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Abstract

High-throughput single cell technologies hold the promise of discovering novel cellular
relationships with disease and necessitate the use of effective analytical workflows. When
manual gating is used to define cell types, the gating hierarchy can be used to identify cell
types whose abundances change relative to a parent population. This strategy allows subtle
changes to be observed that could be missed if small subsets were compared to all measured
cells. However, typical analyses that employ unsupervised clustering overlook the valuable
hierarchical structure present in cell type definitions by exclusively quantifying the
proportions of cell type clusters relative to all cells. We present treekoR, a framework that
facilitates multiple quantifications and comparisons of cell type proportions. Our results from
twelve case studies reinforce the importance of quantifying proportions relative to parent
populations in the analyses of cytometry data — as failing to do so can lead to missing
important biological insights.

Introduction
High-parameter cytometry assays have provided biomedical scientists with an unprecedented
detail of  the cellular heterogeneity of patient samples. Flow and mass cytometers are able to
characterise cells by measuring up to fifty extracellular antigens1, with single-cell sequencing
platforms able to measure thousands of intracellular RNA2. Unfortunately, this
ground-breaking capacity to deeply phenotype cells has provided a computational challenge
for bioinformaticians to efficiently glean meaningful information from the deluge of
single-cell data. Given that most novel analytical methods neglect the hierarchical nature of
single-cell data, there exists an opportunity to exploit this structure to identify robust and
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interpretable associations between cell subsets and patient clinical end points or ex vivo
interventions.

To compare the abundance of cell subsets between samples, there has been a decades-long
legacy of either quantifying a cell type as the proportion of a cell type relative to all cells in a
sample (%total), or, as the proportion of a cell type relative to a parent population of cells
(%parent)3–5.  The latter of these quantifications is derived naturally from the way that cell
subsets have traditionally been annotated via a process called sequential manual gating6 -
where 2D scatter plots are drawn using certain markers and gated with either quad or polygon
gates to identify cell populations in a sequential manner. For example, Tregs could be
identified by first gating out CD3+ and CD4+ cells to identify CD4+ T cells and then further
gating on CD25lo and CD127+ to isolate the CD4+ Tregs7. This gating strategy makes it very
natural to quantify the proportion of cell types relative to their parent lymphocyte population
making the quantifications robust to drastic changes in unrelated subsets. The main
drawbacks of this method however are its reliance on the time-consuming process of
manually gating markers which has become impractical for high-parameter assays8 and the
substantial reliance on expert knowledge which may also tend to bias analysis towards known
and expected relationships.

As an alternative cell type identification strategy to manual gating, unsupervised clustering of
cells has been used to circumvent the challenges of sequentially gating high-dimensional
cytometry data. These automated methods are able to stratify cell subsets without necessarily
having a predetermined hypothesis or sequential gating strategy. Many methods, including
SPADE9, Citrus10, FlowSOM11, Phenograph12, SC313 and scClust14 have been utilised
frequently in the analysis of high-dimensional cytometry data to identify cell populations.
Whilst they have significantly improved the efficiency in which scientists can analyse these
datasets, typical analyses employing these methods only explore the changes in cell types as a
%total, neglecting the complex hierarchical proportions inherent in single cell data. In other
words, these methods fail to measure cell types as a %parent, which cytometry analysts have
traditionally used in manual gating workflows.

A number of unsupervised clustering methods and data-driven workflows have been
developed to explore the hierarchical nature of cytometry data. SPADE and FlowSOM, utilise
minimal spanning trees over clustering as a visualisation tool. Citrus employs hierarchical
clustering and regularised supervised learning algorithms to identify stratifying populations
of cells on each level of aggregation. The method treeclimbR15, aims to pinpoint an ideal
resolution of cell populations via a hierarchical tree. Although these methods acknowledge
the importance of visualizing the hierarchical aspect of single cell cytometry data, they do not
typically incorporate such information in their association analysis. That is, they do not by
default quantify the abundance of cell types as a %parent and test if these compositions are
associated with a treatment or phenotype of interest.

