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Summary 13 

The hippocampus is critical for the formation and recall of episodic memories1, 2 which 14 
store past experience of events (‘what’) occurring at particular locations (‘where’) in time 15 
(‘when’). Hippocampal place cells, pyramidal neurons which show location-specific 16 
modulation of firing rates during navigation3, 4, together form a spatial representation of 17 
the environment. It has long been hypothesized that place cells serve as the neural 18 
substrate for long-term episodic memory of space5, 6. However, recent studies call to 19 
question this tenet of the field by demonstrating unexpected levels of representational 20 
drift in hippocampal place cells with respect to the duration of episodic memories in 21 
mice7, 8. In the present study, we examined behaviorally driven long-term organization of 22 
the place map, to resolve the relationship between memory and place cells. Leveraging 23 
the stability of two-photon calcium imaging, we tracked activity of the same set of CA1 24 
pyramidal neurons during learning and memory recall in an operant, head-fixed, odor-25 
cued spatial navigation task. We found that place cells are rapidly recruited into task-26 
dependent spatial maps, resulting in emergence of orthogonal as well as overlapping 27 
representations of space. Further, task-selective place cells used a diverse set of 28 
remapping strategies to represent changing task demands that accompany learning. 29 
We found behavioral performance dependent divergence of spatial maps between trial 30 
types occurs during learning. Finally, imaging during remote recall spanning up to 30 31 
days revealed increased stabilization of learnt place cell maps following memory 32 
consolidation. Our findings suggest that a subset of place cells is recruited by rule 33 
based spatial learning, actively reconfigured to represent task-relevant spatial 34 
relationships, and stabilized following successful learning and consolidation.   35 
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Introduction 37 

The hippocampus plays a critical role in episodic memory formation and recall9-11. 38 
Across mammalian species, hippocampal place cells show highly specific firing activity 39 
for distinct locations in space known as ‘place fields’3, 4. While originally hypothesized to 40 
serve as a purely navigational mechanism in animals3, place cells have since been 41 
implicated in displaying mnemonic activity with regard to environmental context12-14, 42 
object/stimulus association15, 16, and trajectory planning17-19. Place maps may provide a 43 
spatial index (‘where’) for behaviorally-relevant events (‘what’), in service of episodic 44 
memory recall.  45 

A central dogma for the cognitive map of space is that, once formed within the structure 46 
of episodic memory, hippocampal place maps should retain stable spatial activity 47 
previously associated with learning during memory retrieval. In vivo electrophysiological 48 
recordings in dorsal CA1 in mice performing behaviors with increasing attentional 49 
demand to spatial context revealed the greatest increase in the stability of place cell 50 
units across 6-hour intervals in mice engaged in cue-dependent navigation5. However, 51 
long-term imaging studies of place cell activity beyond this interval demonstrated time-52 
limited place cell reactivation7, 20 and place field instability8 in CA1 when mice were 53 
repeatedly exposed to familiar environments. Of note, however, is that none of these 54 
studies, however, examined the activity of place cells during operant behaviors that 55 
require associational learning with long-term memory demands. Thus, while they clearly 56 
show a temporal influence on place map stability, they offer limited understanding of 57 
such dynamics under conditions of memory-dependent behavior.  58 

While the hippocampal representations of space must be stable, to enable memory 59 
consolidation and recall, they also need to be flexible to allow for accurate 60 
discrimination and adaptation of learnt behaviors when environmental contexts change. 61 
A key property of place cells is their ability to change their firing fields and/or rates in 62 
response to changes in the spatial environment or salient cues within it. This 63 
phenomenon is referred to as ‘remapping’13, 21. Interestingly, place cells in dorsal CA1 64 
can also remap as a result of learning within a constant spatial environment where task 65 
goals, such as reward locations, change but the environment does not. When rats are 66 
trained to learn the location of randomly selected reward locations in an open arena, an 67 
overrepresentation of place fields emerges in CA1 around the reward areas and the 68 
extent of remapping correlates with the performance of the animal22. Likewise, goal-69 
oriented learning along a linear treadmill in head-fixed mice induces place cell 70 
remapping23. Reorganization of spatially tuned ensembles in CA1 occurs during 71 
learning of hippocampal-dependent tasks24 and is associated with storage of spatial 72 
information on both short and long timescales25. It is unclear, however, how such spatial 73 
maps evolve into orthogonal representations in a context-dependent manner as a result 74 
of learnt behavior. 75 

To fill this gap, we used longitudinal two photon imaging in hippocampal CA1 pyramidal 76 
neurons while mice learnt and performed a spatial navigation task where they had to 77 
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collect rewards at distinct specific locations based on different cued contexts. This 78 
allowed us to examine mnemonic association of place maps with episodic and 79 
contextual task features across learning and recall. Although existing intrinsic 80 
hippocampal synaptic mechanisms can lead to the progressive turnover of spatial 81 
representations in CA17, 22, we hypothesized that place maps anchored by behavioral 82 
learning rules and spatio-temporally structured attentional demands would result in the 83 
stabilization and maintenance of learnt task-dependent maps following memory 84 
consolidation. 85 

Results 86 

Mice learn to reliably perform an odor-cued head-fixed spatial navigation task 87 

To study the time evolution and stability of place cells during episodic memory, we 88 
developed a head-fixed, spatial navigation task guided by odor cues. Mice were 89 
required to navigate to two discrete unmarked reward zones (10 cm each and 90 
separated by ~80 cm) on a ~2-meter linear treadmill, each associated with a distinct 91 
odor that was delivered at the start of the lap (Extended Data Fig. 1). When the animal 92 
received odor A (pentyl acetate), mice had to actively lick in far reward zone A (~140 cm 93 
from lap start, 120 cm from end of odor zone) to receive sucrose water rewards (Fig. 94 
1a). During randomly alternating B trials, when odor B ((+)-a-Pinene) was delivered, 95 
rewards became available in the B reward zone (~60 cm from lap start, 40 cm from end 96 
of odor zone) and likewise the animal was operantly rewarded upon licking in this zone 97 
(Fig. 1a). Correct learning resulted in the animal licking within the trial-appropriate odor-98 
cued reward zone, while suppressing licking in the alternate trial reward zone. Thus, 99 
during an odor A trial, the animal should navigate to and actively lick in reward zone A 100 
to get sucrose water rewards, while running past and suppressing licking in B reward 101 
zone and its associated anticipatory zone (10 cm prior to reward zone) as well as the 102 
rest of the belt; and vice versa for odor B trials. Successful performance thus required 103 
the animal to execute a spatial trajectory that depended on memory of the odor cue and 104 
sustained spatial attention to execute trial-appropriate lick and lick suppression 105 
behavior. Tracking of lick behavior provided us with a reliable readout of learning and 106 
subsequent accuracy of episodic memory recall.  107 

We implemented a training regimen in which animals were advanced to alternating 108 
blocks of serial presentations of A and B trials (stage 1- 5A5B; Stage 2- 3A3B; Stage 3- 109 
random AB) after learning to randomly forage for rewards (Fig. 1b). During random 110 
foraging, the licking behavior of the mice was uniformly distributed (Fig. 1c; green 111 
subpanel), but with learning in the following stages the licking became more restricted to 112 
the respective trial reward zone (Fig. 1c; red and blue subpanels, Fig 1d, Fraction of 113 
licks in respective reward zone, stage 1, 2, 3:  A trials: 0.06 ± 0.01, 0.44 ± 0.07, 0.71 ± 114 
0.11, 0.66 ± 0.1,  **P = 0.002;  B trials: 0.04 ± 0.01, 0.41 ± 0.05, 0.6 ± 0.05, 0.62 ± 0.1, 115 
**P = 0.008, mean ± s.e.m, one-way RM ANOVA). Once mice learnt the task, they 116 
exhibited consistent trial-appropriate lick and lick suppression behavior indicating 117 
acquisition of distinct episodic and context dependent-memories (Fig. 1e). We observed 118 
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that at this final learnt stage the mice achieve up to 95% accuracy (Fraction of correct 119 
trials, stage 1, 2, 3: A trials 0 ± 0, 0 ± 0, 0.46 ± 0.27, 1 ± 0, *P = 0.038; B trials:  0 ± 0, 120 
0.05 ± 0.03, 0.12 ± 0.07, 0.95 ± 0.03, **P = 0.002, mean ± s.e.m., one-way RM 121 
ANOVA). 122 

To ensure that the animals were navigating toward the trial-appropriate reward zone 123 
rather than relying on a dead-reckoning strategy or a texture cue to obtain sucrose 124 
water rewards, we measured each animal’s speed immediately prior to and after entry 125 
into the reward zones (Fig. 1f, Extended Data Fig. 2). As expected, the animal’s speed 126 
decreased immediately prior to (~1 s) trial-appropriate reward zone entry following 127 
learning, but did not decrease in the trial-inappropriate reward zone. Furthermore, 128 
animals came to near complete stops within 2 seconds of entering the correct reward 129 
zone, suggesting that the animals developed an odor cue-dependent navigational 130 
strategy to specific areas of the track. In summary, we developed a head-fixed linear-131 
track based navigation paradigm that allows us to examine episodic, spatial, and 132 
contextual features of memory, similar to those previously described in freely moving 133 
rodents17, 19, which enabled us to study the neural transformation of hippocampal spatial 134 
maps under repeated attention and memory demand. 135 

Task-selective spatial activity emerges in CA1 following learning 136 

Previous studies examining the activity of CA1 pyramidal neurons in animals performing 137 
episodic navigation revealed that place firing properties are modulated by past and 138 
future behavior of the animal (termed retrospective and prospective coding, 139 
respectively)17-19. Such neurons (place cells) that show trial-selective activity appear in a 140 
space segment common to both trials prior to the animal navigating to either the left or 141 
right arm of the maze and are hypothesized to facilitate episodic memory recall in the 142 
hippocampus. We reasoned that if our task recruits an episodic memory process, we 143 
would observe such trial-selective activity along the track segment prior to the mouse 144 
licking in either reward zone (i.e. the equivalent common space segment) and possibly 145 
beyond. 146 

With this task at hand, we combined the behavior with two photon imaging of Ca2+ 147 
activity in the cell bodies of CA1 pyramidal neurons endogenously expressing the 148 
fluorescent Ca2+ indicator GCaMP6f in mice who reached >85% learning criteria (in a 149 
cohort of n =10 animals, Fig. 2a). Alongside neurons that were spatially tuned 150 
irrespectively of trial type, we observed location specific calcium transients in a sub-151 
population of neurons that were spatially-tuned in a trial-selective manner (Fig. 2b). This 152 
means that there was a sub-group of neurons that were place cells on A trials but not on 153 
B trials, and vice versa. Examination of the mean run-epoch activity rate (area under 154 
curve of calcium transients [AUC]/time) on A vs. B trials revealed that all animals had 155 
three groups of neurons which showed preferential activity for either trial (A-selective or 156 
B-selective) or shared (A&B) activity (Fig. 2c). We observed that the magnitude of the 157 
activity rate was increased more than twofold between laps for preferential A trial and B 158 
trial neurons without noticeable difference in activity for non-selective neurons (Fig. 2c, 159 
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run epochs). Such effect was not observed during epochs when the animal did not run 160 
for neither trial-selective neurons nor A&B tuned neurons (Fig. 2c, no-run epochs), 161 
suggesting that these neurons were modulated during navigation and incorporated 162 
information about the task contingency (Fig. 2c).  163 

