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Abstract (208 words) 

Working memory provides flexible storage of information in service of upcoming behavioral goals. Some 

models propose specific fixed loci and mechanisms for the storage of visual information in working 

memory, such as sustained spiking in parietal and prefrontal cortex during working memory 

maintenance. An alternative view is that information can be remembered in a flexible format that best 

suits current behavioral goals. For example, remembered visual information might be stored in sensory 

areas for easier comparison to future sensory inputs, or might be re-coded into a more abstract action-

oriented format and stored in motor areas. Here, we tested this hypothesis using a visuo-spatial working 

memory task where the required behavioral response was either known or unknown during the memory 

delay period. Using fMRI and multivariate decoding, we found that there was less information about 

remembered spatial position in early visual and parietal regions when the required response was known 

versus unknown. Further, a representation of the planned motor action emerged in primary 

somatosensory, primary motor, and premotor cortex during the same task condition where spatial 

information was reduced in early visual cortex. These results suggest that the neural networks 

supporting working memory can be strategically reconfigured depending on specific behavioral 

requirements during a canonical visual working memory paradigm.
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Introduction 

Working memory (WM) is thought to provide a flexible mental workspace which allows organisms to 

hold information in mind about past experiences and use it to guide future behavior (Atkinson & 

Shiffrin, 1968; Baddeley & Hitch, 1974, Jonides et al., 2005). This system supports a wide range of 

cognitive tasks, each with its own specific demands and processing constraints. Due to these varied 

demands, it is likely that the neural mechanisms of WM are not universal across all tasks, but adaptively 

adjust to the requirements of the current situation. Among the many possible differences in task 

requirements, one key factor is the degree to which a task encourages a perceptual versus an action-

oriented coding format. For instance, in tasks that require memory for fine visual details, such as 

searching for a specific kind of bird based on a picture in a guidebook, the best strategy might be to 

represent information in a format resembling past visual inputs (a perceptual, or ‘sensory-like’ code). 

Other tasks, such as remembering a series of directions for driving to your friend’s house, permit the use 

of multiple strategies. This driving task could be achieved using a perceptual coding strategy, such as 

maintaining a visuo-spatial representation of a street map. However, a better approach might be to re-

code the visual information into another format, such as a series of motor plans for upcoming actions 

(an action-oriented, or ‘motor-like’ code). Such flexible re-coding of information from a more perceptual 

to a more action-oriented code could serve to reduce the dimensionality of representations when the 

correspondence between a remembered stimulus and a required action is known in advance. Thus, even 

tasks that are often thought to share a core component (e.g., memory in a visual format) might be 

accomplished via very different strategies and neural codes. Critically, past studies arguing that WM is 

supported by different neural loci often use tasks that differentially rely on perceptual versus action-

oriented codes. As a result, evaluating claims about neural mechanisms is challenging without directly 

accounting for the potential impact of task demands in shaping how information is stored and used in 

WM.  

The paradigms used in human neuroimaging experiments typically sit at the perceptual end of this 

continuum. In most fMRI studies of visual WM, participants are required to remember precise values of 

continuously varying features, and to report these remembered features using responses that cannot be 

pre-planned during the delay period (Albers, Kok, Toni, Dijkerman, & De Lange, 2013; Christophel, 

Hebart, & Haynes, 2012; Ester, Serences, & Awh, 2009; Harrison & Tong, 2009; Lorenc, Sreenivasan, 

Nee, Vandenbroucke, & D’Esposito, 2018; Rademaker, Chunharas, & Serences, 2019; Serences, Ester, 

Vogel, & Awh, 2009; Xing, Ledgeway, McGraw, & Schluppeck, 2013). Such tasks may encourage top-

down recruitment of the same early sensory areas that support high-precision perceptual 

representations (Awh & Jonides, 2001; Gazzaley & Nobre, 2012; Pasternak & Greenlee, 2005; Serences, 

2016; Sreenivasan, Curtis, & D’Esposito, 2014). Consistent with this idea of sensory recruitment, most 

studies find that patterns of voxel activation measured in visual cortex encode information about 

specific feature values held in memory, supporting the role of visual cortex in maintaining detailed visual 

representations during WM.  

However, different neural loci are often implicated using visual WM tasks that enable action-

oriented codes. One example is a memory-guided saccade task employed to study spatial WM using 

nonhuman primate (NHP) electrophysiological approaches. In these tasks, the position of a briefly 

presented cue is remembered, but that position is also predictive of the saccade that must be made at 

the end of the trial. Thus, the animal could solve the task by re-coding information from a spatial code 

into a motor code. Single unit recordings made during these tasks suggest an important role for the 

prefrontal cortex (PFC) in maintaining remembered information across brief delay periods (Funahashi, 

Bruce, & Goldman-Rakic, 1989; Fuster & Alexander, 1971; Goldman-Rakic, 1995). Consistent with these 
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findings, others have suggested that action-oriented WM in general may rely more heavily on areas 

involved in planning and motor production, and less on early sensory cortex (Boettcher, Gresch, Nobre, 

& Van Ede, 2021; Curtis, Rao, & D’Esposito, 2004; Myers, Stokes, & Nobre, 2017). However, not all past 

studies have explicitly controlled the possibility for response-related remapping of information, making 

the boundary between perceptual and action-oriented codes unclear.  

Based on the work discussed above, visual WM may be implemented quite flexibly, as opposed to 

having a singular neural locus or mechanism. Consistent with this idea, there are indications that even 

information related to the same stimulus might be stored at several different loci and in different 

formats (Iamshchinina, Christophel, Gayet, & Rademaker, 2021; Lee, Kravitz, & Baker, 2013; Rademaker 

et al., 2019; Serences, 2016). At the same time, few experiments have directly tested whether 

representations of memorized features in early visual cortex are subject to task modulation. Indeed, an 

alternative theory of WM storage suggests that memory-related signals in early sensory areas are 

epiphenomenal, in which case task goals are not expected to affect the strength of representations in 

this part of the brain (Leavitt, Mendoza-Halliday, & Martinez-Trujillo, 2017; Xu, 2020). Thus, our 

understanding of how behavioral requirements influence the memory networks and the codes that 

route information between early sensory and other brain regions is incomplete. In particular, it is not 

yet clear the extent to which perceptual and action-oriented codes may be jointly employed within the 

context of a single WM paradigm.  

 Here we study visuo-spatial WM to determine if the neural mechanisms supporting information 

storage are flexible in the face of changing behavioral requirements, or if, alternatively, the same 

mechanisms are recruited irrespective of the ability to employ different strategies. Participants 

performed a visuo-spatial WM task in which the required behavioral response on each trial was either 

not known until the end of the memory delay (“uninformative” condition), or known in advance of the 

memory delay (“informative” condition; Figure 1A).  This manipulation was intended to promote the use 

of perceptual (‘sensory-like’, spatial) and action-oriented (‘motor-like’) memory codes, respectively. We 

then compared representations of perceptual and action-related mnemonic information in early visual, 

parietal, and sensorimotor cortical regions.  

To preview, we found that information about remembered spatial positions in retinotopic visual 

cortex decreased when the required response was known in advance, in accordance with a decreased 

reliance on visual cortex for information storage when action-oriented coding could be utilized. 

Furthermore, this decrease was accompanied by the emergence of an action-oriented memory 

representation in somatosensory, motor, and premotor cortex. Cross-generalization of decoding from 

independent model-training tasks further supports a shift from ‘sensory-like’ to ‘motor-like’ when 

comparing the two task conditions. These results demonstrate that the neural networks supporting WM 

– even in the context of a single paradigm often used to study visuo-spatial WM – can be strategically 

reconfigured depending on task requirements. 

 

Results 

While in the MRI scanner, participants performed a spatial working memory task in which they were 

required to remember the spatial position of a briefly presented target dot across a 16-second delay 

period. The small white target dot could appear anywhere along an invisible circle with radius of 7°. 

After the delay, participants reported the dot’s position by comparing their memory to a response probe 

– a disk with two halves (light and dark gray). They used their left or right index finger to indicate on 

which of the two halves of the disk the target dot had been presented (Figure 1A). We manipulated 
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participants’ ability to pre-plan their motor action by presenting a “preview” disk at the beginning of the 

delay period. The preview disk was preceded by a cue indicating whether the trial was part of the 

“informative” or “uninformative” condition. On informative trials, the preview disk matched the 

response disk, allowing participants to anticipate their button press at the end of the delay. On 

uninformative trials, the preview disk orientation was random with respect to that of the response disk, 

requiring that participants maintain a precise representation of the target dot position. Informative and 

uninformative trials were randomly intermixed throughout each run.  

Task performance was overall better on trials where participants could plan their motor action in 

advance compared to trials when they could not (Figure 1B). Participants were significantly faster in the 

informative condition (informative mean + SEM: 0.57 + 0.03 sec; uninformative: 1.08 + 0.06 sec; t(5)=–

9.618; p<0.001) and also more accurate in the informative condition (informative mean + SEM: 93.92 + 

2.12%; uninformative: 89.83 + 1.12%; t(5)=3.463; p=0.018). These behavioral benefits suggest that 

participants used the preview disk to pre-plan their motor action in the informative condition.  
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Figure 1. Task design, behavioral results, and univariate results. (A) During each trial of the main working memory 

task, participants remembered the spatial position of a target dot presented at a random angular position (7° 

eccentricity from fixation). After a 16 sec delay, participants made a binary response to indicate which half of a 

“response” disk the target dot position had been presented on. At the beginning of the delay, a “preview” disk was 

shown that either exactly matched the response disk (top row; “informative”) or had a random orientation relative 

to the response disk (bottom row; “uninformative”). In the example trial depicted, a participant in the informative 

condition would have pressed the button corresponding to the lighter gray side of the disk. By contrast, in the 

uninformative condition a participant would have pressed the button corresponding to the dark gray side, as only 

the final response disk was relevant to their response (see Methods, Task: Main Working Memory for more 

details). (B) Average behavioral accuracy (left) and response time (right) in the informative and uninformative 

conditions (individual participants are shown with gray lines). Error bars represent + 1 SEM across participants. 

