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Abstract 36 

 37 

Flexibly adapting behavior to achieve a desired goal depends on the ability to monitor one’s own 38 

performance. A key open question is how performance monitoring can be both highly flexible to 39 

support multiple tasks and specialized to support specific tasks. We characterized performance 40 

monitoring representations by recording single neurons in the human medial frontal cortex 41 

(MFC). Subjects performed two tasks that involve three types of cognitive conflict. Neural 42 

population representations of conflict, error and control demand generalized across tasks and 43 

time while at the same time also encoding task specialization. This arose from a combination of 44 

single neurons whose responses were task-invariant and non-linearly mixed. Neurons encoding 45 

conflict ex-post served to iteratively update internal estimates of control demand as predicted 46 

by a Bayesian model. These findings reveal how the MFC representation of evaluative signals are 47 

both abstract and specific, suggesting a mechanism for computing and maintaining control 48 

demand estimates across trials and tasks.  49 

 50 

  51 
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Introduction 52 

 53 

Successful goal-directed behavior in uncertain environments depends critically on 54 

continual evaluation of one’s own performance (Ullsperger, 2017; Ullsperger et al., 2014). We 55 

constantly evaluate whether we made an error, experienced conflict, received reward, or 56 

responded fast or slow. Information about past and present performance is in turn used by 57 

various downstream processes for cognitive control, affective responses and autonomic 58 

homeostasis. The resulting behavioral and physiological adaptations encompass task-specific 59 

attentional modulation of perception (Danielmeier et al., 2011; Egner and Hirsch, 2005; King et 60 

al., 2010; Purcell and Kiani, 2016), estimation of control demand (Darlington et al., 2018; Jiang et 61 

al., 2015; Shenhav et al., 2013), global modulation of motor system readiness (Aron et al., 2007; 62 

Danielmeier et al., 2011; King et al., 2010; Murphy et al., 2016; Niv et al., 2007; Wessel and Aron, 63 

2017), emotional state (Bach and Dayan, 2017; Eldar et al., 2016; Shackman et al., 2011), or 64 

arousal levels (Crone et al., 2004; Ebitz and Platt, 2015). The medial frontal cortex (MFC) 65 

computes and represents many aspects of performance monitoring (Bonini et al., 2014; Carter et 66 

al., 1998; Ebitz and Platt, 2015; Fu et al., 2019; Heilbronner and Hayden, 2016; Ito et al., 2003; 67 

Kerns et al., 2004; Pouget et al., 2011; Sajad et al., 2019; Sarafyazd and Jazayeri, 2019; Shenhav 68 

et al., 2013; Sheth et al., 2012; Stuphorn et al., 2000; Tang et al., 2016; Ullsperger et al., 2014; 69 

Wang et al., 2018a, 2018b), making it a primary substrate for communicating evaluative signals 70 

to downstream processes (Miller and Cohen, 2001; Shenhav et al., 2013; Ullsperger, 2017; 71 

Ullsperger et al., 2014).  72 

 73 

On the one hand, cognitive control involves modulating specific sensory or motor 74 

processes involved in the task performed, thus requiring the availability of task-specific 75 

information in performance monitoring signals, a form of “credit assignment” (McDougle et al., 76 

2016; Sarafyazd and Jazayeri, 2019). For example, an error made by dialing the wrong number 77 

should be distinguishable from an error made by calling an old friend by the wrong name because 78 

they require different correction mechanisms. On the other hand, humans excel at performing 79 

novel tasks with little prior training – an aspect of flexible behavior that is difficult to study in 80 
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nonhuman primates, since they cannot be verbally instructed to execute an untrained novel task. 81 

This kind of cognitive flexibility requires domain-general mechanisms that abstract from the 82 

sensorimotor details of any particular task (Bernardi et al., 2020; Minxha et al., 2020). In a novel 83 

setting, errors and conflicts can have unanticipated causes, and generic control mechanisms such 84 

as slowing all movement down and increasing arousal are adaptive because they buy time to 85 

recruit more resources for domain-specific adaptations to take effect (Ullsperger, 2017; 86 

Ullsperger et al., 2014). Downstream processes implementing generic adaptations in arousal, 87 

global motor suppression (Danielmeier et al., 2011; King et al., 2010; Wessel and Aron, 2017), 88 

and urgency (Cavanagh et al., 2011; Heitz and Schall, 2012; Murphy et al., 2016; Thura and Cisek, 89 

2017) also depend on the availability of domain-general performance monitoring signals to avoid 90 

the need to re-learn how to interpret them for every task. Together, these requirements raise 91 

the critical question of how performance monitoring signals are represented in the MFC so that 92 

they are accessible to inform both domain-specific and domain-general downstream processes. 93 

Answering this question requires recording from multiple single neurons in order to characterize 94 

the population-level structure of representations in MFC, about which little is known.  95 

 96 

 Theoretically, a fundamental trade-off exists between representations that support task 97 

specialization and generalization (DiCarlo and Cox, 2007; Fusi et al., 2016). Specialization requires 98 

that as many different conditions as possible can be differentiated from each other by a 99 

downstream process that has access to a large subset of the neurons in the representation 100 

(“dichotomies” in the case of pairwise differentiations as implemented, for instance, by a linear 101 

classifier). This requirement can be fulfilled by increasing the dimensionality of the 102 

representation: if there are as many dimensions as differentiations, all possible dichotomies can 103 

be read out, in principle. By contrast, generalization requires low-dimensional representations 104 

that abstract away (“disentangle”) details specific to a single task (DiCarlo and Cox, 2007; Higgins 105 

et al., 2016, 2018). Theoretical work shows that the geometry of neural representations can be 106 

configured to accommodate both of these seemingly conflicting needs (Bernardi et al., 2020). 107 

Given a representation formatted in this way, linear decoders (which represent conservatively 108 

what downstream neurons could read out assuming a feed-forward architecture), depending on 109 
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how they are trained, can either differentiate between many different conditions (specialization) 110 

or generalize across conditions, tasks, and time (abstraction, “cross-condition generalization”). 111 

In such a geometry, closely related conditions in each task/context are placed at similar locations 112 

on low-dimensional manifolds; these manifolds in turn are approximately parallel to each other 113 

to allow generalization. On each manifold, different conditions within a task/context are placed 114 

sufficiently apart to allow maximal differentiation (Bernardi et al., 2020). To satisfy these 115 

conditions at the population level, the constituent single neurons must be tuned to combinations 116 

of several cognitive variables at once (“non-linear mixed selectivity”) (Rigotti et al., 2013) . This 117 

set of clear theoretical predictions has been supported empirically to some extent by rare 118 

empirical studies in monkeys (Bernardi et al., 2020) and humans (Minxha et al., 2020), but has so 119 

far not been explored for the important topic of performance monitoring. Here, we examine the 120 

hypothesis that neuronal populations in the human MFC represent conflict, error, and estimated 121 

control demand in such a format, making them accessible to the many downstream domain-122 

specific and domain-general processes we reviewed above. 123 

 124 

Estimation of the statistical likelihood of environmental events is essential for efficient 125 

goal-directed behavior (Behrens et al., 2007; Jiang et al., 2015; Shenhav et al., 2013). A key aspect 126 

of this process is estimating the probability of encountering a situation where cognitive control 127 

will be needed (Jiang et al., 2015; Shenhav et al., 2013). Human participants engage reactive or 128 

proactive control depending on whether conflict is likely or not (Braver, 2012; Carter et al., 2000; 129 

Logan and Zbrodoff, 1979; Tzelgov et al., 1992). The former strategy is efficient when conflict is 130 

rarely encountered, whereas the latter is necessary when conflict occurs often (Braver, 2012). 131 

Neuroimaging studies have shown that the MFC encodes contexts that are implicitly defined by 132 

conflict probability (Carter et al., 2000), but it remains unknown how knowledge about such 133 

implicit contexts is acquired from the ‘trial-by-trial’ feedback provided by performance 134 

monitoring. Motivated by prior results (Behrens et al., 2007; Darlington et al., 2018; Jiang et al., 135 

2015; Shenhav et al., 2013; Sohn et al., 2019), we here examine the hypothesis that human MFC 136 

neurons signal and continuously update the probability of encountering a control-demanding 137 

situation. Since the type of control triggered by different kinds of conflicts differs, this requires 138 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.08.451594doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451594


representations that support both domain-specific as well as domain-general readouts. 139 

Estimating the expected frequency of each type of trial requires integrating information over the 140 

history of trials, offering the unique opportunity to examine the mechanisms whereby 141 

representations are maintained and updated over time. We model the trial-by-trial changes of 142 

activity of the neurons encoding estimated conflict probability as a Bayesian updating process, in 143 

which estimated priors are updated iteratively every time after an action is completed. We show 144 

that a novel type of conflict signal appears only after an action is completed and thereby provides 145 

the critical information for updating the conflict prior into a posterior.  146 

 147 

We recorded single neurons in the MFC while human epilepsy subjects perform two 148 

different cognitive control tasks in blocks: the Multi-source Interference task (“MSIT”) (Bush and 149 

Shin, 2006) and the color-word Stroop task (“Stroop”)(Stroop, 1935). The causes of conflict and 150 

thus errors are different in the two tasks - stimulus-response spatial incompatibility (“Simon” 151 

effect) and/or stimulus conflict (“Flanker” effect) in the MSIT, and stimulus-response 152 

incompatibility due to reading colored words in the Stroop task. This allowed us to study how 153 

different sources of conflict are encoded within a single task and across tasks, and how errors are 154 

encoded across tasks. Subjects were instructed verbally and performed both tasks with little prior 155 

practice, which is critical to examine the underlying neural mechanisms (which might be different 156 

for extensively practiced tasks as is typically done in animals).  157 

  158 

Results 159 

 160 

Task and behavior 161 

We recorded well-isolated single units in the dorsal ACC and pre-SMA, which are two 162 

areas within MFC associated with different aspects of performance monitoring. Subjects 163 

performed two speeded response tasks that require cognitive control: the multi-source 164 

interference task (MSIT) and the color-word Stroop task (Stroop) (Fig. 1a and Methods; Stroop: 165 

593 neurons in dACC and 607 neurons in pre-SMA across 32 participants (10 females); MSIT: 326 166 

neurons in dACC and 412 neurons in pre-SMA in 12 participants (6 females); some patients only 167 
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performed one of the tasks due to time constraints, Table S1). In the MSIT task (Fig. 1a, left), 168 

conflict arises due to incompatibility between target identity and target location (Simon conflict, 169 

or “si” trials) and/or distracting number identity (Flanker conflict, or “fl” trials; trials with both 170 

are referred to as “sf” trials). In the Stroop task (Fig. 1b, right), conflict arises due to 171 

incompatibility between ink color and semantic meaning of the displayed words. In both tasks, 172 

sequences of stimuli were randomized, with each type of trial occurring with a fixed probability 173 

(In Stroop, 33% of trials had conflict; In MSIT, 15%, 15% and 30% of trials had si, fl, and sf type of 174 

conflict, respectively). Subjects were encouraged to respond quickly by an adaptive response 175 

threshold (see Methods), ensuring maximal task engagement. The different stimulus-response 176 

mappings lead to different goal-relevant and irrelevant stimulus features and thus to different 177 

kinds of cognitive conflict and reasons for committing errors.   178 

 Reaction times (RT) were significantly prolonged in the presence of conflicts, 179 

demonstrating the Simon and Flanker effect in the MSIT task (Fig. 1b, left; average RT of 0.76s, 180 

0.86s, 0.93s, 1.03s for non-conflict, si, fl, and sf, respectively) and the Stroop effect in the Stroop 181 

task (Fig. 1b, right; Stroop: 0.76s vs 0.97s for non-conflict and conflict, respectively). We analyzed 182 

participants’ sequential performance (RT and accuracy) with a Bayesian online learning 183 

framework, building on existing models (Behrens et al., 2007; Jiang et al., 2014, 2015). Our 184 

models assume that participants iteratively estimate of how likely it is to encounter a certain type 185 

of conflict on the next trial. We refer to this variable as the prior for conflict probability (a real 186 

number between 0-1 referred to as ‘conflict prior’). Since trial sequences were randomized, 187 

subjects could not predict with certainty whether the upcoming trial involved conflict or not. 188 

However, they could estimate the conflict probability, which is a task parameter set by the 189 

experimenter whose value is unknown to the subject a priori. For MSIT, our models estimated 190 

two conflict probabilities (one for si, one for fl) at the same time, based on the finding that both 191 

conflicts influenced RT (Fig. 1b, left). The trial horizon by which past trials (“conflict history”) 192 

informed the current estimate was dynamically adjusted by a learning rate parameter, which was 193 

also estimated online from the data. In order to obtain an individual conflict prior for every 194 

subject (even if the trial sequence was identical), we tuned the iterative estimation model by 195 

incorporating RT information, using the expectation-maximization procedure described in prior 196 
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work (Friston, 2002; Jiang et al., 2015). We modelled the RT generation process as a drift-197 

diffusion process (DDM), where the decision variable represents the difference in evidence for 198 

the target and distractor response; one bound thus represents the correct outcome whereas the 199 

other represents the erroneous outcome. This DDM likelihood function for RT is specified with 200 

three hyperparameters:  decision bound, drift rates, and drift rate bias (Navarro and Fuss, 2009). 201 

Conflict prior entered the decision process by biasing the drift rate (Urai et al., 2019) (Fig. 1c, 202 

right; term 𝑣!"#$): the bias term was the scaled Stroop prior for the Stroop model and the sum of 203 

independently scaled Simon prior and the Flanker prior for the MSIT model. The same scaling 204 

parameters were used regardless of whether the trial had conflict or not because, by definition, 205 

the effect of conflict prior started before the trial congruency was revealed. 206 

 We estimated the hyperparameters of this model using an expectation-maximization 207 

algorithm (see Methods for details). Conflict probability was estimated iteratively by updating 208 

the current prior with the observed conflict type on each trial using the Bayes’ law; the updated 209 

conflict posterior then served as the prior for the next trial. This online nature of the model 210 

captured how human subjects learned about the statistics of conflict trials as they were 211 

experienced sequentially. In the following analyses, we refer to the means of the prior and 212 

posterior distributions as conflict “prior” (before stimulus onset) or “posterior” (after action 213 

completion; Fig. 1d shows an example MSIT session). We considered two alternative classes of 214 

models with additional free parameters: 1) models estimating conflict probability (Stroop, Simon 215 

or Flanker) using all data at once instead of trial-by-trial updating; 2) reinforcement learning 216 

models that perform trial-by-trial updating using a constant learning rate. All of these alternative 217 

models required offline fitting using all data. Our RT-tuned Bayesian learning model performed 218 

significantly better than either class of alternative models in terms of explaining RT and the 219 

conflict sequence (Tables S2 and S3 for a summary of model comparisons). Additionally, RT 220 

tuning significantly improved the Bayesian model in terms of explaining RT (Table S2, compare 221 

columns “RT tuned” and “no RT tuned”; MSIT delta BIC = -348.5; Stroop delta BIC = -508) and the 222 

trial congruency sequence (Table S3, compare columns “RT tuned” and “no RT tuned”; MSIT delta 223 

BIC = -157; Stroop delta BIC = -232). We thus used the RT-tuned Bayesian model for all neural 224 

analyses. 225 
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 We next examined what aspects of behavior were related to the model-derived 226 

regressors (see Fig. S2 for values of derived hyperparameters). First, in addition to current trial 227 

conflict, the estimated conflict prior had a significantly positive (i.e., an increase in RT) main effect 228 

on RT in both tasks (Fig. 1e; c2(1) = 6.75, p = 0.009 for Simon and c2(1) = 6.79, p = 0.009 for 229 

Flanker in MSIT; c2(1) = 28.1, p < 0.001 for Stroop. Likelihood ratio test). The extent to which RT 230 

varied with the conflict prior depended on the type of conflict (in the case of MSIT, Simon and 231 

Flanker separately), as indicated by a significant negative interaction term (c2(1) = 12.94 for 232 

Simon and c2(1) = 14.2 for Flanker in MSIT; c2(1) = 33.3 for Stroop. p < 0.001 for all conflict types. 233 

Likelihood ratio test). This relation between conflict prior and RT remained significant when trial 234 

ID was added as a nuisance variable (Fig. S1a), or when the conflict prior was estimated without 235 

RT tuning (Fig. S1b). These RT effects were replicated by online participants collected using 236 

Amazon mTurk as behavioral controls (Fig. S1d). Conflict prior was systematically related to 237 

errors: when conflict was likely, subjects were less likely to commit an error on this trial, 238 

suggesting that more control was engaged (Fig. S1c; for MSIT we only considered “sf” trials where 239 

most errors occurred; significant main effect c2(1) = 6.81, p = 0.009 for MSIT; significant 240 

interaction with non-significant main effect c2(1) = 18.59, p < 0.001 for Stroop. Likelihood ratio 241 

test). Prior work analyzes the influence conflict on the immediately preceding trial has on RT as 242 

a signature of cognitive control (Egner and Hirsch, 2005; Kerns et al., 2004). However, the 243 

robustness and generality of the conflict adaptation effect varies between studies (Duthoo et al., 244 

2014; Egner, 2007; Schmidt and De Houwer, 2011) and is not the focus of our study.  Rather, we 245 

here consider conflict learning effects that occur over the span of many trials and that exists 246 

independent of conflict adaptation, as shown in prior work (Jiang et al., 2015). In fact, in our data, 247 

conflict on the immediately preceding trial provided a poor estimate of conflict probability; 248 

compared to our model, previous trial conflict alone explained significantly less variance in RT 249 

(MSIT delta BIC = -365.6; Stroop delta BIC = -298.5; Table S2, compare columns “RT tuned” and 250 

“Prev conflict”), suggesting that our participants incorporated conflict information from multiple 251 

trials back. Collectively, these behavioral data from two tasks demonstrate that our models that 252 

estimate conflict probability online explained variance in RT and error likelihood, demonstrating 253 

a proactive engagement of control.  254 
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 255 

Neuronal correlates of performance monitoring signals 256 

 257 

We focused on three types of epochs for analyses (Fig. 3a): baseline before stimulus onset, 258 

a 500ms epoch centered at the mid-point between 100ms after stimulus onset and button 259 

presses (“ex-ante”), and epochs immediately following button presses (“ex-post”). To assess 260 

whether signals relevant for performance monitoring are represented in each epoch, we 261 

classified neurons by cognitive variables important for performance monitoring. We identified 262 

neurons selective for prior mean or prior variance in the baseline period, for conflict in the ex-263 

ante and ex-post period, and for error, surprise, posterior, and posterior variance in the ex-post 264 

period (see single-unit examples in Fig. 2; schematic of analysis epochs in Fig. 3a; and a summary 265 

of overall cell counts in Fig. 3b). In MSIT, in order to isolate effects related to the Simon conflict, 266 

we refer to the union of “si” and “sf” trials as “Simon trials” and the union of “fl” and no-conflict 267 

trials as “non-Simon trials”. Similarly, to isolate the effect of Flanker conflict we refer to the union 268 

of “fl” and “sf” trials as “Flanker trials”, and the union of “si” and no-conflict trials as “non-Flanker 269 

trials”. Except when noted otherwise, we pooled neurons across dACC and pre-SMA because 270 

neuronal responses were similar across areas (Fig. S3a-b).  271 

 Single units tracked aspects of performance monitoring in both tasks (single-unit 272 

examples in Fig. 2; summary in Fig. 3b). During the baseline epoch, a significant proportion of 273 

neurons encoded the mean or the variance of the prior distribution for conflict probability (Fig. 274 

3b, blue). In the ex-ante epoch, a significant proportion of neurons encoded conflict (15% in MSIT 275 

and 12% in Stroop; Fig. 3b, green), consistent with previous reports (Fu et al., 2019; Sheth et al., 276 

2012). In the ex-post epoch (Fig. 3b, yellow), neurons encoded conflict (20% in MSIT; 17% in 277 

Stroop), conflict surprise (19% in MSIT; 10% in Stroop), occurrence of errors (22% in MSIT; 19% 278 

in Stroop), and the mean and variance of posterior distribution of conflict probability (14/26% in 279 

