠𝑠) represents the Euclidean distance between target spot s and a certain neighbor 597 

𝑠𝑠𝑖𝑖 in spatial space. The softmax function normalizes all distance reciprocals of s and its k (we set 598 

k=6 by default) neighbors si to the weights ranging from 0 to 1. The imputation of s is the weighted 599 

average on all si. If a tissue slice is detected without missing spots, RESEPT skips this imputation 600 

process. 601 

 602 

Parameter setting. Parameters in scGNN to generate embedding are referred to in the previous 603 

study13. In the case study of the AD sample, in analysis on cortical layers 2 & 3, the expressions 604 

of 8 well-defined marker genes were log-transformed and embedded by spaGCN with 0.65 605 

resolution. In the analyses of cortical layer 2 to layer 6, PCA (n.PCs=3) was firstly utilized to 606 

extract the principal components of their expressions of marker genes for highlighting the 607 

dominant signals, and then they were embedded by spaGCN with 0.65 resolution. In the 608 

exploration of tumor regions in glioblastoma samples, their marker gene expressions were 609 

preprocessed by logCPM normalization and PCA (n.PCs=50). The processed data was 610 

embedded by spaGCN with 0.35 resolution. In the analyses of AD-associated critical cell types, 611 

marker gene expressions were preprocessed by log-transform and PCA (n.PCs=3) as well and 612 

then embedded by spaGCN with 0.65 resolution. For investigating Aβ pathological regions, log-613 
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transform to the expressions of validated 20 upregulated genes was applied, and their embedding 614 

was generated by spaGCN with 0.65 resolution. 615 

3 Benchmarking evaluation 616 

All the benchmarking tasks were run on a Red Hat Enterprise Linux 8 system with 13 T storage, 617 

2x AMD EPYC 7H12 64-Core Processor, 1TB RAM 1TB DDR4 3200MHz RAM, and 2x NVIDIA 618 

A100 GPU with 40GB RAM. The usage of the existing tools and their parameter settings in our 619 

benchmarking evaluation were described below. 620 

Seurat (v.4.0.1) identifies tissue architecture based on graph-based clustering algorithms (e.g., 621 

Louvain algorithm). Creating Seurat object, identification of highly variable features, and scaling 622 

of the data was performed using default parameters. The PCs were set to 128 to match our 623 

framework default setting. The FindNighbors and FindClusters functions with default parameters 624 

were used for tissue architecture identification. To further evaluate the robustness of the 625 

combination of the different parameters, we used 16 samples and selected three important 626 

parameters, including the number of PCs (dims = 10, 32, and 64), the value of 𝑘𝑘  for the 627 

FindNeighbor function (k.parm = 20, 50 and 100), and the resolution in the FindClusters function 628 

(res = 0.1 to 1, step as 0.1). 629 

BayesSpace (v.1.0.0) identifies tissue architecture based on the Gaussian mixture model 630 

clustering and Markov Random Field at an enhanced resolution of spatial transcriptomics data. 631 

Creating the SingleCellExperiment object is implemented to the following analysis by loading 632 

normalized expression data and position information for barcodes. Then, we set 128 as the 633 

number of PCs in spatialPreprocess function and parameter log.normalize was set FALSE due to 634 

the normalized data input. Lastly, tissue architecture was identified by running qTune and 635 

spatialCluster functions. We followed the official tutorial and adopted k-means as initial methods 636 

while other parameters were from the default based on prior information. In the process of 637 

assessing the robustness of BayesSpace, we set the cluster number as seven, the parameter 638 

n.PCs in spatialPreprocess function (n.PCs = 10, 64, and 128), and the parameter nrep in 639 

spatialCluster function (nrep = 5000, 10000, and 150000) for 16 samples. 640 

SpaGCN (v.0.0.5) can integrate gene expression, spatial location, and histology to identify spatial 641 

domains and spatially variable genes by graph convolutional network. SpaGCN was used to 642 

generate 3D embedding and tissue architecture and includes three procedures, including loading 643 

data, calculating adjacent matrix, and running SpaGCN. In the first step, both expression data 644 

and spatial location information were imported. Second, adjacent matrices were calculated using 645 
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default parameters. Lastly, we selected 128 PCs, the initial clustering algorithm as Louvain, and 646 

other parameters used default settings. To evaluate the robustness of the parameters and enable 647 

comparison with other tools, three parameters, the number of PCs (num_pcs = 20, 30, 32, 40, 50, 648 