To this end we have developed treekoR, a novel framework that makes use of cell type
identification from unsupervised clustering techniques whilst acknowledging the hierarchical
nature of single cell cytometry data to discover robust and interpretable associations between
cell subsets and patient outcomes. TreekoR achieves this by (1) algorithmically deriving the
hierarchy of cell type clusters, followed by (2) incorporating this hierarchical information via
measuring the %parent for each cell type. These derived proportions can then be used in
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significance testing and classification models to determine associations with clinical
outcomes . Further to this, treekoR provides a general framework flexible to the clustering
approach, hierarchical aggregation method, and type of significance testing used. This
framework allows analysts to generate insight from the complex hierarchical relationships
present in single cell cytometry data, which are often overlooked with existing automated
clustering methods.

Results
treekoR algorithmically derives cell type hierarchies to quantify %parent

We present treekoR, an analytical framework that recognizes and incorporates the
hierarchical relationships inherent in cytometry data. The treekoR package is implemented in
R and uses an automated workflow to identify cellular associations with a patient outcome
through five main steps (Figure 1): (1) cluster the data using an automated method, (2)
aggregate clusters into a tree using a hierarchical clustering algorithm, (3) calculate the
%total (the proportion of a cell type relative to all cells in a sample), and %parent (the
proportion of a cell type relative to a parent population of cells, in this case the cells in the
parent node) of cells in each node in the tree, (4) perform significance tests using both of
these proportions against a clinical end point, and (5) visualise the significance results on the
tree. The %parent calculated by treekoR aims to emulate the proportions naturally derived
when using sequential manual gating, which are not typically calculated in workflows
exclusively using unsupervised clustering methods. Our comparative procedure then helps to
uncover important associations with a clinical end point of interest by visualising both
quantifications of cell type proportions derived from the data. Further details are provided
under Methods.

treekoR generates biological insight exclusive to %parent in example cytometry
datasets
We illustrate the ability of treekoR to generate additional biological insight by applying the
framework to a CyTOF study of latent Cytomegalovirus (CMV)16. After clustering cells into
one hundred cell subsets, quantifying the %total and %parent for each, and testing for
associations between CMV positivity and %total or %parent (Figure 2a); we observed a
reduction in CD4+ Tem cells in CMV positive patients using %parent (p=6.1 ,× 10−5

FDR=3.33 ), yet no association was observed using %total (p=0.9,  FDR=0.99). The× 10−3

higher proportion of CD4+Tem relative to its parent cluster (CD4+Tem and CD4+Tcm) in
CMV negative patients as compared to CMV positive patients is in keeping with known
effector memory cell function in cytokine secretion and viral clearance. Similarly, observed a
nominally significant negative association between CMV positivity and CD8+ CD127- Tem
cells using %parent (p=1.5 , FDR=3.5 ), but not with %total (p=0.26,× 10−3 × 10−2

FDR=0.69) (Figure 2b). This lower proportion of CD8+ CD127- Tem cells relative to its
parent (CD8+ CD127- and CD8+ CD127+ Tem) in CMV positive patients as compared with
CMV negative patients suggests a role for differential CD127 expression in chronic/persistent
infection. Together, this suggests that if the %parent of these cell types had not been
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measured, we would have been unable to discover the cellular relationships between CD4+
Tem and CD8+ CD127- Tem with CMV infection.