MSIT; 20/12% in Stroop). The signal we refer to as conflict surprise is an unsigned conflict 280 

prediction error generated by the experienced conflict given the current prior estimate, a critical 281 

component in computing the posterior from the prior (see below). The percentage of units 282 

selective for a given variable were similar between the two tasks (Fig. 3b).  283 
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Many identified neurons showed selectivity for more than one cognitive variable (Fig. 3c- 284 

d), suggesting a role in bridging different types of information. Approximately 30% of conflict 285 

neurons were active exclusively in either the ex-ante, early (0-0.5s after button presses) or late 286 

(0.5-1.5s after button presses) ex-post epochs (Fig. 3c), with some (~12%) active throughout the 287 

trial after stimulus onset (“extended”). The distribution of conflict signals across time was 288 

strikingly similar between MSIT and Stroop (Fig. 3c, compare left and right). We were particularly 289 

intrigued by the prominence of neurons signaling conflict ex-post (15-20% of neurons in both 290 

tasks; Fig. 2c shows an example), which has not been reported before. This conflict signal, whose 291 

timing was too late to be useful for within-trial cognitive control, was more prominent compared 292 

to the one found in the ex-ante epoch in both tasks (15% vs 20%, c2(1) = 5.08, p = 0.024 for MSIT; 293 

12% vs 16%, c2(1) = 9.19, p = 0.0024 for Stroop, chi-squared test). We note that signaling conflict 294 

“after the fact” is predicted by our Bayesian conflict learning framework, in which this ex-post 295 

conflict serves as the conflict “outcome” signal indicating that the trial was not only correct but 296 

also with or without conflict, information necessary for computing the conflict posterior from the 297 

prior. We found that many conflict neurons also signaled errors, surprise, posterior, or 298 

combinations of these variables (for example, signaling conflict, error, and posterior at the same 299 

time) (Fig. 3d). This multiplexing of signals depended on the timing of conflict signals. The 300 

proportion of conflict neurons that also carried information about the posterior (light green bars) 301 

increased significantly towards the end of the ex-post epoch, when updating would be most 302 

complete and thus the conflict posterior was computed (compare proportion of  conflict neurons 303 

that multiplexed posterior information in the late ex-post epoch with those that do so in other 304 

epochs; c2(1) = 6.14, p = 0.01 for MSIT; c2(1) = 6.22, p = 0.01 for Stroop, chi-squared test). 305 

Consistent with this idea, the group of neurons signaling conflict exclusively in the ex-ante epoch 306 

(“ex-ante conflict only”) showed the least multiplexing, indicating a primary role in monitoring 307 

conflict during action production (proportion of “pure” conflict neurons active only during the 308 

ex-ante epoch vs. those that are active in other epochs; c2(1) = 5.31, p = 0.02 for MSIT; c2(1) = 309 

8.78, p = 0.003 for Stroop, chi-squared test). Additional evidence for a differential role of ex-ante 310 

and ex-post conflict signals is provided by comparing the point in time when these signals were 311 

first available in each brain area. Here, we extracted for each conflict trial the point in time when 312 
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spike train was first significantly modulated for ex-ante and ex-post conflict neurons (using a 313 

Poisson spike train statistics-based approach (Hanes et al., 1995)). By this measure, ex-ante 314 

conflict information was first available in dACC, followed by pre-SMA (Fig. 3e; median difference 315 

= 138ms; p < 0.001, Wilcoxon rank sum test). By contrast, ex-post conflict information was 316 

available first in pre-SMA, followed by dACC (Fig. 3e; median difference = 161ms; p = 0.002, 317 

Wilcoxon rank sum test). This pattern is consistent with a leading role of pre-SMA in post-action 318 

performance monitoring (Fu et al., 2019), and a leading role of dACC in conflict monitoring during 319 

action production. Collectively, these ex-post neuronal responses appeared to reflect the process 320 

of updating internal estimates of conflict probability based on present trial outcome as signaled 321 

by conflict and error neurons. We next tested this hypothesis. 322 

 Posterior neurons demonstrated the greatest degree of multiplexing (Fig. 3f). Only ~18% 323 

of posterior neurons signaled posterior exclusively, with the remainder in addition also signaling 324 

prior, conflict, surprise, or a mixture of these. This extensive overlap between posterior signals 325 

and each of these ex-post constituents might reflect the computation of the conflict posterior, 326 

which would involve all these variables. We next tested whether prior neurons (which are 327 

selected during the baseline period) changed their spike rates to reflect the updating process in 328 

the ex-post epoch (1s after button press). If a neuron correlates with prior on a trial-by-trial basis 329 

and the prior is updated into the posterior after each action, the spike rates of this neuron should 330 

reflect this updating. As a neural measure of updating, we used the difference of mean-removed 331 

firing rates in two epochs: the early ex-post epoch (1s after button presses) and the baseline. As 332 

a behavioral measure of updating, we used the numerical difference between posterior and prior 333 

means as estimated by the Bayesian models. We then correlated these two trial-by-trial 334 

measures for each prior neuron. Across all prior neurons, correlation was significantly positive 335 

for all types of conflict priors (Fig. 3g, p < 0.001, t test against zero. Mean correlations in Simon, 336 

Flanker and Stroop are 0.042, 0.032, 0.065, respectively). This result indicates that prior neurons 337 

changed their spike rates in the early ex-post epoch, where the conflict outcome was revealed, 338 

to reflect the updated posterior. Together, these data demonstrate that a potential role for the 339 

ex-post monitoring signals is to update an online estimate of conflict probability. 340 

 341 
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Event-related potentials that reflect activity of prior cells 342 

 343 

The intracranial EEG data recorded simultaneously with the single units revealed an event 344 

related potential following button presses on correct trials (Fig. 3h; “CRP”, or correct-related 345 

potentials). Event-related potentials (ERPs) reflect synchronous postsynaptic potentials of 346 

cortical pyramidal neurons within the cortical microcircuitry (Buzsáki et al., 2012; Herrera et al., 347 

2020; Woodman, 2010). Similar to the ex-post neurons we investigated, CRPs on average 348 

followed button presses, had larger amplitude on conflict trials compared to non-conflict trials 349 

(Fig. S3c, c2(1) = 21.05, p < 0.001, likelihood ratio test) and showed an interaction effect between 350 

trial congruency and conflict prior (a measure of conflict surprise; c2(1) = 8.48, p < 0.001, 351 

likelihood ratio test), carrying population-level information important for updating conflict prior. 352 

We thus hypothesized that these prominent ERPs might represent inputs for the prior neurons 353 

recorded simultaneously. We tested whether variance in the spike counts of prior neurons could 354 

be explained by the CRP amplitude for each point in time across the trial (mixed-effect Poisson 355 

regression models tested with likelihood ratio test, see methods). We investigated dACC and pre-356 

SMA separately, consistent with our previous work (Fu et al., 2019). We found that the activity 357 

of prior neurons in both dACC and pre-SMA around button presses was significantly correlated 358 

with the CRP amplitude on a trial-by-trial basis (Fig. 3i-j, Poisson mixed-effect regression model, 359 

which included RT and prior as nuisance variables. p < 0.01 for all time bins marked by black dots 360 

on top, likelihood ratio test. Multiple comparisons were corrected for using the false-discovery 361 

rate method), but with earlier onset in dACC than in pre-SMA (0s vs 0.325s after button presses). 362 

This indicates that the CRP amplitude (which occurs in the ex-post period) predicted the activity 363 

of prior neurons around button presses on a trial-by-trial basis, revealing a neuronal correlate for 364 

this prominent ERP.  365 

 366 

Biophysical basis for encoding of prior/posterior 367 

 368 

 Estimating priors/posteriors in our task necessitates the integration and maintenance of 369 

information across multiple trials, a non-trivial property of neural circuitry (Wang, 2002). We 370 
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therefore investigated whether the functional properties of neurons that encoded priors differed 371 

from those that did not. The metrics we used was the temporal correlation profile of baseline 372 

spike counts across trials and the width of the extracellular waveform. We chose these properties 373 

because the autocorrelation of spike counts at rest of PFC neurons predicts a neuron’s 374 

participation in working memory (Cavanagh et al., 2018) as well as value coding (Cavanagh et al., 375 

2016), and PFC neurons that encode past reward outcomes have narrower waveforms (Kawai et 376 

al., 2019). The timescale of autocorrelation we sought to investigate here is over the span of 377 

minutes (multiple trials). To this end, we employed Detrended Fluctuation Analysis (DFA)  (Peng 378 

et al., 1994) to quantify the self-similarity of baseline spike counts for each neuron, treating the 379 

trial-by-trial baseline spike counts as time series data. DFA provides a measure of self-similarity 380 

closely related to the slope of the power spectrum (and thus the autocorrelation), but without 381 

assuming stationarity. A DFA a value greater than 0.5 indicates a positively correlated process, 382 

whereas a = 0.5 indicates an uncorrelated process. We found that in both tasks, neurons 383 

representing priors had significantly higher DFA a values compared to other categories of 384 

neurons (Fig. 4a-b, left panels; p < 0.001, ANOVA), with DFA a positively correlated with the 385 

strength of prior information carried by a particular neuron (Fig. 4a-b, right panels; p < 0.001, r = 386 

0.24 for MSIT, p < 0.001, r = 0.21 for Stroop, Spearman’s rank correlation. Separate data were 387 

used for computing these two metrics, see Methods for detail).  388 

 We next investigated the relation between a neuron’s tendency for long-term 389 

maintenance of information (as indicated by a > 0.5) and its spike width, a biophysical measure 390 

that differs between different types of cells (Bean, 2007; Mosher et al., 2020). The relation 391 

between DFA a value, autocorrelation, slope of the power spectrum, and spike width can be seen 392 

in the two example neurons shown in Fig. 4c-f. The orange neuron, which had a  a = 0.91, had a 393 

narrower spike waveform, larger autocorrelation and steeper power spectrum slope than the 394 

gray neuron with a = 0.54. Across all recorded neurons in both tasks, DFA a values were 395 

negatively correlated with spike width (Fig. 4g-h; r = -0.19 in MSIT, r = -0.12 in Stroop, p < 0.001 396 

in both cases, Spearman’s rank correlation). Neurons encoding conflict prior/posterior, which 397 

requires long-term maintenance, in either task had significantly narrower spike waveforms than 398 

all other recorded neurons (Fig. 4g-h, right; p < 0.001, Wilcoxon’s rank sum test). Taken together, 399 
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these data establish that the long-range temporal correlation of baseline spike counts is an 400 

intrinsic firing property of neurons that was predictive of the neuron’s spike width as well as the 401 

encoding strength of conflict prior/posterior. Neurons that represent conflict priors/posteriors 402 

appear to be biophysically distinct and of a different cell type from those that do not code such 403 

information, due to their systematically different extracellular waveform and firing properties.  404 

 405 

 406 

Temporal progression of performance monitoring signals 407 

 408 

Given the diversity of firing dynamics seen at the single neuron level (Figs. 2 and 3), we 409 

next examined the temporal dynamics and robustness of performance monitoring signals at the 410 

population level using decoding. We used linear classifiers that had access to all recorded 411 

neurons, which represents a conservative measure of information available to downstream 412 

neurons (Fusi et al., 2016). We first focused on within-time decoding (i.e., training and testing a 413 

decoder using data collected in the same epoch). Error, conflict, prior and posterior could be 414 

decoded reliably on single trials with high cross-validated accuracy (Fig. 5a-g and Fig. S5a-d, 415 

dotted traces or dotted square shows within-time decoding accuracy). In both tasks, the error 416 

signal was decodable with high accuracy throughout the whole ex-post epoch, consistent with 417 

our previous report of its role in mediating post-error RT adjustments (Fu et al., 2019) (Fig. 5a-b, 418 

dotted line). Decoding performance of conflict in both tasks peaked first in the ex-ante epoch 419 

(Fig. 5c-e, dotted line in the green shading) and then again in the early ex-post epoch (Fig. 5c-e, 420 

dotted line in the orange shading), before gradually decreasing towards the end of the trial. This 421 

time course is consistent with a putative role in estimating conflict probability: conflict is first 422 

monitored before committing to a response (ex-ante), followed by a representation of the 423 

detected conflict as an outcome signal after button press (ex-post).  424 

 We next investigated whether the neural code changed over time by using cross-temporal 425 

generalization analysis (i.e., training and testing a decoder in different periods of time). We tested 426 

the temporal generalization performance of error and conflict decoders trained using data from 427 

three defined ROIs: the ex-ante epoch (0.5s; green shading), the early ex-post epoch (0-0.5s after 428 
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button presses; orange shading) and the late ex-post epoch (0.75-1.25s after button presses; blue 429 

shading). In terms of error coding, the early ex-post decoder generalized poorly to later periods 430 

(Fig. 5a-b; orange line) whereas the late ex-post decoder generalized well across early and late 431 

ex-post epochs (Fig. 5a-b; blue line). This interesting asymmetry in generalization suggests that 432 

there are two groups of error neurons, one signaling errors strongly but transiently, and one 433 

signaling error persistently throughout the entire ex-post epochs. In terms of conflict coding, 434 

population decoders performed well only within the training epochs but generalized poorly to 435 

other epochs for both tasks and all types of conflict (Fig. 5c-e), suggesting a dynamic coding 436 

patterns for conflict that changed rapidly as the trial unfolds. In particular, the ex-ante decoder 437 

did not decode conflict above chance in the ex-post epochs (green traces in Fig. 5c-e). This 438 

confirms our single neuron findings that the ex-post conflict signals were not simply a 439 

continuation of ex-ante conflict signals, but rather signals carried by different groups of neurons 440 

at different points in time.  441 

 For the population coding patterns of prior/posterior, we took a region of interest (ROI) 442 

approach given their slow-varying nature, using the baseline and ex-post epochs for prior and 443 

posterior, respectively. Since the conflict priors are continuously valued and differed between 444 

sessions, we binned trials using quartiles of conflict prior to aggregate data across sessions 445 

(labelling trials by four prior levels). We also binned the trials by quartiles of posterior for 446 

posterior-related analyses (labelling trials by four posterior levels). We then trained a linear 447 

decoder to differentiate between priors/posteriors of two different quantiles. The prior and 448 

posterior decoder could differentiate between all pairs of prior/posterior quantiles with high 449 

accuracy (Fig. 5f-g and Fig. S5a-d; within-ROI decoding, upper or lower triangular matrices 450 

enclosed by dotted boxes), with accuracy scaling with the distance between pairs of quartiles 451 

(i.e., higher accuracy for differentiating 1st vs. 4th than for 1st vs. 2nd levels). The prior decoders 452 

are able to decode all pairs of posterior levels with high accuracy and vice-versa (Fig. 5f-g and Fig. 453 

S5a-d, plots not enclosed by dotted boxes), indicating that the representation of prior/posterior 454 

is stable across time.  455 

 Decoding performance for error, conflict and prior/posterior had similar temporal profiles 456 

in both dACC and pre-SMA, but with higher decoding accuracy in pre-SMA (Fig. S4a-e). Notably, 457 
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conflict in the immediately preceding trial could be decoded only weakly (lower than 60% in 458 

accuracy) in the baseline, as expected, and in the early ex-post epoch for Stroop conflict (Fig. S5e-459 

g). The weak representation of previous conflict is consistent with our observation that the 460 

previous conflict alone was a poor predictor of RT compared to the conflict prior (Table S2). 461 

Together, these data demonstrate that error, conflict and prior/posterior information can be 462 

read out trial-by-trial from the MFC population with high accuracy, with dynamic coding patterns 463 

for conflict and error and static coding patterns for prior/posterior. 464 

 465 

State-space representation of conflict  466 

 467 

 We have shown robust encoding of each of the four conflict types involved in both tasks 468 

(sf, fi, sf, Stroop) separately, leaving open the question of how the different encoding schemes 469 

are related to each other. Are the different types of conflict encoded along a common ‘conflict’ 470 

axis or are they encoded separately with no generalization between the types of conflict? We 471 

tested this question in the MSIT task, which has three types of conflict (Simon, Flanker, both). We 472 

took as a putative common conflict coding dimension the line that, in neural state space, 473 

connects the neural state during “sf” and “none” trials (both conflict vs. no conflict; Fig. 6a-b, 474 

dotted lines). Projecting left-out single trials from all four trial types onto this coding dimension 475 

allowed differentiation between all pairs of conflict conditions in the ex-ante epoch (Fig. 6b, left).  476 

and all pairs but one (si vs. sf) in the ex-post epochs (Fig. 6b, right). Importantly, this result holds 477 

even when RT was equalized across the four conflict conditions (Fig. S6c; si, fl, sf, non-conflict. 478 

See Methods for RT equalization procedure), suggesting that this conflict coding dimension was 479 

independent of trial difficulty for which RT is a proxy (Gratton et al., 1992). We next investigated 480 

whether Simon and Flanker conflict encoding is related to each other by projecting the activity 481 

of single trials onto the coding dimension formed by connecting, in the neural state space, the 482 

mean of Simon (si+sf) with the mean of non-Simon (fl+none) separately for each time bin (and 483 

vice-versa for Flanker (fl+sf) vs non-Flanker (si+none)). Data for testing were held out (not used 484 

for constructing the coding dimensions). Coding dimensions for one type of conflict allowed 485 

decoding of the other type of conflict with high accuracy (Fig. 6c; black trace, coding dimension 486 
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of Flanker tested with Simon vs. non-Simon; gray trace, coding dimension of Simon tested with 487 

Flanker vs. non-Flanker). Together, these data demonstrate that within a single cognitive task, 488 

the MFC population formed a conflict representation that generalized across two types of conflict 489 

while at the same time also allowed maximal separation between the different types of conflict, 490 

a geometry that supports both abstraction as well as task-specific specialization (Bernardi et al., 491 

2020). 492 

 When two types of conflict coincide on a trial (“sf” trials in MSIT), is the neural state 493 

occupied equal to the sum of the two states occupied by the components (“si” and “fl”)? In other 494 

words, is the Simon and Flanker representation compositional? Perfect compositionality implies 495 

that the vectors for the four trial types (“si”, “fl”, “none”, “sf”) are coplanar and form a 496 

parallelogram, with the “sf” vector being the diagonal and the opposite sides being parallel to 497 

each other (Fig. 6a-b). We tested this prediction of parallelism (Fig. 6a-b, orange edges and blue 498 

edges, respectively) using decoding. If the opposing sides are parallel, a decoder trained to 499 

differentiate the two classes connected by one edge should be able to decode two classes 500 

connected by the opposite edge (and vice-versa). We found that this was largely the case for both 501 

ex-ante and ex-post conflict representation: a decoder trained to differentiate “sf” from “fl” trials, 502 

which is simply the axis connecting “sf” and “fl” (orange edge in Fig. 6a), was able to differentiate 503 

“si” from non-conflict trials projected to this axis above chance, and vice versa (Fig. 6d, p < 0.001 504 

for both the ex-ante and ex-post data, permutation test). The same was true for the other pair 505 

of parallel edges (Fig. 6d, testing blue edges in Fig. 6a; p < 0.001 for both the ex-ante and ex-post 506 

data, permutation test). The parallelism was not perfect because the decoding accuracy, while 507 

above chance, was relatively low (< 70%) compared to the performance reached when decoding 508 

individual types of conflict (Fig. 6c). This structure of the representation was disrupted on error 509 

trials, in which generalization performance dropped significantly in the ex-ante (Fig. S6d; for both 510 

edges, 68% and 58% on correct trials vs. 56% and 47% on error trials) as well as the ex-post epoch 511 

(Fig. S6d; for both edges, 55% and 66% on correct trials vs. 51% and 59% on error trials) on error 512 

trials. Lastly, we examined which neurons contributed to the deviation that keeps the axes from 513 

being perfectly parallel and thus perfectly compositional, which was assessed by the mismatch 514 

between the actual location of “sf” and the predicted location by vector addition of fl + si. 515 
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Neurons that encoded Simon and Flanker non-linearly (as measured by the F statistic of the 516 

interaction term between Simon and Flanker derived from an ANOVA model) contributed the 517 

most to the deviation from linear additivity at the population level (Fig. 6e, r = 0.74, p < 0.001, 518 

for ex-post data; Fig. S6e, r = 0.75, p < 0.001, for ex-ante data; Spearman’s rank correlation). 519 

Collectively these data suggested that in the MSIT task, neural representations of conflict were 520 

structured in a compositional way that separated the four conflict conditions in a parallelogram. 521 