60, 64), the value of k for the k-nearest neighbor algorithm (n_neighbors = 20, 30, and 40), and 649 

the resolution in the Louvain algorithm (res = 0.2, 0.3, and 0.4) for 16 samples were adjusted. 650 

stLearn (v.0.3.2) is designed to comprehensively analyze ST data to investigate complex 651 

biological processes based on Deep Learning. stLearn highlights innovation to normalize data. 652 

Therefore, we input expression data, location information as well as images. stLearn consists of 653 

two steps, i.e., preparation and run stSME clustering. In preparation, loading data, filtering, 654 

normalization, log-transformation, preprocessing for spot image, and feature extraction were 655 

implemented. In the following module, PCA dimension reduction was set to 128 PCs, applying 656 

stSME to normalize log-transformed data and Louvain clustering on stSME normalized data using 657 

the default parameters. To evaluate the robustness of the parameters and enable comparison 658 

with other tools, three parameters were considered to be adjusted for 16 samples, the number of 659 

PCs (n_comps = 10, 20, 30, 32, 40, and 50), the value of k for the kNN algorithm (n_neighbors = 660 

10, 20, 30, 40, and 50), and the resolution in the Louvain algorithm (resolution = 0.7, 0.8, 0.9 and 661 

1). 662 

STUtility (v0.1.0) can be used for the identification of spatial expression patterns alignment of 663 

consecutive stacked tissue images and visualizations. We implemented STUtility as a tissue 664 

architecture tool based on the Seurat framework. RunNMF was carried out as the dimension 665 

reduction method. The number of factors was set to 128 for matching our framework default 666 

setting. FindNeighbors and FindClusters were used to identify tissue architecture. To further 667 

evaluate the robustness of the combination of the different parameters, we used 16 samples and 668 

selected three important parameters for tuning, including the number of factors (nfactors = 10, 32, 669 

and 64), the value of 𝑘𝑘 for FindNeighbor function (k.parm = 20, 50, 100, 200, and 250), and the 670 

resolution in FindClusters function (res =0.05, 0.1, 0.2, 0.3, 0.5, and 0.7, 0.9). 671 

Giotto (v.1.0.3) is a comprehensive and multifunction computational tool for spatial data analysis 672 

and visualization. We implemented Giotto as the issue architecture identification tool in this study 673 

via using default settings. Giotto first identified highly variable genes via calculateHVG function, 674 

then performed PCA dimension reduction using 128 PCs, constructed the nearest neighbor 675 

network via createNearestNetwork, and eventually identified tissue architecture via 676 

doLeidenCluster. To further evaluate the robustness of the combination of the different 677 

parameters, we used 16 samples and selected three important parameters for tuning, including 678 
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the number of PCs (npc = 10, 32, and 64), the value of k for createNearestNetwork function (k = 679 

20, 50 and 100), and the resolution in doLeidenCluster function (resolution = 0.1, 0.2, 0.3, 0.4, 680 

and 0.5).  681 

Downsampling simulation for read depth. Comparing the mean and standard deviation of 16 10x 682 