Significance of condition differences was computed using paired t-tests (a single asterisk indicates p<0.05, and 
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three asterisks indicate p<0.001). (C) In a separate spatial working memory mapping task, participants 

remembered a target dot position for 12 seconds and responded by moving a probe dot around an invisible circle 

to match the remembered position (see Methods, Task: Spatial Working Memory Mapping). This mapping task was 

used to generate an independent data set to train decoding models (see Methods, Analysis: Spatial Position 

Decoding). (D) Univariate hemodynamic response functions (HRFs) in three representative regions of interest 

(ROIs) from early visual cortex (V1), parietal cortex (IPS0), and motor cortex (M1) during the informative (dark 

blue) and uninformative (light blue) conditions of the main working memory task. Timepoint zero indicates the 

onset of the memory target. Shaded gray rectangles indicate the time periods when the “preview” disk was 

onscreen (3.5-4.5 sec) and when the response disk was onscreen (16.5-18.5 sec). Shaded error bars represent ±1 

SEM across participants. Gray dots indicate timepoints showing a significant condition difference (evaluated using 

a Wilcoxon signed-rank test with permutation, all p-values <0.05; see Methods, Analysis: Univariate for details). 

This plot shows three representative ROIs, see figure supplement 1 for data from all ROIs. 

 

Next, we examined the average fMRI responses in both visual and sensorimotor cortical areas, 

which were each independently localized (see Methods, Identifying Regions of Interest). Our visual 

regions of interest (ROIs) were retinotopically-defined areas in occipital and parietal cortex, and our 

sensorimotor ROIs were action-related regions of primary somatosensory cortex (S1), primary motor 

cortex (M1), and premotor cortex (PMc). We used linear deconvolution to calculate the average 

hemodynamic response function (HRF) for voxels in each ROI during each task condition (see Methods, 

Analysis: Univariate; Dale, 1999; Dale & Buckner, 1997).  

As expected, the BOLD signal in all retinotopic ROIs increased following visual stimulation (Figure 1D, 

left two panels; Figure 1 – figure supplement 1). We also replicated the typical finding that occipital 

retinotopic areas V1-hV4 do not show sustained BOLD activation during the memory delay period 

(Offen, Schluppeck, & Heeger, 2009; Riggall & Postle, 2012; Serences et al., 2009; Harrison & Tong, 

2009) in either of our two task conditions. Also as expected, mean BOLD responses in parietal areas 

IPS0-3 showed elevated late delay period activation in the uninformative condition relative to the 

informative condition. This pattern is consistent with the use of a spatial code in the uninformative 

condition and a motor code in the informative condition (Curtis & D’Esposito, 2003; D’Esposito, 2007; 

Ester, Sprague, & Serences, 2015; Riggall & Postle, 2012). Sensorimotor areas S1, M1, and PMc showed a 

condition difference in the opposite direction, with higher mean BOLD responses in the informative 

compared to the uninformative condition at several timepoints early in the delay period, consistent with 

an increased reliance on an action-oriented memory code (Calderon, Van Opstal, Peigneux, Verguts, & 

Gevers, 2018; Donner, Siegel, Fries, & Engel, 2009). Note that these univariate results include voxels 

from both hemispheres. As expected, reliable interhemispheric differences can also be observed in 

sensorimotor areas, with higher activation in the hemisphere contralateral to the planned button press 

in the informative condition (Figure 1 – figure supplement 2).  

The univariate results described above are consistent with the idea of an information “handoff” 

between cortical regions as a function of perceptual and action-oriented task strategies. This brings up 

the important question of how such a task-related shift is reflected in population-level representations 

across the brain, and whether it coincides with a shift from a more sensory-like spatial memory code to 

a more motor-like memory code. To evaluate this question, we used a multivariate linear classifier to 

decode the angular spatial position of the remembered dot, based on multi-voxel activation patterns 

measured in each ROI during the delay period (Figure 2). By assessing spatial decoding accuracy in each 

ROI, we could look at the extent to which the underlying neural code reflected a sensory-like visual 

representation of memorized spatial position.   
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To facilitate an independent comparison of decoding accuracy between the informative and the 

uninformative task conditions in the main working memory task, we used data from an independent 

spatial working memory task to train the classifier (Sprague, Boynton, & Serences, 2019) (Figure 1C; see 

Methods, Task: Spatial Working Memory Mapping). Before performing the decoding analysis, we 

subtracted from each single-trial activation pattern the mean across voxels on the same trial. This was 

done to ensure that any condition-specific changes in the mean BOLD responses did not contribute to 

differences in classification accuracy (see Methods: Analysis: Spatial Position Decoding). We then sorted 

the continuous angular positions into 8 non-overlapping bins and used a decoding scheme with four 

binary classifiers, where each binary classifier was independently trained to discriminate between 

spatial positions that fell into bins separated by 180° (see Figure 2A and Rademaker et al., 2019). The 

final decoding accuracy for each task condition reflects the average decoding accuracy across all four of 

these binary classifiers, where chance is 50% (see Methods, Analysis: Spatial Position Decoding).  

 

 

 

 

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 24, 2022. ; https://doi.org/10.1101/2021.07.08.451663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451663


 8

 

Figure 2. Visual and parietal areas represent spatial position more strongly during trials that require sensory-like 

spatial memory than during trials that allow re-coding into action-oriented memory. (A) Schematic of the decoding 

procedure. Continuous values of angular position were divided into 8 discrete bins, and 4 binary decoders were 

trained to discriminate between patterns corresponding to bins 180° apart. The final decoding accuracy was the 

average accuracy over these 4 binary decoders. (B) Decoding accuracy for each ROI and task condition. The spatial 

decoder was always trained on data from the delay period of an independent spatial working memory mapping 

task (Fig 1C), and tested on data from the delay period of the main working memory task (averaged within a 

window 8-12.8 sec from start of trial; see Methods, Analysis: Spatial Position Decoding for more details). Error bars 

reflect ±1 SEM across participants, and light gray lines indicate individual participants. Dots above bars and pairs of 

bars indicate the level of statistical significance within each condition, and between conditions, respectively (two-

tailed p-values obtained using a Wilcoxon signed-rank test with permutation testing, see Methods, Analysis: Spatial 

Position Decoding). Dot sizes reflect significance level. (C) Spatial decoding accuracy over time in three example 

ROIs. Timepoint zero indicates the target onset time. Shaded gray rectangles indicate the periods of time when the 

“preview” (3.5-4.5 sec) and “response” (16.5-18.5 sec) disks were onscreen. Shaded error bars represent ±1 SEM 

across participants, colored dots indicate significance of decoding within each condition, and gray dots indicate 

significant condition differences, with dot sizes reflecting significance levels as in B. Gray brackets just above the x-
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axis in C indicate the time range over which data were averaged to produce B (i.e., 8-12.8 sec). See figure 

supplement 1 for time-resolved spatial decoding in all visual and motor ROIs.  

 

The results of this multivariate analysis demonstrate that across the uninformative and the informative 

conditions, spatial decoding accuracy was strongest in early visual areas V1, V2, V3, and V3AB, and 

became progressively weaker at more anterior regions of the visual hierarchy (Figure 2B). Spatial 

decoding accuracy was at chance in the three sensorimotor areas S1, M1, and PMc. Importantly, there 

was also a pronounced effect of task condition (Figure 2B, 2C). Decoding accuracy in most retinotopic 

areas was significantly higher for the uninformative condition, in which participants were forced to rely 

on a spatial memory code, compared to the informative condition, in which participants could convert 

to an action-oriented memory for the button press required at the end of the delay (two-way repeated 

measures ANOVA with ROI and task condition as factors: main effect of ROI: F(13,65) = 24.548, p<0.001; 

main effect of task condition: F(1,5) = 35.537, p=0.001; ROI x condition interaction F(13,65) = 5.757, p<0.001; 

p-values obtained using permutation test; see Methods, Analysis: Spatial Position Decoding). Pairwise 

comparisons showed that spatial decoding accuracy was significantly higher in the uninformative 

compared to the informative condition in V1–hV4, LO2, and IPS0. In later IPS subregions (IPS1-3), spatial 

decoding was above chance in the uninformative memory condition, but at chance in the informative 

condition, without a significant difference between conditions. Finally, time-resolved analyses revealed 

that this difference between the conditions was not present during and immediately after encoding of 

the target dot, when the trial condition was not yet known. Instead, condition differences emerged 

approximately 5-6 seconds after the presentation of the preview disk and persisted until the final 

response disk appeared (Figure 2C, Figure 2 – figure supplement 1). Importantly, the difference in spatial 

decoding accuracy between task conditions replicated when we trained and tested a decoder using data 

from within each condition of the main working memory task as opposed to training on the independent 

spatial working memory task. This indicates that the difference between task conditions was robust to a 

range of analysis choices (Figure 2 – figure supplement 2; see Methods, Analysis: Spatial Position 

Decoding).  

 

In addition to demonstrating the robustness of our findings, the two separate analysis approaches 

described above allow us to distinguish between two potential explanations for the observed condition 

difference. While one possibility is that visual cortex activation patterns contain less overall information 

about spatial position in the informative relative to the uninformative condition, another possibility is 

that the format of the representations differs between the two task conditions (e.g. Lorenc, 

Vandenbroucke, Nee, de Lange, & D’Esposito, 2020; Vaziri-Pashkam & Xu, 2017). Specifically, compared 

to the informative condition, the sensory-like spatial format used in the uninformative condition may 

have been more similar to the format of the independent spatial working memory task (which also 

required a sensory-like strategy because the starting position of the response dot was unknown until the 

end of the trial; see Figure 1C). This similarity could have led to higher cross-generalization of the 

decoder to the uninformative condition, even if the overall spatial information content was similar 

between the two conditions in the main working memory task. The fact that the condition difference 

persists when training and testing within condition rules this latter possibility out. Instead, our analyses 

support the interpretation that spatial working memory representations in visual cortex are adaptively 

enhanced in the uninformative condition (when a sensory-like code is required) relative to the 

informative condition (where an action-oriented code can be used).  