This geometry was disrupted on error trials, indicating that this representation was behaviorally 522 

relevant.  523 

 524 

State-space representation of prior/posterior 525 

 526 

 We reasoned that the conflict prior can be viewed as a state (an initial condition) that is 527 

present before stimulus and to which the population returns after completing a trial. To test this 528 

idea, we again binned trials using quartiles of prior/posterior of each trial (labelling trials with 4 529 

prior or posterior levels) and aggregated data across the population. Plotting the neural dynamics 530 

in a low-dimensional space spanned by three principal components with largest variance 531 

explained (PCA is unsupervised and has no access to the ordinal relation between prior/posterior 532 

levels) revealed that the variability across different levels of prior/posterior (~8% of variance) was 533 

captured mostly by a single axis (PC3s in Fig. 6f-h; green dots mark trial start, red dot trial end), 534 

which was orthogonal to most of the time-dependent state changes (captured by PC1s and PC2s, 535 

~68% of variance). During the baseline period (green to cyan dots in Fig. 6f-h) neural state 536 

changed with low speed (Fig. 6i and Fig. S6f-g), whereas the speed of changed increased 537 

significantly after stimulus onset (Fig. 6i and Fig. S6f-g, red; p < 0.001, paired t-test), eventually 538 

returning to baseline near the starting position (red dots in Fig. 6f-h). The distance between the 539 

four trajectories was kept approximately constant at all time (Fig. 6i and Fig. S6f-g), consistent 540 

with the levels of prior/posterior being states stably maintained at the individual trial level. 541 

Remarkably, the state-space trajectories are not only stable but also preserves the ordinal 542 

relation between prior/posterior levels: projection values onto the PC that captured the most 543 

variance across prior/posterior levels were arranged in an order consistent with the 544 
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prior/posterior levels, even though PCA did not have access to such ordinal information (Fig. 6j-545 

l, see Legends for statistics of the multinomial logistic regression). Taken together, the MFC 546 

representation of the conflict prior/posterior information is low-dimensional, stable across time 547 

and parametric, consistent with the dynamics of line attractors.    548 

 549 

Domain-general performance monitoring signals at the population 550 

  551 

 What was the relationship between the performance monitoring signals we documented 552 

separately in the MSIT and Stroop tasks? Did neurons specialize in encoding a given signal in only 553 

a given task or did neurons form a domain-general representation across tasks? If the latter, was 554 

this representation abstract in the sense that information about the task identity or task-specific 555 

conditions (e.g., the different types of conflicts in MSIT) were no longer available? To answer 556 

these questions, we next analyzed a subset of data in which we tracked the same neuron in both 557 

Stroop and MSIT (see Table S1 for a tally of recordings). Note that participants had no knowledge 558 

of the second experiment they were going to perform when they performed the first (which was 559 

either MIST or Stroop), thereby allowing us to ask how two novel tasks with no prior practice 560 

engaged MFC. We used demixed PCA (dPCA) (Kobak et al., 2016) on the neural activity recorded 561 

across both tasks to identify coding dimensions for error, conflict and conflict prior/posterior 562 

which were stable across time and with task information maximally marginalized out. Namely, 563 

the goal is to factorize data into performance monitoring signals, non-specific temporal dynamics 564 

as well as signals related to task sets (see Methods for details). To match the number of 565 

conditions between tasks, we picked non-conflict and “sf” trials in MSIT and non-conflict and 566 

Stroop trials in the Stroop task to construct the task-invariant conflict dimension. To assess 567 

whether the extracted coding dimensions were meaningful statistically, we used them to decode 568 

left-out data that were not used to construct these dimensions. To test generalization across 569 

tasks, we first projected both left-out training and testing data onto a dPCA dimension, and then 570 

classified the testing data in task using training data from the other task.  571 

We found that the dPCA task-invariant coding dimensions identified this way explained 572 

between 9-12% of the variance and allowed training of a decoder in one task and testing it in the 573 
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other with high accuracy (Fig. 7a-c; > 80% accuracy for error and conflicts). To quantify the extent 574 

of “demixing” of performance monitoring signals from task set information, we computed the 575 

angle between the task invariant coding dimensions and their corresponding task dimension. The 576 

error dimension supported task-invariant decoding of error throughout the ex-post epoch (Fig. 577 

7a; significant clusters see horizonal bars; p < 0.001, cluster-based permutation tests). The angle 578 

between the error coding dimension and the task dimension was 94.47° and did not deviate 579 

significantly from orthogonality (p = 0.53, tau = -0.032, Kendall rank correlation). The conflict 580 

dimension supported task-invariant decoding in the ex-ante and the early ex-post epoch (Fig. 7b-581 

c; significant clusters see horizonal bars; p < 0.001, cluster-based permutation tests). The angles 582 

between Stroop-Simon conflict coding dimensions and the task dimension were 81.13°, which 583 

did not differ significantly from orthogonality (p=0.19, tau = 0.048, Kendall rank correlation). The 584 

angles between Stroop-Flanker conflict coding dimensions and the task dimension were 78.6°, 585 

which deviated weakly from orthogonality (p=0.02, tau = 0.086, Kendall rank correlation). This 586 

task generalizability did not compromise the capacity of this coding dimension to separate 587 

different kinds of conflict within MSIT: classifiers could differentiate between 5 out of 6 pairs of 588 

conflict conditions with high accuracy (60% - 90%) in both the ex-ante and ex-post periods based 589 

on data projected onto the task-invariant dPCA conflict axes (Fig. 7d; p values see figure legend, 590 

permutation tests). As a control, we repeated all above dPCA decoding analyses using trial 591 

conditions equalized by RT (e.g., selecting conflict and non-conflict trials that had similar RTs) and 592 

obtained very similar findings (Fig. S7a-d). These results suggests that task-invariant 593 

representation of error and conflict did not result from the coincidental condition differences in 594 

difficulty for which RT is a proxy (Gratton et al., 1992).  595 

Similarly, the representation of conflict priors and posteriors also allowed task-invariant 596 

decoding of this information while at the same time differentiation between 94% of pairs of 597 

prior/posterior levels in both tasks (Fig. 7e-f; p values see figure; permutation tests). None of the 598 

coding dimensions for conflict prior or posterior were significantly non-orthogonal with the task 599 

dimension (angles and Kendall’s tau values see Legend; p > 0.2 for all, Kendall rank correlation), 600 

suggesting that the coding dimensions identified for conflict prior or posterior were significantly 601 

“demixed” from the task set dimension, a complete factorization. Consistent with this, the task 602 
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dimension support decoding of which task a trial was from with very high accuracy (>90% leave-603 

one-out accuracy, p < 0.001 by permutation tests). Together, these data demonstrate that the 604 

neural representation of performance monitoring signals in MFC is configured in such a way that 605 

it supports generalizability between two different tasks while at the same time also allowing the 606 

readout of task-specific information.  607 

 608 

Domain-general performance monitoring signals at the single-neuron level 609 

 What gave rise to the flexible coding scheme that supported both task-invariant and task-610 

specific readouts as revealed above? Was this a population level phenomenon or did individual 611 

neurons encode a given variable reliably in both tasks? To answer this question, we quantified 612 

cross-task coding stability for each neuron using linear regression (see Methods). To do so, we 613 

pooled data from both tasks and regressed firing rates against a performance-monitoring 614 

variable (error, conflict, prior or posterior), a task indicator, and an interaction term 615 

(performance monitoring x task). The statistical significance for each regressors were determined 616 

by an F test. We refer to neurons that had a significant main performance-monitoring effect but 617 

non-significant interaction as “task invariant”, and to neurons that had a significant “performance 618 

monitoring x task” interaction as “task dependent” neurons. We selected neurons whose 619 

response signaled conflict in ex-ante and ex-post epochs, error in the ex-post epoch, prior in the 620 

baseline epoch, and posterior in the ex-post epoch.  621 

Out of the selected neurons of each kind (error, conflict, prior), 33-68% were classified as 622 

task invariant (Fig. 7g-j and Fig. S7g-k, red in pie charts). The extent to which a given neuron 623 

encoded a performance-monitoring variable by itself (assessed by t statistic for the main effect) 624 

and as part of a population (as derived by weight assigned to the neuron by the identified 625 

common dPCA coding dimensions) correlated significantly (Fig. 7g-j, scatter; see Legend for 626 

statistics), with the signs of these measures agreeing with each other in most cases (Fig. 7g-j and 627 

Fig. S7 g-k; for cases where signs differed, see Fig. S7i-j). Our dPCA analyses marginalized out 628 

information about task and time. As a result, neurons selective during either the ex-ante and/or 629 

ex-post epochs contributed to the identified common axis and their contribution were thus 630 

analyzed separately. On average, neurons identified as “task invariant” or “task dependent” were 631 
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assigned significantly larger absolute dPCA weights than non-selective neurons (“others” neurons) 632 

(Fig. 7g-j and Fig.S7g-k, dot density plots on the right). While “task-invariant” neurons in many 633 

cases had numerically larger dPCA weights than “task-dependent” neurons, on average they did 634 

not contribute significantly more to the task-invariant coding dimensions (Fig. 7g-j and Fig.S7 g-635 

k, dot density plots on the right; see Fig. S7g-k for the case where task-invariant neurons 636 

contributed significantly more than task-dependent neurons). This illustrates how the diversity 637 

of encoding schemes at the single neuron level gave rise to a population-level one-dimensional 638 

coding dimension that supports a robust domain-general readout of performance monitoring 639 

signals with high accuracy in both tasks (Fig. 7a-f and Fig. S7a-f). A downstream neuron receiving 640 

input from MFC could in theory derive domain-general performance monitoring signals simply 641 

by taking a linear sum and thresholding, with the weights equal to those assigned by dPCA.  642 
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Discussion 643 

 644 

We found that neurons in the human MFC represent estimated control demand (conflict 645 

prior) during the baseline, conflict during action production, and conflict outcome and error 646 

immediately after an action was performed in both the Stroop and MSIT tasks. A Bayesian conflict 647 

learning model that updated conflict probability iteratively after every trial predicted the 648 

existence of a novel kind of outcome signal (ex-post conflict signals) and neurons signaling 649 

estimated conflict probability, and we identified neurons encoding both of these cognitive 650 

variables. Single neurons encoded a diverse array of variables:  some neurons encoded conflict, 651 

error and conflict prior/posterior in a task-invariant way, some encoded these variables 652 

exclusively in one task but not the other, and some multiplexed task information to varying 653 

degrees. Neurons with different encoding profiles were randomly and homogenously sampled 654 

within MFC with no apparent clustering. Such interdigitated representation patterns would be 655 

difficult to detect with fMRI because even one voxel aggregates the activity from hundreds of 656 

thousands of neurons. This complexity at the level of single neuron responses precludes a clear 657 

interpretation of domain generality or domain specificity and instead requires an analysis of 658 

population-level representations in a high-dimensional state-space. The key insight in this study 659 

is that the representational geometry of performance monitoring takes advantage of this 660 

complex pattern of single neuron responses. Neuronal populations in the human MFC 661 

represented performance monitoring signals in a geometry that allows domain-general readout 662 

across tasks, while simultaneously also allowing linear decoders to extract task-specific details. 663 

Achieving this tradeoff, in turn, requires that the constituent single neurons multiplex 664 

information about the different variables required (i.e., show mixed selectivity).  665 

 666 

Domain-general performance monitoring 667 

 668 

The evidence for domain generality of performance monitoring from neuroimaging 669 

studies is mixed. Some studies conclude that representations of conflict are domain-general from 670 

spatially overlapping BOLD activation maps, but the extent of such overlap could depend on the 671 
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statistical thresholding used (Fan et al., 2003; Liu et al., 2004). Using multi-voxel pattern analysis 672 

(MVPA) that avoids statistical thresholding, one study finds voxel clusters that simultaneously 673 

encode different types of conflict in the superior frontal gyrus (Jiang and Egner, 2014). However, 674 

the majority of conflict-encoding voxel clusters, notably those found in dACC, are specific to one 675 

particular type of conflict; domain-general and domain-specific clusters are distributed in distinct 676 

anatomical locations. Direct comparisons between single-unit recordings and BOLD-fMRI have 677 

demonstrated that the former can exhibit multivariate representations that cannot be detected 678 

with fMRI (Dubois et al., 2015). Additional difficulty for neuroimaging studies is the variation in 679 

human cingulate anatomy, which reduces the overall signal resolution when registering to a 680 

common template brain (Crosson et al., 1999; Vogt et al., 1995) (a constraint our work does not 681 

suffer from since we mapped anatomy in individual brains). In the present study we find that it 682 

is the same group of neurons within MFC that form a geometry allowing the readout of both 683 

domain-general and domain-specific conflict signals. The conflict representation we discovered 684 

not only generalizes between two types of conflict involved within a single task (which was found 685 

with MVPA-fMRI as well (Jiang and Egner, 2014)), but also between two tasks with completely 686 

different stimuli, response requirements, and task rules. A key component of performance 687 

monitoring is the ability to detect action errors without relying on external feedback. This type 688 

of self-monitoring is a central component of metacognition (Yeung and Summerfield, 2012). In 689 

the case of confidence judgments, which are also metacognitive, fMRI results indicate that the 690 

same parts of MFC are involved across different cognitive domains (perception or memory, 691 

(Morales et al., 2018)), but it remains unknown whether this also holds for error monitoring. We 692 

show that a subset of neurons signal errors in a domain general manner across the two tasks and 693 

all types of conflict. At the population level, these domain-general error neurons enabled 694 

domain-general readouts of self-monitored error across both tasks (Fig. 7g). Future work is 695 

needed to demonstrate whether this is also the case for metacognitive signals other than errors.  696 

 697 

Domain-specific performance monitoring 698 

 699 
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We found error neurons independently in both the Stroop task (as previously reported 700 

(Fu et al., 2019)) and the MSIT task (a new finding), with a subset of these neurons signaling error 701 

only in one or the other task. This would be expected given that what causes an error in the two 702 

tasks differs substantially: distraction by the prepotent tendency to read in the case of the Stroop 703 

task, and distraction by the tendency to respond to different keys (Simon) or distraction by the 704 

flanker number (Flanker) in the case of the MSIT. Importantly, these call for different 705 

compensatory mechanisms: for example, Stroop errors can be compensated for by suppressing 706 

attention to the word meaning, Simon errors by suppressing attention to the spatial location of 707 

the target, and Flanker errors by suppressing attention to the flanking distractors. The same 708 

argument applies to the conflict signal; together, these considerations highlight the fact that 709 

cognitive control requires information about performance specific to the task performed. 710 

Consistent with this requirement, the MFC neural states varied both along a generic conflict 711 

dimension that generalized across tasks as well as along all six types of specialized conflict 712 

dimensions. By changing connection weights, downstream neuronal processes can flexibly access 713 

performance monitoring signals at both extreme as well as intermediate levels of abstraction and 714 

drive behavioral adaptations accordingly. Prior work demonstrate the MFC’s causal role in credit 715 

assignment within a single task by showing that macaque MFC neurons are involved in attributing 716 

the cause of an error to either low-level perceptual noise or exogenous changes in the response 717 

rule (high-level) (Sarafyazd and Jazayeri, 2019). We found that both at the level of single neuron 718 

and population activity, error and conflict signaling offered a robust readout of the task in which 719 

these performance disturbances were experienced, even when the subject had no prior task 720 

exposure. This task specificity at the population level is supported by the fact that some MFC 721 

neurons which did not signal errors or conflict in a previous task started to do so in a novel task 722 

with no prior training (Fig. 7g-I and Fig. S7g-h). These results are broadly consistent with the 723 

MFC’s role in credit assignment within a task and demonstrate the remarkable flexibility of the 724 

MFC performance monitoring circuitry.  725 

 726 

Compositionality of conflict representation 727 

 728 
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Further insight into how representations can be both general and specific is offered by 729 

examining the activity during “sf” conflict trials (both Simon and Flanker conflict) in the MSIT task. 730 

The potential compositionality of the representation of two kinds of conflict can be formulated 731 

as a generalization problem: if Simon and Flanker conflict are linearly additive, decoders trained 732 

to identify the presence of only Simon or Flanker conflict should generalize to the “novel” 733 

situation where both types of conflict are present. We found that this was the case, with the 734 

neural state approximately equal to the linear vector sum of the two neural states when the two 735 

types of conflict are present individually. This suggests that conflict representations are additive 736 

to a large extent (with the extent of deviation predicted by the degree of nonlinear mixing 737 

present). The (approximate) factorization of conflict representation is important for both 738 

domain-specific and domain-general adaptation: when different types of conflict occur 739 

simultaneously and the representation can be factorized, downstream processes responsible for 740 

resolving each type of conflict can all be initiated. On the other hand, domain-general processes 741 

can also read out the representation as a sum and initiate domain-general adaptations. 742 

 743 

Estimating control demand enabled by ex-post conflict neurons 744 

 745 

We found that subjects’ performance in two conflict tasks was best explained by models 746 

that iteratively estimate how likely the next trial is to contain each possible type of conflict. These 747 

models integrate information across many trials and outperform the conflict adaptation model 748 

whose horizon only includes one trial back in terms of estimating and predicting control demand. 749 

We modelled the abstract decision process (which predicts RT and correct/incorrect, but not the 750 

actual choices) as a drift diffusion process with different drift rates on a conflict and non-conflict 751 

trial. Conflict prior was incorporated by adding a bias to the drift rates. The choice of DDM is 752 

informed by prior work demonstrating that sequential effects in perceptual decisions are 753 

modelled best with drift rate biases (rather than biases in other factors such as starting point or 754 

boundary) (Urai et al., 2019). We chose a Bayesian DDM framework because: 1) it estimates 755 

control demand (conflict probability) iteratively as our participants did and is thus neurally 756 

feasible; 2) similar models have found success in explaining behavior in cognitive control tasks 757 
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(Ide et al., 2013; Jiang et al., 2015); 3) it provides trial-by-trial regressors for neural analyses. 758 

Notably, this model performed significantly better than one assuming that subjects try to 759 

estimate a fixed conflict probability (which is how the task is designed). This shows that subjects 760 

were sensitive to the random variability in the trial congruency sequence to adjust their response 761 

strategy as reflected in their response times.  762 

 763 

 A prediction of our Bayesian learning framework is that during the ex-post period, 764 

neurons would signal whether the just completed trial was a conflict or not. This is because this 765 

kind of “after the fact” conflict signal is needed to compute the posterior from the prior.  766 

Confirming this prediction, we  found two kinds of conflict signals: one that occurred after action 767 

completion as predicted  (“ex-post”), and one that occurred during action production (“ex-ante”) 768 

as  expected  (Botvinick et al., 2001; Sheth et al., 2012). Separate groups of neurons gave rise to 769 

these two types of conflict signals. To the best of our knowledge, this ex-post coding of conflict 770 

is a novel kind of conflict signal not previously documented. We posit that the ex-post conflict 771 

signal is an outcome signal (Shenhav et al., 2013) that is used for updating slowly varying 772 

representations of estimated conflict probability. Interestingly, there is significant overlap 773 

between error neurons and these ex-post conflict neurons. Confirming this, we found that a 774 

common coding axis exists that supports decoding of both error and conflict, though the 775 

decoding accuracy is significantly lower for conflict than for error (Fig. S6a-b). These results 776 

suggest the origins of ex-post conflict and error signals may be similar: a putative prediction error 777 

computed based on an efference copy (Lo and Wang, 2006). Future work is needed to test this 778 

new hypothesis. We also revealed a direct neural correlate of the updating step: firing rate 779 

changes of prior neurons during the ex-post period are positively correlated with prior-posterior 780 

differences in the model. Altogether, the neuronal responses we found fit remarkably well to the 781 

parameters of a Bayesian model that used trial-wise updating to estimate upcoming conflict – a 782 

critical ingredient in the control of flexible behavior in changing environments. 783 