To examine the task-dependent spatial tuning of neurons, we used two previously 164 
described metrics to detect place cells: spatial information (S.I.) and tuning specificity 165 
(T.S.)23, 26. Each metric has its unique advantage and we used both to maximize 166 
detection accuracy. While spatial information allows for detection of place cells with 167 
single- and multiple place field, it has lower sensitivity for cells with broad, single fields. 168 
On the other hand, tuning specificity is more sensitive (and more specific) to place cells 169 
with single fields regardless of field width at the expense of multi-field cell detection23. 170 
Regardless of the place cell classification criteria, each metric revealed the existence of 171 
A-, B- selective as well as trial-nonselective (A&B) place cells in similar fractions as 172 
expected from the activity rate analysis above (Fig. 2d). We noted more A-selective 173 
than B-selective place cells using the S.I. metric and observed a similar trend using the 174 
T.S metric (Fig. 2d), perhaps due to the greater length of the track traversed to arrive at 175 
the A-reward goal location. Using either spatial tuning metric, there were nearly half as 176 
many B-selective neurons as A&B neurons and we similarly observed this trend for A-177 
selective neurons compared to A&B neurons (Fig. 2d). We combined both tuning criteria 178 
to determine the task-selectivity of place cells (i.e. a selective place cell required tuning 179 
by either criterion in one set of trials and not in the alternate trials). We did not observe 180 
significant speed differences between trials in all the animals we recorded from, with a 181 
mean difference in speed not exceeding ± 5 cm/s in all spatial bins except for peri-182 
reward bins (Extended Data Fig. 3). In neurons with task-selective place fields, the 183 
majority of place cells did not show a significant speed difference suggesting that the 184 
selectivity we observed is not due to an effect of speed on Ca2+ activity between trials 185 
(Extended Data Fig. 4a, b). Furthermore, we could not attribute such difference to the 186 
sensitivity of Ca2+ transient detection between trials as GCaMP6f detects single action 187 
potentials in vivo27 and our detection algorithm is optimized for detection of small 188 
transients (see Methods). Taken together, the presence of trial-selective place cells 189 
suggests episodic encoding of space in our task.  190 

The task-selective, and thus episodic, nature of place cell activity in our task suggested 191 
that the distribution of place fields along the track would also vary between trials due to 192 
the distinct memory and attention demands associated with navigation to each reward 193 
zone. Both A- and B-selective place cells had place fields that spanned the entire length 194 
of the track (Fig. 2e). However, there was a significant difference in the distribution of 195 
place fields within A trials and B trials for A-only, and B-only task-selective neurons (Fig. 196 
2f). The difference in place field location distribution was also significant between A- and 197 
B-selective neurons (Fig. 2g). We observed an overabundance of place fields within the 198 
common track segment – from lap start until the B reward zone – on both trials 199 
consistent with the greatest behavioral significance of this area in navigating a trial 200 
trajectory (near (B) or far (A) zone destination). Interestingly, there was a greater 201 
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density of place fields in this segment on B trials with a rapid decline of field density 202 
thereafter in agreement with a shorter B trajectory. In contrast, the distribution of the 203 
longer trajectory A-selective place fields was more uniform across the track with 204 
increasing field density near the distant reward zone. This may imply that the ‘near’ 205 
reward zone B is significant in guiding behavioral output choices in both trials, as the 206 
mouse either has to stop and lick for rewards at the near B reward zone for Odor B 207 
trials, whereas actively suppress its licking to cross over that B zone to seek rewards in 208 
the far A zone for Odor A trials. We did not observe a difference in the place field 209 
properties between trials (Extended Data Fig. 4c, d). Lastly, we compared the spatial 210 
tuning curve correlations between A and B trials for A- and B-selective place cells 211 
against shared A&B place cells. We observed low correlation scores for A-selective and 212 
B-selective neurons with no significant difference between them (Fig. 2h), indicating that 213 
activity maps from A- and B-selective neurons discriminate between trial types. 214 
Significantly higher correlation scores were present among the A&B shared place cells 215 
relative to A-selective and B-selective neurons (Fig. 2h). Furthermore, we observed a 216 
broad range of correlation scores among the task-nonselective group – with some 217 
neurons approaching scores similar to those of the task selective neurons – suggesting 218 
that more complex trial-to-trial spatial dynamics exist among this subpopulation. 219 

Place cells exhibit dynamic, behaviorally-driven remapping properties between 220 
trial types 221 

The activity of place cells is most prominently modulated by the location of the animal in 222 
the environment. However, changes in the sensory environment and behavioral 223 
demands can influence the activity of place cells as well12, 13, 17-19, 21, 28, 29. This property 224 
has previously been described as ‘remapping’ and is expressed by changes in place 225 
field firing rate and/or place field location, also known as rate and global remapping, 226 
respectively13. As the sensory environment in our task remained fixed (except for 227 
changes in odor identity at the lap start), any remapping activity between A and B trials 228 
would reflect behavioral modulation of spatial maps and suggests episodic encoding.  229 

To examine the remapping features of A&B shared place cells, we classified each 230 
neuron into one of four remapping categories according to their cross-trial spatial tuning 231 
curve similarly and place field-related calcium activity (Fig. 3a, b). Based on commonly 232 
used nomenclature in the field established through electrophysiology studies 13, we 233 
defined three classes of remapping neurons: global, activity (in lieu of rate), and partial 234 
remapping (Fig 3b). Global remapping neurons had consistent shifts in place field 235 
location between trials identified by the dissimilarity of their A and B tuning curves 236 
(Extended Data Fig. 5, 6). Among the population of common field place cells (common), 237 
we identified a subset of neurons whose calcium activity was modulated by trial type 238 
that we labeled as activity remapping. These neurons were analogous to firing rate 239 
remapping neurons described in in vivo electrophysiological studies13. We used a peak 240 
activity modulation index to verify that these neurons indeed represented a subset of 241 
common place cells (Extended Data Fig. 7). Lastly, we identified a unique population of 242 
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neurons that exhibited what we termed partial remapping. These neurons shared a 243 
common place field between trials, but had an additional place field unique to one trial 244 
type (i.e. partially remapped). All classes of remapping cells were present along the 245 
entire length of the track (Fig. 3c). The greatest fraction of place cells was in the non-246 
remapping common category, followed by global and partial remapping neurons with a 247 
minority of place cells classified as activity remapping (Fig. 3d). We observed a 248 
significant difference between the fraction of common and activity remapping neurons 249 
and common and partial remapping neurons, while no difference between common and 250 
global remapping neurons (Fig. 3d). 251 

Given our observation of task-dependent place cell remapping, we wanted to ask 252 
whether the pattern of spatial remapping correlated with the behavioral demands of 253 
each trial type as we observed for task selective place cells. Our task design introduced 254 
an implicit behavioral gradient with progressively lower memory and attention demands 255 
once the animal had traversed the directed goal location, collected the appropriate 256 
reward and ran toward the end of the track. To link place coding with this behavioral 257 
gradient in our analysis, we split the track into three spatial zones defined by the reward 258 
zones and first examined the distribution of common (non-remapping) place cells. 259 
Common place cells showed a decrease in field density with zone distance (Fig. 3e). 260 
Similar to the distribution of A- and B-selective place cell fields (Fig. 2f), the distance of 261 
the trial trajectories was also conveyed by global remapping place cells with place cells 262 
in zone II on longer trajectory A trials shifting their place fields to earlier locations on 263 
shorter trajectory B trials (Fig. 3f). In contrast, such remapping neither occurred in Zone 264 
I nor Zone III (Fig. 3f). We also observed an inter-zonal, near significant, tendency for 265 
global place cells to preferentially shift their place fields from Zone II on A trials to Zone I 266 
on B trials rather than in the opposite direction and a significant shift of Zone III A place 267 
fields to Zone II on B trials (Fig. 3g). Shifting of place fields within the same zones 268 
occurred at the same frequency in all three zones (data not shown). Partial remapping 269 
neurons likewise showed a trial-dependent trajectory distribution of trial-specific fields 270 
with an overrepresentation of fields in Zone I for both trial types and an additional 271 
overrepresentation of fields around the more distant reward zone on A trials (Fig. 3h). 272 
We also observed that partial remapping neurons with common place fields in Zone II 273 
had an overrepresentation of B trial-specific at earlier locations on the track (data not 274 
shown). 275 

Task-dependent spatial maps retain stable activity after learning during recall   276 

Next, we asked whether spatial maps emerging during the task remain stable as the 277 
memory is acquired and consolidated. Previous one-photon and two-photon imaging 278 
experiments of CA1 place cells reported a rapid decorrelation of place maps over 279 
several days8, 23 under little or variable memory demand. However, in vivo 280 
electrophysiological recordings in CA1 revealed a strong association between spatial 281 
map stability and memory- and attention-dependent navigation at 6 hours5. To 282 
determine whether place maps are more stable when learnt within the structure of a 283 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 10, 2021. ; https://doi.org/10.1101/2021.07.08.451449doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451449


 

8 
 

memory task at longer timescales, we compared the place maps of the same CA1 284 
pyramidal neurons imaged during an accelerated training regimen (learning) against 285 
place maps acquired following consolidated learning (recall) (Fig. 4a). Mice learnt the 286 
task with 92 ± 2% accuracy (mean ± s.e.m.; n = 6) by day 7 on the accelerated regimen 287 
(Fig. 4b), while performance during recall remained consistently between ~80-100% 288 
(Fig. 5d, performance plot). We tracked neurons using an automated ROI registration 289 
algorithm as part of the CaImAn analysis package30 and manually discarded low quality 290 
matches (Fig. 4c, Extended Data Fig. 8; see Methods for details).  291 

Analysis of spatial activity of neurons revealed instability of the network during task 292 
learning in the familiar spatial environment, while the place map network showed 293 
remarkable stability during the recall sessions (Fig. 4d). To quantify spatial task 294 
selectivity across days, we selected all cells that were significantly tuned according to 295 
the tuning specificity (T.S.) criterion on a given session and compared their distribution 296 
across time. We chose the T.S criterion to favor the selection of place cells with single 297 
place fields. Using place cells classified using the spatial information (S.I.) metric 298 
yielded similar results (Extended Data Fig. 9). As early as the first day of training, we 299 
observed trial-selective tuning on A and B trials and a subtle, but statistically 300 
insignificant increase in the fraction of task-selective neurons across time at 6 and 7 301 
days from the start of imaging on A and B trials (Fig. 4e). During recall stage, the task-302 
specific distribution of place cells remained stable across time on A and B trials (Fig. 303 
4e). Importantly, we observed a significant difference in the stability of place maps at 304 
both the population level and individual place cells matched to the first day of imaging. 305 
The population vector (PV) correlation showed a decorrelation for both learning A and B 306 
trials as well as recall A and B trials, but was substantially lower for the learning cohort 307 
on day 6 and day 7 compared to recall for A and B trials (Fig. 4f). When we specifically 308 
looked at place cells, we observed a rapid tuning curve decorrelation beginning at day 2 309 
for the learning cohort that continued over time on A and B trials as well as for the recall 310 
cohort on A and B trials (Fig. 4f). However, the correlation scores on day 6 and 7 on A 311 
and B trials were significantly lower during learning compared to recall suggesting a 312 
stabilization of spatial representations following learnt consolidation of memory in the 313 
recall cohort.  314 