Visium datasets, samples S5 and S6 were selected to generate simulation data with decreasing 683 

sequencing depth. Let matrix 𝐺𝐺 be the 𝑁𝑁 ×  𝑀𝑀 expression count matrix, where 𝑁𝑁 is the number 684 

of spots and 𝑀𝑀 is the number of genes. Define the spot-specific sequencing depths 𝑐𝑐𝑖𝑖 = ∑ 𝐺𝐺𝑖𝑖𝑖𝑖𝑀𝑀
𝑖𝑖 =1 , 685 

i.e., the column sums of 𝐺𝐺. Thus, the average sequencing depth of the experiment is 𝑐𝑐̅  =  ∑ 𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖 = 1
𝑁𝑁

. 686 

Let 𝑜𝑜 <  𝑐𝑐̅ be our target downsampled sequencing depth and let 𝐺𝐺∗ be the 𝑁𝑁 × 𝑀𝑀 downsampled 687 

matrix. We perform the downsampling as follows: 688 

For each spot 𝑠𝑠 =  1, … ,𝑁𝑁: 689 

1) Define the total counts to be sampled in the spot 𝑠𝑠 as 𝑜𝑜𝑖𝑖  =  𝑡𝑡 ×𝑐𝑐𝑖𝑖
𝑐𝑐 ̅

. 690 

2) Construct the character vector of genes to be sampled as 𝐺𝐺𝑖𝑖 =691 

 {1, . . . ,1��� ,
𝐶𝐶𝑖𝑖1

2, . . . ,2��� ,
𝐶𝐶𝑖𝑖2

. . . ,𝑀𝑀, . . . ,𝑀𝑀�����
𝐶𝐶𝑖𝑖𝑖𝑖

}. 692 

3) Sample 𝑜𝑜𝑖𝑖  elements from 𝐺𝐺𝑖𝑖 without replacement and define 𝑁𝑁𝑖𝑖 as the number of times 693 

gene 𝑗𝑗 was sampled from 𝐺𝐺𝑖𝑖 for 𝑗𝑗 =  1, . . . ,𝑀𝑀. 694 

4) Let 𝐺𝐺𝑖𝑖𝑖𝑖∗  = 𝑁𝑁𝑖𝑖. 695 

Using this method, the average downsampled sequencing depth is:  696 

𝐺𝐺 
∗

=
𝑡𝑡
𝑐𝑐�𝑐𝑐1 + 𝑡𝑡𝑐𝑐�𝑐𝑐2+...+𝑡𝑡𝑐𝑐�𝑐𝑐𝑛𝑛

𝑁𝑁
 =  

𝑡𝑡
𝑐𝑐�  ∑ 𝑐𝑐𝑖𝑖𝑁𝑁

𝑖𝑖 =1

𝑁𝑁
 =  𝑡𝑡

𝑐𝑐 ̅
× 𝑐𝑐̅  =  𝑜𝑜 , 697 

as desired.  Note also that this method preserves the relative total counts of each spot, i.e., spots 698 

that had higher sequencing depths in the original matrix have proportionally higher depths in the 699 

downsampled matrix. 700 

 701 

4 Evaluation metrics 702 

4.1 Benchmark performance evaluation criteria 703 

Adjusted Rand Index (ARI), Rand index (RI), Fowlkes–Mallows index (FM), and Adjusted mutual 704 

information (AMI) are used to evaluate the performances between the ground truth and predicted 705 

results.  706 

 707 
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Adjusted Rand index (ARI) measures the agreement between two partitions. Given a set 𝑆𝑆 708 

consisting of 𝑛𝑛 elements, ℱ1 = {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑟𝑟 } and ℱ2 = {𝑌𝑌1,𝑌𝑌2 , … ,𝑌𝑌𝑠𝑠} are two partitions of 𝑆𝑆; that 709 

is, 𝑆𝑆 =∪𝑖𝑖 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑖𝑖 ∩ 𝑋𝑋𝑖𝑖 = ∅, so does ℱ2. 𝑋𝑋𝑖𝑖 can be interpreted as a cluster generated by some 710 