 784 

Prior neurons as a substrate for proactive control 785 

 786 
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The dual mechanisms of control (DMC) framework (Braver, 2012) distinguishes between 787 

proactive and reactive control and suggests that proactive control involves sustained anticipatory 788 

activity. We posit that the prior-signaling neurons reported in this study can inform proactive 789 

control processes about the estimated demand for control in the upcoming trial. Compatible with 790 

this view, responses of these prior/posterior neurons in the MFC were sustained and stable 791 

across time. At the population level, the prior/posterior representations were parametric with 792 

dynamics indicative of a line attractor, from which neural activity departs and then returns to 793 

when completing a trial. The distance in neural state space between neural trajectories remained 794 

stable across the trial, as expected from a signal that only varies slowly and that reflects a learning 795 

process that occurs over multiple trials.  796 

 797 

A likely contribution to the temporal stability of prior coding are the biophysical 798 

properties of prior neurons, which differed from other neurons in two ways. First, these neurons 799 

exhibited long-range autocorrelations in their baseline spike counts. While spike-count 800 

autocorrelations in the range of seconds are known to differ between brain regions (Bernacchia 801 

et al., 2011) and between neurons with different tuning (Cavanagh et al., 2016, 2018), here we 802 

examined long-range temporal correlation on a substantially longer timescale (minutes) by 803 

assessing the self-similarity of trial-by-trial spike counts during the baseline using Detrended 804 

Fluctuation Analysis (DFA) (Hardstone et al., 2012). Our finding that DFA values for prior-encoding 805 

neurons are high (indicating long-range temporal autocorrelations) suggests that they are ideal 806 

substrates for representing a slowly varying internal state. In addition, these neurons tended to 807 

have shorter extracellular waveforms. While this relationship is complex (Vigneswaran et al., 808 

2011), neurons with narrower spikes are more likely to be interneurons and the functional role 809 

of thin- and broad- spike MFC neurons is often different (Bean, 2007; Sajad et al., 2019). Notably, 810 

in macaques, thinner-spike neurons are more likely to have long autocorrelations making them 811 

ideal to carry slowly changing information across trials (Kawai et al., 2019). Our findings tie 812 

together the biophysical properties of single neurons with their tuning, indicating that conflict 813 

prior neurons are ideally suited to carry slowly changing information across trials.  814 

 815 
 816 
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Figures  826 
 827 
Figure 1. Tasks, model, and behavioral results. 828 
 829 
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(a) Tasks. MSIT (left) and Stroop (right). Participants indicated the identity (1,2, or 3) of the unique 831 
number in MSIT, and the ink color of a colored word in Stroop. Feedback followed 1s after 832 
responses and indicated trial outcome. 833 
(b) RTs were significantly prolonged by conflict in MSIT (left) and Stroop (right), showing the 834 
Simon, Flanker and Stroop effects. Each line is a session (N = 41 and 82, respectively). 835 
(c) Graphical representation of the updating process (left) and the decision process modelled as 836 
a drift diffusion process (right). Incorporating RT likelihood function (DDM) allows the tuning of 837 
model estimate for conflict probability. Shown is the MSIT model, which has the five variables 838 
volatility (a), predicted Simon conflict (qsi), predicted Flanker conflict (qfl), observed Simon 839 
conflict (osi), observed Flanker conflict (ofl), and RT. Observables (conflict type, RT, and outcome) 840 
are shown in gray, internal variables in white. Arrows indicate information flow. As the trial 841 
started, the volatility variable is updated first, and then both predicted conflicts are updated by 842 
the respective observed conflicts (Bernoulli likelihood) and RT (DDM likelihood). A linear 843 
combination of the Simon conflict and Flanker conflict priors on each trial are entered as a drift 844 
rate bias. The hyperparameters for RT tuning included the two linear coefficients before conflict 845 
priors (bsi, bfl), boundary separation (a) and the four separate drift rates for the four conflict 846 
conditions (si only, fl only, si+fl, no-conflict). The conflict priors and posteriors were used as 847 
regressors for subsequent behavioral and neural analyses.  848 
(d) Estimated mean of the prior for Simon probability (orange) and Flanker probability (blue) from 849 
an example MSIT session.  Markers placed on the top indicated that either Simon conflict (orange 850 
square) or Flanker conflict (blue cross), or both, was present on a trial. As is shown here, the 851 
priors increase when there is a run of conflict (left part of the graph, both blue and orange traces 852 
go up). 853 
(e) Regression analyses of RT using linear mixed-effect models. Blue bars show regression 854 
coefficients; black bars show confidence interval. All regressors explained significant variance as 855 
determined by the likelihood ratio test (see Methods). Conflict prior positively predicted RT in 856 
MSIT and Stroop. 857 
*p < 0.05, ** p < 0.01, *** p < 0.001, n.s., not significant (p > 0.05). 858 
 859 
Figure 2. Example neurons in Stroop (left) and MSIT (right).  860 

 861 
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 862 
Shown here are raster plots and peri-stimulus time histograms for three example neurons in both 863 
tasks. Left panel shows data from Stroop, right show data from MSIT. Data are aligned to button 864 
presses (t=0). The black triangles mark stimulus onset.  865 
(a) Neuron signaling action errors.  866 
(b) Neuron signaling conflict by firing rate increase around button presses.  867 
(c) Neuron signaling conflict by a firing rate decrease around button presses.  868 
Trial types are marked by colored words on the right side of the box. These example neurons 869 
show similar responses dynamics in both tasks. Trials were re-sorted into groups for display 870 
purposes only. 871 
 872 
Figure 3. Neuronal selection and ERP analysis.  873 
 874 

 875 
 876 
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(a) Analyses epochs used in neural analyses. The ex-ante epoch is defined as 0.5s epoch centered 877 
at the midpoint between 100ms after stimulus onset and button presses. This was the moment 878 
when conflict should achieve its maximum. Ex-post epochs are defined as epochs following 879 
button presses. Epochs are colored by blue (baseline), cyan (ex-ante) and orange (ex-post). The 880 
thickened vertical bars represent actual physical events, the slim vertical bars demarcate epochs. 881 
Note that we also sometimes use 1s after button press as an analysis window.   882 
(b) Percentage of neurons that encode task variables in MSIT (left) and Stroop (right). The color 883 
code represents the epochs used to select these neurons (see (a)). Rows are arranged from top 884 
to bottom in temporal order. Dotted lines represent 2.5th and 97.5th percentiles of the null 885 
distribution obtained from permutation. For all groups shown, p < 0.001.  886 
(c) Percentage of conflict neurons that are active exclusively in four groups: ex-ante, early ex-887 
post, late ex-post, and throughout ex-ante and ex-post epochs.  888 
(d) Percentage of conflict neurons that were also selective for error, surprise, posterior, or any 889 
combination of these factors (“mix”). Substantial proportions of conflict neurons multiplex error 890 
and posterior information. The intersection between conflict and posterior increases towards the 891 
later part of the trial.  Rows are arranged from top to bottom in temporal order.   892 
(e) Comparison of single-trial neuronal response latency of conflict neurons in dACC and pre-SMA. 893 
Ex-ante conflict neurons become active earlier in dACC than in pre-SMA, whereas ex-post conflict 894 
neurons become active earlier in pre-SMA than in dACC. Only correct conflict trials are used in 895 
this analysis.  896 
(f) Percentage of posterior neurons that intersect with prior, conflict, surprise and error signaling. 897 
We hypothesize that the extensive overlap between these groups reflects posterior computation.  898 
(g) Neuronal signature of updating conflict prior based on the posterior. Correlation is computed 899 
between the difference between prior and posterior (behavioral update) and the difference 900 
between demeaned FRex-post and FRbaseline (neural update) for all prior neurons. On average, the 901 
correlation is significantly positive, suggesting that the change in firing rates is commensurate 902 
with the extent of updating derived from the behavioral model.  903 
(h) An example session of intracranial EEG in Stroop, aligned to stimulus onset (grey vertical bars) 904 
and sorted by RT (black lines). Color code represents amplitude in micro volt. An event-related 905 
potential, named correct-trial potential (CRP), occurs shortly after button presses that is present 906 
on both conflict and non-conflict trials.  907 
(i) Relation between CRP amplitude and spiking activity of prior neurons. Both data were 908 
simultaneously recorded in dACC. Likelihood ratio computed by comparing the full Poisson 909 
regression model with CRP as a fixed effect with a reduced model without the CRP term, and is 910 
plotted as a function of time. Black dots on top mark significant time bins, corrected for multiple 911 
comparisons using the false discovery rate (FDR) method.  912 
(j) Same as in (i), but for pre-SMA data.  913 
 914 
Figure 4. Long-range temporal correlation autocorrelation of spiking of prior neurons. 915 
 916 
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 917 
(a) Mean baseline DFA a value for different groups of neurons (left), and correlation between 918 
baseline DFA a value and the coding strength of prior, which is assessed by the F statistic 919 
computed from regressing prior against baseline spike counts (right) for MSIT. Separate data 920 
were used to compute a value and prior coding strength to avoid selection bias. Prior neurons 921 
have significant larger baseline DFA a value than any other groups (p < 0.001, ANOVA). The 922 
coding strength of prior was correlated strongly with the baseline a value (r = 0.24, p < 0.001).  923 
(b) same as in (a) but computed for the Stroop task.  924 
(c-f) Two example neurons, showing (c) waveforms, (d) autocorrelation, (e), power spectrum, 925 
and (f) fluctuations as a function of time intervals used to compute DFA a value (slope). The 926 
neuron with narrower spike width has higher DFA a value (r = -0.19, p < 0.001).  927 
(g) DFA a value is negatively correlated with spike width for MFC neurons (left) in MSIT. Prior and 928 
posterior neurons as a group have significantly narrower spikes than other neurons (right).   929 
(h) same as in (g) but for the Stroop task.  930 
  931 
Figure 5. Temporal dynamics and cross-time generalization.   932 
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 933 
(a-e) Decoding accuracy as a function of time for Stroop error, MSIT error, Simon conflict, Flanker 934 
conflict and Stroop conflict. The three panels show data aligned to stimulus onset, midpoint 935 
between 100ms after stimulus onset and button presses, button press onset. Dotted gray trace 936 
represents within-time decoding accuracy, i.e., the data from the same epoch were used to train 937 
and test a decoder. Green, blue and orange traces represent decoding accuracy of decoders 938 
trained with data from the epochs demarcated by shading with the same colors, which is a test 939 
of the temporal generalization of these decoders. Horizontal bars demarcate the extent of 940 
significant clusters in time as determined by the cluster-based permutation test (p < 0.5).   941 
(f-g) Decoding accuracy for classifying between pairs of Simon prior or posterior levels (binned 942 
by quartiles). Color bars show decoding accuracy. Dotted frames mark the within-time decoding 943 
results. Decoders that classify prior quartiles are trained using baseline spike counts (1.5s before 944 
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stimulus onset), whereas decoders that classify posterior quartiles are trained using ex-post spike 945 
counts (2s after button press). To test temporal generalization of these decoders, prior-trained 946 
decoders are tested with posterior data and labels, and vice versa. Dashed boxes represent 947 
within-time decoding.   948 
 949 
Figure 6. State-space representation of conflicts, prior, and posterior. 950 
 951 

 952 
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(a) Visualization of the conflict population representation in MSIT. Trial mean of four MSIT 953 
conflict conditions, Simon only (“si”), Flanker only (“fl”), Simon and Flanker both present (“sf”), 954 
and non-conflict (“none”), plotted in space spanned by three principal components. Left panel 955 
uses ex-ante data. Right panel uses ex-post data. The extent of compositionality of conflict 956 
representation is tested by condition generalization of decoding in (d). Dotted line is the vector 957 
used to classify pairs of conflict conditions in (b).  958 
(b) Decoding accuracy of pairwise classification of conflict conditions. Training data and left-out 959 
testing data from the four conflict conditions are projected to the population vector flanked by 960 
averages of non-conflict trials and sf trials, shown as the dotted line in (a). Color code represents 961 
decoding accuracy. This coding dimension separates the four conflict conditions well. 962 
(c) Abstract conflict signal. The three panels show decoding accuracy using data aligned to 963 
stimulus onset, midpoint between 100ms after stimulus onset and button press onset, and 964 
button press onset. For each time point, a decoder is trained with Simon (union of si and sf) vs. 965 
non-Simon (union of fl and none) trials or Flanker (union of fl and sf) vs non-Flanker (union of si 966 
and none) trials and used to classify left-out data of Flanker vs non-Flanker trials (grey) or Simon 967 
vs. non-Simon trials (black).  968 
(d) Testing compositionality of conflict representation with condition generalization of decoding. 969 
If compositional, the sum of the representations of fl and si (vectors none -> fl, none -> si) should 970 
be equal to the representation of sf (none -> sf), and the four condition means should form a 971 
parallelogram. We tested the condition generalization using raw spike count data from the ex-972 
ante and ex-post (1s after button presses) epochs and from the baseline as a control without 973 
dimensionality reduction. Data from the means connected by one of the blue edges in (a) were 974 
used to train a decoder, which was then tested with left-out data from the means connected by 975 
the opposite blue edge, and vice versa. Blue bars show decoding accuracy (baseline 0.51, ex-ante 976 
0.69, ex-post 0.55). Same was also tested with data connected by the orange edges. Orange bars 977 
show decoding accuracy (baseline 0.53, ex-ante 0.58, ex-post 0.66). Both the blue and orange 978 
pairs of opposing edges supported such generalization simultaneously as indicated by the above-979 
chance decoding accuracy (p < 0.001), demonstrating parallelism and thus the compositionality 980 
of conflict representation. Dotted lines show 97.5th percentile of the null distribution from 981 
permutation.  982 
(e) Single neuron with nonlinear coding of Simon and Flanker conflict contribute to deviation of 983 
conflict representation from perfect linearity. Data used here are from the ex-post epoch. 984 
Nonlinear coding of conflict by a single neuron is measured by the F statistic of the interaction 985 
term between Simon and Flanker conflict in an ANOVA model with spike counts as the dependent 986 
variable. Each neuron’s contribution to the deviation from linear additivity in the high 987 
dimensional neural space is quantified by the weight of the difference vector between “sf” and 988 
“si + fl”. Scatter plot shows the relation between these two measures. Red line shows the linear 989 
fit.  990 
(f-h) Visualization of prior/posterior population representation in MSIT and Stroop. Green dots 991 
mark the onset of trial baseline, cyan squares mark the range of possible stimulus onsets, blue 992 
dots mark button press and red dots mark end of trial. The range of stimulus onsets (a range 993 
because trials are aligned to button press onsets) is shown as broken lines for each prior level.  994 
For the portion before button presses (blue dots), the four trajectories correspond to the mean 995 
of trials grouped by quartiles of prior. For the portion after button presses, the four trajectories 996 
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correspond to the mean of trials grouped by quartiles of posterior for after button presses. Trials 997 
are aligned to button press onset. The color of trajectories fades as the trial progresses towards 998 
the end (dark and light colors correspond to start and end of the trial).  Most of the variance 999 
related to prior/posterior is captured by PC3, which is orthogonal to most of the time-dependent 1000 
dynamics.  1001 
(i) Distance between trajectories and average speed computed from trials grouped by quartiles 1002 
of Simon conflict prior in the baseline (blue) and the ex-ante (orange) epoch, and trials grouped 1003 
by Simon conflict posterior in the ex-post epoch (yellow). Trajectories are visualized in Figure 6f. 1004 
The state space speed stays low during baseline, increases significantly during the ex-ante epoch 1005 
and decreases back to a value similar to that during the baseline. Distance between trajectories 1006 
is stable across time. 1007 
(j-l) Projection values on the coding dimension of Simon (J, p < 0.001 for both prior/posterior, 1008 
prior t(11996) = -39.5, posterior t(11996)=-47.5), Flanker (K, p < 0.001 for both prior/posterior, 1009 
prior t(11996) = -38.2, posterior t(11996)=-43.6) or Stroop (L, p < 0.001 for both prior/posterior, 1010 
prior t(11996) = -47.9, posterior t(11996)=-47.6) prior or posterior (PC3 in f-h). The order of 1011 
projection values is on average consistent with the order of the prior/posterior quartiles, even 1012 
though PCA does not have access to the order information.   1013 
 1014 
Figure 7. Domain-general representation of performance monitoring signals. 1015 

 1016 
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 1017 
(a) Task-invariant decoding of errors in both MSIT (salmon) and Stroop (crimson). The task-1018 
invariant coding dimension is extracted using dPCA that marginalizes out task information and 1019 
time. This dPCA coding dimension is extracted from the error contrast in Stroop (error conflict vs. 1020 
correct conflict trials) and the error contrast in MSIT (error “sf” trials and correct “sf” trials). This 1021 
controls for trial conflict and isolates effects related only to error. Left, Accuracy for decoding 1022 
errors as a function of time. Bar on the right shows the variance explained by the different dPCA 1023 
components (color code see figure legend). The angle between the error dPC and the task dPC 1024 
drived from dPCA is 94.47° and did not differ significantly from orthogonality (p = 0.53, tau = -1025 
0.032, Kendall rank correlation). 1026 
(b-c) Task-invariant decoding of conflict in both MSIT (Simon, yellow; Flanker red) and Stroop 1027 
(green). Because MSIT has two conflict conditions, Simon and Flanker, task invariance was 1028 
investigated between Stroop/Simon and between Stroop/Flanker conflicts separately. This dPCA 1029 
coding dimension is extracted from conflict and non-conflict trials in Stroop and either from 1030 
Simon and non-Simon trials (b) or from Flanker and non-Flanker trials (c), by marginalizing out 1031 
task and time. The angle between the Stroop-Simon conflict dPC and the task dPC is 81.13° and 1032 
did not differ significantly from orthogonality (p = 0.19, tau = 0.048, Kendall rank correlation). 1033 
The angle between the Stroop-Flanker conflict dPC and the task dPC is 81.13° and is significantly 1034 
but weakly non-orthogonal (p = 0.018, tau = 0.087, Kendall rank correlation). Left-out conflict 1035 
trials and non-conflict trials in Stroop, and left-out Simon, non-Simon, Flanker, non-Flanker trials 1036 
in MSIT are projected and classified by this coding dimension. Left, decoding accuracy of conflict 1037 
as a function of time. The bar on the right represents variance explained by the different dPCA 1038 
components (color code see figure legend).  1039 
(d) Testing separability of conflict conditions in Stroop and MSIT using data from the ex-ante (left) 1040 
and ex-post epochs (right). The dPCA coding dimension used in this analysis is extracted by using 1041 
conflict and non-conflict trials in Stroop and sf and non-conflict trials in MSIT by marginalizing out 1042 
task information. Because data from ROIs are used, the time dimension is already marginalized 1043 
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out before entering dPCA algorithm. This coding dimension support classification of 83% of pairs 1044 
of MSIT conflict conditions (upper triangle matrices) as well as Stroop conflict (left corner).  Color 1045 
coding represents decoding accuracy, orange numbers indicate the numerical values of decoding 1046 
accuracy of that pair of conflict conditions (e.g., the accuracy is 0.69 for decoding si vs. none). 1047 
Conflict monitoring is thus task-invariant but still preserves maximal separability of task-specific 1048 
conflict conditions (MSIT).  1049 
(e) Task-invariant decoding of all pairs of conflict prior levels in Stroop (lower triangle matrix) and 1050 
Simon (upper triangle matrix). The dPCA coding dimension here is extracted by using the Stroop 1051 
conflict prior contrast (the 1st vs. 4th quartiles of Stroop conflict prior) and the Simon conflict prior 1052 
contrast (the 1st vs. 4th quartiles of Simon conflict prior), marginalizing out task information. Color 1053 
code represents decoding accuracy. Bar at the bottom shows variance explained of dPCA 1054 
components (for decoding, the component labelled as “prior” is used). The angle between 1055 
Stroop-Simon conflict prior dPC and the task dPC is 106.42° and did not differ significantly from 1056 
orthogonality (p = 0.78, tau = -0.01, Kendall rank correlation). The angle between Stroop-Flanker 1057 
conflict prior dPC and the task dPC is 74.42° and did not differ significantly from orthogonality (p 1058 
= 0.30, tau = -0.038, Kendall rank correlation). 1059 
(f) Same as in (e) but for Flanker prior. 1060 
(g-j) Contribution of single neuron coding of error (g), Stroop-Simon ex-ante conflict (h), Stroop-1061 
Simon ex-post conflict (i) and Stroop-Simon prior (j) to the task-invariant population coding of 1062 
these variables. Because MSIT has two conflict conditions, Simon and Flanker, task invariance 1063 
was tested between Stroop and Simon or between Stroop and Flanker separately. We modelled 1064 
each neuron’s baseline (j), ex-ante (h) or ex-post (g, i) response using ANOVA. The main effects 1065 
are a dummy variable indicating error (g) or Stroop-Simon conflict (h, i) or Stroop-Simon prior (j) 1066 
and task ID (Stroop or MSIT), and the interaction term between these two. A significant 1067 
interaction suggests that the coding is more prominent in one task than the other. Task-invariant 1068 
neurons is defined as having a significant main effect of the variable of interest but an 1069 
insignificant interaction with the task ID. Task-dependent neurons is defined as having a 1070 
significant interaction term. 1071 
(g) Contribution of single neuron ex-post coding of error to task-invariant population coding of 1072 
error.  Of the 37 of neurons that were selected as signaling error in the ex-post epoch in either 1073 
task, 68% did so in a task-invariant way (red) and 32% in a task-dependent (blue) way (pie chart). 1074 
There is a strong correlation between the error t-statistic and the dPCA weight of a particular 1075 
neuron (scatter plot on the left; R = 0.72). Comparing the mean absolute value of dPCA weights 1076 
between task-invariant, task-dependent and uncategorized neurons, both the task-invariant (p < 1077 
0.01) and task-dependent (p < 0.05) neurons had significantly larger absolute weights than the 1078 
uncategorized neurons. 1079 
(h) Contribution of single neuron ex-ante coding of Stroop-Simon conflict to task-invariant 1080 
population coding of Stroop-Simon conflict. Of the 40 of neurons that were selected as signaling 1081 
conflict in the ex-ante epoch in either task, 40% did so in a task-invariant way (red) and 60% in a 1082 
task-dependent (blue) way (pie chart). There is a strong correlation between the error t-statistic 1083 
and the dPCA weight of a particular neuron (scatter plot on the left; R = 0.51). Comparing the 1084 
mean absolute value of dPCA weights between task-invariant, task-dependent and uncategorized 1085 
neurons, only the task-invariant neurons had significantly larger absolute weights than the 1086 
uncategorized neurons (p < 0.01). 1087 
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(i) Contribution of single neuron ex-post coding of Stroop-Simon conflict to task-invariant 1088 
population coding of Stroop-Simon conflict. Of the 46 of neurons that were selected as signaling 1089 
conflict in the ex-post epoch, 46% did so in a task-invariant way (red) and 54% in a task-1090 
dependent (blue) way (pie chart). There is a strong correlation between the error t-statistic and 1091 
the dPCA weight of a particular neuron (scatter plot on the left; R = 0.51). Comparing the mean 1092 
absolute value of dPCA weights between task-invariant, task-dependent and uncategorized 1093 
neurons, only the task-invariant neurons had significantly larger absolute weights than the 1094 
uncategorized neurons (p < 0.01).  1095 
(j) Contribution of single neuron baseline coding of Stroop-Simon conflict prior to task-invariant 1096 
population coding of Stroop-Simon conflict prior. Of the 75 of neurons that were selected as 1097 
signaling prior in the baseline in either task, 49% did so in a task-invariant way (red) and 51% in 1098 
a task-dependent (blue) way (pie chart). There is a strong correlation between the error t-statistic 1099 
and the dPCA weight of a particular neuron (scatter plot on the left; R = 0.51). Comparing the 1100 
mean absolute value of dPCA weights between task-invariant, task-dependent and uncategorized 1101 
neurons, both the task-invariant (p < 0.001) and task-dependent (p < 0.001) neurons had 1102 
significantly larger absolute weights than the uncategorized neurons. 1103 
 1104 
*p < 0.05, ** p < 0.01, *** p <= 0.001, n.s., not significant (p > 0.05). 1105 
 1106 
Table S1. Number of sessions and neurons recorded  1107 
Summary of number of neurons recorded in each subject. For some subjects, both the Stroop 1108 
task and MSIT were performed. 1109 
 1110 