Is the quality of mnemonic spatial representations selectively modulated between task conditions, 

or might non-mnemonic factors – such as global arousal level – contribute to the observed differences in 
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decoding accuracy? If non-mnemonic factors play a role, they should interact with the processing of all 

stimuli shown after the condition cue, including the “preview disk” stimulus (see Figure 1A). A 

supplementary analysis revealed that the orientation of the preview disk (i.e., the boundary between its 

light- and dark-gray sides) could be decoded with above chance accuracy in several visual cortex ROIs in 

both conditions, but without a significant difference between conditions (Figure 2 – figure supplement 

3; see Methods, Analysis: Preview Disk Orientation Decoding for details). This indicates that neural 

processing of the preview disk, a visual stimulus physically presented on the screen, was not modulated 

by task condition. Therefore, the effect of task condition on information content was specific to the 

spatial memory representation itself, and not due to a more global modulatory effect or difference in 

the signal-to-noise ratio of representations in early visual cortex.  

In addition to spatial position decoding, we investigated the possibility of an action-oriented format 

of the mnemonic code by decoding upcoming actions. Since motor responses were always made with 

the left or the right index finger, we trained a binary linear classifier to predict which finger was 

associated with the required button-press on each trial based on delay period activation patterns in 

each ROI (Figure 3A, see Methods, Analysis: Action Decoding for detailed classification procedure). This 

analysis revealed above chance decoding of upcoming actions in each of the three sensorimotor ROIs 

(S1, M1, and PMc) in the informative condition but not the uninformative condition. In contrast, all 

retinotopic visual ROIs showed chance level action decoding for both conditions (two-way repeated 

measures ANOVA with ROI and task condition as factors: main effect of ROI: F(13,65) = 4.003, p<0.001; 

main effect of condition F(1,5) = 3.802, p=0.106; ROI x condition interaction: F(13,65) = 2.937, p=0.001; p-

values obtained using permutation test; see Methods, Analysis: Action Decoding). A time-resolved 

decoding analysis revealed that, in the informative condition, information about a participants’ 

upcoming action began to emerge approximately 4 seconds after the onset of the preview disk stimulus, 

decreased slightly toward the end of the delay period, then rose steeply after the response disk onset 

when the participant actually executed a motor action (Figure 3B, Figure 3 - figure supplement 1). The 

increase in action decoding accuracy during the last part of the trial appeared sooner for the informative 

condition than the uninformative condition, in agreement with the speeding of behavioral response 

times in the informative condition (Figure 1B).  
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Figure 3. Action-oriented memory representations can be decoded from sensorimotor ROIs during the delay 

period. (A) A linear decoder was trained to classify the finger (left or right index) associated with the correct motor 

action on each trial, using data measured during the delay period of trials in each task condition separately 

(averaged within a window 8-12.8 sec from start of trial; see Methods, Analysis: Action Decoding for more details). 

Error bars reflect ±1 SEM across participants, and light gray lines indicate individual participants. Dots above bars 

and pairs of bars indicate the statistical significance of decoding accuracy within each condition, and of condition 

differences, respectively (two-tailed p-values obtained using a Wilcoxon signed-rank test with permutation testing, 

see Methods, Analysis: Action Decoding). Dot sizes reflect significance level. (B) Action decoding accuracy over time 

in three example ROIs. Timepoint zero indicates the target onset time. Shaded gray rectangles indicate the periods 

during which the “preview” (3.5-4.5 sec) and “response” (16.5-18.5 sec) disks were onscreen. Shaded error bars 

represent ±1 SEM across participants. Colored dots indicate significance of decoding accuracy within each 

condition, and gray dots indicate significant condition differences, with dot sizes reflecting significance levels as in 

A. Gray brackets just above the x-axis in B indicate the time range in which data were averaged to produce A (8-

12.8 sec). For time-resolved decoding in all ROIs, see figure supplement 1. 

 

Together, the above results support the hypothesis that the informative and uninformative 

conditions differentially engaged regions of cortex and neural coding formats for information storage 

during WM. To characterize this difference in coding format in a more concrete way, we next leveraged 

two additional independent model training tasks. First, we used a spatial localizer during which 

participants viewed high-contrast flickering checkerboards at various spatial positions (see Methods, 
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Task: Spatial Localizer). With this dataset, we trained a classifier on sensory-driven visuo-spatial 

responses (using the same spatial position decoding method as described previously, see Figure 2A). We 

found that spatial position information generalized from this sensory-driven perceptual training data to 

both conditions of our main working memory task (Figure 4A). This result supports the idea that the 

coding format used during spatial working memory is sensory-like in nature, closely resembling the 

responses in visual cortex to spatially-localized perceptual input. Importantly, decoding performance in 

early visual and parietal areas was again higher for the uninformative than the informative condition. 

This implies that the uninformative condition of our task resulted in a stronger and more ‘sensory-like’ 

memory code. The second independent model training task was a sensorimotor cortex localizer where 

participants physically pressed buttons with their left and right index fingers (see Methods, Task: 

Sensorimotor Cortex Localizer). We trained a decoder on this task, labeling trials according to which 

finger was used to physically press the buttons on each trial. We then tested this decoder on delay 

period activation in our main WM task. This analysis revealed above-chance decoding accuracy of the 

participant’s upcoming action in S1, M1, and PMc, in the informative condition only (Figure 4B). This 

result supports the idea that the memory representations in the informative condition were stored in a 

more motor-like format which closely resembled signals measured during actual button press 

responses. 
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Figure 4. Perceptual and action-oriented memory representations generalize from signals associated with 

perceptual input and physical button-press responses, respectively. (A) Decoding accuracy of spatial memory 

position when training on data from an independent sensory localizer (see Methods, Task: Spatial Localizer & 

Methods, Analysis: Spatial Position Decoding for details on this task and on decoding procedure). (B) Decoding 

accuracy of action-oriented memory codes (i.e., the finger associated with the correct motor action on each trial) 

when training on data from an independent button pressing task (see Methods, Task: Sensorimotor Cortex 

Localizer & Methods, Analysis: Action Decoding for details on this task and on decoding procedure). In both panels, 

error bars reflect ±1 SEM across participants, and light gray lines indicate individual participants. Dots above bars 

and pairs of bars indicate the statistical significance of decoding accuracy within each condition, and of condition 

differences, respectively, both evaluated using non-parametric statistics. Dot sizes reflect significance level. Inserts 

show a cartoon of the localizer tasks used to train the decoder for these analyses. 
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Discussion 

Past studies of visual WM have led to competing theories of how information is stored in the brain. 

Some work has emphasized the recruitment of early sensory areas, while other work has emphasized 

parietal and frontal association areas. Nevertheless, a general consensus exists that WM is a flexible 

resource (Baddeley & Hitch, 1974; Gazzaley & Nobre, 2012; Iamshchinina et al., 2021; Serences, 2016). 

Here we demonstrate, within a single spatial working memory paradigm, that task requirements are a 

critical determinant of how and where WM is implemented in the brain. These data provide a partial 

unifying explanation for divergent prior findings that implicate different regions in visual WM 

(Bettencourt & Xu, 2015; Ester, Rademaker, & Sprague, 2016; Iamshchinina et al., 2021; Rademaker et 

al., 2019; Xu, 2018, 2020). More importantly, however, our data show that WM flexibly engages 

different cortical areas and coding formats, even in the context of a task that is commonly used to study 

a single underlying construct (i.e., visuo-spatial WM). These findings highlight the goal-oriented nature 

of WM: the brain’s mechanisms for storage are not fully specified by the type of information being 

remembered, but instead depend on how the encoded information will be used to guide future 

behavior.  

We used a spatial working memory task wherein participants could anticipate their behavioral 

response ahead of the delay interval on half of the trials (Figure 1A), encouraging re-coding of visuo-

spatial memory information to a more action-oriented representational format. On the other half of 

trials, participants were unable to anticipate their behavioral response, and had to rely on a sensory-like 

spatial memory representation. The decoding accuracy of a remembered position from activation 

patterns in visual cortex was lower when participants had the opportunity to anticipate their eventual 

motor action, compared to when they had to rely exclusively on sensory-like visual memory. This effect 

was consistent across a range of early visual and parietal ROIs (Figure 2), supporting the idea that the 

recruitment of visual cortex for WM storage is task-dependent. Conversely, during the same task 

condition where visuo-spatial representations became weaker in visual cortex, sensorimotor ROIs 

showed above-chance decoding of the participant’s planned action during the delay period (Figure 3). 

We additionally show that the format of these two memory representations were markedly different: 

the spatial memory code generalized from an independent task in which stimuli at various spatial 

positions were actively viewed, whereas the action-related memory code generalized from an 

independent task in which participants made actual alternating button-press responses (Figure 4). 

Together, these results demonstrate that rather than having one fixed locus or mechanism, visual WM 

can be supported by different loci and coding schemes that are adapted to current task requirements.  

While we found widespread decoding of the contents of working memory, we generally did not find 

sustained increases in univariate BOLD responses during the delay (Figure 1D; Figure 1 – figure 

supplement 1). Specifically, visual areas V1–hV4 and LO2 showed no sustained BOLD responses or 

differences in the mean BOLD signal between conditions during the delay period, despite these areas 

showing condition differences in spatial decoding accuracy. This adds to an existing body of research 

showing a dissociation between univariate and multivariate indices of WM storage (Emrich, Riggall, La 

Rocque, & Postle, 2013; Ester et al., 2015; Harrison & Tong, 2009; Riggall & Postle, 2012; Serences et al., 

2009). Further, this suggests that the observed differences in decoding performance cannot be 

explained by global changes in signal due to arousal or task difficulty, but are instead attributable to 

differences in the amount of information represented within population-level patterns of activation in 

visual cortex. Furthermore, we found that information about the preview disk (see Figure 1A), a physical 

stimulus that appeared briefly on the screen early in the delay period, was not significantly different 

between task conditions (Figure 2 – figure supplement 3). This finding further highlights that the 
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observed modulation of spatial decoding accuracy in visual cortex was specific to the memory 

representation, and not due to a non-specific change in signal-to-noise ratio within early visual areas.   