To examine the rate at which the spatial network stabilized, we calculated the 315 
correlation between neighboring day sessions at the level of the population and 316 
individual place cells (Fig. 4g). We reasoned that as the animals learnt the task rules the 317 
activity maps would reach neighboring day scores similar to that of the recall cohort, 318 
which we expected to be fixed following consolidation. We observed that at the 319 
population level (PV score), the learning cohort experienced a time-dependent increase 320 
in neighboring day map similarity, but this was not present in the recall cohort on A or B 321 
trials (Fig. 4g left). In contrast, spatial maps in the learning cohort increased their 322 
neighboring day correlation (TC score) across time on both A and B trials, whereas we 323 
did not observe such increase in the recall animals on either A or B trials (Fig. 4g, right). 324 

To determine whether there is a shift in the place field locations, as a correlate for 325 
reconfiguration of the network in each trial type, we calculated the mean change of the 326 
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place field centroids relative to the first imaging session. For A trials, we did not observe 327 
a mean change of centroid location relative to recall animals until day 3 and observed a 328 
progressive increase in the distance of place field centroid remapping thereafter (Fig. 329 
4h). In contrast, B trial place cells maintained a consistently higher rate of place field 330 
centroid shift throughout learning (Fig. 4h). Lastly, we imaged a subset of recall animals 331 
(n = 3) over longer term to examine how long can the activity of learnt spatial maps 332 
persist. We observed a surprisingly high level of map stability across 30 days of 333 
imaging, with a progressive, albeit slow, decay in correlation (Extended Data Fig. 10). 334 
Overall, our imaging findings support the idea that learning induces place remapping 335 
that stabilizes in the long-term during recall phases when memory is consolidated.  336 

Dissimilarity between task-specific spatial maps predicts performance 337 

While task-modulated place cells appear to be a feature of episodic spatial behavior, the 338 
link between learning and the activity of these maps remains unclear. Inactivation 339 
experiments have shown that the activity of these cells is not necessary for successful 340 
performance on a continuous T-arm alternation maze31. On the other hand, shorter-341 
timescale (during recall) inactivation of CA1 pyramidal neurons has causally linked 342 
place cell maps to memory consolidation 32. To understand how strongly the rate of 343 
learning is coupled to the rate of task-dependent spatial map divergence, we compared 344 
the A vs. B spatial tuning correlation of place cells tuned in both trial laps (i.e., A&B 345 
tuned) during learning and recall relative to the first day of imaging across time. We 346 
noticed a greater tendency for place cells to split their place fields between tasks during 347 
learning (Fig. 5a) than during recall (Fig. 5b). When we quantified this effect, we 348 
observed a significant decorrelation of the tuning curves of A&B tuned place cells which 349 
progressively increased (i.e. correlation decreased) as the performance of the animals 350 
increased during learning (Fig. 5c). This effect was observed as early as the second day 351 
of imaging and continued until day seven (Fig. 5c). Interestingly, we did not see a 352 
similar decorrelation trend between A&B place cells during recall experiments (Fig. 5d). 353 
Furthermore, we quantified the A vs. B correlation in all place cells as a function of 354 
animal performance across all the imaged sessions and observed a strong inverse 355 
correlation during learning (Fig. 5e). In contrast, we did not observe a significant 356 
correlation during recall (Fig. 5f). Thus, existing spatial maps are remapped to reflect 357 
the degree of task learning in CA1. 358 

To further link the differential activity of CA1 neurons to task performance, we used 359 
population vector decoding (see Methods) to read out both the position and the context 360 
(A or B trial) of the mice. For each training session, we used the first half of the session 361 
to train a linear decoder to predict absolute position as well as trial context (A vs B trials) 362 
in the second half (Fig. 6a-d). The decoder’s performance was lower in early training 363 
sessions, when behavioral performance was low, compared with later sessions, when 364 
both behavioral performance and decoding accuracy increased (Fig. 6e-f). Notably, 365 
decoder accuracy in distinguishing context A from B was significantly correlated (Fig. 366 
6g) with behavioral performance across all mice, while absolute error in decoding 367 
position was not (Fig. 6h). Thus, we observe that improvement in performance during 368 
training is closely tracked by the ability of the population of neurons to discriminate 369 
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between the two contexts. Closer inspection revealed that the decoder improved its 370 
ability to distinguish trial context the most around position 110 cm in context A, 371 
immediately before the reward zone for that context (Fig. 6i). Context accuracy was also 372 
lower near the end of trials, in both contexts, but this did not improve with experience. 373 
Errors in absolute position also tended to be higher near the end of trials in both 374 
contexts, as well as immediately after reward zone B experienced in context A (Fig. 6j). 375 
These regions of decreased decoder accuracy correspond to parts of trials with the 376 
most uncertainty in the neural population, which may ultimately contribute to behavioral 377 
errors. The performance of the decoder thus suggests that spatial maps in CA1 do not 378 
require de novo mapping of the spatial environment to integrate trial-specific 379 
information, but rather that contextual information becomes integrated with pre-existing 380 
maps during learning.  381 

Discussion  382 

In this study, we developed a one-dimensional, head-fixed, odor-cued navigation 383 
behavior to examine hippocampal spatial map dynamics during learning and recall, 384 
similar to freely moving behavioral tasks such as the continuous alternation T-maze17. 385 
Our task provides two distinct advantages over previous freely moving studies. First, we 386 
trained animals to learn the task contingency on the exact same belt. This way, we can 387 
ensure hippocampal representation of the task is due to operant learning of a behavior 388 
with defined episodic, spatial and contextual components, rather than the learning of 389 
other strategies such as dead reckoning. Second, we capitalized on ultra-stable two-390 
photon calcium imaging of the same population of transgenically expressed GCaMP+ 391 
neurons to longitudinally track the emergence and remote retrieval of place maps under 392 
this behavioral paradigm. Our results fuel evidence for two long-postulated features of 393 
hippocampal network dynamics: that existing place maps can reconfigure in response to 394 
an associational learning rule despite a constant physical environment, and that such 395 
task selective place maps persist long after learning is achieved. 396 

Our data, where we observed emergence of cells with place fields exclusively in 397 
behavioral context A, or B, shows that the hippocampus generated task-selective 398 
representations of space during learning that rapidly remapped as a function of odor-399 
cued behavioral contingency. Imaging of spatial activity during our task in well-trained 400 
mice revealed a complex set of coding mechanisms for conjunctive representation of 401 
both location and behavioral context. In cells with fields in both behavioral contexts, A 402 
and B, we for the first time observed the calcium analog of two well-described 403 
remapping properties of place cells recorded in freely-moving behavior – rate and global 404 
remapping – whose activity is attributed to changes in context13, 33 and physical 405 
environment13, 21, respectively. Given the structure of our task, where the physical 406 
environment remained constant while the odor-cued behavioral context changed, we 407 
were surprised to see a relatively smaller fraction of activity remapping place cells 408 
(analogous to rate remapping) as compared to global and more complex remapping 409 
cells. There are two possible explanations for this discrepancy. First, despite enhanced 410 
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sensitivity of the GCaMP6f Ca2+indicator27 used in our imaging, calcium as a proxy for 411 
neuronal activity may not resolve smaller changes in activity rates (or spike modulation) 412 
resulting in an underestimation of rate remapping place cells. We attempt to address 413 
this by using duration and AUC of calcium events as remapping metrics rather than 414 
amplitude, as they better reflect changes in the bursting activity of neurons. 415 
Alternatively, the high proportion of global remapping cells is observed because animals 416 
use different trial specific spatial reference frames to navigate toward reward zones. 417 

Our study, along with others, shows that hippocampal “place cells” can modulate their 418 
activity rate or switch their place field tuning in different environments, and even within 419 
the same environment given changes in task demands or goal locations13, 17-19, 22, 23, 34. 420 
At the ensemble level, the tuning and density of trial selective place cells are structured 421 
according to the episodic and spatial salience associated with the trial context. Over-422 
representation of these place fields not only occurs selectively around the trial-423 
respective reward locations, but in an episodically relevant goal directed manner. For 424 
example, in A-trials, animals must traverse and deliberately withhold licking at the B-425 
reward zone before reaching the targeted A-reward zone. Following this, place cell 426 
density is high in the cue-sampling, B- and A-reward zones. However, field density for 427 
B-selective place cells drop soon after crossing reward goal location B (Zone I), 428 
signifying the spatio-contextual irrelevance of the rest of the belt for the given trial. 429 

In spite of the prominence of place cells (and other feature-selective neurons15-17, 35-37) 430 
in the hippocampus, their relationship to learning and execution of learnt behaviors 431 
remain controversial. To directly quantify the behavioral correlates for emergence of 432 
spatial selectivity to temporally structured rule-based learning we used neural decoder. 433 
This allowed us to go beyond the standard prediction of position and context (trial type) 434 
information during learnt behavior7, 38, 39. Here, we observed a very strong correlation 435 
between task performance and the accuracy with which the hippocampal map could 436 
predict the location and trial type the animal was in. Very early in learning, absolute 437 
location on the track could be decoded. Only later in learning could behavioral context 438 
be decoded, mirroring rate of learning. Otherwise stated, the transformation of spatial 439 
maps was not associated with a significant loss of spatial information during learning, 440 
but rather with the accuracy with which the network could predict the current trial type at 441 
any given location. Although we hypothesized that the substrate of this learning would 442 
be an increase in the proportion of cells uniquely representing A or B behavioral 443 
contexts, we instead found that the proportion of cells tuned to each behavioral context 444 
did not change significantly. Rather, learning appeared to be driven by increased 445 
distance between place fields of cells jointly representing context A and B. 446 