 1111 

# sessions dACC pSMA # sessions dACC pSMA
P9HMH M 55 1 9 0 NA NA NA
P11HMH M 16 2 26 0 NA NA NA
P14HMH M 31 2 5 0 NA NA NA
P16HMH F 34 2 22 0 NA NA NA
P19HMH M 34 1 13 0 NA NA NA
P21HMH M 20 2 8 0 NA NA NA
'P31HMH' M 30 1 3 0 NA NA NA
'P41HMH' M 19 1 2 0 NA NA NA
'P42HMH' M 29 1 2 0 NA NA NA
'P24CS' F 47 2 17 46 NA NA NA
'P25CS' F 36 2 32 0 NA NA NA
'P26CS' F 36 1 16 0 NA NA NA
'P27CS' M 45 1 2 2 NA NA NA
'P29CS' M 19 1 9 9 NA NA NA
'P31CS' M 31 2 38 9 NA NA NA
'P32CS' M 19 1 0 5 NA NA NA
'P33CS' F 44 4 66 25 NA NA NA
'P34CS' M 70 5 26 0 1 4 0
'P35CS' M 63 6 1 47 1 0 9
'P36CS' M 45 6 8 64 NA NA NA
'P37CS' F 33 11 107 40 5 64 17
'P39CS' M 26 6 21 96 NA NA NA
'P40CS' M 25 3 7 25 3 20 34
'P42CS' F 25 5 83 60 8 45 97
'P47CS' M 33 2 0 18 NA NA NA
'P48CS' F 32 1 20 21 NA NA NA
'P44CS' F 53 2 20 42 2 17 36
'P49CS' F 24 NA NA NA 1 0 4
'P51CS' M 17 NA NA NA 9 107 17
'P55CS' F 43 NA NA NA 4 14 67
'P56CS' M 48 3 4 15 NA NA NA
'P60CS' M 67 NA NA NA 2 29 49
'P61CS' F 52 4 7 79 4 7 77
'P71CS' M 40 1 19 4 1 19 5

Patients ID Sex Age
Stroop MSIT
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 1112 
Table S2. Model comparisons for RT 1113 
 1114 

 1115 
Model comparison for RT using BIC. To test whether our RT-tuned Bayesian model explains 1116 
variance in RT better than other models, we used linear mixed-effect models that takes into 1117 
account subject variability (details of the model see Methods) and computed BIC for these 1118 
models. The conflict prior is entered as a main fixed-effect and also as a by-session random effect. 1119 
Here, conflict priors generated by four models are considered: “RT tuned”, Bayesian conflict 1120 
learning model with DDM hyperparameters and thus the conflict prior is tuned by RT. “No RT 1121 
tuning”, Bayesian conflict learning model without incorporating DDM likelihood for RT. “RL”, a 1122 
reinforcement learning model where the conflict probability is modelled as a “value” function 1123 
and updated trial-by-trial by a simple update rule. “Prev conflict”, a dummy variable indicating 1124 
previous trial conflict. These linear mixed-effect models all have the same number of free 1125 
parameters. A separate comparison was done between the RT tuned model with the model that 1126 
uses the previous conflict (sub-table on the right) because the number of trials must be kept the 1127 
same for the comparison and the “prev conflict” model did not consider the first trial for each 1128 
session (there was no “prev conflict” in that case).  1129 
 1130 
Table S3 Model comparison for trial congruency 1131 

 1132 
Model comparison for trial congruency using BIC. We used Bernoulli likelihood when computing 1133 
BIC for the conflict sequence.  Note that the number of fitted parameters for Bayesian models is 1134 
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zero, for the “RL” model is one (learning rate), and for “constant prior” model is one (the constant 1135 
prior). BIC penalizes free parameters.  1136 
 1137 
 1138 
Figure S1 Behavioral models. Related to Figure 1. 1139 

 1140 
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Statistical significance of regressors is determined by comparing the full model and a reduced 1141 
model with a particular regressor removed, using a likelihood ratio test. 1142 
(a) Linear mixed-effect model for RT that incorporates trial ID regressors for MSIT (left) and 1143 
Stroop (right). Conflict priors used are from the Bayesian online learning models with RT tuning. 1144 
We added the first, second and third -order trial ID regressors to model putative practice effects. 1145 
The main effects of conflict priors, conflict, and their interaction are all significant even in the 1146 
presence of trial ID regressors, suggesting these regressors capture behavioral effect that do not 1147 
depend on trial ID.  1148 
(b) Same as (a), but for the Bayesian online learning models without RT tuning. Thus, in this 1149 
instance, conflict prior is estimated based on conflict sequence alone. The main effects of conflict 1150 
priors (not tuned by RT), conflict, and their interaction are all significant in the presence of trial 1151 
ID regressors. Therefore, RT tuning improves conflict prior (see (a) and Table S2, S3), but this is 1152 
not required. 1153 
(c) Mixed-effect logistic regression for predicting trial outcome (error or correct) for MSIT (left) 1154 
and Stroop (right). Conflict priors used are from the Bayesian online learning models with RT 1155 
tuning. For MSIT, we consider only “sf” trials for conflict trials, on which most of errors occur, and 1156 
non-conflict trials. Conflict prior reduces error likelihood in both MSIT (significant main effect, p 1157 
= 0.009) and Stroop (significant interaction term), p < 0.001). 1158 
(d) Linear mixed-effect model for RT that incorporates trial ID regressors for MSIT. Data were 1159 
collected from online participants using Amazon Mechanical Turk.  1160 
 1161 
Figure S2. DDM hyperparameters used in Bayesian conflict learning models. Related to Figure 1162 
1. 1163 

 1164 
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 1165 
(a) Hyperparameters used in the Bayesian conflict learning model for MSIT. 𝑣𝑧$"  and 𝑣𝑧%&  are 1166 
coefficients scaling Simon and Flanker prior. 𝑣$% , 𝑣$" , 𝑣%& , 𝑣'(')*('%&"*+  are base drift rates in 1167 
both Simon and Flanker present (“sf”), Simon-only (“si”), Flanker-only (“fl”), non-conflict trials. 𝑎 1168 
is the boundary separation. The effective drift rate was the sum of the base drift rate and the 1169 
scaled conflict prior. The base drift rates were significantly different from each other (p < 0.001, 1170 
ANOVA). Post-hoc pairwise testing from a multiple comparison test determined that 𝑣$"  did not 1171 
differ significantly from 𝑣%&; 𝑣$% were significantly larger than either 𝑣$"  or 𝑣%&; both 𝑣$"  and 𝑣%&  1172 
were significantly larger than 𝑣'(')*('%&"*+. These  1173 
(b) Hyperparameters used in the Bayesian conflict learning model for Stroop. 𝑣𝑧 is the coefficient 1174 
scaling Stroop prior. 𝑣*('%&"*+, 𝑣'(')*('%&"*+ are base drift rates in conflict and non-conflict trials. 1175 
𝑎 is the boundary separation. 𝑣'(')*('%&"*+ are significantly larger than  𝑣*('%&"*+ across sessions 1176 
(p < 0.001, t test).  1177 
Hyperparameters are used in the DDM likelihood function for tuning the prior estimation process 1178 
using an expectation-maximization algorithm.   1179 
 1180 
*p < 0.05, ** p < 0.01, *** p < 0.001, n.s., not significant (p > 0.05 or not significant determined 1181 
using FDR). 1182 
 1183 
 1184 
 1185 
Figure S3. Neuronal selection by areas and ERP analysis. Related to Figure 3. 1186 
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 1187 
(a) Percentages of significant neurons in both dACC (left) and pre-SMA (right) in MSIT. 1188 
(b) Percentages of significant neurons in both dACC (left) and pre-SMA (right) in Stroop. 1189 
Dotted lines represent 2.5th and 97.5th percentiles of the null distribution obtained from 1190 
permutation. For all groups shown, p < 0.001. Patterns of neuronal selection are similar between 1191 
dACC and pre-SMA. 1192 
(c) Linear mixed-effect model for CRP amplitude in the Stroop task. Conflict priors used are from 1193 
the Bayesian online learning models with RT tuning. The main effects of conflict, RT and the 1194 
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interaction between prior and conflict were all significant. The main effect of conflict prior was 1195 
not significant. Statistical significance was determined by a likelihood ratio test (comparing 1196 
between the full model and the reduced models with regressors of interest removed). 1197 
 1198 
Figure S4. Population decoding of error and conflict by areas. Related to Figure 5. 1199 
 1200 

 1201 
(a-e) Population decoding accuracy for MSIT error (a), Stroop error (b), Simon conflict (c), Flanker 1202 
conflict (d), Stroop conflict (e).  For (a-e), black traces are from dACC data and grey traces are 1203 
from pre-SMA data. Horizontal bars at the top demarcate significant cluster as determined by 1204 
the cluster-based permutation test (p < 0.05). Overall dynamics are similar between dACC and 1205 
pre-SMA, though the decoding accuracy on average is lower in the former.  1206 
 1207 
 1208 
Figure S5. Population decoding of prior/posterior (Flanker and Stroop) and past-trial conflict. 1209 
Related to Figure 5. 1210 
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 1211 
(a-d) Decoding accuracy for classifying between pairs of Flanker (a-b) and Stroop (c-d) prior or 1212 
posterior quartiles. Color bars show decoding accuracy. Dotted frames mark the within-time 1213 
decoding results. Decoders that classify prior quartiles are trained using baseline spike counts 1214 
(1.5s before stimulus onset), whereas decoders that classify posterior quartiles are trained using 1215 
ex-post spike counts (2s after button press). To test temporal generalization of these decoders, 1216 
prior-trained decoders are tested with posterior data and labels, and vice versa. Dashed boxes 1217 
represent within-time decoding.   1218 
(e-g) Population decoding of Simon (e), Flanker (f), Stroop (g) on the immediately preceding trial 1219 
in different epochs. Dotted lines show 97.5% percentile from the null distribution (permutation). 1220 
During baseline, there is significant coding of past trial conflict as expected from the persistence 1221 
of ex-post conflict signals. Coding of the past trial conflict was non-significant during all other 1222 
epochs except for past trial Stroop conflict in the early ex-post epochs, suggesting that this 1223 
information in our experimental setup was likely not reliable for cognitive control.  1224 
 1225 
*p < 0.05, ** p < 0.01, *** p < 0.001, n.s., not significant (p > 0.05 or not significant determined 1226 
using FDR). 1227 
 1228 
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 1229 
Figure S6. Within-task state space analyses. Related to Figure 6. 1230 
 1231 