At the same time, in multiple subregions of IPS, we did observe higher univariate delay period 

activation for the uninformative condition relative to the informative condition. In contrast, the opposite 

was true in sensorimotor areas (Figure 1D; Figure 1 – figure supplement 1). This finding parallels 

previous work showing higher univariate delay period activation in IPS during a task where oculomotor 

responses were decoupled from spatial memory items (i.e. encouraging a more perceptual strategy), 

whereas oculomotor areas showed higher activation when responses and memoranda were yoked (i.e. 

encouraging a more action-oriented strategy; Curtis et al., 2004). This past work suggested specialized 

networks for perceptual ‘sensory-like’ versus action oriented ‘motor-like’ memories. Our current 

demonstration of a shift from visual to sensorimotor codes further builds on this by showing how the 

neural systems underlying WM may be flexibly reconfigured, and memory representations flexibly 

reformatted, based on behavioral requirements. 

While information about the remembered spatial position was substantially lower in the informative 

condition than the uninformative condition, decoding accuracy did not fall entirely to chance in early 

visual cortex during informative cue trials (Figure 2B). With the possible exception of area V1, this was 

true even when looking at decoding at the very end of the WM delay period (Figure 2C, Figure 2 – figure 

supplement 1). Several factors may have contributed to this above chance decoding accuracy. First, it is 

possible that on some fraction of informative trials, participants failed to properly encode or process the 

condition cue, and as a result maintained a high-precision spatial representation throughout the delay 

period. Such lapses of attention are possible, given that the conditions in our task were randomly 

interleaved on a trial-by-trial basis. Second, it is possible that participants faithfully followed the 

informative cue, and made use of an action-oriented strategy, but some amount of visuo-spatial 

memory information was nonetheless maintained in visual cortex. This would suggest that the 

recruitment of sensory-like codes in visual cortex is at least partially obligatory when performing a visuo-

spatial WM task. This account is consistent with past findings showing that items which are not 

immediately relevant for a task, but will be relevant later (i.e. “unattended memory items”), can still be 

decoded from early visual cortex (Iamshchinina et al. 2021; re-analysis of data from Christophel, 

Iamshchinina, Yan, Allefeld & Haynes, 2018; but see also Lewis-Peacock, Drysdale, Oberauer, & Postle, 

2012; LaRocque, Riggall, Emrich, & Postle, 2017). However, this account is inconsistent with past findings 

showing that when a once-maintained item is no longer needed for behavior, it is no longer decodable 

from early visual areas (Harrison & Tong, 2009; Lewis-Peacock et al., 2012; Sprague, Ester & Serences, 

2014, Sprague, Ester & Serences, 2016; Lorenc et al., 2020). In our paradigm we cannot rule out that – 

even on trials where participants could completely discard spatial memory information in favor of an 

action-oriented code – some amount of visuo-spatial information was still maintained in visual cortex, 

reflecting a partially distributed code. Some support for the idea that sensory- and action-like codes can 

be maintained and accessed simultaneously during a memory task comes from a study by Van Ede et al. 

(2019a), who showed such simultaneity using EEG during a task where both action-related and sensory-

like codes were relevant for performance. Further experiments will be needed to determine how such 

distributed codes may be engaged during memory tasks in general, and how the extent to which a 

neural code is more distributed versus more punctate may change as a function of task requirements. 

We observed above-chance delay period decoding of participants’ planned actions in S1, M1, and 

PMc in the informative condition. Each of these areas has previously been shown to exhibit preparatory 

motor activity in the context of tasks involving delayed reaching or finger pressing (Ariani, Pruszynski, & 

Diedrichsen, 2020; Calderon et al., 2018; Cisek & Kalaska, 2005; Donner et al., 2009). In our data, 

information regarding the upcoming action became detectable around 4 seconds after the onset of the 
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preview disk – roughly the same time that spatial decoding accuracy in visual cortex dropped in the 

informative compared to the uninformative condition (Figure 2C, 3B). While suggestive, the temporal 

resolution of fMRI does not allow us to draw firm conclusions about the relative timing of each process. 

Nevertheless, these results are broadly consistent with a theory in which action selection unfolds in 

parallel to task-related processing of visual input (Cisek & Kalaska, 2010; Donner et al., 2009; Klein-

Flügge & Bestmann, 2012; van Ede et al., 2019a). Additionally, we found that information about 

upcoming actions declined toward the end of the delay period, dropping to chance just before the 

response disk appeared (Figure 3B). This time course is consistent with a transient signal related to the 

initial formation of an action-oriented memory representation, and aligns with recent EEG findings in 

human motor cortex following a retro-cue in a visual WM task (Boettcher et al., 2021).  

Past work has investigated the influence of action-oriented coding on WM representations. For 

instance, it has been shown that high priority items, meaning those that are relevant for upcoming 

actions, tend to be represented more robustly than items that are not immediately relevant to behavior 

(Christophel et al., 2012; Lewis-Peacock et al., 2012; Lorenc et al., 2020; Rose et al., 2016; Sprague et al., 

2016; but see also Barbosa, Soldevilla, & Compte, 2021; Iamshchinina et al., 2021). Prioritized WM 

representations can be further reconfigured so that they are optimized for future behavior, which may 

include the activation of circuits related to motor output (Myers et al., 2017; Nobre & Stokes, 2019; 

Schneider, Barth, & Wascher, 2017; Souza & Oberauer, 2016; van Ede et al., 2019a). These past studies 

of action preparation have typically used relatively coarse measures of visual information content such 

as decoding which of two items was currently selected. In contrast, here we measured the information 

about a continuous remembered feature value that was reflected in patterns of activation in visual 

cortex. We simultaneously showed a decrease in spatial information in visual cortex and an increase in 

action-related information in sensorimotor cortex when an action-oriented mnemonic format was 

encouraged. This finding solidifies the evidence showing that information may shift between 

qualitatively different kinds of codes as a function of behavioral requirements, as opposed to just waxing 

and waning over time within the same format/brain areas.  

Past work on saccadic eye movements further supports the link between the neural circuits that 

support working memory and those that support action preparation and execution. For instance, prior 

work has demonstrated that when retrieving or selecting an item within working memory, eye 

movements exhibit a systematic bias toward the spatial position at which the item was originally 

presented, even without a physical stimulus to guide eye movements (Spivey & Geng, 2001; Ferreira, 

Apel & Henderson, 2008; van Ede, Chekroud & Nobre, 2019b; van Ede, Board & Nobre, 2020). These eye 

movements may play a functional role in retrieving items from working memory (Ferreira et al., 2008; 

van Ede et al., 2019b) and can index processes such as attentional selection within working memory 

(van Ede et al., 2019b; van Ede et al. 2020). In other work, the interaction between memory and action 

has been shown in the opposite direction, where the prioritization of a feature or location for motor 

actions can lead to prioritization in working memory (Heuer, Ohl & Rolfs, 2020). For example, when 

participants make a saccade during the delay period of a visual working memory task, memory 

performance is enhanced for items originally presented at the saccade target location (Ohl & Rolfs, 

2020). This effect occurs even when saccade target locations conflict with top-down attentional goals, 

suggesting it reflects an automatic mechanism for selection based on action planning (Ohl & Rolfs, 2020; 

Heuer et al., 2020). Finally, the planning of both memory-guided saccades and anti-saccades is 

associated with topographically-specific activation in early visual cortex measured with fMRI, suggesting 

that neural representations of upcoming actions are coded similarly to representations used for working 

memory storage (Saber, Pestilli & Curtis, 2015; Rahmati, Saber & Curtis, 2018). Together, these findings 

suggest an important functional association between working memory and motor planning within the 

domain of eye movement control. Our work expands upon this idea by demonstrating the engagement 
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of motor circuits for the maintenance of action-oriented working memory representations using a 

paradigm outside the realm of eye-movement planning. Additionally, while prior work suggested a close 

correspondence between perceptual and action-oriented WM codes, our work demonstrates that these 

two types of representations can also be strategically dissociated depending on task demands and the 

nature of the motor response being planned (i.e. a manual response versus a saccadic response).  

Finally, beyond the impact of more perceptual and action-oriented working memory strategies, 

other aspects of task requirements have been shown to influence the neural correlates of WM. For 

example, one experiment found that information about visual objects could be decoded from 

extrastriate visual areas on blocks of trials that required memory for visual details, but from PFC on 

blocks of trials where only the object’s category had to be maintained (Lee et al., 2013). Similarly, 

another experiment showed that instructing participants to maintain items in a visual, verbal, or 

semantic code resulted in format-specific patterns of neural activation measured with fMRI (Lewis-

Peacock, Drysdale & Postle, 2015). These findings, along with our results, further support a framework in 

which behavioral requirements strongly influence the format of WM representations. 

In our action-decoding analyses (Figure 3, Figure 4B), we interpret the decoded representations as 

primarily reflecting the planning of upcoming actions and maintenance of an action plan in working 

memory, rather than reflecting overt motor actions. This interpretation is justified because participants 

were explicitly instructed to withhold any physical finger movements or button presses until the end of 

the delay period, when the probe disk appeared. We observed participants throughout their behavioral 

training and scanning sessions to ensure that no noticeable finger movements were performed. 