Lastly, in contrast to previous studies that show a high degree of CA1 place cell 447 
instability across time, representational drift was greatly reduced across remote retrieval 448 
sessions, likely because animals were task-engaged rather than randomly foraging. 449 
This stabilization of place maps following learning resolves a debate in the field: how 450 
can the day-to-day instability of place cells reported in recent studies be reconciled with 451 
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the hypothesis that they serve as the substrate for stable long-term episodic memories. 452 
Our findings expand on previous in vivo electrophysiological recordings in CA1, which 453 
first reported the increased stability of place fields during memory-guided, attention-454 
dependent behavior over a 6 hour interval5. In contrast, rapid turnover of spatial map 455 
activity in CA1 was observed in imaging experiments during less structured behaviors 456 
such as random foraging7, 23, goal-oriented learning23, and non-operantly rewarded 457 
spatial context switching8, 23. Our results show such instability of place map activity can 458 
be significantly reduced when the map is embedded within an operant rule-based 459 
learning regimented by contextual, episodic and spatial feature selection. Our result 460 
bolsters the importance of behavioral state on the stability of hippocampal 461 
representations, alongside a growing body of work binding spatial and non-spatial 462 
coding in the hippocampus with learning and attention.  For example, learning of a fear 463 
association with a particular environment induces remapping and stabilization of place 464 
cells in the long-term40. Olfactory and visuo-spatial representations show enhanced 465 
stability and fidelity for recall with attentional demands41.  Further, the same ‘odor cells’ 466 
in dorsal CA1 are reactivated across days following learning of an olfactory delayed 467 
working-memory task42. Beyond the hippocampus, emergence of stable and sparse 468 
representations with learning was observed in the motor cortex43. 469 

What are the cellular and circuit mechanisms driving the task-specific place cell 470 
dynamics we observe? The olfactory cue context and navigational demands of our task 471 
likely relies on recruiting interactions with lateral entorhinal cortex (LEC)44, 45 and medial 472 
entorhinal cortex (MEC)46-55, but perhaps during distinct task phases. LEC lesions 473 
impairs rate remapping in CA3 place33, and may be involved in driving context 474 
dependent remapping52, 56 during the learning phases of our task. On the other hand, 475 
MEC lesions or input manipulations disrupt place cell precision and stability57, 58 as well 476 
as place memory although only partially59, implicating a role for MEC in the stabilization 477 
of spatial activity following learning. Coordinated activity and integration of entorhinal 478 
cortex and CA3 inputs upon CA1 pyramidal neurons can result in dendritic spikes60, 61. 479 
These dendritic spikes have been implicated in context discrimination behavior61 and 480 
context-dependent place cell formation and remapping62, potentially through recruitment 481 
of non-Hebbian plasticity mechanisms like input timing dependent plasticity (ITDP) and 482 
behavioral time-scale dependent plasticity (BTSP), during the learning phase of the 483 
task. Whereas, potential mechanisms driving stabilized ensemble coding in the long 484 
term following learning include Hebbian plasticity rules that involve theta modulated post 485 
synaptic burst firing63-65, and experience dependent strengthening of coincident spatially 486 
tuned synaptic inputs66.  487 

Consistent with previous findings66, 67, our trial-by-trial remapping occurs on very fast 488 
timescales, well below the temporal regime of typical plasticity mechanisms. Such a fast 489 
context dependent switch could be supported by specific input gating or gain control 490 
through modulation of inhibitory 67-69 and disinhibitory circuits61, and are worth exploring 491 
in the context of our observed behaviorally modulated activity. In terms of stabilization of 492 
subsets of place maps during the remote recall phases of the task, higher order 493 
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prefrontal cortical (PFC)70-72, and subcortical neuromodulatory inputs5, 73, 74 may be at 494 
play. Reactivation and stabilization75 of place cell sequences has also been attributed to 495 
highly synchronous sharp-wave ripple (SPW-Rs) activity in CA1. Such, SWRs erupt 496 
during immobility or slow wave sleep in a strongly correlated but time compressed 497 
fashion to prior task performance22, 76, future navigation decisions36, 77, and perhaps are 498 
at play during the memory consolidation phase of our task. 499 

In conclusion, our data shows that the hippocampus rapidly generated task-selective 500 
representations of space during learning. Moreover, the emergent ensembles used both 501 
simple and complex remapping of their activity for alternating between spatial 502 
representations on different trials. Interestingly, while behaviorally-influenced 503 
representations of space emerged early on, these maps continued to evolve towards 504 
progressively more dissimilar cross-trial representations.  These were inversely 505 
correlated to increasing animal performance. While much work remains to uncover the 506 
possible cellular and circuit mechanisms driving the experience dependent emergence 507 
and stabilization of place cell ensembles, this novel behavioral paradigm provides a rich 508 
substrate to study flexibility and stability of place maps in episodic and context- 509 
dependent manners. 510 
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Methods 532 

Mice 533 

Experiments were performed with 4-12 month old adult male mice on a C57BL/6J 534 
background transgenically expressing GCaMP6f from the Thy1 locus (GP5.5 JAX strain 535 
#024276)78.  All experiments were approved by the Institutional Animal Care and Use 536 
Committee at New York University Medical Center. 537 

Hippocampal Window and Headpost Implantation 538 

Mice were implanted with a circular imaging window (3.0 mm x 1.5 mm [diameter x 539 
height]) centered at 2.3 AP and 1.5 ML over the left dorsal-intermediate hippocampus 540 
surrounded by a modified 3-D printed headpost79 for head fixation. Imaging cannulas 541 
were made by attaching a 3-mm diameter coverslip (64-0720 Warner) to a stainless 542 
steel cylindrical cannula using optical UV curing optical adhesive (NOA-61, Norland 543 
products)23.  544 

In Vivo Two-Photon Imaging  545 

Imaging was performed using a two-photon 8-kHz resonant scanner (Ultima, Bruker) 546 
with a 16x, 0.8 NA water-immersion objective (Nikon). Excitation was performed at 920 547 
nm with an 80 MHz pulsed laser (Mai Tai DeepSee, Spectra Physics). GCaMP6f 548 
emission fluorescence was collected with a GaAsP photomultiplier tube (7422P-40, 549 
Hamamatsu) following red and green channel separation with a filter cube consisting of 550 
a dichroic mirror (T565lpxr, Chroma Technology) and filters (green, ET510/80m-2p; red, 551 
ET605/70m-2p, Chroma Technology). Images were acquired at a 30 Hz frame rate, 552 
512x512 pixel resolution, and 1.5x digital zoom corresponding to a field size of 555 µm 553 
x 555 µm. 554 

Behavior  555 

Behavioral apparatus. Mice ran on a custom-built treadmill track where the belt 556 
consisted of 3 ~65 cm long distinct fabrics (macro-textures) enriched with 4 micro-557 
textures (5 cm regions consisting of 5 ‘dice’ arranged flattened aluminum foil spheres, 4 558 
crossed hook-and-loop strips, zig-zag glue pattern, and strip of woven material). The 559 
position of the mouse was measured using an optical rotary encoder (S5-720, US 560 
Digital). Lap onset and micro-texture crossings were detected by reading associated 561 
RFID tags with an RFID reader mounted below the animal (ID-20LA, SparkFun 562 
Electronics). Behavior tones of 4 kHz,10 kHz, and white noise were pre-recorded and 563 
played using an mp3 player (MP3 Player Shield, DEV-12660, SparkFun Electronics). 564 
The audio signal from each channel was then amplified (PAM8302, Adafruit) and played 565 
though a pair of speakers (25-1719S, Tang Band) located on the sides of the fixation 566 
platform. Licking of the animal was registered via a blunt-tipped steel canula coupled to 567 
a capacitive touch sensor (SEN-12041, SparkFun Electronics). Behavioral programs 568 
were controlled with an Arduino Mega 2560 microcontroller. All behavioral data was 569 
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acquired at a sampling rate of 10 kHz with a data acquisition board (PCI-6052E, 570 
National Instruments) synchronized to the time of frame acquisition. 571 

Olfactometer. A custom-built olfactometer was used for delivering fixed-concentration, 572 
spatially restricted odors to the mouse (Supplemental Fig.1). Briefly, during non-odor 573 
zone navigation, animals were exposed to a constant background flow of air mixed with 574 
pure mineral oil (BP26291, Fisher Scientific) at a flow rate of 1 L/min. In the immediate 575 
50 cm prior to odor zone entry, an odor charge program was initiated by closing the 576 
normally open (NO) inlet/outlet valves (225T021, NResearch Inc.) along the flow path 577 
through the mineral oil vial (M), while opening the flow path through either odor A or B 578 
vials by activating the respective normally closed (NC) inlet/outlet valves (225T011, 579 
NResearch Inc.). The odor-charged air was routed to an exhaust port during this period 580 
through a 3-way final valve (SH360T041, NResearch Inc.), while 1 L/min of air 581 
continued to be delivered. Charging was performed in order to ensure that a consistent 582 
steady-state concentration of odor was reached along the pre-delivery flow path (before 583 
the final valve) and to minimize latency of odor delivery to the animal. Upon entering the 584 
odor zone, the final valve was triggered via an RFID tag to switch routing of the odor-585 
charged air from exhaust to the animal’s snout. Upon reaching the end of the odor zone, 586 
an RFID tag triggered the closure of either A or B path valves and opening of the 587 
background mineral oil air path. A constant vacuum of 1L/min above the odor delivery 588 
port ensured scavenging of residual odors. 10% dilutions of pentyl acetate (Sigma-589 
Aldrich, 109584) and (+)-α-Pinene (Sigma-Aldrich, P45680) in mineral oil were used as 590 
odor A and B, respectively. A photoionization detector (200B: miniPID Dispersion 591 
Sensor, Aurora Scientific) was used to verify steady-state odor concentration delivery 592 
prior to each imaging session. A steady-state odor onset latency (baseline to steady-593 
state) of ~125 ms and off latency of ~75 ms (steady-state to baseline) was measured. 594 
Fresh dilutions of odors were prepared daily.  595 

Random foraging. Following recovery from surgery (3-5 days), mice were water 596 
deprived and habituated to handling and head-fixation to behavioral apparatus. Water-597 
deprived mice were then trained to operantly lick and receive 5% sucrose water rewards 598 
in regularly spaced reward zones along a ~196 cm linear track consisting of fabrics and 599 
textures described above. Training began with 20 regularly distributed reward zones 600 
followed by a program of progressively fewer and more randomly distributed reward 601 
zones over 2 weeks. Access to ~1 μL sucrose droplets began immediately after entry 602 
into a reward zone and terminated following either an exit from the reward zone (20 cm 603 
initial length), a time-out period (7 s initial duration) that had elapsed since entry, or 604 
once a maximum number of collected rewards had been reached (10 reward initial 605 
limit). Sucrose rewards were delivered on alternate licks. Training was considered 606 
complete once mice ran at a rate of ~1 lap/min in search of 3 random reward zones per 607 
lap, each defined by a 10 cm length, 3 s time-out period, and 5 droplet collection limit. 608 
Animals were given a total of 1 mL of water daily. 609 
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Odor-cued spatial navigation task. Following successful training on random reward 610 
foraging, animals were introduced onto a structured training regimen that consisted of 611 
alternating blocks of A and B trial laps. On the first day of training, animals were placed 612 
on an alternating sequence of A and B laps for 10 trials to familiarize the animal with the 613 
two types of trials. Thereafter, a regimen of 5 sequential A and 5 sequential B laps 614 
(5A5B) was presented in an alternating block pattern which progressed to an alternating 615 
block of 3 A and 3 B laps (3A3B) and finally to randomized lap (random) presentation. 616 
Each rewarded lap was signaled by a 0.5 s 4 kHz tone immediately prior to lap start. If 617 
the animal reached the start of the lap prior to the 0.5 s elapsing, the tone would stop 618 
playing. The odor was delivered across the initial 20 cm segment of the lap. Delivery of 619 
the trial-associated reward was restricted to the 10 cm reward zone, a 3 s collection 620 
time, and a maximum of 10 rewards.  Following >~80% task performance, incorrect 621 
behavior was punished by time-out laps. When the animal licked in either the 622 
anticipatory (10 cm prior to reward zone) or reward zone not associated with the current 623 
trial, a 0.5 s 10 kHz tone was played, signaling to the animal an incorrect choice. On the 624 
following time-out lap, a 0.5 s white noise was played prior to lap entry, neither odor A 625 
nor B was delivered, and no reward was available.  626 