 1232 
(a) A common population coding dimension for error and conflict in MSIT. This coding dimension 1233 
is extracted using dPCA, using an error contrast (error “sf” trials vs. “sf” trials) and a conflict 1234 
contrast (“sf” trials vs. no conflict). “sf” trials are split into two non-overlapping groups for this. 1235 
Plot show the decoding accuracy of both sf (apricot) vs no-conflict trials, and error “sf” vs. “sf” 1236 
trials (out-of-sample). Horizontal bars at the top demarcate significant clusters, as determined by 1237 
the cluster-based permutation test (p < 0.05).  1238 
(b) A common population coding dimension for both error and conflict in Stroop. This coding 1239 
dimension is extracted using dPCA, using an error contrast (error conflict trials vs. conflict trials) 1240 
and a conflict contrast (conflict trials vs. no conflict) and by marginalizing out the contrast 1241 
dimension. Conflict trials are split into two non-overlapping groups for this. Plot show the 1242 
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decoding accuracy of both sf (apricot) vs no-conflict trials, and error “sf” vs. “sf” trials (out-of-1243 
sample). Horizontal bars at the top demarcate significant clusters, as determined by the cluster-1244 
based permutation test (p < 0.05). 1245 
(c) Decoding accuracy of pairwise classification of conflict conditions after RT was equalized 1246 
across conditions. Trials were selected such that RTs on si, fl, sf and non-conflict trials were 1247 
equalized (p > 0.1, t test). Training data and left-out testing data from the four conflict conditions 1248 
are projected to the population vector flanked by averages of non-conflict trials and sf trials, 1249 
shown as the dotted line in Figure 6a. Color code represents decoding accuracy. This coding 1250 
dimension separates the four conflict conditions well. 1251 
(d) Testing compositionality of conflict representation with condition generalization of decoding 1252 
on error trials. We tested the condition generalization using raw spike count data from the ex-1253 
ante and ex-post (1s after button presses) epochs and from the baseline as a control without 1254 
dimensionality reduction. We only used data on error trials for this analysis. Data from the means 1255 
connected by one of the blue edges in Figure 6a were used to train a decoder, which was then 1256 
tested with left-out data from the means connected by the opposite blue edge, and vice versa. 1257 
Blue bars show decoding accuracy. Same was also tested with data connected by the orange 1258 
edges as shown in Figure 6a. Orange bars show decoding accuracy. Decoding accuracy were 1259 
reduced on error trials compared to on correct trials (compare with Figure 6d). Dotted lines show 1260 
97.5th percentile of the null distribution from permutation. 1261 
(e) Single neuron with nonlinear coding of Simon and Flanker conflict contribute to deviation of 1262 
conflict representation from perfect linearity. Data used here are from the ex-ante epoch. 1263 
Nonlinear coding of conflict by a single neuron is measured by the F statistic of the interaction 1264 
term between Simon and Flanker conflict in an ANOVA model with spike counts as the dependent 1265 
variable. Each neuron’s contribution to the deviation from linear additivity in the high 1266 
dimensional neural space is quantified by the weight of the difference vector between “sf” and 1267 
“si + fl”. Scatter plot shows the relation between these two measures. Red line shows the linear 1268 
fit. 1269 
(f) Distance between trajectories and average speed computed from trials grouped by quartiles 1270 
of Simon conflict prior in the baseline (blue) and the ex-ante (orange) epoch, and trials grouped 1271 
by Simon conflict posterior in the ex-post epoch (yellow). Trajectories are visualized in Figure 6f. 1272 
The state space speed stays low during baseline, increases significantly during the ex-ante epoch 1273 
and decreases back to a value similar to that during the baseline. Distance between trajectories 1274 
is stable across time. 1275 
(g) Same as in (f) but for Flanker conflict prior.  1276 
 1277 
Figure S7. Domain-general representation of performance monitoring signals. Related to Figure 1278 
7. 1279 
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(a) Task-invariant decoding of errors in both MSIT (salmon) and Stroop (crimson) after RTs were 1281 
equalized across conditions. Specifically, trials were selected for Stroop such that the RTs on error 1282 
conflict trials did not differ significantly those from correct conflict trials (p > 0.1, t-test). For MSIT, 1283 
trials were selected such that RTs on error “sf” trials and correct “sf” trials did not differ 1284 
significantly (p > 0.1, t test). The task-invariant coding dimension is extracted using dPCA that 1285 
marginalizes out task information and time. This dPCA coding dimension is extracted from the 1286 
error contrast in Stroop (error conflict vs. correct conflict trials) and the error contrast in MSIT 1287 
(error “sf” trials and correct “sf” trials). This controls for trial conflict and isolates effects related 1288 
only to error. Left, Accuracy for decoding errors as a function of time. Bar on the right shows the 1289 
variance explained by the different dPCA components (color code see figure legend).  1290 
(b-c) Task-invariant decoding of conflict in both MSIT (Simon, yellow; Flanker red) and Stroop 1291 
(green) after RTs were equalized across conditions. Because MSIT has two conflict conditions, 1292 
Simon and Flanker, task invariance was investigated using Stroop/Simon and Stroop/Flanker 1293 
conflicts separately. Specifically, trials were selected for Stroop such that RTs on conflict and non-1294 
conflict trials did not differ significantly (p > 0.1, t test). For MSIT, trials were selected such that 1295 
RTs on Simon and non-Simon trials did not differ significantly (p > 0.1) and those on Flanker and 1296 
non-Flanker trials did no differ significantly (p > 0.1). This dPCA coding dimension is extracted 1297 
from conflict and non-conflict trials in Stroop and either from Simon and non-Simon trials (b) or 1298 
from Flanker and non-Flanker trials (c), by marginalizing out task information and time. Left-out 1299 
conflict trials and non-conflict trials in Stroop, and left-out Simon, non-Simon, Flanker, non-1300 
Flanker trials in MSIT are projected and classified by this coding dimension. Left, decoding 1301 
accuracy of conflict as a function of time. The bar on the right shows variance explained by the 1302 
different dPCA components (color code see figure legend).  1303 
(d) Testing separability of conflict conditions in Stroop and MSIT using data from the ex-ante (left) 1304 
and ex-post epochs (right) after RTs were equalize across conditions. Here, trials were selected 1305 
for Stroop such that RTs on conflict and non-conflict trials did not differ significantly (p > 0.1, t 1306 
test). For MSIT, trials were selected such that RTs on si, fl,sf, and non-conflict trials did not differ 1307 
with each other significantly (p > 0.1, t test). The dPCA coding dimension used in this analysis is 1308 
extracted by using conflict and non-conflict trials in Stroop and sf and non-conflict trials in MSIT 1309 
by marginalizing out task information. Because data from ROIs are used, temporal information is 1310 
already marginalized out before being used by the dPCA algorithm. This coding dimension 1311 
support classification of 75% of pairs of MSIT conflict conditions (upper triangle matrices) as well 1312 
as Stroop conflict (left corner). Color coding represents decoding accuracy, orange numbers 1313 
indicate the numerical values of decoding accuracy of that pair of conflict conditions.  1314 
(e) Task-invariant decoding of all pairs of conflict posterior quartiles in Stroop (lower triangle 1315 
matrix) and Simon (upper triangle matrix). The dPCA coding dimension here is extracted using 1316 
the Stroop conflict posterior contrast (the 1st vs. 4th quartiles of Stroop conflict posterior) and the 1317 
Simon conflict posterior contrast (the 1st vs. 4th quartiles of Simon conflict posterior), 1318 
marginalizing out task information. Color code represents decoding accuracy. Bar at the bottom 1319 
shows variance explained of dPCA components (for decoding, the component labelled as 1320 
“posterior” is used). 1321 
(f) Same as in (e) but for Flanker posterior. 1322 
(g-k) Contribution of single neuron coding of Stroop-Flanker ex-ante conflict (g), Stroop-Flanker 1323 
ex-post conflict (h), Stroop-Simon posterior (i), Stroop-Flanker prior (j) and Stroop-Flanker 1324 
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posterior (k) to the task-invariant population coding of these variables. Because MSIT has two 1325 
conflict conditions, Simon and Flanker, task invariance was tested between Stroop and Simon or 1326 
between Stroop and Flanker separately. We modelled each neuron’s baseline (j), ex-ante (g) or 1327 
ex-post (h,i,k) response using linear regression. The main effects are a dummy variable indicating 1328 
Stroop-Flanker conflict (g,h) or Stroop-Simon posterior (i) or Stroop-Flanker prior (j) or Simon-1329 
Flanker posterior (k) and task ID (Stroop or MSIT), and the interaction term between these two. 1330 
A significant interaction suggests that the coding is more prominent in one task than the other. 1331 
Task-invariant neurons is defined as having a significant main effect of the variable of interest but 1332 
an insignificant interaction with the task ID. Task-dependent neurons is defined as having a 1333 
significant interaction term. 1334 
(g) Contribution of single neuron ex-ante coding of Stroop-Flanker conflict to task-invariant 1335 
population coding of Stroop-Flanker conflict.  Of the 42 of neurons that were selected as signaling 1336 
conflict in the ex-ante epoch in either task, 52% did so in a task-invariant way (red) and 48% in a 1337 
task-dependent (blue) way (pie chart). There is a strong correlation between the error t-statistic 1338 
and the dPCA weight of a particular neuron (scatter plot on the left; r = 0.54). Comparing the 1339 
mean absolute value of dPCA weights between task-invariant, task-dependent and uncategorized 1340 
neurons, the task-invariant neurons had significantly larger absolute weights than the task-1341 
dependent neurons (p < 0.001) and uncategorized neurons (p < 0.001). 1342 
(h) Contribution of single neuron ex-post coding of Stroop-Flanker conflict to task-invariant 1343 
population coding of Stroop-Flanker conflict.  Of the 59 of neurons that were selected as signaling 1344 
conflict in the ex-post epoch in either task, 37% did so in a task-invariant way (red) and 67% in a 1345 
task-dependent (blue) way (pie chart). There is a strong correlation between the error t-statistic 1346 
and the dPCA weight of a particular neuron (scatter plot on the left; r = 0.28). Comparing the 1347 
mean absolute value of dPCA weights between task-invariant, task-dependent and uncategorized 1348 
neurons, both the task-invariant (p < 0.01) and task-dependent (p < 0.05) neurons had 1349 
significantly larger absolute weights than the uncategorized neurons.  1350 
(i) Contribution of single neuron ex-post coding of Stroop-Simon conflict posterior to task-1351 
invariant population coding of Stroop-Simon conflict prior. Of the 79 of neurons that were 1352 
selected as signaling posterior in the ex-post epoch in either task, 49% did so in a task-invariant 1353 
way (red) and 51% in a task-dependent (blue) way (pie chart). There is a strong correlation 1354 
between the error t-statistic and the dPCA weight of a particular neuron (scatter plot on the left; 1355 
R = 0.51). Comparing the mean absolute value of dPCA weights between task-invariant, task-1356 
dependent and uncategorized neurons, both the task-invariant (p < 0.001) and task-dependent 1357 
(p < 0.001) neurons had significantly larger absolute weights than the uncategorized neurons. 1358 
(j) Contribution of single neuron baseline coding of Stroop-Flanker conflict prior to task-invariant 1359 
population coding of Stroop-Flanker conflict prior. Of the 58 of neurons that were selected as 1360 
signaling prior in the baseline in either task, 33% did so in a task-invariant way (red) and 67% in 1361 
a task-dependent (blue) way (pie chart). There is a strong correlation between the error t-statistic 1362 
and the dPCA weight of a particular neuron (scatter plot on the left; r = -0.59). Comparing the 1363 
mean absolute value of dPCA weights between task-invariant, task-dependent and uncategorized 1364 
neurons, both the task-invariant (p < 0.05) and task-dependent (p < 0.001) neurons had 1365 
significantly larger absolute weights than the uncategorized neurons. 1366 
(k) Contribution of single neuron ex-post coding of Stroop-Flanker conflict posterior to task-1367 
invariant population coding of Stroop-Flanker conflict posterior. Of the 66 of neurons that were 1368 
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selected as signaling posterior in the ex-post epoch in either task, 50% did so in a task-invariant 1369 
way (red) and 50% in a task-dependent (blue) way (pie chart). There is a strong correlation 1370 
between the error t-statistic and the dPCA weight of a particular neuron (scatter plot on the left; 1371 
r = 0.69). Comparing the mean absolute value of dPCA weights between task-invariant, task-1372 
dependent and uncategorized neurons, both the task-invariant (p < 0.001) and task-dependent 1373 
(p < 0.05) neurons had significantly larger absolute weights than the uncategorized neurons, and 1374 
the task-invariant had significantly larger values than the task-dependent neurons (p < 0.001). 1375 
 1376 
 1377 
 1378 
 1379 
Methods 1380 
 1381 
Tasks 1382 
 1383 
Subjects performed a speeded version of the Stroop and Multi-Source Interference (MSIT) tasks. 1384 
For the Stroop task, subjects were shown a series of randomly intermixed color words (“red”, 1385 
“green”, “blue”) printed in either red, green, or blue color (see Figure 1a). Subjects were 1386 
instructed to name the color the word stimulus was printed in while ignoring its meaning and to 1387 
do so as quickly and accurately as possible. For the MSIT task, subjects were shown an array of 1388 
three numbers (0,1,2,3), out of which two were the same and the third of which was different 1389 
(target). Subjects were instructed to press the button identical to the target number (which was 1390 
unique) regardless of the position at which it was shown. For both tasks, all responses were 1391 
recorded as button presses using an external response box (RB-740, Cedrus Corp., San Pedro, CA).  1392 
For both tasks, the stimulus disappeared immediately when a button was pressed and was 1393 
followed by a blank screen for 1s, followed by a feedback screen, which was shown for 1s. Subject 1394 
were given three types of feedback: correct, incorrect or “too slow”. 10-15% of trials were rated 1395 
as “too slow” based on an adaptive response threshold (see (Fu et al., 2019) for details), which 1396 
we used to emphasize the need to respond quickly and thereby resulting in a sufficiently large 1397 
error rate (~10% of trials). The inter-trial interval was sampled randomly from a uniform 1398 
distribution between 1.5s to 2s. Trial sequences were pseudo-randomized and designed to avoid 1399 
back-to-back repetitions of the same stimulus. The proportion of conflict trials in the Stroop task 1400 
was 30-40%; For MSIT, the proportions of Simon only (“si”), Flanker only (“fl”), Simon and Flanker 1401 
coincident (“sf”) trials are 15%, 15%, and 30%, respectively (the remaining 40% of trials have no 1402 
conflict). The tasks were implemented in MATLAB (The Mathworks, Inc., Natick, MA) using 1403 
Psychtoolbox-3 (Brainard, 1997). The two tasks were performed in sequence, i.e., subjects 1404 
finished blocks of one task first and then moved on to blocks of the other task. The order of task 1405 
performed was randomized across experimental sessions.  1406 
 1407 
Behavioral controls 1408 
 1409 
As a control, we additionally collected behavioral data from N = 51 normal control subjects (24 1410 
females; age mean±sd: 44±11) using the Amazon mTurk platform. We implemented the MSIT 1411 
task as described above using the jsPsych toolbox (de Leeuw, 2015). These behavioral data were 1412 
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analyzed using the same methods as documented below. These control subjects exhibited a 1413 
robust conflict prior effect like the patients (see Figure S1d). 1414 
 1415 
Subjects 1416 
 1417 
34 patients (see Table S1 for age and gender) who were evaluated for possible surgical treatment 1418 
of their focal epilepsy using implantation of depth electrodes volunteered for the study and gave 1419 
written informed consent. We only included patients with well-isolated single- neuron activity on 1420 
at least one electrode in the areas of interest. All research protocols were approved by the 1421 
institutional review boards of Cedars-Sinai Medical Center, Huntington Memorial Hospital, and 1422 
California Institute of Technology. 1423 
 1424 
 1425 
Electrophysiological recordings 1426 
 1427 
We analyzed data from up to 4 electrodes in each subject (bilateral dACC and pre-SMA) in this 1428 
paper. For each depth electrode, there are eight microwires with high impedance microwires at 1429 
the tip, and eight macro contacts with low impedance along the shaft (AdTech Medical Inc.). Data 1430 
from all microwires and the most medial macro contact (which is placed within dACC or pre-SMA) 1431 
are analyzed in this paper. For recordings from microwires, the sampling rate was 32-40kHz and 1432 
the raw signal was acquired broadband (0.01Hz-9kHz). One microwire on each depth electrode 1433 
was designated as a local reference wire. For intracranial EEG recordings done with macro 1434 
contacts, the sampling rate was 2kHz (ATLAS, Neuralynx, Inc., Bozman, MT).  1435 
 1436 
Electrode localization 1437 
 1438 
Electrodes were localized using a combination of a pre-operative MRI and a postoperative 1439 
MRI/CT using standard procedures we described elsewhere (Fu et al., 2019; Minxha et al., 2017). 1440 
Only electrodes that could be clearly localized to the dACC (cingulate gyrus or cingulate sulcus; 1441 
for patients with a paracingulate sulcus, electrodes were assigned to the dACC if they were within 1442 
the paracingulate sulcus or superior cingulate gyrus) or the pre-SMA (superior frontal gyrus) were 1443 
included.  1444 
 1445 
Spike detection and sorting 1446 
 1447 
We filtered the raw broadband signal with a zero-phase lag filter in the 300-3000Hz band. Spikes 1448 
were detected and sorted using a template-matching algorithm (Rutishauser et al., 2006). Sorting 1449 
quality is evaluated using the same metrics reported in (Fu et al., 2019) and only well-isolated 1450 
single units are included in this paper. Channels with interictal epileptic events were excluded.  1451 
 1452 
Quantification and statistical analyses 1453 
 1454 
Behavioral modelling and analyses 1455 
 1456 
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We developed a series of Bayesian conflict learning models to infer subjects’ internal estimate of 1457 
conflict probability (details see below). For this analysis, we concatenated all blocks of an 1458 
experiments done in a single session. For trials with unusually long RTs (> 3 sd from the mean of 1459 
the whole experiment), we replaced the outlier’s RT with the average RT computed from the 1460 
neighboring 6 trials. We estimate the Bayesian model parameters using all trials but excluded 1461 
error trials (after fitting) for analyses that focuses on conflict and conflict prior. We then analyzed 1462 
whether the variance of RT was related to the estimated parameters using linear mixed-effect 1463 
models (Aarts et al., 2014). For MSIT, the linear mixed-effect model is specified as follows (all 1464 
models are represented in Wilkinson’s notation): 1465 
 1466 

log(𝑅𝑇) ∼ 𝑆𝑖𝑚𝑜𝑛	𝑝𝑟𝑖𝑜𝑟 ∗ 𝑆𝑖𝑚𝑜𝑛	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 + 𝐹𝑙𝑎𝑛𝑘𝑒𝑟	𝑝𝑟𝑖𝑜𝑟 ∗ 𝐹𝑙𝑎𝑛𝑘𝑒𝑟	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 + (11467 
+ 𝑆𝑖𝑚𝑜𝑛	𝑝𝑟𝑖𝑜𝑟 + 𝐹𝑙𝑎𝑛𝑘𝑒𝑟	𝑝𝑟𝑖𝑜𝑟|𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷: 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝐼𝐷) 1468 

 1469 
For Stroop, this is specified as: 1470 
 1471 
log(𝑅𝑇) ∼ 𝑆𝑡𝑟𝑜𝑜𝑝	𝑝𝑟𝑖𝑜𝑟 ∗ 𝑆𝑡𝑟𝑜𝑜𝑝	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 + (1 + 𝑆𝑡𝑟𝑜𝑜𝑝	𝑝𝑟𝑖𝑜𝑟|𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷: 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝐼𝐷) 1472 

 1473 
Here, the fixed effects of Simon, Flanker and Stroop conflicts are dummy variables indicating 1474 
whether a particular trial involves conflict (value = 1) or not (value = 0). The fixed effects for priors 1475 
are obtained from our Bayesian conflict learning models as detailed below. To test if RT was 1476 
affected by conflict on the immediately preceding trial, represented by 𝑆𝑖𝑚𝑜𝑛	𝑝𝑟𝑒𝑣𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 1477 
𝐹𝑙𝑎𝑛𝑘𝑒𝑟	𝑝𝑟𝑒𝑣𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 and 𝑆𝑡𝑟𝑜𝑜𝑝	𝑝𝑟𝑒𝑣𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡, we again constructed a linear mixed-effect 1478 
models for both MSIT and Stroop. For MSIT, the model is specified as follows: 1479 
 1480 

log(𝑅𝑇) ∼ 𝑆𝑖𝑚𝑜𝑛	𝑝𝑟𝑒𝑣𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ∗ 𝑆𝑖𝑚𝑜𝑛	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 + 𝐹𝑙𝑎𝑛𝑘𝑒𝑟	𝑝𝑟𝑒𝑣𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡1481 
∗ 𝐹𝑙𝑎𝑛𝑘𝑒𝑟	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 + (1|𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷: 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝐼𝐷) 1482 

 1483 
For Stroop, this is specified as: 1484 
 1485 

log(𝑅𝑇) ∼ 𝑆𝑡𝑟𝑜𝑜𝑝	𝑝𝑟𝑒𝑣𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ∗ 𝑆𝑡𝑟𝑜𝑜𝑝	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 + (1|𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷: 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝐼𝐷) 1486 
 1487 
We investigated the effect of conflict prior on the likelihood of making an error using generalized 1488 
linear mixed-effect models. For MSIT, this model is given as 1489 
 1490 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒 ∼ 𝑆𝑖𝑚𝑜𝑛	𝑝𝑟𝑖𝑜𝑟 ∗ 𝑆𝐹 + 𝐹𝑙𝑎𝑛𝑘𝑒𝑟	𝑝𝑟𝑖𝑜𝑟 ∗ 𝑆𝐹 + (1 + 𝑆𝑖𝑚𝑜𝑛	𝑝𝑟𝑖𝑜𝑟1491 
+ 𝐹𝑙𝑎𝑛𝑘𝑒𝑟	𝑝𝑟𝑖𝑜𝑟|𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷: 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝐼𝐷) 1492 

 1493 
where 𝑆𝐹 is a dummy variable indicating whether the trial has both Simon and Flanker conflict 1494 
(value = 1) or non-conflict (value = 0). We restricted this analysis to sf trials because most errors 1495 
occurred on these trials. For Stroop, this model is given as 1496 
 1497 
𝑂𝑢𝑡𝑐𝑜𝑚𝑒 ∼ 𝑆𝑡𝑟𝑜𝑜𝑝	𝑝𝑟𝑖𝑜𝑟 ∗ 𝑆𝑡𝑟𝑜𝑜𝑝	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 + (1 + 𝑆𝑡𝑟𝑜𝑜𝑝	𝑝𝑟𝑖𝑜𝑟|𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷: 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝐼𝐷) 1498 

The response variable 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 is a categorical variable indicating whether the trial ended in a 1499 
correct (0) or incorrect (1) response.  1500 
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To determine the statistical significance of each fixed effect, we compared the full model with a 1501 
reduced model where the fixed effect in question was removed using the likelihood ratio test. To 1502 
determine whether RT tuning of the model (see below) is necessary for conflict prior to explain 1503 
RT variance, we switched out the conflict prior with the one estimated without RT tuning and 1504 
kept all other terms the same. Statistical significance determined this way was indicated by stars 1505 
or “n.s” (non-significant) in Figures 1 and S1. To determine whether the conflict prior explains 1506 
variance in RT and error likelihood independent of practice, which is assumed to vary with the 1507 
trial number, we augmented the aforementioned mixed-effect models by including three 1508 
additional trial-ID terms: 𝑡𝑟𝑖𝑎𝑙𝐼𝐷, 𝑡𝑟𝑖𝑎𝑙𝐼𝐷,, 𝑡𝑟𝑖𝑎𝑙𝐼𝐷- to capture variance related to  practice 1509 
effects.   1510 
 1511 
 1512 
Bayesian conflict learning models 1513 
 1514 
Our models are structurally similar to those used in several previous studies (Behrens et al., 2007; 1515 
Jiang et al., 2015). Here, we briefly highlight the modifications we made to extend these existing 1516 
models to model behavior in both the Stroop and MSIT tasks, the latter of which has two types 1517 
of conflicts that are monitored at the same time. Our models have the following parameters (see 1518 
Fig. 1c for a schematic of the model structure): 1) a flexible learning rate 𝛼, which captures the 1519 
subject’s belief in the rate of change in control demand in the environment (i.e., a change in 1520 
conflict probability), and 2) conflict probability (𝑞$ for Stroop conflict in the model for Stroop, 𝑞$"  1521 
for Simon and 𝑞%&   for Flanker conflicts in the model for MSIT). The models utilize two types of 1522 
data (both of which are only available after a trial’s response has been made): 1) trial congruency 1523 
𝑜 (value of 1 indicates an incongruent trial; 𝑜$ for Stroop congruency, 𝑜$"  for Simon congruency 1524 
and 𝑜%&  for Flanker congruency; 2) reaction time 𝑅𝑇, assigning Bernoulli likelihood function to the 1525 
former and the drift-diffusion model likelihood function to the latter (details see below). Prior 1526 
work (Jiang et al., 2015) uses a Gaussian likelihood function to describe RT generation in a 1527 
Bayesian learning framework similar to ours, but we argue that the use of DDM has several 1528 
advantages over the Gaussian approach: 1) fewer parameters are used in the DDM, making it 1529 
computationally possible to model two types of MSIT conflict at the same time; 2) the DDM 1530 
parameters have physiological meaning and thus also provide a clear physiological reasoning for 1531 
conflict prior to affect specific components of the decision process; 3) DDM has been widely used 1532 
and validated as the generative framework to model RT during decision making (Pedersen et al., 1533 
2017; Wiecki et al., 2013).   1534 
 1535 
Estimating control demand is operationalized as estimating the probability that a certain conflict 1536 
(Stroop, Simon or Flanker) would occur in the block. One advantage of our models is that they 1537 
estimate both the conflict probability and the rate of change in conflict probability in an online 1538 
manner, i.e., the models iteratively update their current estimates after every trial with new 1539 
incoming data (of that trial) using Bayes’ law. This is consistent with the way human subjects 1540 
perform conflict tasks while estimating the associated control demand: they perform and 1541 
estimate trial-by-trial. Note that in this study the conflict probability was constant throughout 1542 
the experiment (but this was not known to subjects). Nevertheless, we allow the model to infer 1543 
the learning rate 𝛼  online because humans demonstrate inherent bias in believing that 1544 
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environmental statistics are not stable (Yu and Cohen, 2008). There is therefore no fitting 1545 
involved for estimating 𝛼 and thus the models are not penalized for including this parameter in 1546 
model comparisons. Note that we use a single 𝛼 for both types of conflicts in MSIT. To simplify 1547 
model estimation, we made the Markovian assumption that the current estimate of conflict 1548 
probability depends only on the current trial congruency and RT, and the estimated conflict 1549 
probability on the last trial, but not on the full history of past trial conflict probability (Behrens et 1550 
al., 2007). The iterative estimation of conflict probability then involves combining the estimated 1551 
conflict probability from the previous trial (prior), transition functions capturing how the current 1552 
estimate will change from the previous one (the probability of current estimate conditional on 1553 
previous estimate) and the likelihood function.  1554 
 1555 
The model starts with a transition function for the learning rate 𝛼: 1556 
 1557 