We applied treekoR to a flow cytometry panel of CD8+ T Cells, generated to distinguish
between COVID-19 patients and healthy controls4, and observed a highly activated
HLA-DR+ CD38+ CD8+ T cell subset whose %parent provided a more robust association
with COVID-19 response than its %total. After applying FlowSOM to cluster cell types
(Figure 2c), we discovered a HLA-DR+ CD38+ CD8+ T cell whose %parent is greater in
COVID-19 patients than healthy controls (p=3.19 , FDR=2.76 ) (Figure 2d).× 10−10 × 10−8

However, this population only appeared marginally associated with COVID-19 response
using %total (p=1.49 , FDR= ). In contrast, De Biasi et al., had reported a× 10−2 7. 6 × 10−2

manually gated HLA-DR+ CD38+ CD8+ T cell population changing when using %total
(p=9.70 ). The difference in conclusion between using %total from FlowSOM and the× 10−8

manually gated population from De Biasi et al. is solely attributed to our use of a T-test and
De Biasi et al.’s use of the Wilcoxon rank sum test (Figure 2e), which is robust to the outliers
observed in the %total quantification (Figure 2f). When a Wilcoxon rank sum test is used on
our %total (p=1.55 , FDR=1.12 ) and %parent (p=1.15 , FDR=9.96× 10−5 × 10−3 × 10−8

) the association is also observed, but not observed when a t-test is used on De Biasi× 10−7

et al.’s manually gated population (p=2.57 ). The presence of this association in× 10−2

treekoR’s %parent regardless of the significance test used illustrates that quantifying the
proportion of HLA-DR+ CD38+ to a parent population (HLA-DR+ CD38+ and HLA-DR+
CD38-) can adjust for large fluctuations in cell type compositions and allow subtle changes in
proportion to be robustly quantified. Across both the COVID-19 and CMV case studies we
highlight two perspectives of cell type proportions, %total and %parent, which offer
biological information that may be potentially missed if only one was measured.

The %parent of cell types yields strong associations with clinical outcomes across
several datasets in our benchmark
In several datasets, a greater discrimination is observed between the binary outcomes through
quantifying proportions as %parent than %total. We compared twelve case studies consisting
of seven CyTOF datasets, four flow cytometry datasets and a single-cell RNA sequencing
(scRNA-seq) dataset (Table 1). Further, we also used two hierarchical clustering algorithms,
HOPACH17 and average-linkage hierarchical clustering, with both generating different
estimates of %parent (Supplementary Figure 1). After testing for differences in cell type
proportions between the patient conditions, we compared the ordered negative log p-values of
each cell population from using %total against the ordered negative log p-values from using
%parent (Figure 3). Across all twelve case studies, we were able to determine whether
performing significance testing using %parent provided comparatively stronger associations
with the patient outcome than %total - evident in instances where points conspicuously lay
above the dashed identity line. Across half of the investigated datasets, in particular CMV16

and Age Chronic18, the cell type proportion with highest significance was obtained from
measuring its %parent. Further to this, the choice of hierarchical aggregation techniques
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produced variations in clinical association, suggesting that using different cell type trees can
help analysts uncover a wider scope of associations. The benchmark exemplifies the
importance of measuring both %parent and %total so as not to miss pertinent clinical
associations.

Multivariate classification of clinical outcomes in cytometry data can be improved by
measuring %parent
High-dimensional single cell data have been used to construct models to classify patients to
help scientists discover and understand associations with a clinical outcome19–22. To determine
if the incorporation of %parent features in multivariate classification models could help
improve patient classification in several datasets, we evaluated classification performance
using either %total or %parent as feature sets in several datasets with binary outcomes (e.g.
responder vs. non-responder, COVID-19 vs. healthy control). There were various differences
in balanced accuracy between using %total and %parent (using either HOPACH or
hierarchical clustering with average linkage) in each dataset (Figure 4). The datasets with the
biggest increase in balanced accuracy by using %parent were the BCR-XL-sim data23 and
Age Chronic data18. In the BCR-XL-sim semi-simulated dataset, we predicted which samples
contained stimulated B cells. Using only %total as features produced a mean balanced
accuracy of 59%, compared to 73% using %parent derived from HOPACH. In the Age
Chronic CyTOF dataset, classifiers were constructed to discriminate between older and
younger adults using their immune response signatures to influenza vaccination. Here, we
show using %parent (99%) also gives a higher mean balanced accuracy than %total (88%).
These results support the notion that failing to measure %parent can sometimes mean
neglecting important signals when trying to predict a patient's clinical outcome in
high-dimensional cytometry datasets.