Nevertheless, we cannot rule out the possibility that some amount of low-grade motor activity (such as 

a subtle increase in pressure on the button box, or increased muscle tone in the finger) occurred during 

the delay period in the informative condition and contributed to our decoding results. Further 

experiments incorporating a method such as electromyography recordings from the finger muscles 

would be necessary to resolve this. At the same time, this possibility of low-grade motor activity does 

not substantially change the interpretation of our results, namely that the representation of upcoming 

actions in motor, premotor and supplementary motor cortex reflects the maintenance of a prospective 

action plan within working memory. As detailed in the preceding paragraphs, a large body of work has 

drawn a link between action preparation and working memory in the brain, with motor circuits often 

actively engaged by the selection and manipulation of items within working memory, and motor actions 

in turn influencing the quality of memory representations. Based on this framework, the action-oriented 

representations in our task, independent of whether they may reflect a contribution from physical 

motor activity, are within the range of representations that can be defined as working memory.  

In contrast to human neuroimaging experiments, which often find evidence for sensory recruitment 

(i.e., WM decoding from early sensory cortices), research with non-human primates (NHPs) has 

generally found less evidence for maintenance of feature-specific codes in early sensory regions. The 

difference in results between human and primate studies may be partially accounted for by differences 

in measurement modality. For example, the BOLD response is driven in part by modulations of local field 

potentials (Boynton, 2011; Goense & Logothetis, 2008; Logothetis, Pauls, Augath, Trinath, & 

Oeltermann, 2001; Logothetis & Wandell, 2004), which may contain information about remembered 

features, such as motion direction, even when single unit spike rates do not (Mendoza-Halliday, Torres, 

& Martinez-Trujillo, 2014). Part of the discrepancy may also be related to differences in tasks used in 

human studies versus NHP studies. For example, some NHP studies use tasks that allow for motor 

coding strategies, such as the traditional memory-guided saccade paradigm (Funahashi et al., 1989; 

Fuster & Alexander, 1971; Goldman-Rakic, 1995). At the same time, other NHP experiments have 

dissociated sensory and action-related information (Funahashi, Chafee, & Goldman-Rakic, 1993; 
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Mendoza-Halliday et al., 2014; Miller, Erickson, & Desimone, 1996; Panichello, DePasquale, Pillow, & 

Buschman, 2019), suggesting that the difference between perceptual and action-oriented coding alone 

cannot account for differences between studies. Another aspect of task design that may contribute to 

these differences is that NHP tasks often require animals to remember one of a small, discrete set of 

stimuli (e.g., Funahashi et al., 1993; Mendoza-Halliday et al., 2014; Miller et al., 1996). This may 

encourage a more discretized categorical representation rather than a highly detailed representation, 

which may rely less strongly on the finely-tuned neural populations of early sensory areas (Lee et al., 

2013). For example, some NHP electrophysiology studies have shown spiking activity in V1 that reflects 

the contents of WM using tasks that require precise spatial representations that may not be easily re-

coded into a non-sensory format (e.g., the curve-tracing task used by Van Kerkoerle and colleagues; 

Supèr, Spekreijse, & Lamme, 2001; Van Kerkoerle, Self, & Roelfsema, 2017).  

Together, our findings suggest that the neural mechanisms that underlie WM are dynamic and can 

be flexibly adjusted, even in the context of a single paradigm typically used to study visuo-spatial WM. 

When our participants were given the possibility to switch from a purely visual to a motor-based WM 

code, the amount of information regarding precise spatial position dropped in early visual and parietal 

cortex, while information about an upcoming action became decodable from sensorimotor cortex. This 

experiment highlights how in a single paradigm, we can measure multiple dissociable mechanisms 

supporting WM. More broadly, these results open the door for future experiments to explore other task 

factors that may dynamically alter how WM is represented in the brain, and further push the boundaries 

of our knowledge about WM and cognitive flexibility. 

 

Materials and Methods 

Participants. 6 participants (2 male) between the ages of 20 and 34 were recruited from the UCSD 

community (mean age 27.2 + 2.7 years). All had normal or corrected-to-normal vision. One additional 

participant (male) participated in an early pilot version of the study, but is not included here as they did 

not complete the final experiment. The study protocol was approved by the Institutional Review Board 

at UCSD, and all participants provided written informed consent. Each participant performed a 

behavioral training session lasting approximately 30 minutes, followed by 3 or 4 scanning sessions, each 

lasting approximately 2 hours. Participants were compensated at a rate of $10/hour for behavioral 

training and $20/hour for the scanning sessions. Participants were also given “bonus” money for correct 

performance on certain trials in the main behavioral task (see Task: Main Working Memory), up to a 

maximum of $40 bonus.  

Magnetic Resonance Imaging (MRI).  All MRI scanning was performed on a General Electric (GE) 

Discovery MR750 3.0T research-dedicated scanner at the UC San Diego Keck Center for Functional 

Magnetic Resonance Imaging (CFMRI). Functional echo-planar imaging (EPI) data were acquired using a 

Nova Medical 32-channel head coil (NMSC075-32-3GE-MR750) and the Stanford Simultaneous Multi-

Slice (SMS) EPI sequence (MUX EPI), with a multiband factor of 8 and 9 axial slices per band (total slices 

= 72; 2 mm3 isotropic; 0 mm gap; matrix = 104 x 104; FOV = 20.8 cm; TR/TE = 800/35 ms; flip angle = 52°; 

inplane acceleration = 1). Image reconstruction and un-aliasing procedures were performed on servers 

hosted by Amazon Web Services, using reconstruction code from the Stanford Center for Neural 

Imaging. The initial 16 TRs collected at sequence onset served as reference images required for the 

transformation from k-space to image space. Two short (17 s) “topup” datasets were collected during 

each session, using forward and reverse phase-encoding directions. These images were used to estimate 

susceptibility-induced off-resonance fields (Andersson, Skare, & Ashburner, 2003) and to correct signal 
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distortion in EPI sequences using FSL topup functionality (Jenkinson, Beckmann, Behrens, Woolrich, & 

Smith, 2012).  

In addition to the experimental scanning sessions, each participant participated in a separate 

retinotopic mapping session during which we also acquired a high-resolution anatomical scan. This 

anatomical T1 image was used for segmentation, flattening, and delineation of the retinotopic mapping 

data. For 4 out of the 6 participants, the anatomical scan was obtained using an Invivo 8-channel head 

coil with accelerated parallel imaging (GE ASSET on a FSPGR T1-weighted sequence; 1x1x1 mm3 voxel 

size; 8136 ms TR; 3172 ms TE; 8° flip angle; 172 slices; 1 mm slice gap; 256x192 cm matrix size), and for 

the remaining 2 participants this scan was collected using the same 32-channel head coil used for 

functional scanning (anatomical scan parameters used with 32-channel coil were identical to those used 

with the 8-channel coil). Anatomical scans collected with the 32-channel head coil were corrected for 

inhomogeneities in signal intensity using GE’s “Phased array uniformity enhancement” (PURE) method.  

Pre-Processing of MRI Data.  All pre-processing of MRI data was performed using software tools 

developed and distributed by FreeSurfer and FSL (available at https://surfer.nmr.mgh.harvard.edu and 

http://www.fmrib.ox.ac.uk/fsl). First, we used the recon-all utility in the FreeSurfer analysis suite (Dale, 

Fischl, & Sereno, 1999) to perform cortical surface gray-white matter volumetric segmentation of 

anatomical T1 scans. The segmented T1 data were used to define cortical meshes on which we specified 

retinotopic ROIs used for subsequent analyses (see Identifying ROIs). T1 data were also used to align 

multi-session functional data into a common space: for each of the experimental scan sessions, the first 

volume of the first run was used as a template to align the functional data from that session to the 

anatomical data. Co-registration was was performed using FreeSurfer’s manual and automated 

boundary-based registration tools (Greve & Fischl, 2009). The resulting transformation matrices were 

then used to transform every four-dimensional functional volume into a common space, using FSL FLIRT 

(Jenkinson, Bannister, Brady, & Smith, 2002; Jenkinson & Smith, 2001). Next, motion correction was 

performed using FSL MCFLIRT (Jenkinson et al., 2002), without spatial smoothing, with a final sinc 

interpolation stage, and 12 degrees of freedom. Finally, slow drifts in the data were removed using a 

high-pass filter (1/40 Hz cutoff). No additional spatial smoothing was performed.  

The above steps were performed for all functional runs, including the main working memory task 

(see Task: Main Working Memory), spatial working memory mapping (see Task: Spatial Working 

Memory Mapping), sensorimotor cortex localizer (see Task: Sensorimotor Cortex Localizer) and spatial 

localizer (see Task: Spatial Localizer). Following this initial pre-processing, for all run types, we 

normalized the time series data by z-scoring each voxel’s signal across each entire scan run (this and all 

subsequent analyses were performed in Matlab 2018b). Deconvolution (see Analysis: Univariate) of 

main task data was performed on this continuous z-scored data. Next, we epoched the data based on 

the start time of each trial. Since trial events were jittered slightly with respect to TR onsets, we rounded 

trial start times to the nearest TR. This epoched data was used for time-resolved decoding analyses 

(Figure 2C, Figure 3B, Figure 2 – figure supplement 1 and Figure 3 – figure supplement 1). For the time-

averaged analyses (Figure 2B, Figure 3A, Figure 4, Figure 2 – figure supplement 2), we obtained a single 

estimate of each voxel’s response during each trial. For the main task, we obtained this value using an 

average of the timepoints from 10-16 TRs (8-12.8s) after trial onset, which falls in the delay period of the 

task. For the spatial working memory mapping task, we used an average of the timepoints from 6-12 TRs 

(4.8-9.6s) after trial onset, which falls in the delay period of this task. For the spatial localizer task, we 

averaged over the timepoints from 4-7 TRs (3.2-5.6s) after stimulus onset. For the button-pressing task 

(see Task: Sensorimotor Cortex Localizer) we averaged over the timepoints from 4-7 TRs (3.2-5.6s) after 

trial onset. The data from these latter two tasks was additionally used to identify voxels based on their 

spatial selectivity and action selectivity, respectively (see Identifying ROIs). 
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Identifying Regions of Interest (ROIs).  We followed previously published retinotopic mapping protocols 

to define the visual areas V1, V2, V3, V3AB, hV4, IPS0, IPS1, IPS2, and IPS3 (Engel, Glover, & Wandell, 

1997; Jerde & Curtis, 2013; Sereno et al., 1995; Swisher, Halko, Merabet, McMains, & Somers, 2007; 

Wandell, Dumoulin, & Brewer, 2007; Winawer & Witthoft, 2015). Participants performed mapping runs 

in which they viewed a contrast-reversing black and white checkerboard stimulus (4Hz) that was 

configured as either a rotating wedge (10 cycles, 36 s/cycle), an expanding ring (10 cycles, 32 s/cycle), or 

a bowtie (8 cycles, 40 s/cycle). To increase the quality of retinotopic data from parietal regions, 

participants performed a covert attention task on the rotating wedge stimulus, which required them to 

detect contrast dimming events that occurred occasionally (on average, 1 event every 7.5 seconds) in a 

row of the checkerboard (mean accuracy = 74.4 + 3.6%). The maximum eccentricity of the stimulus was 

9.3°.  