clustering method. In this way, ARI can be described as follow: 711 

𝐴𝐴𝑅𝑅𝐴𝐴 =
∑ �𝑚𝑚𝑖𝑖𝑖𝑖2 � − �∑ �𝑚𝑚𝑖𝑖2 �∑ �𝑏𝑏𝑖𝑖2 �𝑖𝑖𝑖𝑖 �/�𝑚𝑚2�𝑖𝑖𝑖𝑖

1
2 �∑ �𝑚𝑚𝑖𝑖2 � +∑ �𝑏𝑏𝑖𝑖2 �𝑖𝑖𝑖𝑖 � − �∑ �𝑚𝑚𝑖𝑖2 �∑ �𝑏𝑏𝑖𝑖2 �𝑖𝑖𝑖𝑖 �/�𝑚𝑚2�

(9) 712 

where 𝑛𝑛𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖 ∩ 𝑌𝑌𝑖𝑖, denotes the number of objects in common between 𝑋𝑋𝑖𝑖 and 𝑌𝑌𝑖𝑖; 𝑎𝑎𝑖𝑖 = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖  and 713 

𝑏𝑏𝑖𝑖 = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 . Besides, 𝐴𝐴𝑅𝑅𝐴𝐴 ∈ [−1, 1], the higher 𝐴𝐴𝑅𝑅𝐴𝐴 reflects the higher consistency. The bs function 714 

of the splines package (v.4.0.3) was used for smoothing ARI generated from grid effective 715 

sequencing depth data via default settings. 716 

Rand index (RI) is also a measure of the similarity between two data clustering results. If the 717 

ground truth is available, the 𝑅𝑅 can be used to evaluate the performance of one cluster method 718 

by calculating 𝑅𝑅 between the clustering produced by this method and the ground truth. Let S be a 719 

set containing 𝑛𝑛 elements, which represents 𝑛𝑛 barcodes in this paper, and two partitions of 𝑆𝑆, 720 

ℱ1 = {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑟𝑟 }, ℱ2 = {𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑠𝑠}; that is, 𝑆𝑆 =∪𝑖𝑖 𝑋𝑋𝑖𝑖  and 𝑋𝑋𝑖𝑖 ∩ 𝑋𝑋𝑖𝑖 = ∅; so does ℱ2 . 𝑋𝑋𝑖𝑖  and Yj 721 

are the subset of 𝑆𝑆, representing one cluster produced by some clustering method and the ground 722 

truth, respectively. 𝑅𝑅 can be computed using the following formula: 723 

𝑅𝑅𝐴𝐴 =
𝑎𝑎 + 𝑏𝑏

𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑠𝑠
=
𝑎𝑎 + 𝑏𝑏
�𝑚𝑚2�

(10) 724 

where: 725 

• 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑠𝑠 denote the number of pairs of elements in 𝑆𝑆 in the same subset in ℱ1 and in the 726 

same subset in ℱ2, in different subsets in ℱ1 and in different subsets in ℱ2, in the same subset 727 

in ℱ1 and in different subsets in ℱ2, and in different subsets in ℱ1 and in the same subset in 728 

ℱ2, respectively.  729 

• �𝑚𝑚2� is the binomial coefficient. In addition, the range of 𝑅𝑅𝐴𝐴 is [0,1], and the higher 𝑅𝑅𝐴𝐴, the 730 

higher similarity of two partitions is. 731 

 732 

The Fowlkes–Mallows index (FM) is an external evaluation method, which can measure the 733 

results’ consistency of two cluster algorithms. Not only can FM  be implemented on two 734 

hierarchical clusterings, but also the clusters and the benchmark classifications. For the set S of 735 

n objects, 𝐴𝐴1 and 𝐴𝐴2 denote two clustering results (generated by two cluster algorithms or one for 736 
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cluster algorithm, one for the ground truth). In this paper, A1 is produced by a clustering algorithm 737 

while the ground truth contributes A2. If the clustering algorithm performs well, then 𝐴𝐴1 and 𝐴𝐴2 738 