𝑝(𝛼"./|𝛼") = 𝑘𝛿(𝛼"./ − 𝛼") + 1 − 𝑘 1558 
 1559 
This formulation assumes that the learning rate has a probability k of having the same distribution 1560 
as that of the preceding trial but with a probability 1-k of switching to a uniform distribution (over 1561 
all possible 𝛼), because the learning rate is largely stable across time. The transition function for 1562 
conflict probability concerning the transition from the current estimate to a future estimate is 1563 
computed in two steps. Here, we refer to the current-trial estimate of conflict probability for 1564 
Stroop, Simon or Flanker generically as 𝑞", to which we assigned a uniform prior. The transition 1565 
function is thus denoted as 𝑝(𝑞"./|𝑞" , 𝛼"). First, an auxiliary variable 𝑞".0.2 is constructed, which 1566 
is a beta-distributed random variable with its mode being 𝑞"  and the sum of two parameters 1567 
being /

3!"#
: 1568 

 1569 

𝑣"./ =
1
𝛼"./

− 2 1570 

 1571 
𝑞".0.2~𝐵𝑒𝑡𝑎(𝑞"𝑣"./ + 1, 𝑣"./ − 𝑞"𝑣"./ + 1) 1572 

 1573 
The conflict probability transition function is then constructed as 1574 
 1575 

𝑞"./~𝑞".0.2 + 𝛼"./(𝑜" − 𝑞".0.2) 1576 
 1577 
The transition function adopts a classical update rule used in reinforcement learning models, and 1578 
the learning rate controls the balance between past (𝑞".0.2) and current information (𝑜").  For 1579 
the MSIT model, we take the product of the transition functions computed separately for Simon 1580 
and Flanker predicted conflict. Finally, we consider the likelihood function. Since the trial 1581 
sequences were designed and re-used for different subjects, the estimated conflict probability 1582 
would be the same across subjects for the same sequence, but this is inconsistent with the fact 1583 
that such individual estimates should be subjective and different between participants. We thus 1584 
incorporated RTs from each subject, which are assumed to be generated through a drift-diffusion 1585 
process, to estimate a subjective conflict probability based on the assumption that a subjects’ RT 1586 
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reflects the extent to which they engaged control. RT is assumed to be generated by a diffusion 1587 
process. We used an abstract version of the drift-diffusion model where the two bounds 1588 
represent the correct and wrong choice (and not the actual choices). The diffusion process 1589 
accumulated the difference in the evidence between the target and distractor response (Fig. 1c, 1590 
right), which is smaller for conflict trials and thus leads to longer RTs. We refer to the drift-1591 
diffusion likelihood function for RT as  1592 
𝑝445Q𝑣$" , 𝑣%& , 𝑣$% , 𝑣'(')*('%&"*+ , 𝑣𝑧$" , 𝑣𝑧%& , 𝑎, 𝑞$" , 𝑞%&R  for the MSIT model, and 1593 
𝑝445Q𝑣*('%&"*+ , 𝑣$+6((7	'(')*('%&"*+ , 𝑣𝑧, 𝑎, 𝑞$R for the Stroop model (Navarro and Fuss, 2009). The 1594 
hyperparameters specifying the DDM are boundary separation (𝑎), base drift rates for Simon-1595 
only, Flanker-only, both Simon and Flanker present, and non-conflict trials in MSIT 1596 
( 𝑣$" , 𝑣%& , 𝑣$% , 𝑣'(')*('%&"*+) , base drift rates for conflict and non-conflict trials in Stroop 1597 
(𝑣*('%&"*+ , 𝑣$+6((7	'(')*('%&"*+), and drift rate bias coefficients that scales the conflict probability 1598 
of Simon, Flanker and Stroop (𝑣𝑧$" , 𝑣𝑧%& , 𝑣𝑧). The effective drift rate is then the sum between the 1599 
base drift rate and the drift rate bias (see Fig. 1c). Here we made the assumption that conflict 1600 
prior affects RT by biasing drift rates based on a previous work investigating the effect of choice 1601 
history on RT (Urai et al., 2019). We also assumed that the drift rate diffusion started at the half 1602 
point of the boundary separation (i.e., 𝑧 = 0.5). With the Markovian assumption, the updating 1603 
process for the MSIT model is thus given by 1604 
 1605 
𝑝Q𝑘, 𝛼"./, 𝑞$","./, 𝑞%&,"./V𝑜$",:"./, 𝑜%&,:"./, 𝑅𝑇:"./R ∝ 𝑝Q𝑜$","./, 𝑜%&,"./, 𝑅𝑇"./V𝑞$","./, 𝑞%&,"./R 1606 

XYZ𝑝Q𝑘, 𝛼" , 𝑞$"," , 𝑞%&,"V𝑜$",:" , 𝑜%&,:" , 𝑅𝑇:"R𝑝(𝛼"./|𝛼" , 𝑘)𝑑𝛼"\ 𝑝Q𝑞$","./V𝑞$"," , 𝛼"R𝑝Q𝑞%&,"./V𝑞%&," , 𝛼"R𝑑𝑞$","𝑑𝑞%&,"  1607 

 1608 
The updating process for the Stroop model is given by 1609 
 1610 
𝑝Q𝑘, 𝛼"./, 𝑞$,"./V𝑜$,:"./, 𝑅𝑇:"./R1611 

∝ 𝑝Q𝑜$,"./, 𝑅𝑇"./V𝑞$,"./RZ YZ𝑝Q𝑘, 𝛼" , 𝑞"V𝑜$,:" , 𝑅𝑇:"R𝑝(𝛼"./|𝛼" , 𝑘)𝑑𝛼"\ 𝑝Q𝑞$,"./V𝑞$," , 𝛼"R𝑑𝑞$,"  1612 

 1613 
The likelihood function is the product of Bernoulli likelihood for trial congruency and DDM 1614 
likelihood for RT. For MSIT, the likelihood function is given as: 1615 
 1616 
𝑝Q𝑜$","./, 𝑜%&,"./, 𝑅𝑇"./V𝑞$","./, 𝑞%&,"./R = Q1 − V𝑜$","./ − 𝑞$","./VRQ1 − V𝑜%&,"./ − 𝑞%&,"./VR𝑝445 1617 

 1618 
For Stroop, the likelihood function is given as: 1619 
 1620 

𝑝Q𝑜$,"./, 𝑅𝑇"./V𝑞$,"./R = Q1 − V𝑜$,"./ − 𝑞$,"./VR𝑝445 1621 
 1622 
These hyperparameters are estimated using an expectation-maximization (EM) algorithm as 1623 
shown in earlier work (Jiang et al., 2015). Briefly, the model parameters were at first estimated 1624 
without incorporating the DDM likelihood for RT (“E” step). Hyperparameters were then fit by 1625 
maximizing the DDM likelihood for the observed RT using the conflict prior (s) obtained (“M” 1626 
step). The DDM likelihood function with the fitted hyperparameters were then incorporated into 1627 
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the Bayesian updating process (“E” step) to generate a new set of conflict prior (s), which were 1628 
then used to maximize the DDM likelihood over observed RT again. These steps were repeated 1629 
until the convergence of both model parameters and hyperparameters (Euclidean distance 1630 
between parameter vectors from successive iterations < 10-5).  1631 
 1632 
We considered three alternative classes of models: 1) reinforcement learning (RL) models; 2) 1633 
constant model; 3) Bayesian learning model without RT tuning. For the RL model, we constructed 1634 
a value function corresponding to the estimated conflict probability, and this estimate is also 1635 
updated trial-by-trial using a Rescorla-Wagner rule. For MSIT, the update rule is: 1636 
 1637 

𝑞$","./ = 𝑞$"," + 𝛼Q𝑜$","./ − 𝑞$","R 1638 
 1639 

𝑞%&,"./ = 𝑞%&," + 𝛼Q𝑜%&,"./ − 𝑞%&,"R 1640 
 1641 
For Stroop, the update rule is: 1642 
 1643 

𝑞$,"./ = 𝑞$," + 𝛼Q𝑜$,"./ − 𝑞$,"R 1644 
 1645 
The free parameter 𝛼 in the RL models was fit by maximizing the data likelihood (Bernoulli) for 1646 
trial congruency. For the constant model, 𝑞$ ,	𝑞$" , 𝑞%&  were fit directly by maximizing the data 1647 
likelihood for trial congruency. For Bayesian conflict learning models without RT tuning, 𝑞$,	𝑞$", 1648 
𝑞%&  were estimated online but the likelihood function for RT was not incorporated in the process. 1649 
 1650 
We used the Bayesian Information Criterion (BIC) to compare the RT-tuned Bayesian conflict 1651 
learning models with the RL models, constant models and the non-RT tuned Bayesian conflict 1652 
learning models. We compared these models separately for their ability to explain trial 1653 
congruency and RT. For this analysis, we pooled all data from all sessions and computed the BIC 1654 
for each model and for each data type (RT or trial congruency), consistent with a previous study 1655 
(Behrens et al., 2007). Results of model comparisons can be found in Tables S2 and S3.  1656 
 1657 
 1658 
Selection of neurons 1659 
 1660 
We defined the epochs of interests according to events in the tasks (see Figure 3a for an 1661 
illustration). The baseline epoch starts at 1.5s before stimulus onset and ends at stimulus onset. 1662 
This epoch is used to analyze encoding of conflict prior. The ex-ante epoch is anchored to the 1663 
midpoint of a period of time starting at 100ms after stimulus onset (to account for the minimal 1664 
delay needed for visual information to reach the MFC) and ending at the time of button presses. 1665 
We then defined the ex-ante epoch as a 500ms window centered on the midpoint of this period. 1666 
The rationale for analyzing conflict signals in this epoch is as follows: at the early stage of stimulus 1667 
processing, information about the different response options is not yet fully processed and hence 1668 
minimal conflict; the conflict signal should reach its maximum when the different stimulus 1669 
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dimensions that drive competing responses are fully available; and finally, it should subside after 1670 
a response is selected.  1671 
We counted the number of spikes in these epochs and regressed the spike counts against the 1672 
different regressors (error, conflict, conflict surprise, conflict prior and conflict posterior) using 1673 
linear regression. For each regressor, we extracted a p value computed from the F test. A neuron 1674 
was deemed selective for this regressor when p < 0.05. For MSIT, since there were both Simon 1675 
and Flanker conflicts, neurons were selected when regressors related to either Simon or Flanker 1676 
conflict were significant (e.g., ex-ante conflict cells in MSIT were the union of neurons selective 1677 
for Simon conflict and Flanker conflict during the ex-ante epoch). To assess whether a neuronal 1678 
class is significantly present in the population, we derive a null distribution by permuting the 1679 
relation between spike counts and the regressor of interest for 1000 times. A p value is computed 1680 
by comparing the true proportion of selected neurons against this null distribution. The 95th 1681 
interval of the null distribution for each neuronal class is plotted as dotted lines in Figure 3b.  1682 
To statistically compare the extent of multiplexing between two groups of cells active in different 1683 
epochs (Figure 3d), we used the chi-squared test and reported the p-value and effect size of the 1684 
test.  1685 
 1686 
Single-trial spike train latency 1687 
 1688 
We estimated the onset latency in individual trials using Poisson spike-train analysis (Figure 3e) 1689 
(Hanes et al., 1995). This method detects the moments when the observed inter-spike intervals 1690 
(ISI) deviate significantly from that assumed by a constant-rate baseline Poisson process. We 1691 
used the spike rate averaged across the whole block of experiment as a baseline spike rates for 1692 
each neuron. This baseline rate was then used to compute a Poisson surprise metric across the 1693 
spike train. We started our detection algorithm from the onset of stimulus for each trial. For the 1694 
ex-ante conflict neurons (two columns on the left), we restricted the range in which the detection 1695 
algorithm looks for bursts to after stimulus onset and before button presses. This is because, by 1696 
their definition, ex-ante conflict neurons carried a conflict signal before action. For the ex-post 1697 
conflict neurons (two columns on the right), we restricted the range to 200ms before button 1698 
presses and before end of trial. We then extract the latency of the first significant burst. The 1699 
statistical threshold for detecting an onset was p < 0.01. Repeating the same procedure with a 1700 
threshold of p < 0.001 did not affect our conclusions. For these analyses, we only used the conflict 1701 
trials as we focused on the single-trial conflict response of selected conflict-encoding neurons. 1702 
 1703 
Correct-related potential (CRP) analyses 1704 
 1705 
We simultaneously also recorded the intracranial electroencephalography (iEEG) while we 1706 
recorded single unit activity. iEEG data were acquired from low-impedance macro contacts 1707 
closest to the microwires. We focused on the contacts that were directly placed in dACC and pre-1708 
SMA (as confirmed by post-operative imaging, see (Fu et al., 2019)). To extract the CRP, we 1709 
downsampled the iEEG data to a sampling frequency of 100Hz (using MATLAB “resample”) and 1710 
then bandpass filtered (0.1Hz-10Hz) the data with a finite impulse response filter (MATLAB 1711 
function “fir1”). Filtered data were then shifted in time to account for average filter delay 1712 
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(computed using MATLAB function “grpdelay”). We then computed the CRP amplitude for each 1713 
trial by averaging the filtered iEEG data within [0,250ms] after button presses. 1714 
 1715 
To analyze whether the CRP amplitude was related to conflict and/or RT, we used a linear mixed-1716 
effect model, pooling experimental sessions and electrodes. The model in Wilkinson’s notation 1717 
is given by 1718 
 1719 

CRP ∼ 𝑆𝑡𝑟𝑜𝑜𝑝	𝑝𝑟𝑖𝑜𝑟 ∗ 𝑆𝑡𝑟𝑜𝑜𝑝	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 + 𝑅𝑇1720 
+ (1 + 𝑆𝑡𝑟𝑜𝑜𝑝	𝑝𝑟𝑖𝑜𝑟 + 𝑅𝑇|𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷: 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝐼𝐷) 1721 

 1722 
The fixed effect of 𝑆𝑡𝑟𝑜𝑜𝑝	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 is a dummy variable indicating whether a trial is a conflict 1723 
trial (value = 1) or not (value = 0). We analyzed the relation between spike counts of prior neurons 1724 
in dACC and pre-SMA and the simultaneously recorded CRP using a Poisson mixed-effect model. 1725 
Spike counts were gathered using a 500ms bin swept across the trial in steps of 25ms. The model 1726 
was computed for spike counts in each bin. The full model is given by: 1727 
 1728 