After mapping the individual retinotopic ROIs for each participant, we used data from our spatial 

localizer task (see Task: Spatial Localizer) to identify voxels within each retinotopic ROI that were 

selective for the region of visual space in which our spatial memory positions could appear. Data from 

this localizer task were analyzed using a General Linear Model (GLM) implemented in FSL’s FEAT (FMRI 

Expert Analysis Tool, version 6.00). Brain extraction (Smith, 2002) and pre-whitening (Woolrich, Ripley, 

Brady, & Smith, 2001) were performed on individual runs before analysis. Predicted BOLD responses for 

each of a series of checkerboard wedges were generated by convolving the stimulus sequence with a 

canonical gamma hemodynamic response (phase=0s, s.d.=3s, lag=6s). Individual runs were combined 

using a standard weighted fixed effects analysis. For each of the 24 possible wedge positions, we 

identified voxels that were significantly more activated by that position than by all other positions 

(p<0.05, false discovery rate corrected). We then merged the sets of voxels that were identified by each 

of these 24 tests, and used this merged map to select voxels from each retinotopic ROI for further 

analysis.  

In addition to mapping visual ROIs, we also mapped several sensorimotor ROIs. We did this by 

intersecting data from a simple button-press task (see Task: Sensorimotor Cortex Localizer) with 

anatomical definitions of motor cortex. Data from the sensorimotor localizer were analyzed using a 

general linear model in FSL’s FEAT, as described above for the spatial localizer. Predicted BOLD 

responses for left- and right-handed button presses were generated by convolving the stimulus 

sequence with a gamma hemodynamic response function (phase=0s, s.d.=3s, lag=5s). We identified 

voxels that showed significantly more activation for the contralateral index finger than the ipsilateral 

index finger (p<0.05, false discovery rate corrected). This procedure was done separately within each 

hemisphere. We then defined each sensorimotor ROI by intersecting the map of above-threshold voxels 

with the anatomical definitions of Brodmann’s areas identified by FreeSurfer’s recon-all segmentation 

procedure (Dale et al., 1999; Fischl et al., 2008). Specifically: the functionally-defined mask was 

intersected with Brodmann’s area (BA) 6 was used to define premotor cortex (PMc), with BA 4 to define 

primary motor cortex (M1), and with BA 1,2 and 3 combined to define primary somatosensory cortex 

(S1) (Brodmann, 1909; Fulton, 1935; Penfield & Boldrey, 1937). Final sizes of all visual and sensorimotor 

motor ROIs are reported in Supplementary File 1. 

Task: Main Working Memory. For all tasks described here, stimuli were projected onto a screen 21.3 cm 

wide x 16 cm high, fixed to the inside of the scanner bore just above the participant’s chest. The screen 

was viewed through a tilted mirror attached to the headcoil, from a viewing distance of 49 cm. This 

resulted in a maximum vertical extent (i.e. bottom to top) of 18.5°, and a maximum vertical eccentricity 

(i.e. central fixation to top) of 9.3°. The background was always a mid-gray color, and the fixation point 

was always a black circle with radius 0.2°.  All stimuli were generated using Ubuntu 14.04, Matlab 2017b, 

and the Psychophysics toolbox (Brainard, 1997; Kleiner et al., 2007). 
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During runs of the main working memory task, the overall task that participants performed was to 

remember the position of a small target dot, maintain it across a delay period, and then report which 

side of a spatial boundary the remembered position had fallen on (Figure 1A). Each trial began with the 

fixation point turning green for 750 ms, to alert the participant that the spatial memory target was 

about to appear. Next, a white target dot (radius=0.15°) appeared for 500 ms at a pseudo-random 

position on an imaginary ring 7° away from fixation (details on target positions given two paragraphs 

down). Participants were required to remember the precise position of this target dot. After 

presentation of this spatial memory target, the fixation point turned back to black for 1 second, then 

turned either red or blue for 2 seconds. This color cue indicated to the participant whether the current 

trial was an “informative” or “uninformative” trial (see next paragraph for explanation of the 

conditions). Next, a disk stimulus appeared for 1 second. This stimulus consisted of a circle 9.7° in radius, 

divided into two equal halves, with each side a different shade of gray (visibly lighter and darker relative 

to the mean-gray background; see Figure 1A). The disk could be rotated about its center by an amount 

between 1° and 360°. To avoid the disk overlapping with the fixation point, an aperture of radius 0.4° 

was cut out of the middle of the disk, creating a donut-like shape. The inner and outer edges of the 

donut were smoothed with a 2D Gaussian kernel (size=0.5°, sigma=0.5°), but the boundary between the 

two halves of the disk was sharp. This “preview disk” stimulus was followed by a 12 second delay period. 

Following the delay period, a second disk stimulus appeared for 2 seconds, serving as the response 

probe (i.e., the “response disk”). At this point, participants responded with a button press to indicate 

which side of the response disk the memory target had been presented on. Specifically, they used either 

their left or right index finger to indicate whether the target dot fell within the light gray or dark gray 

side of the response disk. On each scan run, the light gray shade and dark gray shade were each 

associated with one response finger, and the mapping between shade of gray (light or dark) and finger 

(left or right index finger) was counter-balanced across sessions within each participant.  Participants 

were reminded of the mapping between shades of gray and response fingers at the start of each scan 

run. 

For trials in the “informative” condition, the orientation of the response disk was identical to that of 

the preview disk. For trials in the “uninformative” condition, the orientation of the response disk was 

random (and unrelated to the orientation of the preview disk). Thus, for the informative condition, 

participants had complete knowledge of the required action as soon as the preview disk appeared, but 

for the uninformative condition, they had no ability to anticipate the required action. Participants were 

instructed not to make any physical finger movements until the response disk appeared. Trials of the 

two task conditions (i.e. informative/uninformative) were randomly interleaved within every scan run. 

At the start of each scan run, the participant was shown an instruction screen which reminded them of 

the color/condition mapping and the shade of gray/finger mapping that was in effect for that session. 

The mapping between color (red/blue) and condition was counter-balanced across participants, but 

fixed within a given participant. 

Each run of the main task consisted of 20 trials, with each trial followed by an inter-trial interval 

jittered randomly within a range of 1-5 seconds. The total length of each run was 466 seconds. 

Participants performed 10 runs of this task per scan session, and completed a total of 20 runs (or 400 

trials) across two separate scan sessions. All counter-balancing was performed at the session level: 

within each session, there were 100 trials of each condition (informative or uninformative), and on each 

of these 100 trials the memory target was presented at a unique polar angle position. Specifically, target 

positions were sampled uniformly along a 360° circle, with a minimum spacing of 3.6° between possible 

target positions. The orientation of the response disk (which determined the spatial boundary to which 

the memory target position was compared) also took 100 unique and uniformly spaced values along a 

360° circle within each condition. The possible disk orientations were shifted by 1.8° relative to the 
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possible spatial memory positions, so that the memory position was never exactly on the boundary of 

the disk. To ensure that the joint distribution of memory positions and boundary positions was close to 

uniform, we broke the 100 possible positions along the 360° circle into 10 bins of 10 positions each. 

Across all 100 trials of each condition, each combination of the bin for spatial memory position and the 

bin for boundary orientation was used once. For the informative condition, the preview disk always took 

on the same orientation as the response disk. For the uninformative condition, the preview disk was 

assigned a random orientation, using the same 100 orientations used for the response disk but in a 

random order. Finally, trials for both task conditions were randomly shuffled and split evenly into 10 

runs. As a result, task condition, memory target position, and response disk orientation were balanced 

across each session, but not balanced within individual runs.  

To encourage participants to encode the spatial positions with high precision, we rewarded 

participants monetarily for correct performance on “hard” trials on which the spatial memory target was 

close to the boundary. These “hard” trials were identified as those where the spatial memory item and 

the boundary belonged in the same bin, according to the angular position bins described above. 

Participants received $1 for correct performance on each “hard” trial, for a maximum of $40. Across 

participants, the average bonus received was $32.83 + 2.86. 

At no time during the experiment or the training period was the purpose of the experiment revealed 

to participants. The purpose of this was to ensure that participants would not explicitly use a strategy 

that could lead to an alteration in their neural activation patterns in the different task conditions. Three 

of the six participants were members of the research group conducting the experiments, yet, our effects 

were reliable on a single-participant basis across all participants.  

Task: Spatial Working Memory Mapping. Participants also performed an additional working memory 

task while in the scanner, which served as training data for our classification analyses (see Analysis: 

Spatial Position Decoding). Identical to the main working memory task, each trial began with the fixation 

point briefly turning green (750 ms), followed by a spatial memory target item (500 ms) at a random 

position (at 7° from fixation). The disappearance of the target was followed by a 12 second delay period, 

after which a white probe dot (radius=0.15°) appeared at a random position (independent from the 

target position, also at 7° from fixation). Participants moved this probe dot around an invisible circle to 

match the position at which the memory target had been presented. Participants used the four fingers 

of their right hand to press different buttons that corresponded to fast (120°/s, outer two fingers) or 

slow (40°/s, inner two fingers) movement of the probe dot in a counter-clockwise (left two fingers) or 

clockwise (right two fingers) direction. This response period lasted 3 seconds, during which participants 

were able to move the dot back-and-forth to adjust its position as much as they wished. Once the 3 

second response period was over, the probe dot disappeared and participants had no further ability to 

change their response. The final position of the probe dot was taken as the participant’s response, and 

no further (visual) feedback of the response was provided.  