should be as similar as possible. The calculation of FM can be described as: 739 

FM = √PPV ⋅ TPR = �
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
⋅

𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁

(11) 740 

where 741 

• TP is the number of true positives, representing the number of pair objects that are present 742 

in the same cluster in both 𝐴𝐴1 and 𝐴𝐴2. 743 

• FP is the number of false positives, representing the number of pair objects that are present 744 

in the same cluster in 𝐴𝐴1 but not in 𝐴𝐴2. 745 

• TN is the number of false negatives, representing the number of pair objects that are present 746 

in the same cluster in 𝐴𝐴2 but not in 𝐴𝐴1. 747 

• PPV is so-called precision while 𝑇𝑇𝑃𝑃𝑅𝑅 refers to recall. In addition, FM ∈ [0, 1]. Therefore, in our 748 

cases, the closer it is to 1, the better the clustering algorithm will be. 749 

 750 

Adjusted mutual information (AMI) is driven from probability theory and information theory and 751 

can be used for comparing clustering results. To introduce adjusted mutual information, the 752 

preliminary is necessary to present two conceptions mutual information (MI) and entropy. Given 753 

a set S = {s1, s2, … , sn},  ℱ1 = {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑟𝑟 } and ℱ2 = {𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑠𝑠} are two partitions of 𝑆𝑆, that is, 754 

𝑆𝑆 =∪𝑖𝑖 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑖𝑖 ∩ 𝑋𝑋𝑖𝑖 = ∅, so does ℱ2. MI between partition ℱ1 and ℱ2 is defined as: 755 

𝑀𝑀𝐴𝐴((ℱ1,ℱ2) = ��𝑃𝑃ℱ1ℱ2(𝑠𝑠, 𝑗𝑗) 𝑙𝑙𝑠𝑠𝑠𝑠𝑃𝑃ℱ1ℱ2(𝑠𝑠, 𝑗𝑗)
𝑠𝑠

𝑖𝑖=1

r

i=1

(12) 756 

where 757 

𝑃𝑃ℱ1ℱ2(𝑠𝑠, 𝑗𝑗) =
�𝑋𝑋𝑖𝑖 ∩ 𝑌𝑌𝑖𝑖�

𝑛𝑛
 758 

 759 

measures the probability of one object belonging to 𝑋𝑋𝑖𝑖 and 𝑌𝑌𝑖𝑖 simultaneously. 760 

The entropy associated with the partitioning ℱ1 is defined as: 761 

H(ℱ1) = −�Pℱ1(i) log Pℱ1 (i)
n

i=1

, Pℱ1(i) =
𝑋𝑋𝑖𝑖
𝑛𝑛

(13) 762 

where  763 

• Pℱ1(i) refers to the probability that the object falls into the cluster 𝑋𝑋𝑖𝑖.  764 
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• H(ℱ2) and Pℱ2(𝑗𝑗) have analogous definitions.  765 

The following formula shows the expected mutual information between two random clustering 766 

results: 767 

E{𝑀𝑀𝐴𝐴(ℱ1,ℱ2)} = �� �
𝑛𝑛ij
𝑛𝑛

𝑚𝑚𝑖𝑖𝑚𝑚�𝑚𝑚𝑖𝑖,𝑏𝑏𝑖𝑖�

𝑚𝑚𝑖𝑖𝑖𝑖=�𝑚𝑚𝑖𝑖+𝑏𝑏𝑖𝑖−𝑚𝑚�
+

𝑠𝑠

𝑖𝑖=1

𝑟𝑟

𝑖𝑖=1

𝑙𝑙𝑠𝑠𝑠𝑠�
𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑎𝑎ibj

�× 768 

                                            
𝑎𝑎𝑖𝑖!𝑏𝑏𝑖𝑖! (𝑛𝑛 − 𝑎𝑎𝑖𝑖)! �𝑛𝑛 − 𝑏𝑏𝑖𝑖�!