Quantifying multiple views of cell type proportions can provide greater insight into single
cell cytometry data and patient clinical outcomes. In our classification benchmark, we
compared the use of %total, %parent (using hierarchical clustering) and %parent (using
HOPACH) cell type proportions. Exploring hierarchical representations via treekoR can help
to elucidate a broader scope of %parent relationships that exist within cytometry data
(Supplementary Figure 1). When each feature set was ranked using the mean and standard
deviation of the balanced accuracy in each dataset (Figure 4),  no single quantification of
proportion performed the best for prediction of patient outcomes across all analysed
cytometry datasets. The differences in rank however means that each type of proportion
quantification provided a different perspective of the data. Depending on the dataset, one
approach may provide a greater coverage of the signal present within the data through a
higher balanced accuracy. This further supports the idea that proportions measured as %total
should not be the only proportions measured in cytometry analysis workflows, particularly
when searching for the most predictive features in distinguishing between patient clinical
outcomes and understanding the complex relationships that exist. It is therefore imperative
that proportions are quantified as both %parent and %total for the effective analysis of
cytometry data, as it offers more thorough examination of this data.
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Discussion
In this paper, we examined several high-dimensional single cell datasets to demonstrate: the
importance of measuring both %parent and %total proportions; the use of %parent for
classification; and the consequences of using different hierarchical aggregation techniques to
empirically derive cell type proportions. Overall we accentuated the importance of analysing
high-dimensional cytometry data using ideas from both traditional manual gating and
unsupervised clustering techniques, and provide a general framework, treekoR, which allows
analysts to do so whilst overcoming key pitfalls of both approaches.

The treekoR framework allows scientists to select their own clustering algorithm for
determination of cell types and hierarchical aggregation technique for the construction of cell
type trees. Whilst there have been numerous comparisons of clustering methods of cytometry
data19,24–27, there have not been as many comparisons of hierarchy construction techniques in
the context of cell type hierarchies9,11. We show through the use of HOPACH and
average-linkage hierarchical clustering that the choice of hierarchical aggregation technique
can have noteworthy effects on downstream analysis, and suggest multiple other techniques
that could also be used to produce distinct cell type trees. However no formal evaluation to
determine the most ‘suitable’ technique was performed throughout our analyses. Since
scientists have unique and personal workflows for hierarchically analysing cell types, there is
significant room to explore what an appropriate cell type hierarchy might entail and
determine a corresponding standard or measure which scientists can use to evaluate this. The
definition for the most ‘suitable’ hierarchical aggregation technique, whether it is the
technique which produces the most interpretable hierarchy or produces the %parent
proportions most associated with a clinical outcome, has yet to be elaborated.

In treekoR we defined %parent as the proportion of a cell type relative to its direct parent in
the cell type hierarchy. This proportion could be calculated using a broader parent (e.g. a
higher ancestor) cell type in the hierarchy, which could lead to either a more interpretable and
familiar cell type %parent or reduce the burden of multiple hypothesis testing. Since the
scope of proportions to be calculated becomes much larger when numerous measurements of
%parent for a single cell type are allowed, there exists a challenge in determining which
%parent to calculate, particularly as the number of hypothesis tests increases. We do not
currently address either of these points in our workflow. To overcome this challenge, a
standard set of reference cell types can be determined to calculate %parent from. These
reference cell types could be deduced in a semi-supervised fashion where analysts manually
select them, or in a completely unsupervised manner by using a data-driven method (such as
treeclimbR15). This would limit the amount of proportions calculated and potentially provide
more biologically relevant %parent.