Image processing and signal extraction 627 

Motion correction and ROI segmentation. Imaging time-series data was corrected for 628 
motion artifacts by using the NoRMCorre non-rigid motion correction algorithm 629 
implemented in MATLAB80. The first imaging session in each longitudinal imaging series 630 
was used as the template against which all future sessions were motion corrected. 631 
Segmentation of somatic regions of interest (ROIs) was performed using a constrained 632 
non-negative matrix factorization (CNMF) approach implemented in MATLAB as part of 633 
the CaImAn software package30, 81. Non-somatic and low-quality components were 634 
manually discarded using a custom graphical interface. 635 

Matching components across sessions. Individually identified somatic ROIs in each 636 
session were matched across sessions by using the register_multisession.py function 637 
as part of the CaImAn Python package. Matched components across all sessions were 638 
subsequently visualized and poorly matching or mismatching components were 639 
discarded. Discarding of component matches was blind to the calcium signal associated 640 
with a component on any given session. 641 

Relative fluorescence change (ΔF/F) The signal baseline (𝐹"	$%&'()*') was calculated for 642 
each ROI by taking the fluorescence signal and calculating its 50th percentile (median) 643 
value at each timepoint within a sliding 15s time window using the prctfilt.m function as 644 
part of CaImAn. The same procedure was used to extract the background signal from 645 
the background component (𝐹"	$%+,-./0*1). The ΔF/F was then calculated as: 646 

𝛥𝐹
𝐹 =

𝐹 −	𝐹"	$%&'()*'
𝐹"	$%&'()*' +	𝐹"	$%+,-./0*1

 647 
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The resultant ΔF/F signal was subsequently smoothed using an exponential filter with 648 
𝜏 = 0.2𝑠 to reduce photon shot noise from signal acquisition82.  649 

Calcium event detection Significant calcium events were identified using an algorithm 650 
previously used in the analysis of two-photon, CA1 hippocampal imaging data23, 83, 84. 651 
Briefly, for any given ΔF/F calcium trace, deflections from the baseline value due to 652 
acquisition noise and/or motion along the dorsoventral (z) axis should occur with equal 653 
frequency in both the positive and negative directions. Based on this assumption, the 654 
false-positive rate can be calculated for each putative event and an amplitude and 655 
duration threshold can be defined such that an event’s false-positive event rate does not 656 
exceed 5% (rate at which positive events occur with at least 20-fold higher probability 657 
than negative events). Using this approach, we identified initial putative events by 658 
detecting consecutive imaging frames whose onset occurred at 2 s.d. above the mean 659 
and whose offset occurred at 0.5 s.d. below the mean. All events within a session were 660 
classified according to their amplitude (in 0.5 sigma bins) and duration (in 250 ms bins). 661 
We calculated the false-positive rate for each amplitude-duration bin as the ratio of 662 
negative to positive events in that bin. Only positive events from bins with a false-663 
positive ratio of less than 5% were included in the analysis.  664 

To further improve the sensitivity of event detection, initially detected events were 665 
masked on the original fluorescence signal, the 𝐹"	$%&'()*'	was recalculated, and events 666 
were redetected on the updated ΔF/F signal. Two iterations of event-masked baseline 667 
recalculation were performed. Events that lasted less than 1 s were excluded from 668 
subsequent analysis. 669 

Data analysis 670 

Definition of run epochs As described previously23, 83, we defined running epochs as 671 
consecutive frames during which the mouse was moving forward with a minimum peak 672 
speed of 5 cm/s for at least 1 s in duration. Neighboring run epochs separated by less 673 
than 0.5 s were merged. All other epochs were defined as no run. 674 

Selection of place cells.  675 

Spatial information We identified spatially tuned cells (place cells) by computing their 676 
spatial information content relative to an empirically generated shuffle distribution as 677 
described previously23, 83. The spatial information content was defined as85: 678 

𝐼< ==𝜆)

<

)?@

ln
𝜆)
𝜆 𝑝) 679 

Where 𝜆) is the transient rate and	𝑝) is fraction of running time spent in the 𝑖th spatial 680 
bin,	𝜆 is the overall transient rate, and	𝑁 is the number of bins. The transient rate was 681 
defined as the ratio of the bin count of running-related transient onsets smoothed with a 682 
Gaussian kernel (σ = 3 bins) to the spatial bin occupancy time. We computed 𝐼<	for 𝑁 = 683 
2,4,5,10,20,25,50,100 bins. To create shuffle distributions for each of the 𝑁 spatial bins, 684 
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we randomly reassigned the transient onset times within the running-related epochs 685 
1,000 times and recomputed the spatial information content for each reassignment 𝐼<& , 686 
where 𝑠 is the index of the shuffle. To approximately account for the bias associated 687 
with spatial binning in the calculation of the spatial information content, we subtracted 688 
the mean of the shuffled null distribution from each 𝑁-binned estimate to obtain the 689 
adjusted	𝐼<	values:  690 

𝐼F< = 	 𝐼< −
1

1000	 = 𝐼<&
@"""

&?@

 691 

We then obtained a single estimate of the spatial information content for each neuron by 692 
taking the maximum of the adjusted information values 𝐼F = 	max

<
𝐼F< for the true transient 693 

onset times and the shuffled onset times 𝐼F& = 	max< 𝐼F<& . The spatial tuning p-value was 694 

defined as the fraction of shuffle values s for which 𝐼F exceeded 𝐼F&. Neurons with a 695 
spatial tuning p-value < 0.05 were defined as place cells.  696 

Tuning specificity We calculated the spatial tuning vector for each cell as described 697 

previously23 using the formula ∑ 'LMN

/(PN)R , where 𝜃R is the binned position of the mouse (𝑁 = 698 

200 bins, 1 bin ~ 1 cm) at the onset time of the 𝑗UV  run-epoch transient, and 𝑜R is the 699 
occupancy of the animal at position 𝜃R, i.e. the fraction of running frames that the animal 700 
spent at position 𝜃R. Calculation of the spatial tuning vector was restricted to only run 701 
epochs as defined above. The tuning specificity was defined as the magnitude of the 702 
spatial tuning vector. Statistical significance of the tuning specificity for each cell was 703 
determined by first generating a null tuning distribution by shuffling the transient onset 704 
times within the run-epoch frames and then computing the tuning specificity from each 705 
shuffle. The shuffle was performed 1,000 times for each cell and the p-value was 706 
defined as the fraction of the null distribution that exceeded the cell’s actual tuning 707 
specificity. 708 

Activity rate We calculated the activity rate as the cumulative area under the ΔF/F 709 
traces (AUC), from event onset to offset, of all significant calcium events in either run or 710 
no-run epochs and divided this sum by the amount of time the animal spent in 711 
respective epochs.  712 

Place fields To define the width of place fields, we first calculated the rate map for each 713 
neuron by dividing the run-epoch event count in each spatial bin by the bin occupancy 714 
for 𝑁	= 100 bins and then smoothed using a Gaussian kernel (σ = 3). To define spatially 715 
significant fields, we then fit each local maximum in the rate map with a Gaussian and 716 
defined the width as the distance between the locations where each fitted curve was at 717 
20% of its peak value. Putative overlapping fields were merged into single fields. Only 718 
fields with a minimum of 5 significant events on distinct laps were included in the 719 
analysis. 720 
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Spatial tuning curves (STC) The tuning curves were defined as the ratio of a Gaussian-721 
smoothed (σ = 3) count of significant run-epoch calcium events in each bin (𝑁 = 100) to 722 
the run-epoch occupancy. Each neuron’s tuning curve was normalized to its maximum 723 
activity across both trial types. For visualization purposes, tuning curves were smoothed 724 
again with a Gaussian kernel (σ = 3). 725 

Task-selective and remapping place cell selection criteria 726 

Task-selective neurons Selective neurons were initially chosen as those which were 727 
spatially tuned by either the spatial information or tuning specificity criterion in one set of 728 
trials and by neither in the other set of trials. Only neurons that had at least 5 in-field, 729 
run-epoch calcium events on distinct laps and those in which the animal was in a run 730 
epoch 80% of the time of the equivalent spatial bin range of these calcium events on the 731 
other trial laps were included in analysis.  732 

Common and global remapping neurons To determine which neurons globally 733 
remapped, we performed a Pearson correlation of their rate maps (𝑁	= 100 bins) 734 
between correct A and B laps. Correlation was performed only between spatial bins with 735 
non-zero values in either trial. Neurons that had a positive, statistically significant (p-736 
value < 0.05) correlation score were classified as common neurons (their spatial maps 737 
were similar), while neurons with non-significant scores (p >= 0.05) or significant 738 
negative scores (maps which are either dissimilar or anti-correlated) were classified as 739 
globally remapping. We verified that the distributions of correlation scores against their 740 
p-values for all common and global neurons separated into two distinct classes 741 
(Supplementary Fig. 6). Only neurons that were tuned according to tuning specificity 742 
were used in the analysis. All cells were required to have a single place field on each 743 
set of trials and at least 5 significant calcium events on distinct laps in their place fields. 744 
Additionally, for globally remapping neurons, animals must have been in a run epoch at 745 
least 80% of the time within the equivalent range of calcium onset bins of the other trials 746 
on at least 6 laps (to ensure that the animal was in a run epoch on both lap types). 747 

Activity remapping neurons Among the neurons that were selected as common, we 748 
examined the area under the curve (AUC) of in-field calcium events to determine 749 
whether there was a significant variation in activity associated with trial type. Given that 750 
animal speed contributes to CA1 place cell firing activity86-88, we performed a 2-way 751 
ANOVA test to determine the effect of task trial type and speed on the AUC of calcium 752 
events. Neurons that had a trial type effect p-value < 0.05 were classified as activity 753 
remapping. We further confirmed that this category was distinct from the common 754 
population by calculating the difference over sum ratio of the peak of the average of 755 
calcium transients between the in-field events of correct A trials and correct B trials 756 
(Supplementary Fig. 8). 757 