𝑛𝑛!𝑛𝑛𝑖𝑖𝑖𝑖! �𝑎𝑎𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑖𝑖�! �𝑏𝑏𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑖𝑖�! �𝑛𝑛 − 𝑎𝑎𝑖𝑖 − 𝑏𝑏𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑖𝑖�
                               (14) 769 

where �𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 − 𝑛𝑛�
+

= 𝑠𝑠𝑎𝑎𝑥𝑥�1,𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 − 𝑛𝑛�;  𝑎𝑎𝑖𝑖 = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑏𝑏𝑖𝑖 = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑛𝑛𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖 ∩ 𝑌𝑌𝑖𝑖, represents 770 

the number of objects in common between 𝑋𝑋𝑖𝑖 and 𝑌𝑌𝑖𝑖. Finally, AMI can be obtained by  771 

AMI(ℱ1,ℱ2) =
MI(ℱ1,ℱ2) − E{𝑀𝑀𝐴𝐴(ℱ1,ℱ2)}

𝑠𝑠𝑎𝑎𝑥𝑥�𝐻𝐻(ℱ1),𝐻𝐻(ℱ2)� − E{𝑀𝑀𝐴𝐴(ℱ1,ℱ2)}
(15) 772 

It should be pointed out that AMI ∈ [0, 1], the similarity between the two clusterings increases with 773 

the augment of AMI. 774 

  775 

4.2 RGB image and 3D embedding evaluation  776 

We modified the metric peak signal-to-noise ratio (PSNR)46, whose original version is commonly 777 

used to measure the reconstruction loss of image compression, to assess the similarity between 778 

the color distribution of an RGB image and its corresponding labeled segmentation map. We re-779 

used its basic concept to calculate the PSNR from each labeled segment, and then applied 780 

weighted sum to the PSNRs from all 𝑝𝑝 segments according to their area:   781 

𝑃𝑃𝑆𝑆𝑁𝑁𝑅𝑅 =
∑ 𝑃𝑃𝑆𝑆𝑁𝑁𝑅𝑅𝑖𝑖 × 𝑎𝑎𝑖𝑖
𝑝𝑝
𝑖𝑖=1

∑ 𝑎𝑎𝑖𝑖
𝑝𝑝
𝑖𝑖=1

=
∑ 10 𝑙𝑙𝑠𝑠𝑠𝑠10 �

𝑀𝑀𝐴𝐴𝑋𝑋𝑖𝑖2
𝑀𝑀𝑆𝑆𝐸𝐸𝑖𝑖

�× 𝑎𝑎𝑖𝑖
𝑝𝑝
𝑖𝑖=1

∑ 𝑎𝑎𝑖𝑖
𝑝𝑝
𝑖𝑖=1

(16) 782 

where:  783 

 𝑎𝑎𝑖𝑖 is the number of pixels located in the ith segment, 1 ≤ 𝑠𝑠 ≤ 𝑝𝑝 784 

 𝑀𝑀𝐴𝐴𝑋𝑋𝑖𝑖 is the maximum pixel-value of the ith segment, 0 ≤ 𝑀𝑀𝐴𝐴𝑋𝑋 ≤ 255 785 

 𝑀𝑀𝑆𝑆𝐸𝐸𝑖𝑖 is the pixel-wise mean squared error of the ith segment. 786 

The larger PSNR implies the better the RGB image can indicate the labeled spatial architectures, 787 

and further demonstrates the better quality its corresponding 3-dimensional embeddings achieve. 788 

4.3 Predicted Segmentation Map Quality assessment.  789 
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Differed from the Moran’s I auto-correlation index36  using for revealing a single gene’s spatial 790 

auto-correlation, we modified Moran’s I in Geo-spatiality47 to evaluate a predictive segmentation 791 

map without known ground truth. The metric analyzes the heterogeneity of predictive inter-792 

segments by measuring the pixel contrast cross any two predicted adjacent segments per 793 

channel: 794 

𝑀𝑀𝑠𝑠𝑒𝑒𝑎𝑎𝑛𝑛′𝑠𝑠 𝐴𝐴 = ��
𝑁𝑁∑ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)�𝑦𝑦𝑖𝑖 − 𝑦𝑦���𝑁𝑁