Care is required in the comparison of statistical significance between the %total and %parent
of a cell type. The derived p-values from significance testing inherently come from two
distinct statistical hypotheses. Therefore the user should not conclude that one proportion is a
better metric based solely on its p-value, or say that one proportion is more relevant than the
other. Rather the %total and %parent provide two complementary views both of which may
be objective and biologically relevant. Depending on the datasets, one quantification of cell
type proportions may provide a stronger association with a clinical outcome of interest, this
nuance is important to note.
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In summary, we present a framework that is general in nature, allowing scientists to choose
algorithms appropriate to their dataset to glean more information than typical analyses. It is
our broader intention to emphasise the importance of measuring %parent in the analysis of
cytometry data - and that these hierarchical proportions should not be overlooked as
researchers move towards more efficient and automated approaches of analysis. As
high-dimensional cytometry data become more ubiquitous in helping scientists understand
the underlying biological process behind patient diseases, such as influenza and COVID-19,
we envision that the implementation of treekoR will assist in unravelling the cell type
heterogeneity present in these complex patient diseases.

Methods

Overview of treekoR

treekoR is performed in five main steps: (i) cluster the data using an automated method, (ii)
aggregate clusters into a tree using a hierarchical clustering algorithm, (iii) calculate the
%total and %parent of cells in each node of the tree, (iv) perform significance tests using
both of these proportions against a clinical end point, and (v) visualise the significance results
on the tree. Here we describe the steps in more detail, along with the parameters we used in
the analyses throughout this paper.

(i) Clustering. Unsupervised clustering was performed using the FlowSOM11 algorithm as
part of the CATALYST28 package in R29, using a 10x10 grid. Cells are over-clustered to try to
account for all cell types present within the data and to avoid missing rare cell populations
(any superfluous clusters are then naturally aggregated in the hierarchical clustering step).
For the datasets that were provided with previously analysed or manually gated cell types,
those cell types were used instead of the FlowSOM clustering.

(ii) Construction of hierarchy. Following clustering of the data, the scaled median marker
expression for each cluster was calculated and used to construct a hierarchical tree.
Throughout the analysis we used two main methods for hierarchical aggregation: HOPACH
(with maximum children per parent node) and average-linkage hierarchical
clustering. HOPACH allows for multiple children per node whilst other included methods
only cater for two children per node. Other hierarchical clustering techniques can be used in
treekoR and are included in the R stats hclust function29. Possible techniques include
average-linkage, Ward-linkage, single-linkage, complete-linkage and McQuitty
agglomerative hierarchical clustering.

(iii) Calculation of proportions. The proportions of the different cell clusters are then
quantified once clustering and a hierarchical clustering tree of the clusters have been
established in the data. For each patient, the proportions of cells belonging to the clusters in
each node of the tree are measured relative to their total number of the cells, referred to as
%total. In addition, for each patient the proportions of cells belonging to the clusters in each
node of the tree are measured as a proportion of the number of cells belonging to the cluster
in the direct parent node of the tree, referred to as %parent.
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(iv) Significance testing. For each node in the hierarchical tree on the clusters, significance
testing is then performed using a two sample t-test for equal means between the desired
patient outcome using both the %total and %parent.

(v) Visualisation. The results of these proportions can be then visualised through a coloured
tree plotted next to a corresponding heatmap. The heatmap displays the median scaled marker
expressions of each cluster to help understand what cell type each cluster may represent, and
the tree not only reveals how clusters have been hierarchically aggregated, but is coloured on
each node by the test statistic obtained when testing using %total of that node, with the
branch connecting the child to the parent coloured by the test statistic obtained when testing
using the %parent of the child node.

Benchmark data and data processing.

The twelve benchmarking datasets consist of seven CyTOF, four flow cytometry (COVID-19
T cells counted as two datasets - CD4 and CD8 T cells) and one single-cell RNA-seq datasets
as shown in Table 1.