Each run of the spatial working memory mapping task consisted of 20 trials, with trials separated by 

an inter-trial interval jittered randomly within a range of 1-5 seconds. The total run length was 406 

seconds. Participants performed 10 runs of this task in total, collected during a single scanning session. 

Across all 200 trials of the task, the spatial position of memory targets took on 200 distinct values 

uniformly spaced within a 360° space (i.e. 1.8° apart). To ensure a fairly even sampling of this space 

within individual runs, we binned these 200 possible positions into 20 bins of 10 positions each, and 

generated a sequence where each run sampled from each bin once. The random starting position of the 

probe dot on each trial was generated using an identical procedure, but independently of the memory 

targets, so that there was no association between the position of the spatial memory target and the 
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probe start position. The absolute average angular error across 6 participants on this task was 7.0° + 

0.9°.  

Task: Spatial Localizer. We ran a spatial localizer task for two purposes, namely, to identify voxels having 

spatial selectivity within the region of space spanned by the memory positions (see Identifying ROIs), 

and to serve as training data for our classification analyses (see Analysis: Spatial Position Decoding). In 

this task, participants viewed black and white checkerboard wedges flickering at a rate of 4 Hz. Wedges 

had a width of 15° (polar angle), spanned an eccentricity range of 4.4°-9.3° (visual angle), and were 

positioned at 24 different positions around an imaginary circle. Possible wedge center positions were 

offset from the cardinal axes by 7.5° (i.e., a wedge was never centered on the horizontal or vertical 

meridian). Each run included 4 wedge presentations at each position, totaling 96 trials. The sequence of 

positions was random with the constraint that consecutively presented wedges never appeared in the 

same quadrant. Trials were 3 seconds each, and were not separated by an inter-trial interval. The total 

run length was 313 seconds. During each run, participants performed a change-detection task at 

fixation, where they responded with a button press any time the fixation point increased or decreased in 

brightness. A total of 20 brightness changes occurred in each run, at times that were random with 

respect to trial onsets. The magnitude of brightness changes was adjusted manually at the start of each 

run to control the difficulty. Average detection performance (hit rate) was 76.7 + 4.2%. participants 

performed between 8 and 16 total runs of this task. For some participants, some of these runs were 

collected as part of a separate experiment.   

Task: Sensorimotor Cortex Localizer. Participants also performed a sensorimotor cortex localizer task in 

the scanner. Analogous to our use of the spatial localizer task, this data served a dual purpose: it was 

used to identify ROIs in motor and somatosensory cortex that were selective for contralateral index 

finger button presses (see Identifying ROIs), and as a training set for one of our classification analyses 

(see Analysis: Action Decoding). Participants attended a black fixation point (0.2°), and responded to 

brief (1000 ms) color changes of the fixation point by pressing a button with their left or right index 

finger. The fixation dot changed to either magenta or cyan to indicate which finger should be used, and 

each color change was separated by an inter-trial interval randomly jittered in the range of 2-6 seconds. 

Each run was 319 seconds long, and included 60 total trials (i.e., 60 button presses), with 30 trials for 

each finger randomly interleaved. The color/finger mapping was switched on alternating runs. 

Participants were instructed to respond as quickly as possible to each color change. Average 

performance on this task was 92.8 + 3.0 % correct, and average behavioral response time was 530 + 23 

ms. Each participant performed 6 runs of this task. 

Analysis: Univariate. In order to estimate a hemodynamic response function (HRF) for each voxel during 

each condition (Figure 1D, Figure 1 – figure supplement 1) we used linear deconvolution. We 

constructed a finite impulse response model (Dale, 1999) that included a series of regressors for trials in 

each task condition: one regressor marking the onset of a spatial memory target item, followed by a 

series of temporally shifted versions of that regressor (to model the BOLD response at each subsequent 

time point in the trial). The model also included a constant regressor for each of the 20 total runs. The 

data used as input to this GLM was z-scored on a voxel-by-voxel basis within runs (see Pre-Processing of 

FMRI Data). Estimated HRFs for the two conditions were averaged across all voxels within each ROI. To 

evaluate whether the mean BOLD signal in each ROI differed significantly between conditions, we used a 

permutation test. First, for each ROI and timepoint, we computed a Wilcoxon signed rank statistic 

comparing the activation values for each participant from condition 1 to the activation values for each 

participant from condition 2. Then, we performed 1000 iterations of shuffling the condition labels within 

each participant (swapping the condition labels for each participant with 50% probability). We then 

computed a signed rank statistic from the shuffled values on each iteration. Finally, we computed a two-
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tailed p-value for each ROI and timepoint by computing the number of iterations on which the shuffled 

signed rank statistic was >= the real statistic, and the number of iterations on which the shuffled statistic 

was <= the real statistic, and taking the smaller of these two values. We obtained the final p-value by 

dividing this value by the number of iterations and multiplying by 2.  

For the analysis in which we separated contralateral and ipsilateral response trials (Figure 1 – figure 

supplement 2), we performed the same procedure described above, except that for each voxel, we 

separated its responses into trials where the correct behavioral response corresponded to the index 

finger contralateral or ipsilateral to the voxel’s brain hemisphere. This resulted in a separate estimate of 

each voxel’s HRF for contralateral and ipsilateral trials in each condition. We then averaged the HRFs 

from each task condition and response type (contralateral or ipsilateral) across all voxels in both 

hemispheres of each ROI. Finally, within each condition, we tested the difference between contralateral 

and ipsilateral trials with a signed rank test with permutation as described above. 

Analysis: Spatial Position Decoding.  We used linear classification to measure representations of 

remembered spatial position information in each visual and sensorimotor ROI during the main working 

memory task. Since we were interested in assessing the coding format of memory representations, we 

separately performed decoding using three different approaches. In the first approach (Figure 2, Figure 

2 – figure supplement 1), we trained the decoder on independent data measured while participants 

were remembering a given spatial position (see Task: Spatial Working Memory Mapping). In the second 

approach (Figure 4A), we trained the decoder on independent data collected when participants were 

perceiving a physical stimulus at a given spatial position (see Task: Spatial Localizer). In the final method 

(Figure 2 – figure supplement 2), we used cross-validation to train and test our decoder using data from 

within each condition of the main working memory task. 

Before performing each of these classification methods, we first mean-centered the voxel activation 

pattern from each trial in each task by subtracting the mean across all voxels from each trial. Next, we 

binned all trials of the main working memory task (see Task: Main Working Memory) and the spatial 

working memory mapping task (see Task: Spatial Working Memory Mapping) into 8 angular position 

bins that each spanned 45°, with the first bin centered at 0°. Trials from the spatial localizer task (see 

Task: Spatial Localizer) were binned into 8 angular position bins that each spanned 60° (i.e. the bins 

were slightly overlapping and some wedge positions contributed to multiple bins; similar results were 

obtained using bins that were entirely non-overlapping). We then performed binary classification 

between pairs of bins that were 180° apart (see Figure 2A), using a linear classifier based on the 

normalized Euclidean distance (for more details see Henderson & Serences, 2019). This meant that we 

constructed four separate binary classifiers, each operating on approximately ¼ of the data, with a 

chance decoding value of 50%. We then averaged across the four binary classifiers to get a single index 

of classification accuracy for each ROI and task condition.  

For the results shown in Figure 2 and Figure 2 – figure supplement 1, the training set for these 

classifiers consisted of data from the spatial working memory mapping task (averaged within a fixed 

time window during the delay period 4.8-9.6 s after trial onset), and the test set consisted of data from 

the main working memory task (either averaged over a window of 8-12.8 seconds after trial onset, or at 

each individual TR following trial onset). For the results based on sensory-driven responses (Figure 4A), 

the training set consisted of data  from the spatial localizer task (averaged over a window 3.2-5.6 s after 

stimulus onset), and the test set consisted of data from the main working memory task (same time 

window defined above). For the within-condition analyses (Figure 2 – figure supplement 2), the training 

and testing sets both consisted of data from a single condition in the main working memory task (either 

informative or uninformative; same time window defined above). Each binary classifier was cross-
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validated by leaving out two trials at a time for testing (leaving out one trial per class ensures the 

training set was always balanced), and looping over cross-validation folds so that every trial served as a 

test trial once.  

To test whether decoding performance was significantly above chance in each ROI and condition of 

the main working memory task, we used a permutation test. On each of 1000 iterations, we shuffled the 

binary labels for the training set, trained a classifier on this shuffled data, and then computed how well 

this decoder predicted the binary labels in the test set. For each iteration, we then computed a Wilcoxon 

signed rank statistic comparing the N participants’ real decoding values to the N participants’ shuffled 

decoding values. A signed rank statistic greater than 0 indicated the median of the real decoding values 

was greater than the median of the shuffled decoding values, and a statistic less than zero indicated the 

median of the null decoding values was greater than the median of the real values. We obtained a one-

tailed p-value for each ROI and task condition across all participants by counting the number of 

iterations on which the signed rank statistic was less than or equal to zero, and dividing by the total 

number of iterations.   

To test whether decoding performance differed significantly between the two task conditions within 

each ROI, we used a permutation test. First, for each ROI, we computed a Wilcoxon signed rank statistic 

comparing the N participants’ decoding values from condition 1 to the N participants’ decoding values 

from condition 2. Then, we performed 1000 iterations of shuffling the condition labels within each 

participant (swapping the condition labels for each participant with 50% probability). We then 

computed a signed rank statistic from the shuffled values. Finally, we computed a two-tailed p value for 

each ROI by computing the number of iterations on which the shuffled signed rank statistic was >= the 

real statistic, and the number of iterations on which the shuffled statistic was <= the real statistic, and 

taking the smaller of these two values. We obtained the final p-value by dividing this value by the total 

number of iterations and multiplying by 2.   