Partial remapping neurons Neurons with partially remapping fields were selected as 758 
those which met either the spatial information or tuning specificity criterion in both trial 759 
types and had 2 place fields in one type of trials, whereas only 1 place field in the other. 760 
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For a place field to be considered common across trial types, the distance between the 761 
centroid of the place fields between trial types must have been less than the 95th 762 
percentile value of the distribution of the place field centroids for the common neurons. 763 
No threshold was set on the distance of the remapping field centroid from the common 764 
field. As with global remapping neurons, all place fields were required to have at least 5 765 
significant in-field calcium events on distinct laps. For the partial field, the animal must 766 
have been in a run epoch at least 80% of the time within the equivalent range of calcium 767 
onset bins of the other trial type on at least 6 laps. 768 

Population vector correlation The normalized spatial tuning curves across 100 spatial 769 
bins were assembled for all neurons into a 2D matrix where the rows represented 770 
neuron indexes and columns the activity of all the neurons in each spatial bin. Thus, 771 
each column represented the population activity of all neurons at a particular bin. For 772 
similarity analysis, the population vector in each column was Pearson correlated against 773 
a different trial set or imaging session. The mean of the correlation scores from all bins 774 
was the population vector correlation score. 775 

Tuning vector correlation Between spatially tuned neurons on any two sessions, the 776 
spatial tuning vectors across 100 bins were Pearson correlated for each neuron and the 777 
mean of all correlated neurons was the tuning vector correlation score. 778 

Population Vector Decoding 779 

To demonstrate the relationship between behavioral performance and tuning fidelity of 780 
our recorded neurons, we performed population vector decoding (Fig. 6). A separate 781 
decoder was constructed for each session for each mouse. For a given session, 782 
template tuning curves for each cell were constructed in a similar manner as described 783 
above, only using data when mice were running. Briefly, we divided the 200 cm track 784 
into 40 bins each for A and B trials (80 bins total), counted the number of calcium 785 
events in each bin, and smoothed with a Gaussian smoothing kernel with σ = 5 cm, then 786 
divided by the total time spent in each bin. Data from the first half of the session was 787 
used to define the template. Time-varying rate vectors for each cell were constructed 788 
using data from the second half of the session using 250 ms bins, smoothed with a 789 
Gaussian smoothing kernel with sigma σ = 250 ms. For each time point in the second 790 
half of the session, the decoded position was the position corresponding to the highest 791 
correlation with the template matrix. 792 

The performance of the decoder was quantified using two measures: “Decoding Score” 793 
and “Decoding Error.” Decoding score (Fig. 6c, e, f, g, i) was defined as the proportion 794 
of data points that were correctly classified as belonging to A or B trials. Decoding Error 795 
(Fig. 6d, h, j) was defined as the mean absolute distance between the decoded and 796 
actual position when ignoring trial type. Distance was defined in a circular manner such 797 
that positions 0 and 200 were at the same point. 798 

Spatial raster plots. Lap-by-lap raster plots were made by taking the mean run-epoch 799 
ΔF/F value from 100 spatial bins for each place cell. 800 
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Statistics Statistical analysis of calcium data was done using Matlab R2020a 801 
(Mathworks). 802 

Software: All analysis was done using custom-written scripts in MATLAB R2020a 803 
(Mathworks). Scripts are available on request from R.Z. and J.B. 804 

 805 
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Figure Legends 1016 

Fig. 1: Stable learning of a head-fixed, odor-cued spatial navigation task. 1017 

(a) Schematic illustrating task structure. During A trials (top row), mice were presented 1018 
with odor A in a 20 cm cue zone at the onset of the track and ran 120 cm toward the A 1019 
reward zone (blue patch) to collect 5% sucrose water, while suppressing licking 1020 
immediately prior to (anticipatory zone) and inside of the B reward zone (red patch) 1021 
along the way. In contrast, during B trials (bottom row), mice were presented with odor 1022 
B in the cue zone and ran 40 cm to collect reward within the B reward zone. Following 1023 
reward collection in B zone, mice were required to suppress lick in the A anticipatory 1024 
and reward zone for the trial to be registered as correct. Four distinctive micro-textures 1025 
were placed along the track to aid the mouse in spatial navigation and promote place 1026 
cell formation. A 2 kHz tone was played immediately prior to the start of each A or B lap 1027 
to signal that the upcoming trial will be rewarded (as opposed to a non-rewarded time-1028 
out lap). (b) Schematic of the timeline for each respective stage of training. Animals 1029 
were initially trained for 2 weeks to randomly forage, after which they spent ~1 week on 1030 
each subsequent stage. (c) Example licking distribution from an animal at each of the 1031 
four stages of learning. At the random foraging stage, when the animal learned to lick 1032 
and run, the licking was distributed along the track with no specific enrichment in either 1033 
the A (blue shade) or B reward zone (red shade). As the animal progressed through 1034 
each stage of training, licking become more specific to the reward zone associated with 1035 
that trial (left: A trial laps, right: B trial laps). Circular gray arrows at each stage denote 1036 
repeated training sessions on different days. (d) The fraction of licks in associated 1037 
reward zones increased in A and B trials during learning (fraction of licks, RF vs. 1038 
Random AB, paired t-test: A zone, 0.06 ± 0.01 vs. 0.66 ± 0.1, *P = 0.031; B zone 0.04 1039 
± 0.01 vs. 0.62 ± 0.1, *P = 0.037; effect of training stage, One-way RM ANOVA, A 1040 
trials F1.506, 4.51 = 12.44, *P = 0.017, B trials F1.451, 4.354 = 19.01, **P = 0.008). (e) 1041 
Behavioral performance reached >85% only in last stage of training (fraction of correct 1042 
trials, RF vs. Random AB, paired t-test, A trials: 0 ± 0 vs. 1 ± 0, *P = 0.04, B trials, 0 1043 
vs. 0.95 ± 0.03, ***P < 0.001; effect of training stage, one-way RM ANOVA, A trials, 1044 
F1, 3 = 12.71, t3 = -∞, p*** < 0.001, B trials: F1.004, 3.012 = 93.36, **P = 0.002). (f) Example 1045 
speed of an animal within ± 2 s of entering the reward zones across training stages. At 1046 
the final training stage (random AB), the animal stops upon entry into a trial-associated 1047 
reward zone, while running through the non-rewarded zone. Dotted gray line indicates 1048 
onset time of reward zone entry. Error bars and error shades indicate mean ± s.e.m. 1049 
Data shown from n = 4 mice. 1050 

Fig. 2: Task-selective place cells are observed in dorsal CA1 during stable 1051 
performance. 1052 

(a-i) (Top) Example field of view (FOV) of the pyramidal cell layer imaged in CA1. Image 1053 
depicts the mean intensity projection. (a-ii) Maximum intensity projection of temporally 1054 
downsampled run-epoch imaging stacks. Blue overlay represents odor A trials, while 1055 
red overlay represents odor B trials. Neurons active in both trial types are shown in 1056 
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magenta. (a-iii) Overlay of maximum intensity projection (a-ii) with imaging FOV (a-i). 1057 
(Bottom) Training timeline of mice. Mice were allowed to recover for 5 days from cranial 1058 
window surgery and then were trained to run and collect rewards from randomly 1059 
distributed zones across linear belt (RF – random foraging). Following ~2 weeks of RF 1060 
training, mice were transitioned to training on the odor-cued spatial navigation task and 1061 
imaging began once animals performed at >85% performance for 3 consecutive days. 1062 
(b) Examples of task selective and non-selective place cells. (1,2) Example of a task-1063 
selective place cell on A and B trials, respectively. (3) Example of a non-selective place 1064 
cell (with place fields on both A and B trials). Numbers correspond to circled neurons in 1065 
(a). (c) (left) Calcium activity rate (AUC [area under curve]/min) of A-, B-, and task non-1066 
selective place cells during run epochs. Each point represents the mean from all 1067 
neurons for each of 11 FOVs from n = 10 animals. (right) Activity of task-selective 1068 
neurons is greater on their respective task laps during run epochs (A vs. B lap activity 1069 
rate, A-selective: 4.84 ± 0.47 vs. 0.7 ± 0.16, paired Wilcoxon signed-rank test, W10 = 1070 
66, **P = 0.003; B-selective: 0.51 ± 0.07 vs. 5.18 ± 0.55, paired Wilcoxon signed-rank 1071 
test, W10 = -66, **P = 0.003; non-selective: 5.77 ± 0.44 vs. 6.08 ± 0.56, paired 1072 
Wilcoxon signed-rank test, W10 = -30, P = 0.206), while no difference is observed during 1073 
no run epochs (A-selective: 0.68 ± 0.1 vs. 0.46 ± 0.06, paired Wilcoxon signed-rank 1074 
test, W10 = 46, P = 0.082; B-selective 0.31 ± 0.05 vs. 0.82 ± 0.15, paired Wilcoxon 1075 
signed-rank test, W10 = -62, **P = 0.009; non-selective: 0.55 ± 0.05 vs. 0.74 ± 0.13, 1076 
paired Wilcoxon signed-rank test, W10 = -32, P = 0.175). (d) (left) Fraction of place cells 1077 
tuned according to spatial information (S.I.) and tuning specificity (T.S.) showed distinct 1078 
distributions between trials (S.I. fraction: Friedman test, 𝜒YZ = 29.95, ***P < 0.001; T.S. 1079 
fraction: Friedman test, 𝜒YZ = 27.33, ***P < 0.001). More A- than B-selective neurons 1080 
were generally present using the S.I. score (fraction of A vs. B: 0.13 ± 0.01 vs. 0.1 ± 1081 
0.01, paired Wilcoxon signed-rank test, W10 = 54, *P = 0.014) and T.S. score (0.19 ± 1082 
0.01 vs. 0.15 ± 0.01, paired Wilcoxon signed-rank test, W10 = 48, *P = 0.032). Both A- 1083 
and B-selective were fewer in number compared to A&B neurons using the S.I. score (A 1084 
vs. A&B: 0.13 ± 0.01 vs. 0.5 ± 0.03, paired Wilcoxon signed-rank test, W10 = -66, **P = 1085 
0.003; B vs. A&B: 0.1 ± 0.01 vs. 0.5 ± 0.03, paired Wilcoxon signed-rank test, W10 = -1086 
66, **P = 0.003) and T.S. score (A vs. A&B: 0.19 ± 0.01 vs. 0.32 ± 0.02, paired 1087 
Wilcoxon signed-rank test, W10 = -66, **P = 0.003; B vs. A&B: 0.15 ± 0.01 vs. 0.32 ± 1088 
0.02, paired Wilcoxon signed-rank test, W10 = -66, **P = 0.003). Error bars represent 1089 
mean ± s.e.m. (center). Mean spatial information scores (bits/Ca2+ event) and tuning 1090 
specificity score for each class of neurons on A and B laps during each session. (right) 1091 
Spatial information and tuning specificity scores from all imaged neurons (5158 1092 
neurons). (e) Rate maps from all the mice for A- and B- task selective place cells on A 1093 
and B laps. The rate of each neuron is normalized to its maximum rate across both trial 1094 
types. A-selective neurons (top) are sorted according to their maximum rate across 100 1095 
spatial bins on A laps. The same sorting was performed on B-selective neurons 1096 
(bottom) on B laps. Green dashed line indicates the end of odor zone, red the start of B 1097 
reward zone, and blue the start of A reward zone. (f) Distribution of the place field 1098 
centroid for A-selective and B-selective place cells across the track (25 spatial bins). 1099 
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Both categories of place cells are non-uniformly distributed across the track, with a 1100 
skew toward the common segment of the track (place field distribution, A-selective: 1101 
Rayleigh test of uniformity, Z = 4.72, **P = 0.009, n = 590 neurons; B-selective: 1102 
Rayleigh test of uniformity, Z = 89.63, ***P < 0.001, n = 468 neurons).  A-selective place 1103 
cells tend to be also distributed at toward more distant locations on the track toward the 1104 
A reward zone. (g) Distribution of place field centroids differs between A-selective and 1105 
B-selective place cells (A vs. B place field centroid difference: 2-sample Kolmogorov-1106 
Smirnov test, D590, 468 = 0.22, ***P < 0.001, n = 590 vs. 468 neurons). (h) Pearson 1107 
correlation of spatial tuning curves between A and B laps for A-, B-, and trial non-1108 
selective place cells. Spatial correction scores are low for task selective neurons with no 1109 
difference between groups and significantly lower compared to task non-selective 1110 
neurons consistent with effective discrimination between each category of place cells 1111 
(A-selective vs. A&B: 0.24 ± 0.04 vs. 0.49 ± 0.05, paired Wilcoxon signed-rank test, 1112 
W10 = -66, **P = 0.003; B-selective vs. A&B: 0.21 ± 0.04 vs. 0.49 ± 0.05, paired 1113 
Wilcoxon signed-rank test, W10 = -66, **P = 0.003). Central mark indicates median and 1114 
top and bottom boxes indicate 25th and 75th percentiles, respectively. Whiskers denote 1115 
the most extreme data points. Error bars indicate mean ± s.e.m. Data shown from 11 1116 
FOV from n = 10 mice. 1117 