Name Technology Description Number of
Cells

Number of
samples

Outcome or
response
variable

References

Age
Chronic

CyTOF Age
Chronic
Inflammat
ion
predicting
young vs
old

1036209 29 Young /
old

Shen-Orr
et al.
201618

Immport30

SDY887
dataset

Anti-CTL
A-4 and
Anti-PD-1

CyTOF Predicting
response
vs
non-respo
nse in
Anti-CTL
A-4 and
Anti-PD-1
treatments

7264780 24 Response /
Non-repon
se to
treatment

Subrahma
nyam et al.
201821

Anti-PD-1 CyTOF Predicting
response
vs
non-respo
nse in
Anti-PD-1

85718 20 Response /
Non-respo
nse to
treatment

Kreig et
al. 201831
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treatment

BCR-XL-s
im

CyTOF Detecting
samples
with
stimulated
B cells

88435 16 Spiked /
non-spike
d

Weber et
al. 201923

Breast
Cancer
tumor

CyTOF Predicting
tumor in
breast
cancer
samples

855914 194 Tumor/no
n-tumor
breast
cancer
samples

Wagner et
al. 201932

CMV CyTOF Predicting
positive vs
negative
CMV titer
results in
influenza
patients

18153877 69 Positive/n
egative
results
from
CMV titer

Tomic et
al. 201916

Immport30

SDY478
dataset

COVID-1
9 Whole
Blood
CyTOF

CyTOF Profiling
Whole
Blood to
predict
COVID-1
9 vs.
healthy
patients

4747543 21 COVID-1
9 /
Healthy
control

Geanon et
al. 202133

COVID-1
9 PBMCs

Flow
Cytometry

Predicting
between
ICU vs.
hospital
ward
COVID-1
9 patients

4790053 38 ICU /
Ward

Humblet-
Baron et
al. 202134

COVID-1
9 PBMC
CD8+
Non-Naiv
e T Cells

Flow
Cytometry

Profile of
CD8+
Non-Naiv
e T Cells
to
distinguish
recovered
from
COVID-1

11591741
(60% of
cells were
sampled
and
analysed)

168 COVID-1
9
recovered
/ healthy

Mathew et
al. 202035
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9 vs.
healthy

COVID-1
9  T Cells

Flow
Cytometry

T cell
compartm
ent
samples
(CD4 and
CD8) to
predict
healthy vs
COVID-1
9

5000 31 COVID-1
9 /
Healthy
control

De Biasi
et al.
20204

Melanoma scRNA-se
q

Predicting
response
to
checkpoint
immunoth
erapy in
Melanoma

5928 19 Responder
/Non-resp
onder

Sade-Feld
man et al.
201936

Table 1: Benchmark datasets . Eleven published datasets were used to compare %total and
%parent in significance testing and classification using the treekoR workflow. “Name” is
used to refer to each dataset throughout the manuscript.

Data normalisation

For each of the cytometry datasets, we applied an arcsinh transformation with a co-factor of 5
on the expression values. The samples were then filtered to only include the patients with the
clinical end points of interest. For analysis of the CMV dataset, 66.67% of cells were
randomly subsampled and gated for live intact cells before transforming.

Calculation of proportions

For each of the patients/samples, the proportions of each of the FlowSOM clusters or cell
types were calculated as %total, as well as %parent from a HOPACH17 tree and an
average-linkage hierarchical clustering tree. The %parent for each cluster in each sample is
calculated as the (# cells in a cluster) / (# cells in a cluster + # cells in sibling clusters). The
%total is calculate as (# cells in a cluster) / (# cells in sample).

Hypothesis testing

For each of the cell types/clusters, a two-sample t-test was used to test if there was a
significant difference in mean proportion between the binary clinical outcome of interest,
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using both %total and %parent. In our COVID-19 T cells and CMV case studies, we
performed p-value adjustment using the FDR method, whilst p-value adjustment was not
performed in the benchmark comparison.

Classification

The %total and %parent proportions were then used as features separately, for sake of
comparison, to predict the binary patient clinical end point. For each feature set and dataset
combination, we trained a random forest (using mlr337) with 500 trees in each iteration of a
5-fold cross validation with 20 repetitions. The balanced accuracy was measured in each
iteration of the cross validation and used to compare predictive power between the feature
sets.

All analysis was done in R29 version 4.0.3.