Spike	counts(𝑡) ∼ 𝐶𝑅𝑃 + 	𝑆𝑡𝑟𝑜𝑜𝑝	𝑝𝑟𝑖𝑜𝑟 + 𝑅𝑇 + (1|𝑐𝑒𝑙𝑙𝐼𝐷) 1729 
 1730 
To determine the statistical significance of each fixed effect, we compare the full model with a 1731 
reduced model with the fixed effect of interest removed and tested the likelihood ratio between 1732 
the full and reduced model using a likelihood ratio test. For the CRP-spike count relation model, 1733 
the reduced model is the same as the full model except that the fixed effect of 𝐶𝑅𝑃 is removed. 1734 
We plotted the likelihood ratio from this model comparison as a function of time in Figure 3I. The 1735 
p-values were obtained from the likelihood ratio tests and corrected using false discovery rate 1736 
method. 1737 
 1738 
Detrended fluctuation analysis 1739 
 1740 
Detrended fluctuation analysis (DFA) was first developed by Peng and colleagues (Hardstone et 1741 
al., 2012; Peng et al., 1994) to quantify long-range temporal correlations (LRTC). We use DFA to 1742 
quantify the extent of LRTC in baseline spike counts on the scale of trials.  First, the cumulative 1743 
sum of the spike counts during baseline was computed. To be consistent with prior literature we 1744 
refer to this cumulative sum as the signal profile. A set of trial window sizes were defined 1745 
between the lower bound of 4 trials and the upper bound of the block length. For each window 1746 
size, we then partitioned the signal profile into a series of data snippets. Partitioning was done 1747 
such that two adjacent snippets had an overlap of half the window size. We then removed the 1748 
linear trend from each data snipped (using least square regression) and computed the standard 1749 
deviation across time. The mean of the standard deviations across all snippets of identical 1750 
window size was then computed (y axis of Fig. 4f).  Finally, the mean standard deviations were 1751 
regressed linearly against the logarithmically scaled time windows and the slope was extracted 1752 
as the DFA a value (Fig. 4f shows the fluctuations as a function of logarithmically transformed 1753 
trial window sizes for two example neurons). 1754 
For Fig 4a-b, we tested the relation between a neuron’s baseline DFA a value and its tendency to 1755 
encode conflict prior. To avoid selection bias, we split trials into two sets of equal size, with one 1756 
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half consisting of a consecutive run of trials. This is because DFA is used for time series data and 1757 
thus required the data be consecutive and temporally ordered. For randomization, we first 1758 
randomly sampled one trial from the first half of the block. Then a consecutive run of trials 1759 
starting with this randomly picked trial as the starting point were extracted. The consecutive set 1760 
was used to compute DFA a value while the rest of the trials were used to correlate with conflict 1761 
prior (Simon, Flanker or Stroop) using Spearman rank correlation.  1762 
 1763 
Decoding analysis (Support-vector machine) 1764 
 1765 
Data were aggregated from different experimental sessions to create pseudo-population data 1766 
matrices. We constructed for each trial a peri-stimulus time histogram (PSTH) using 500ms bins 1767 
in steps of 25ms. For all conflict or conflict prior -related decoding, we used correct trials only. 1768 
Since different behavioral sessions had different number of trials (some subjects participated in 1769 
less sessions than the others), we subsampled the same number of trials from each condition for 1770 
each neuron and repeat this process 50 times. For error decoding, we subsampled 10 error trials 1771 
and 10 correct conflict trials for Stroop and 10 correct sf trials for MSIT. Since most errors 1772 
occurred on high conflict trials, these contrasts isolate the effect of error while controlling for the 1773 
effect of conflict. For conflict decoding, we subsampled 30 trials from each conflict conditions: 1774 
conflict and non-conflict trials for Stroop; Simon and non-Simon trials, Flanker and non-Flanker 1775 
trials for MSIT. For each time bin, we performed 5-fold cross validation using LIBSVM (Chang and 1776 
Lin, 2011). We used the linear kernel and set the 𝑐 parameter to 1 for all analyses. In brief, trials 1777 
were first randomly split into 5 equal parts; each part was used in turn as the testing data while 1778 
the rest of the four parts were used as training data. Decoding accuracy was the proportion of 1779 
correct classifications among the 250 samples (50 resamples x 5 folds). Note that the resampling 1780 
was done once to generate testing and training sets for the whole time series and used for both 1781 
within-time and across-time decoding. For within-time decoding (All plots with dotted lines in Fig. 1782 
5), the SVM classifier trained using the training data from each time bin was tested using the 1783 
testing data from the same time bin. For cross-temporal decoding (temporal generalization; all 1784 
plots with solid lines in Fig. 5), the SVM classifier trained using the training data from each time 1785 
bin were tested across the trial using testing data gathered from other time bins.  1786 
 1787 
 1788 
Reaction times equalization 1789 
 1790 
For analyses shown in Figures S6c and S7a-d, we selected a subset of trials from each condition 1791 
so that the RTs did not differ significantly across conditions (e.g., equalizing RTs between conflict 1792 
and non-conflict trials in the Stroop data). Here we detail the RT equalization procedure we used 1793 
to create “RT equalized sets”. We first selected a condition as the “anchor” condition. We sorted 1794 
the RTs of the anchor condition, and for each RT we searched in the target (to-be-equalized) 1795 
condition(s) for a trial whose RT did not differ from the anchor RT by more than 0.1s. If all RTs in 1796 
the target condition differed from the anchor RT by > 0.1s, the anchor RT was not included in the 1797 
RT equalized set. Once selected, the anchor RT and the target RT were both removed from the 1798 
original set to ensure that no trials were included twice in any RT equalized trial sets.  This 1799 
procedure was repeated until one of the conditions considered were emptied. We confirmed 1800 
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post hoc that RT equalization was successful by testing whether RTs were not significantly 1801 
different using ANOVA (p > 0.5 for all the RT equalized sets).  1802 
 1803 
 1804 
Decoding analysis (population activity vectors and demixed PCA) 1805 
 1806 
Data were aggregated from different experimental sessions to create a pseudo-population. We 1807 
randomly selected one trial for each neuron from one condition and concatenate the data from 1808 
each neuron to form a single-trial testing data matrix. The rest of the trials were averaged for 1809 
each condition and concatenated to form a training data matrix. Coding dimensions were defined 1810 
based on the condition-averaged training data. To define the coding dimensions used to decode 1811 
conflict conditions within MSIT, we used the population activity vectors (a high dimensional 1812 
vector in the raw firing rate space) defined by the difference between the two condition means. 1813 
To define coding dimensions for the cross-task decoding problems we used dPCA to extract 1814 
demixed principal components (dPC). Details of which trials were used to define the coding 1815 
dimensions used to generate Figures 6,7, S6 and S7 are given in the sections to follow. Both 1816 
testing and training data were projected onto the identified coding dimensions. The labels for 1817 
testing data were assigned according to the label of the nearest neighbor of the training data. To 1818 
test condition generalization, we projected the testing data from one pair of conditions to a 1819 
coding dimension defined by another pair of conditions (e.g., a Simon trial and non-Simon trial 1820 
projected to the population vector flanked by Flanker and non-Flanker trial averages) and 1821 
classified using the labels of the nearest projected training data. This decoding procedure was 1822 
repeated 1000 times (resulting in 1000 single-trial testing data matrices and the corresponding 1823 
training data matrices), and the decoding accuracy was defined by the proportion of correct 1824 
classifications among these 1000 repetitions. To determine statistical significance, we permuted 1825 
the trial labels for 500 times and for each permutation, we repeated all above steps to generate 1826 
a null distribution. A p-value was computed from comparing the true decoding accuracy with the 1827 
null distribution. 1828 
 1829 
Pseudo-population matrices for MSIT analyses 1830 
 1831 
For Figure 6a, we formed the pseudo-population data matrix by taking the average of spike 1832 
counts within the ex-ante or ex-post (1s after button presses) epoch across all Simon-only, 1833 
Flanker-only, Simon+ Flanker, and non-conflict trials, respectively. We then used PCA on this 1834 
condition-averaged data matrix to extract the three principal components (PC) that explained 1835 
most variance to visualize the geometric arrangement of the four conflict types. For Figure 6f-h, 1836 
trials were binned by quartiles of prior and posterior into four bins separately. However, because 1837 
conflict prior was updated into conflict posterior after each button press, binning priors does not 1838 
guarantee that the posteriors would fall into the same bins. This is because updating is specific 1839 
to each behavioral session and thus differs between neurons. Averaging trials using only bins 1840 
formed by prior quartiles would thus mix trials with different levels of posterior for each neuron. 1841 
To avoid this problem, we thus formed the data matrix (which now includes the time dimension 1842 
rather than a single ROI; spikes were counted in 500ms bins swept across the whole trial in steps 1843 
of 25ms; spike trains were aligned to button presses) by concatenating two submatrices: one that 1844 
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was constructed by averaging trials within bins defined by prior quartiles using data before button 1845 
presses, and one that was constructed from averaging trials within bins defined by posterior 1846 
quartiles for  neural data after the button press. We then used PCA to find the three PCs that 1847 
explained the most variance for this matrix. The concatenated data matrix was then projected 1848 
onto these PCs to generate the visualization of trajectory corresponding to prior/posterior levels.  1849 
 1850 
Vectors in the state space to quantify population geometry within MSIT 1851 
 1852 
We next describe how coding dimensions were defined in each case using population activity 1853 
vectors in the raw firing rate space. For Figure 6b, the coding dimension was the population 1854 
vector flanked by the trial averages of sf and non-conflict trials (Fig. 6a, dashed lines). 1855 
Classifications were carried out between pairs of conflict conditions (e.g., between si and fl trials) 1856 
as detailed above. For Figure 6c, we took a bin-wise approach to investigate whether Simon 1857 
conflict representation generalize to Flanker representation, and vice versa. For this, we split 1858 
trials into four non-overlapping groups: Simon, Flanker, non-Simon, non-Flanker trial sets. We 1859 
split sf and non-conflict trials randomly in half. One half of sf trials were pooled with si trials to 1860 
form the Simon trial set, and one half of non-conflict trials were pooled with fl trials to form the 1861 
non-Simon trial set. The other half of sf trials were then pooled with fl trials to form the Flanker 1862 
trial set, and the other half of non-conflict trials were pooled with si trials to form non-Flanker 1863 
trial set. Using these trial sets, for each time bin we extracted two coding dimensions from the 1864 
training data: one population vector flanked by trial averages of Simon and non-Simon trials 1865 
(Simon coding dimension), and one population vector flanked by the trial averages of Flanker and 1866 
non-Flanker trials (Flanker coding dimension). We then projected the testing data from 1867 
Simon/non-Simon trials onto the Flanker coding dimension and classified the testing data using 1868 
the closest projected training data, and vice versa. For details of this classification procedure see 1869 
above paragraph. This assesses the extent to which coding of Simon and Flanker conflict is 1870 
abstract.  1871 
 1872 
Compositionality of conflict representation 1873 
 1874 
For Figure 6d, the coding dimension were taken to be the blue and orange edges as shown in 1875 
Figure 6a. The purpose of this analysis is to assess to what extent the representation of conflict 1876 
is compositional (within a task). We assumed that in the neuronal firing rate space, the 1877 
representation of Simon/Flanker conflict is a vector pointing from non-conflict trial averages to 1878 
the si/fl trial averages. Compositionality of such conflict representation would imply that the sf 1879 
representation (vector pointing from non-conflict trial average to the sf trial average) is equal to 1880 
the sum of the Simon and Flanker representations. According to the parallelogram law of vector 1881 
addition, this then corresponds to the blue and orange edges in Figure 6a forming a parallelogram. 1882 
We tested the extent of parallelism in the data using decoding. The coding dimensions here were 1883 
defined by the following population vectors using training data: one flanked by non-conflict and 1884 
si trial averages (Fig. 6a, blue), one flanked by fl and sf trial averages (blue), one flanked by fl and 1885 
non-conflict trial averages (orange) and one flanked by si and sf trial averages (orange). Left-out 1886 
testing data from conditions flanking one of the blue or orange pair of edges were then projected 1887 
to the other edge in the pair and classified by the training data defining this edge. For example, 1888 
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single-trial testing data of non-conflict and si trials were projected to the coding dimension 1889 
flanked by fl and sf trial averages and were classified by fl or sf trial averages.  1890 
 1891 
Relationship of single neuron tuning with parallelism in geometry 1892 
 1893 
For Figure 6e and Figure S6e, the goal is to investigate the relation between the nonlinearity in 1894 
single neuron conflict coding and the deviation from perfect compositionality in state space 1895 
representation of conflict. We denote the state-space representation of Simon and Flanker -only 1896 
conflict as the population vectors flanked by the trial averages of si and non-conflict and by the 1897 
trial averages of fl and non-conflict. We refer to the state space location occupied by the linear 1898 
sum of Simon and Flanker representation defined above as “s+f”. The deviation from perfect 1899 
compositionality is then given by the population vector flanked by “sf” and “s+f”. The loading of 1900 
“sf” to the “s+f” vector reflects the single neuron contribution to the deviation at the population 1901 
level. To quantify nonlinearity of conflict coding for each neuron, we first regressed the spike 1902 
counts in the ex-ante or ex-post epoch (1s) against three fixed effects: a Simon effect (dummy 1903 
variable indicating the presence or absence of Simon conflict on a trial), a Flanker effect (dummy 1904 
variable indicating the presence or absence of Flanker conflict on a trial) and the interaction term 1905 
between these two. We extracted the F statistic related to the interaction term, which captures 1906 
the effect of nonlinear mixing of Simon and Flanker conflict. We then extracted a population 1907 
vector flanked by the sf trial average and and “s+f”, the sum of two population vectors one 1908 
flanked by trial averages of si trials and non-conflict trials, and one flanked by trial averages of fl 1909 
trials and non-conflict trials. We then correlated the loading of “sf” - “s+f” vector and the F 1910 
statistics from a particular neuron.  1911 
 1912 
Quantification of state space dynamics 1913 
 1914 
For Figure 6i, we binned spike counts using 250ms bins swept across the trial in steps of 10ms. 1915 
The state-space speed was defined to be the Euclidean distance between population vectors of 1916 
adjacent time bins divided by the step size. We averaged the state-space speed across time within 1917 
an epoch. We also computed the Euclidean distance between pairs of trajectories (1st and 2nd, 1918 
2nd and 3rd,3rd and 4th) and averaged this across trajectories and across time bins within an epoch. 1919 
State-space speed and the averaged distance between trajectories were plotted against each 1920 
other in Figure 6I. Our method for extracting speed in state-space follows prior work (Stokes et 1921 
al., 2013).  1922 
 1923 
Testing ordinal relationship of prior/posterior projections 1924 
 1925 
We analyzed the ordinal relation between neural projections of prior/posterior as shown in 1926 
Figure 6j-l. PCA axes encoding prior/posterior variance were extracted from spike count data 1927 
collected in ROIs (baseline for prior and the ex-post epoch (0-1s after button presses) for 1928 
posterior). Since prior/posterior is continuously valued, we created four trial conditions by 1929 
binning the trials using quartiles of prior/posterior. For each type of prior or posterior (Simon, 1930 
Flanker and Stroop), we projected the left-out trial (not used for computing the PCA axis) onto 1931 
the PCA axis for each trial condition and this procedure was repeated 1000 times, yielding 1000 1932 
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projected values for each trial condition. We then regressed the projected values (concatenated 1933 
into a vector) against their trial condition labels (1st,2nd,3rd,4th quartile bins) using a multinomial 1934 
logistic regression with the assumption of ordinal relation between trial groups. Essentially, we 1935 
were testing whether the out-of-sample project values can reliably predict the trial condition 1936 
they belong to assuming that the conditions were ordinal. We reported the p-value and t-statistic 1937 
of the effect of projected values.  1938 
 1939 
 1940 
Demixed Principal Component Analyses (dPCA) 1941 
 1942 
We used dPCA to extract task-invariant representation of performance monitoring signals. For 1943 
Figures 7 and S7, we investigated task-invariant coding of error, conflict and conflict prior 1944 
separately, resulting in three separate optimization problems. For Figure S6, we investigated the 1945 
invariance coding of error and conflict. Analyses on conflict and conflict prior used only correct 1946 
trials. We used dPCA as described previously (Kobak et al., 2016), with the following adaptions 1947 
made for our purposes. The dPCA algorithm first decomposes population neural activity into 1948 
marginalized data matrices with respect to the variables of interest. For analyses in Figure 7a-c, 1949 
we constructed the marginalized population activity (referred generically as 𝑋;llll) with respect to 1950 
error (𝑋<66(6llllllll  in Fig. 7a) or conflict (𝑋*('%&=*+lllllllllll , Fig. 7b-c) by marginalizing out time and task 1951 
dimensions (denoted by “〈∙〉+#$>,+”).  1952 
For interpretability, we investigated whether the neural representation is abstract across tasks 1953 
separately between Stroop and Simon conflict (“𝑠	&	𝑠𝑖	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡” is the task-invariant dimension 1954 
indicating presence of absence of conflict for both tasks) and between Stroop and Flanker 1955 
(“𝑠	&	𝑓𝑙	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡” is the task-invariant dimension indicating presence of absence of conflict for 1956 
both tasks). Set up this way, the “task” dimension captures variance related to task set 1957 
differences (Stroop vs. MSIT).  To compute marginalized averages, we use N-dimensional 1958 
population activity 1959 
 1960 

𝑋?+6((7	<66(6	&	5?AB	<66(6lllllllllllllllllllllllllllll = 〈𝑟(𝑒𝑟𝑟𝑜𝑟, 𝑡𝑎𝑠𝑘, 𝑡) − 𝑟̅(𝑡)〉+#$>,+ 1961 
 1962 

𝑋$	&	$=	*('%&=*+llllllllllllllll = 〈𝑟(𝑠	&	𝑠𝑖	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑡𝑎𝑠𝑘, 𝑡) − 𝑟̅(𝑡)〉+#$>,+ 1963 
 1964 

𝑋$	&	%&	*('%&=*+lllllllllllllllll = 〈𝑟(𝑠	&	𝑓𝑙	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑡𝑎𝑠𝑘, 𝑡) − 𝑟̅(𝑡)〉+#$>,+ 1965 
 1966 
, where 𝑟̅(𝑡) is the firing rate averaged across trials and time bins. For Figure S7a-c, these 1967 
definitions are the same except that RT equalized trial sets were used. 1968 
For Figure S6a-b, we sought a common coding dimension between error and conflict separately 1969 
for MSIT and Stroop, by marginalizing out the information about time and which pair of 1970 
conditions were contrasted (“contrast” indicator, for MSIT it indicates whether the contrast 1971 
considered is sf vs. non-conflict or error sf vs. correct sf; for Stroop it indicates whether the 1972 
contrast considered is correct conflict vs. correct non-conflict or error vs. correct conflict). 1973 
we constructed the marginalized population activity with respect to error vs conflict in both 1974 
MSIT (𝑋5?AB	<66(6/$%lllllllllllllllll in Fig. S6a, 𝑀𝑆𝐼𝑇	𝑒𝑟𝑟𝑜𝑟/𝑠𝑓 is the contrast-invariant dimension indicating 1975 
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presence or absence of errors and presence or absence of sf conflict) and Stroop 1976 
(𝑋?+6((7	<66(6/*('%&=*+lllllllllllllllllllllllll in Fig. S6b, 𝑆𝑡𝑟𝑜𝑜𝑝	𝑒𝑟𝑟𝑜𝑟/𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 is the contrast-invariant dimension 1977 
indicating presence or absence of errors and presence or absence of sf conflict) as follows: 1978 
 1979 

𝑋5?AB	<66(6/$%lllllllllllllllll = 〈𝑟(𝑀𝑆𝐼𝑇	𝑒𝑟𝑟𝑜𝑟/𝑠𝑓, 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡, 𝑡) − 𝑟̅(𝑡)〉*('+6#$+,+ 1980 
 1981 

𝑋?+6((7	<66(6/*('%&=*+lllllllllllllllllllllllll = 〈𝑟(𝑆𝑡𝑟𝑜𝑜𝑝	𝑒𝑟𝑟𝑜𝑟/𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡, 𝑡) − 𝑟̅(𝑡)〉*('+6#$+,+ 1982 
 1983 
For analyses in Figure 7d-f and Figure S7e-f investigating task-invariant coding of conflict prior, 1984 
we used data from a single ROI (ex-ante or ex-epoch) and hence only the task but not time 1985 
dimension was marginalized out. Here again for interpretability, we investigated cross-task 1986 
representation between Stroop prior and Simon prior and between Stroop prior and Flanker 1987 
prior separately, ensuring that the task dimension captures task set difference 1988 
 1989 

𝑋$	&	$=	*('%&=*+llllllllllllllll = 〈𝑟(𝑠	&	𝑠𝑖	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑡𝑎𝑠𝑘) − 𝑟̅(𝑡)〉+#$> 1990 
 1991 

𝑋$	&	%&	*('%&=*+lllllllllllllllll = 〈𝑟(𝑠	&	𝑓𝑙	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑡𝑎𝑠𝑘) − 𝑟̅(𝑡)〉+#$> 1992 
 1993 

𝑋$	&	$=	76=(6llllllllllllll = 〈𝑟(𝑠	&	𝑠𝑖	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑡𝑎𝑠𝑘) − 𝑟̅(𝑡)〉+#$> 1994 
 1995 

𝑋$	&	%&	76=(6llllllllllllll = 〈𝑟(𝑠	&	𝑓𝑙	𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑡𝑎𝑠𝑘) − 𝑟̅(𝑡)〉+#$> 1996 
 1997 
For analyses in Figure S7d, these definitions are the same except that RT equalized trial sets were 1998 
used. 1999 
The algorithm then finds encoding (𝐹; ) and decoding (𝐷; ) matrices separately for each 2000 
marginalized averages using the regularized reduced-rank regression: 2001 
 2002 

𝐿; = u𝑋;llll − 𝐹;𝐷;𝑋lu
, + 𝜇u𝐹;𝐷;u

,
 2003 

 2004 
We assigned a regularization coefficient 𝜇  to avoid overfitting (𝜇 = 	6𝑒)D  determined from 2005 
results reported in (Kobak et al., 2016)). We used the columns of 𝐷; as the demixed principal 2006 
components (dPC) and projected N-dimensional data (single-trial data for testing and trial-2007 
averaged data for training) to these dPCs. The numerical values of 𝐷; reflects the contribution 2008 
for each neuron to task-invariant representation.  2009 
  2010 
To test the statistical significance of coding dimensions, we randomly chose one trial for each 2011 
trial type (e.g., one error trial and one correct trial) and constructed a single-trial activity matrix 2012 
𝑋+<$+. We then used the remaining trials to form the trial-averaged training data 𝑋+6#='llllllll, which is 2013 
used to find the dPCA coding dimensions. The left-out single-trial data 𝑋+<$+ is then projected 2014 
onto the first coding dimension that captures the most variance computed from 𝑋+6#"' , and 2015 
classified according to the closest class mean. We repeated this procedure 1000 times and 2016 
determined the decoding accuracy as the proportion of correct classification among the 1000 2017 
test trials. We then generated the null distribution by shuffling the trial labels and then repeated 2018 
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the decoding procedure 500 times. For Figure 7d-f, statistical significance is determined by 2019 
comparing the true decoding accuracy with this null distribution. For Figure 7a-c, statistical 2020 
significance is determined by the cluster-based permutation test using this null distribution 2021 
(Maris and Oostenveld, 2007). The fraction of explained variance (Bars in Figures 7a-c,e-f and 2022 
S7a-c,e-f) for each marginalization is given by: 2023 

𝑅;, =
u𝑋;llllu

, − u𝑋;llll − 𝐹;𝐷;𝑋lu
,

u𝑋;llllu
,  2024 

 2025 
For analyses in Figure 7g-j and Figure S7 g-k, we first quantify for each single neuron its task-2026 
invariant coding strength of error, conflict or conflict prior within a certain ROI. Spike counts 2027 
within the baseline, ex-ante or ex-post epochs from MSIT and Stroop were concatenated and 2028 
were regressed against three fixed effects: a cognitive effect (trial outcome, trial congruency or 2029 
conflict prior), a task effect (a dummy variable with value 1 for MSIT and value 0 for Stroop) and 2030 
an interaction between these two. The signed effect size is taken to be the t-statistic computed 2031 
from this linear regression. The t-statistic related to the cognitive effect characterizes the 2032 
strength of task-invariant coding of cognitive variables (error, conflict and conflict prior). The task 2033 
dependency of such coding is captured by the t-statistic of the interaction term (which indicates 2034 
that a neuron exhibits non-linear mixing).  2035 
Neurons with a significant cognitive effect but a non-significant task effect and a non-significant 2036 
interaction term were classified as “task-invariant” neurons. Neurons with a significant 2037 
interaction term are classified as “task-dependent” neurons.  2038 
 2039 
 2040 
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