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1

3 × �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1 ��∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖 �

3

𝑐𝑐=1

(17) 795 

where 796 

 𝑎𝑎𝑖𝑖𝑖𝑖 is the binary spatial adjacency of the ith segment and jth segment . 1 ≤ 𝑠𝑠 ≤ 𝑁𝑁, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁 797 

  𝑦𝑦𝑖𝑖,𝑐𝑐 ∈ ℝ3 denotes the mean pixel values at 𝑐𝑐𝑡𝑡ℎ channels in Red, Green and Blue of the ith 798 

segment, 1 ≤ 𝑐𝑐 ≤ 3, 799 

 𝑦𝑦𝑐𝑐� ∈ ℝ3 denotes the mean pixel values at channel Red, Green and Blue of the whole image. 800 

 801 

4.4 Module score calculation and differential expression analysis.  802 

The module score for specific marker genes was calculated based on the Seurat function 803 

AddModuleScore, which calculated the average expression levels of genes for specific spot 804 

groups. The DEG analysis was conducted by the Seurat function FindAllMarkers based on 805 

RESEPT predicted seven segments via default settings. Based on the identified DEGs, the 806 

enrichment analyses of GO terms (Biological Process) and KEGG were performed via the R 807 

package clusterProfile (v.3.18.0) using the functions of enrichGO and enrichKEGG. The 808 

enrichment analysis results were filtered out if the adjusted p-value was greater than 0.05.  For 809 

KEGG analysis, gene database Org.Hs.eg.Db was used for transferring SYMBOL to ENREZID 810 

via function bitr. R package ggplot2 (v.3.3.2) was used for the visualizations. 811 

 812 

Data availability 813 

The 10x Visium datasets (10 from Spatial Gene Expression 1.0.0; 14 from Spatial Gene 814 

Expression 1.1.0, 13 from Spatial Gene Expression 1.2.0; including S1) can be accessed from 815 

https://www.10xgenomics.com/products/spatial-gene-expression. Our own AD datasets (S2-S5) 816 

are available from Dr. Hongjun Fu upon request. The datasets (S6-S17) used for training model 817 

and benchmarking can be accessed via endpoint “jhpce#HumanPilot10x” on Globus data transfer 818 

platform at http://research.libd.org/globus/. The HDST datasets are available as accession 819 
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number SCP420 in the Single Cell Portal via link https://singlecell.broadinstitute.org/single_cell. 820 

The ST and 10x Visium data (squamous cell carcinoma) can be accessed from the GEO database 821 

with an accession number GSE144239. More details of datasets can be found in Supplementary 822 

Table 1.  823 

 824 

Code availability 825 

RESEPT is freely available as an open-source Python package at https://github.com/OSU-826 

BMBL/RESEPT.  827 

 828 

Contributions 829 

Conceptualization: D.X. and Q.M.; methodology: F.H, J.W., Y.C. ,Q.M. and D.X.; software coding: 830 

F.H, Y.C, J.L, Y.Y, L.S., J.W. and L.Y.; data collection and investigation: Y.C., S.C. and L.S.; data 831 

generation: S.S.; data analysis and visualization: Y.C., F.H, J.L., Y.Y., J-X.L, L.S., S.C., Y.L. and 832 

A.M.; AD result interpretation: H.F.; Glioblastoma result interpretation: J.O.; software testing and 833 

tutorial: Y.Y.; Simulation: C.A. and D.C.; manuscript writing, review, and editing: J.W., Y.C., F.H., 834 

B.L., C.A., D.C., Z.L., D.X., C.A., D.C. and Q.M. 835 
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