Fig. 3: Place cells show distinct and task-oriented forms of remapping between 1118 
trial types. 1119 

(a) Overlap of the imaging field with the maximum intensity projection on A-laps (blue) 1120 
and B-laps (red). (b) Examples of the three types of remapping place cells observed in 1121 
CA1. (1) Example of a common neuron that fires in its place field regardless of trial type. 1122 
(2) Example of an activity remapping neuron whose calcium activity in its place field is 1123 
modulated by trial type. (3) Example of a global remapping neuron which has distinct 1124 
place fields on each trial type. (4) Examples of a partially remapping neuron with a 1125 
common field (trial insensitive) located ~1/3 of the distance from the lap start and an A 1126 
trial specific field (partial field) located before it. Individual points on event spiral maps 1127 
represent significant running-related Ca2+ events on A (blue) or B (red) trials. Colormaps 1128 
on the right represent the mean DF/F activity in each spatial bin on each of the pseudo-1129 
randomly presented trial laps. Blue colormap represents A trials, while red colormap 1130 
represented B trials. Note the difference in the DF/F signal of the activity remapping (2) 1131 
neuron between A and B laps. Example numbers correspond to the neurons circled in 1132 
(a). (c) Spatial tuning colormaps for each class of remapping place cells. Cells are 1133 
sorted according to the maximum spatial bin rate on A laps. Note the predominant shift 1134 
of global remapping neurons place fields toward earlier locations on the track on B laps. 1135 
Partial remapping neurons were sorted by their common place field. Bottom left panel 1136 
depicts the mean DF/F value relative to the onset of the Ca2+ event in the place field for 1137 
activity remapping neurons. The activity map was sorted according to the difference 1138 
between the peak mean DF/F value of Ca2+ transients in the place field on A vs. B trials 1139 
to emphasize the degree of rate remapping in contrast to the spatial tuning map above 1140 
in which place cells are sorted according to their maximum spatial bin rate on A laps. 1141 
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The unclassified category consists of spatially tuned neurons that had 2+ place field on 1142 
both trials. (d) Distribution of the classes of non-remapping (common), remapping, and 1143 
unclassified place cells. The difference in distribution was significant between the 1144 
common class and three classes of remapping neurons (Difference among remapping 1145 
classes: Friedman test, 𝜒[Z = 33.75, ***P < 0.001; Common vs. activity: 0.28 ± 0.03 vs. 1146 
0.02 ± 0, paired Wilcoxon signed-rank test, W10 = 66, **P = 0.003; Common vs. global: 1147 
0.28 ± 0.03 vs. 0.16 ± 0.03, paired Wilcoxon signed-rank test, W10 = 48, *P = 0.032; 1148 
Common vs. partial: 0.28 ± 0.03 vs. 0.19 ± 0.01, paired Wilcoxon signed-rank test, W10 1149 
= 60, **P = 0.01). Error bars indicate mean ± s.e.m. (e) Common place cells are 1150 
distributed across the track according to spatial task demand. The lowest density of 1151 
common fields was present in Zone I (prior to the B reward zone) where spatial 1152 
orientation/mapping is critical to task performance. The place field density progressively 1153 
increased from Zone I until zone III (Place field distribution for common neurons: 1154 
Rayleigh test of uniformity, Z = 13.82, ***P < 0.001, n = 700 neurons). (f) Global 1155 
remapping neurons exhibited task-oriented remapping of place fields. In particular, 1156 
place cells with place field centroids located in Zone II (between the reward zones) on A 1157 
laps exhibited a statistically significant shift of place fields on B trials to earlier positions 1158 
on the track (Zone II A vs. B lap field shift: 0.3 ± 0.03, 1-sample Wilcoxon signed-rank 1159 
test against 0, W10 = 66, ***P < 0.001). (g) Analysis of inter-zone movement revealed 1160 
additional shifting of A place fields relative to B fields (Global remapping neurons 1161 
place field zone shift: Friedman test, 𝜒\Z = 47.87, ***P < 0.001) There were, however, 1162 
no significant shifts between specific zones. Error bars indicates mean ± s.e.m. (h) 1163 
Partial fields of partial remapping place cells exhibited remapping dynamics similar to 1164 
those observed for task-selective place cells (Figure 2f) with fields skewed toward zone 1165 
I of the track and additional fields in Zone II during A trials (A vs. B partial remapping 1166 
neurons place field centroid difference: 2-sample Kolmogorov-Smirnov test, D253, 253 1167 
= 0.19, ***P < 0.001, n = 253 vs. 253 neurons). Arrows represent the respective reward 1168 
zones. Analysis from 11 FOV from n = 10 mice. 1169 