The above procedures were used for all time-averaged and time-resolved decoding analyses (i.e. for 

time-resolved analyses we repeated the same statistical procedures at each timepoint separately). For 

the time-averaged decoding accuracies, we also performed a two-way repeated measures ANOVA with 

factors of ROI, condition, and a ROI x condition interaction (implemented using ranova.m). We 

performed a permutation test where we shuffled the decoding scores within each participant 1000 

times, and computed an F-statistic for each effect on the shuffled data. Across all permutations, we 

obtained a null-distribution of F-values for effects of ROI, condition, and the ROI x condition interaction. 

P-values for each effect were based on the number of times the shuffled F-statistic for that effect was 

greater than or equal to the real F-statistic, divided by the total number of iterations (similar to method 

used in Rademaker et al., 2019). F-statistics reported in the text reflect the F-statistic obtained using the 

real (unshuffled) data.  

Analysis: Preview Disk Orientation Decoding. To evaluate whether the difference between our task 

conditions was specific to the memory representations or a more global difference in pattern signal-to-

noise ratio, we performed linear decoding of the orientation of the preview disk stimulus (Figure 2 – 

figure supplement 3). The disk stimulus (Figure 1A) consisted of a light and a dark half, separated by a 

linear boundary that could range in orientation from 0-180° (for this analysis, we ignored the coloration 

of the disk stimulus, meaning which side was light gray and which was dark gray, and focused only on 

the orientation of the boundary). To run the decoding analysis, we first binned all trials according to the 

boundary orientation, using four bins that were centered at 0°, 45°, 90°, and 135°, each bin 45° in size. 

We then trained and tested two separate linear decoders: one that classified the difference between 

the 0° and 90° bins, and one that classified the difference between the 45° and 135° bins. The final 
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decoding accuracy value was the average of the accuracy from the two individual classifiers. This 

decoding approach is conceptually similar to that used for the spatial decoding analysis (Figure 2A and 

Analysis: Spatial Position Decoding) and also similar to that used by Rademaker et al. (2019) for 

orientation decoding. The classifiers were always trained on data from one task condition at a time, and 

cross-validated by leaving one session of data out at a time (train on session 1, test on session 2, or vice 

versa). To capture the peak response to the preview disk presentation, for this analysis we used data 

averaged over a time window from 4.8-9.6 seconds after the trial start (note the preview disk appeared 

3.5 seconds into the trial). As in the spatial decoding analyses, we mean-centered the voxel activation 

pattern for each trial by subtracting the mean activation across voxels before performing the 

classification analysis. All statistical testing for the results of disk orientation decoding was done in an 

identical manner to the method described for spatial decoding accuracy (see Analysis: Spatial Position 

Decoding). 

Analysis: Action Decoding. We performed linear classification (as above) to measure the representation 

of information related to left or right index finger button presses in each ROI. To assess the coding 

format of action representations, we separately performed decoding using two different approaches. In 

the first approach, we used data from the main working memory task to train and test the classifier 

(Figure 3, Figure 3 – figure supplement 1). Here, action classification was always done using data from 

one task condition at a time (i.e., informative or uninformative trials). The decoder was always trained 

on data from one session and tested on the other session. Because the mapping of disk side color (light 

or dark gray) to finger was always switched between the two sessions, this ensured that the information 

detected by the classifier was not related to the luminance of the half of the disk corresponding to the 

response finger. In the second approach, we trained the classifier using data from a separate task during 

which participants were physically pressing a button (see Task: Sensorimotor Cortex Localizer), and we 

tested using data from the main working memory task (Figure 4B). Irrespective of the training-testing 

approach used, classification was based on trials labeled according to the finger (left or right index) that 

corresponded to the correct response. This means that all trials were included (also those where the 

incorrect button, or no button, was pressed), which ensures the training set for the classifier was 

balanced. Note that qualitatively similar results were obtained when using correct trials only, or when 

using the participant’s actual response as the label for the decoder.  

The above procedure was used for both time-averaged (Figure 3A and 4B) and time-resolved action 

decoding (Figure 3B, Figure 3 – figure supplement 1). For time-averaged decoding, single trial responses 

were obtained by averaging over specified time windows after trial onset (8-12.8s for the main working 

memory task; 3.2-5.6s for the sensorimotor cortex localizer). For time-resolved decoding on the main 

working memory task data, the training and testing set each consisted of data from the TR of interest 

(but from different sessions, as described above). All statistical tests on the results of action decoding 

were performed in an identical manner to the statistics on the results of spatial decoding (see Analysis: 

Spatial Position Decoding).   
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Supplementary Figures 

 

Figure 1 – figure supplement 1. Hemodynamic response function in each ROI during the informative (dark blue) and 

uninformative (light blue) conditions, full set of ROIs. Timepoint zero indicates the time of target onset; shaded gray rectangles 

indicate the time periods when the “preview” disk was onscreen (3.5-4.5 sec) and when the response disk was onscreen (16.5-

18.5 sec). Shaded error bars represent ±1 SEM across participants. Gray dots indicate timepoints showing a significant condition 

difference, evaluated using a Wilcoxon signed-rank test with permutation, see Methods, Analysis: Univariate for details). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 24, 2022. ; https://doi.org/10.1101/2021.07.08.451663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451663


 28

 

Figure 1 – figure supplement 2. Univariate responses in sensorimotor ROIs, separated by which finger was used to make a 

behavioral response. (A) Informative condition. (B) Uninformative condition. For each voxel, hemodynamic response functions 

were computed separately for trials in each condition where the response finger was contralateral (blue) or ipsilateral (pink) 

relative to the voxel’s hemisphere. Contralateral and ipsilateral HRFs were then combined across all voxels in both hemispheres 

for this figure. Timepoint zero indicates the time of target onset; shaded gray rectangles indicate the time periods when the 

“preview” disk was onscreen (3.5-4.5 sec) and when the response disk was onscreen (16.5-18.5 sec). Shaded error bars 

represent ±1 SEM across participants. Gray dots indicate timepoints showing a significant difference between contralateral and 

ipsilateral trials, evaluated using a Wilcoxon signed-rank test with permutation, see Methods, Analysis: Univariate for details). 
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Figure 2 – figure supplement 1. Time-resolved spatial decoding accuracy in every ROI. All decoding was done using the spatial 

working memory mapping task as a training set (see Methods, Analysis: Spatial Position Decoding for details). Timepoint zero 

indicates the time of target onset; shaded gray rectangles indicate the periods of time when the “preview” disk was onscreen 

(3.5-4.5 sec) and when the response disk was onscreen (16.5-18.5 sec). Shaded error bars represent ±1 SEM across participants, 

colored dots indicate significance of decoding within each condition, and gray dots indicate significant condition differences, 

with dot sizes reflecting significance levels.  

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 24, 2022. ; https://doi.org/10.1101/2021.07.08.451663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451663


 30

 

Figure 2 – figure supplement 2. Spatial decoding performance differs across conditions, even when training and testing a 

decoder within each task condition separately. See Methods, Analysis: Spatial Position Decoding for details on classification 

procedure. Notably, within-condition spatial decoding showed a highly similar pattern of results to the analysis using the 

independent training set (Figure 2B), though the condition differences were slightly smaller (main effect of ROI: F(13,65)=12.873, 

p<0.001; main effect of condition: F(1,5)=11.461, p=0.017; ROI x Condition interaction: F(13,65)=2.581, p=0.011; p-values obtained 

using permutation test). Error bars reflect ±1 SEM across participants, and light gray lines indicate individual participants. Dots 

above bars and pairs of bars indicate the statistical significance of decoding within each condition, and of condition differences, 

respectively, both evaluated using non-parametric statistics. Dot sizes reflect significance level. 
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Figure 2 – figure supplement 3. Decoding accuracy for the orientation of the “preview” disk stimulus (see Figure 1A). Decoding 

accuracy for this stimulus, which briefly appeared on the screen early in the delay period, was similar across conditions (two-

way repeated measures ANOVA with ROI and task condition as factors: main effect of ROI: F(13,65) = 13.4, p<0.001; main effect 

of task condition: F(1,5) = 2.164, p=0.193; ROI x condition interaction F(13,65) = 0.500, p=0.932; p-values obtained using 

permutation test; see Methods). Decoding was performed using data averaged over a time window 4.8 - 9.6 seconds into the 

trial, see Methods, Analysis: Disk Orientation Decoding for details. Error bars reflect ±1 SEM across participants, and light gray 

lines indicate individual participants. Dots above bars and pairs of bars indicate the statistical significance of decoding within 

each condition, and of condition differences, respectively, both evaluated using non-parametric statistics. Note that in this 

analysis, no significant condition differences were detected, and thus there are no dots above pairs of bars. Dot sizes reflect 

significance level. 
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Figure 3 – figure supplement 1. Time-resolved action decoding accuracy in every ROI. All decoding was done using data from 

the same task condition for training and testing (see Methods, Analysis: Action Decoding for details). Timepoint zero indicates 

the time of target onset; shaded gray rectangles indicate the periods of time when the “preview” disk was onscreen (3.5-4.5 

sec) and when the response disk was onscreen (16.5-18.5 sec). Shaded error bars represent ±1 SEM across participants, colored 

dots indicate significance of decoding within each condition, and gray dots indicate significant condition differences, with dot 

sizes reflecting significance levels.  
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Supplementary File Legends 

Supplementary File 1. Table listing the number of voxels in each ROI for each participant and hemisphere. Sizes of retinotopic 

visual ROIs (V1-IPS3) are after thresholding with a spatial localizer (see Methods, Task: Spatial Localizer). S1, M1, and PMc were 

defined using a button-pressing task (see Methods, Task: Sensorimotor Cortex Localizer). All analyses in this paper were done 

using bilateral ROIs (i.e. concatenating the left and right hemispheres of each ROI). 
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