Abstract
Zebrafish provide an excellent model for in vivo cell biology studies due to their amenability to live imaging. Protein visualization in zebrafish has traditionally relied on overexpression of fluorescently tagged proteins from heterologous promoters, making it difficult to recapitulate endogenous expression patterns and protein function. One way to circumvent this problem is to tag the proteins by modifying their endogenous genomic loci. Such an approach is not widely available to zebrafish researchers due to inefficient homologous recombination and the error-prone nature of targeted integration in zebrafish. Here, we report a simple approach for tagging proteins in zebrafish on their N- or C termini with fluorescent markers by inserting PCR-generated donor amplicons into non-coding regions of the corresponding genes. Using this approach, we generated endogenously tagged alleles for several genes critical for epithelial biology and organ development including the tight junction components ZO-1 and Cldn15la, the trafficking effector Rab11a, and the ECM receptor β1 integrin. Our approach facilitates the generation of knock-in lines in zebrafish, opening the way for accurate quantitative imaging studies.
Summary statement Generation of endogenously tagged stable zebrafish knock-in lines is simplified by the integration of fluorescent protein cassettes with mRNA splicing elements into non-coding regions of genes.
Competing Interest Statement
The authors have declared no competing interest.