Code availability

The code to run treekoR is available on Bioconductor
(https://bioconductor.org/packages/release/bioc/html/treekoR.html) and code to reproduce the
manuscript analysis from processed data has been shared on Github
(https://github.com/adam2o1o/treekoR_analysis)
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Figures and Tables

Fig 1: treekoR helps to extract insight from cytometry data through deriving a
hierarchy of cell clusters and measuring proportions to parent. a. An example t-SNE plot
showing clustering of single cell data.b. Hierarchical tree constructed using HOPACH
algorithm on the cluster median marker expressions. c. Definition of proportions to parent
and proportions to all defined according to the organisation of the hierarchical tree. d.
Significance testing is performed using both types of proportions calculated, testing for
difference between the patient clinical endpoint of interest. e. Visualisation of the significance
testing results. On the left, a scatterplot of each node in the hierarchical tree with the test
statistic calculated using the %total (x-axis) vs. the test statistic calculated using the %parent
(y-axis). On the right of the scatterplot, the hierarchical tree is coloured with the test
statistics: the nodes coloured by the test statistic using %total and the branches of the nodes
coloured by the test statistic using %parent. An example of a corresponding node between the
two graphs is highlighted in blue. The heatmap plots the median marker expression of the leaf
nodes to assist in identification of the corresponding cell clusters.
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Fig 2: Measuring %parent can provide additional insight over %total. a. Scatterplot of
test statistics with the cell clusters in differentiating between latent CMV infection patients.
Highlighted clusters are significant using %parent, whilst not significant using %total. b.
Comparative boxplot of the proportions of highlighted cell clusters, between patients with
CMV and without CMV, with the %total (upper panel) and %parent (lower panel). c. A
heatmap generated using treekoR on a CD8+ T cell compartment to predict healthy vs
COVID-19, containing a hierarchical tree of cell clusters coloured by the test statistic using
the corresponding %total (nodes) and %parent (branches). The heatmap is coloured by the
scaled cluster median expression values characterise leaf nodes in the tree. d. Scatterplot of
test statistics of each cell cluster with test statistic from using %total (x-axis) vs. test statistic
from %parent (y-axis). The HLA-DR+ CD38+ cluster highlighted has a larger test statistic
when differentiating between COVID-19 patients and healthy control using %parent than
%total. e. Comparison of -log10 of p-values of a HLA-DR+ CD38+ subset for %total,
%parent and manually gated proportions from De Biasi et al. from a t-test (pink) and
Wilcoxon test (green). f. Comparative boxplot of a HLA-DR+ CD38+ subset, with the %total
(upper left panel), %parent (lower  panel), and manually gated proportions (upper right panel)
between COVID-19 and healthy patients
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Fig 3: treekoR provides stronger associations with patient clinical outcomes. Cell
clusters, constructed using both average-linkage hierarchical clustering and HOPACH, were
tested between patient conditions using %total and %parent. Q-Q plots were plotted for each
dataset by plotting the ordered negative log p-values using %total (x-axis) vs. using %parent
(y-axis).
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Fig 4: Measuring %parent offers improvements in patient classification performance. a.
Comparative boxplots (lower panel) of balanced accuracy rates for each dataset and feature
set: %total, %parent using average-linkage hierarchical clustering, and %parent using
HOPACH. Values plotted are from a 5-fold CV with 20 repetitions, averaged across each
repetition. The rank of each feature set within each dataset is shown in the bubble plot (upper
panel), with rank 1 being the best (highest mean / lowest variance) and rank 3 being the worst
(lowest mean / highest variance).
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Supplementary

Different hierarchical clustering methods uncover varying %parent relationships in
cytometry data
In this section we compare (in more detail) several tree structures derived from different
hierarchical aggregation techniques, in addition to a manual gating tree structure, and how
these ultimately result in capturing different signals from the data. Although no single
representation may be the absolute correct one, exploring these different representations can
begin to help analysts to uncover a broader scope of complex relationships that exist within
cytometry data to discover the cellular heterogeneity between patient samples.