Fig. 4: Learning induces rapid remapping of place maps. 1170 

(a) (Top) Schematic illustrating the accelerated training regimen and imaging schedule 1171 
for odor-cued spatial navigation. (Bottom) Timeline for recall imaging experiments 1172 
following memory consolidation. (b) Learning performance during accelerated learning. 1173 
Mice achieve high behavior performance by the last day of training (92 ± 2%, n = 6 1174 
mice). Error bars indicate mean ± s.e.m. (c) Example of matching spatial components 1175 
(ROIs) across two different sessions. Only components with high spatial component 1176 
overlaps were used in the analysis to avoid component mismatching. (d) (Top) Example 1177 
spatial tuning maps that show rapid remapping of spatial activity during learning in 1178 
contrast to memory recall following consolidation (Bottom). (e) Task-dependent tuning 1179 
of place cells occurs as early as the first day of training and persists during learning with 1180 
increase in fraction of A-trial tuned place cells during A, but not B trials (Fraction of 1181 
tuned place cells, A trials, learning: one-way RM mixed effects analysis, effect of 1182 
training day, F6, 22.24 = 7.24, ***P < 0.001; B trials: one-way RM mixed effects analysis, 1183 
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effect of training day, F6, 27 = 1.36, P = 0.265, n = 6 mice) with no change during recall 1184 
(A trials, recall: one-way RM mixed effects analysis, effect of training day, F6, 28 = 0.32, 1185 
P = 0.923;B trials: one-way RM mixed effects analysis, effect of training day, F6, 28 = 1186 
0.26, P = 0.951, n = 5 mice) (f) (left) Population vector (PV) correlation of all matching 1187 
cells relative to Day 1 of imaging shows rapid restructuring of run-related activity on the 1188 
following training day that stabilizes on recall trials (PV correlation, A trials: two-way 1189 
RM mixed effects analysis, effect of time, F3, 22.35 = 50.93, ***P < 0.001, effect of 1190 
behavior, F1, 9.04 = 9.02, *P = 0.015, interaction between time and behavior, F3, 22.35 = 1191 
0.78, P = 0.519; B trials: two-way RM mixed effects analysis, effect of time, F3, 22.44 = 1192 
43.88, ***P < 0.001, effect of behavior, F1, 9.07 = 9.13, *P = 0.014, interaction between 1193 
time and behavior, F3, 22.44 = 1.78, P = 0.18, n = 6 learn, 5 recall mice; Day 2 vs. 7, 1194 
recall, A trials: 0.58 ± 0.05 vs. 0.39 ± 0.06, paired t-test, t4 = 7.89, **P = 0.003; B trials: 1195 
0.57 ± 0.05 vs. 0.38 ± 0.05, paired t-test, t4 = 7.79, **P = 0.002, n = 5 mice), but not 1196 
during learning (Day 2 vs. 7, learning, A trials: 0.43 ± 0.03 vs. 0.19 ± 0.01, paired t-1197 
test, t2 = 5.89, *P = 0.028; B trials: 0.41 ± 0.04 vs. 0.19 ± 0.01, paired t-test, t2 = 5.06, P 1198 
= 0.053, n = 3 mice; Day 7, learning vs. recall, A trials: 0.21 ± 0.02 vs. 0.39 ± 0.06, 1199 
unpaired t-test, t7 = -2.78, *P = 0.027; B trials: 0.19 ± 0.01 vs. 0.38 ± 0.05, unpaired t-1200 
test, t7 = -3.37, *P = 0.014, n = 4 learn, 5 recall mice). A similar trend was observed for 1201 
the tuning curve correlation scores between matching place cells selected using the 1202 
tuning specificity criterion (TC correlation, A trials: two-way RM mixed effects analysis, 1203 
effect of time, F3, 22.37 = 27.73, ***P < 0.001, effect of behavior, F1, 8.85 = 8.69, *P = 1204 
0.017, interaction between time and behavior, F3, 22.37 = 3.95, *P = 0.021; B trials: two-1205 
way RM mixed effects analysis, effect of time, F3, 22.46 = 32.87, ***P < 0.001, effect of 1206 
behavior, F1, 8.81 = 11.81, **P = 0.008, interaction between time and behavior, F3, 22.46 = 1207 
1.73, P = 0.189, n = 6 learn, 5 recall mice; Day 2 vs. 7, learning, A trials: 0.51 ± 0.03 1208 
vs. 0.22 ± 0.02, paired t-test, t2 = 5.84, *P = 0.028; B trials: 0.51 ± 0.03 vs. 0.19 ± 0.04, 1209 
paired t-test, t2 = 6.49, *P = 0.045, n = 3 mice; Day 2 vs. 7 recall, A trials: 0.65 ± 0.06 1210 
vs. 0.5 ± 0.06, paired t-test, t4 = 5.1, *P = 0.014; B trials: 0.68 ± 0.03 vs. 0.45 ± 0.05, 1211 
paired t-test, t4 = 5.32, **P = 0.006, n = 5 mice; Day 7, learning vs. recall, A trials: 1212 
0.23 ± 0.02 vs. 0.5 ± 0.06, unpaired t-test, t7 = -4.05, **P = 0.009; B trials: 0.19 ± 0.03 1213 
vs. 0.45 ± 0.05, unpaired t-test, t7 = -4.03, **P = 0.01, n = 4 learn, 5 recall mice). (g) 1214 
Learning stabilizes neighboring session maps at the population level and between place 1215 
cells. As learning progresses through each training stage, the population correlation 1216 
scores approach those observed for the memory-consolidated recall cohort 1217 
(Neighboring session PV correlation, A trials: two-way RM mixed effects analysis, 1218 
effect of time, F2, 14.28 = 3.98, *P = 0.042, effect of behavior, F1, 9.24 = 5.45, *P = 0.044, 1219 
interaction between time and behavior, F2, 14.28 = 7.37, **P = 0.006; B trials: two-way 1220 
RM mixed effects analysis, effect of time, F2, 14.17 = 0.98, P = 0.4, effect of behavior, F1, 1221 
9.06 = 1.88, P = 0.204, interaction between time and behavior, F2, 14.17 = 6.18, *P = 0.012, 1222 
n = 6 learn, 5 recall mice; Days 1 vs. 2 Vs. Day 6 vs. 7, learning, A trials: 0.43 ± 0.03 1223 
vs. 0.54 ± 0.01, paired t-test, t2 = -5.24, *P = 0.034; B trials: 0.41 ± 0.04 vs. 0.52 ± 0.01, 1224 
paired t-test, t2 = -2.42, P = 0.136, n = 3 mice; Days 1 vs. 2 Vs. Day 6 vs. 7, recall, A 1225 
trials: 0.58 ± 0.05 vs. 0.56 ± 0.03, paired t-test, t4 = 0.55, P = 0.611; B trials: 0.57 ± 1226 
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0.05 vs. 0.52 ± 0.04, paired t-test, t4 = 1.54, P = 0.198, n = 5 mice). For spatially tuned 1227 
neurons, we the stabilization occurred during learning on both A and B trials, but not 1228 
during recall (Neighboring session TC correlation, A trials: two-way RM mixed 1229 
effects analysis, effect of time, F2, 14.38 = 0.74, P = 0.492, effect of behavior, F1, 9.14 = 1230 
2.32, P = 0.161, interaction between time and behavior, F2, 14.38 = 6.01, *P = 0.013; B 1231 
trials: two-way RM mixed effects analysis, effect of time, F2, 13.98 = 0.55, P = 0.586, 1232 
effect of behavior, F1, 8.83 = 4.49, P = 0.064, interaction between time and behavior, 1233 
F2, 13.98 = 9.32, **P = 0.003, n = 6 learn, 5 recall mice; Days 1 vs. 2 Vs. Day 6 vs. 7, 1234 
learning, A trials: 0.51 ± 0.03 vs. 0.61 ± 0.03, paired t-test, t2 = -5.89, *P = 0.028; B 1235 
trials: 0.51 ± 0.03 vs. 0.6 ± 0.01, paired t-test, t2 = -5.09, *P = 0.036, n = 3 mice; Days 1 1236 
vs. 2 Vs. Day 6 vs. 7, recall, A trials: 0.65 ± 0.06 vs. 0.61 ± 0.04. paired t-test, t4 = 1237 
0.81, P = 0.465; B trials: 0.68 ± 0.03 vs. 0.61 ± 0.04, paired t-test, t4 = 1.71, P = 0.162, 1238 
n = 5 mice). (h) Place fields are remapped over greater distances during learning on A 1239 
and B trials (Mean centroid difference relative to Day 1, A trials: two-way RM mixed 1240 
effects analysis, effect of time, F3, 22.19 = 30.7, ***P < 0.001, effect of behavior, F1, 8.62 = 1241 
3.52, P = 0.095, interaction between time and behavior, F3, 22.19 = 2.78, P = 0.065, n = 6 1242 
learn, 5 recall mice; B trials: two-way RM mixed effects analysis, effect of time, F3, 23.34 1243 
= 25.56, ***P < 0.001, effect of behavior, F1, 8.98 = 11.81, **P = 0.007, interaction 1244 
between time and behavior, F3, 23.34 = 0.14, P = 0.936, n = 6 learn, 5 recall mice; 1245 
Learning vs. recall, Day 5, A trials: 32.16 ± 1.89 cm vs. 22.83 ± 2.64 cm, unpaired t-1246 
test, t8 = 2.88, *P = 0.041; B trials: 31.45 ± 2.6 cm vs. 22.51 ± 2.01 cm, unpaired t-test, 1247 
t8 = 2.72, P = 0.052, n = 5 learn, 5 recall mice). 1248 

Fig. 5: Dissimilarity between task spatial maps predicts animal performance. 1249 

(a) Example neuron during learning. As the performance of the animal increases during 1250 
training sessions (green), the task non-selective neuron ‘splits’ its common place field 1251 
into two task-dependent fields. (b) During recall, the spatial fields of this neurons are 1252 
stable. (c-d) Overlay of plots of normalized tuning curve correlation scores (left axis) and 1253 
animal performance (right axis) of matched A&B spatially tuned neurons during learning 1254 
(c) and recall (d). Normalized tuning curve correlation scores were calculated as the A 1255 
lap vs. B lap tuning correlation score on the relative session day divided by the A vs B 1256 
lap correlation score on the first day of imaging for each matched neuron. As the 1257 
performance of animals increased during learning, place cell maps between task trials 1258 
became progressively more decorrelated (Normalized A vs. B lap correlation scores, 1259 
learning: Kruskal-Wallis test, H5 = 63.31, ***P < 0.001, n = 1050 neurons from 6 mice; 1260 
Day 2: 0.94 ± 0.07, 1-sample Wilcoxon signed-rank test against 1, W178 = -3536, *P = 1261 
0.011, n = 179 neurons; Day 7: 0.59 ± 0.13, 1-sample Wilcoxon signed-rank test against 1262 
1, W121 = -4197, ***P < 0.001, n = 122 neurons). A similar effect was not observed 1263 
during recall when animals performed >90% accuracy on each day and the normalized 1264 
correlation scores were near the expected value of 1 (dashed gray line; Normalized A 1265 
vs. B lap correlation scores, recall: Kruskal-Wallis test, H5 = 7.15, P = 0.21, n = 577 1266 
neurons from 5 mice; Day 2: 0.99 ± 0.05, 1-sample Wilcoxon signed-rank test against 1, 1267 
W132 = -5, P = 0.996, n = 133 neurons; Day 7: 0.95 ± 0.07, 1-sample Wilcoxon signed-1268 
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rank test against 1, W71 = -638, P = 0.073, n = 72 neurons). (e-f) Scatterplots of the A 1269 
vs. B lap correlation against the performance from all sessions and animals during 1270 
learning (e) and recall (f). A linear regression fit revealed a strong inverse relationship 1271 
between the A-B correlation maps and performance for the learning cohort, but not for 1272 
the recall cohort (Learning: linear fit, R = -0.69, ***P = 2.17e-07, n = 44 sessions from 6 1273 
mice; Recall: linear fit, R = -0.32, P = 0.058, n = 35 sessions from 5 mice). Error bars 1274 
indicate 95% ±C.I. around median for normalized correlations scores and mean ± 1275 
s.e.m. for performance fraction.  1276 

Fig. 6: Place maps incorporate information about trial type during task learning 1277 
and accurately predict both location and trial during recall 1278 
 1279 
(a) A population vector decoder accurately predicts the position of an animal on the 1280 
track during both the initial training session (top) and late training session (bottom). 1281 
Plotted are the decoded positions (red) against the actual track position (blue) of the 1282 
mouse as a function of time. On the late training session, the decoder for this animal 1283 
additionally predicts the trial the animal is on with high accuracy. Throughout the figure, 1284 
positions 0-200 are represented twice, once each for A and B trials. Data from this 1285 
mouse only are used in panels b-d. (b) Confusion matrices quantifying decoding 1286 
accuracy demonstrate improved accuracy in identifying trial type associated with 1287 
improved performance. Each black point represents the actual position and trial of the 1288 
animal plotted against the decoder’s prediction. Each matrix cell represents the number 1289 
of decoded points falling into each quadrant divided by the total data points in each trial 1290 
type. (c) Average trial decoding score (proportion of data points correctly classified) as a 1291 
function of position in early sessions (top) and late sessions (bottom). The majority of 1292 
misclassifications occurred early in training in the middle and late stages of the track on 1293 
A trials. (d) The median position decoding error across the track on both trials did not 1294 
substantially change across learning. (e) Example plot showing that as the performance 1295 
of a single mouse (ID: 4) increases with subsequent training sessions, the accuracy of 1296 
the population decoder also increases. (f) Same data as in (e) with performance plotted 1297 
against decoding score, revealing a strong positive relationship between task 1298 
performance and decoder score (Correlation score significance: two-sided one-1299 
sample t-test, t7 = 4.948 **P = 0.002, n = 9 sessions from mouse 4). (g) Cumulative 1300 
analysis across all training sessions revealed a strong positive relationship between 1301 
performance and decoding accuracy (Correlation between performance and 1302 
decoding score in learning cohort: two-way ANOVA, R = 0.68, effect of mouse F5,31 = 1303 
0.338, P = 0.338, effect of performance, F1,31 = 29.014, ***P < 0.001, effect of 1304 
interaction, F5,31 = 0.806, P = 0.554, n = 43 session from 6 mice). Each point denotes a 1305 
single training session and each type of mark a different animal. (h) In contrast, no 1306 
relationship was observed between position decoding error and task performance  1307 
(Correlation between performance and decoding score in recall cohort: two-way 1308 
ANOVA, R = -0.05, effect of mouse, F5,31 = 3.057, *P = 0.023, effect of performance 1309 
F1,31 = 2.026, P = 0.164, effect of interaction, F5,31 = 1.569, P = 0.197, n = 43 session 1310 
from 5 mice). (i) Colormap showing the improvement in the position-trial decoding 1311 
accuracy as function of training session. Each row denotes the median decoding score 1312 
across all 6 animals. The decoding score increases progressively forward along the 1313 
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track during each training session, prominently observed on A trials. Bottom graph plots 1314 
decoding score for sessions 1 and 6, as well as the median across all sessions. (j) An 1315 
equivalent plot of the decoding position error averaged across all animals does not 1316 
reveal such change during training.  1317 
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