In our framework, we use the HOPACH algorithm to hierarchically aggregate the clusters
into a tree. HOPACH is a clustering algorithm that was originally developed for gene
expression data analysis, but has some properties which make it useful for the analysis of
high-dimensional cytometry data. One advantage is the lack of restriction for splits to be
binary, allowing up to 15 child nodes per node (Supplementary Figure 1a). In this example
it can be observed that Pre-B cells, Mature B Cells and Immature B Cells fall under the same
parent node, which, for example, would allow analysts to determine whether the
compositional makeup of B cells plays any role in patient disease. Another advantage of
HOPACH is the cluster collapsing step, which helps to alleviate any incorrect splitting of
clusters. This helps prevent the tree from containing too many branches, which can reduce
some correlations between proportions as our framework explores each of the parent-child
relationships in the generated trees.

The high-dimensional nature of single cell cytometry data gives rise to numerous biologically
relevant cell type hierarchies. treekoR acknowledges this by providing a framework which is
not restricted to one specific cell type hierarchy constructed by a specific algorithm. We
compared trees constructed using Hierarchical Ordered Partitioning And Collapsing Hybrid
(HOPACH)17 clustering, average-linkage hierarchical clustering, and single-linkage
hierarchical clustering via ‘tanglegrams’ (a pair of trees drawn with edges connecting
matching leaves between the pair) on a PBMC sample from a healthy bone marrow donor38

(Supplementary Figure 1b-1d). The comparison highlights distinct cell type trees, which
would consequently result in distinct quantifications of %parent proportions. Average-linkage
hierarchical clustering - used in algorithms such as treeclimbr and citrus - and single-linkage
clustering - closely resembling minimum spanning trees39 used in SPADE and visualising
FlowSOM - generate distinct hierarchical representations of the data. In this dataset,
HOPACH provided a representation more closely resembling the manual gating tree
constructed by Bendall et al. Of importance is that one representation of cell type hierarchy
may not necessarily be the most informative, but each of these representations can lead to
diverse yet relevant %parent relationships.

When comparing the HOPACH constructed tree to the manual gating hierarchy, a clear
difference is how NK cells and GMP cells are grouped - NK and GMP fall under the same
immediate parent node in the HOPACH tree whilst they are not in the gating tree
(Supplementary Figure 1b). An analyst may gate the cell types differently using two
markers such as CD34 & CD45RA (Supplementary Figure 1f). Although this provides a
more interpretable representation to cell groupings, it is clear in the t-SNE plot
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(Supplementary Figure 1g) how they would group together via clustering which considers
all the available markers in unison. This indicates the effect of the experimental panel design,
where some biologically distinct cell subpopulations can group together in automated
clustering methods when there are more markers to distinguish them. Although there are
notable differences between the automatically generated tree and the manually gated
hierarchy, the HOPACH clustering is able to regenerate some of the cell type groupings.
Despite some scenarios where the parent proportions may make less sense, this provides our
framework with a big advantage over manual gating through being more efficient in handling
larger datasets as well requiring a lower extent of prior knowledge to subset cells.
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Supplementary Fig 1: treekoR facilities varying cell type hierarchies to enable the
measurement of cell types %parent a. A heatmap of the median marker frequencies,
clustered using HOPACH, for each cell type as subsetted with manual gating from a healthy
human bone marrow sample38 (top left). b.Tanglegrams comparing two trees to highlight
differences in cell type hierarchies: manual gating hierarchy vs. HOPACH clustering; c.
average-linkage hierarchical clustering vs. HOPACH clustering; and d. single-linkage
hierarchical clustering vs. HOPACH clustering (bottom right). e. A t-SNE plot of the sample,
highlighted by the manually gated cell types f. Scatterplot of CD34 vs. CD45RA with only
CMP, GMP, MEP & NK cells highlighted g. A t-SNE plot of the sample with only CMP,
GMP, MEP & NK cells highlighted
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