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Abstract

Modeling the effect of sequence variation on function is a fundamental problem
for understanding and designing proteins. Since evolution encodes information
about function into patterns in protein sequences, unsupervised models of variant
effects can be learned from sequence data. The approach to date has been to fit
a model to a family of related sequences. The conventional setting is limited,
since a new model must be trained for each prediction task. We show that using
only zero-shot inference, without any supervision from experimental data or addi-
tional training, protein language models capture the functional effects of sequence
variation, performing at state-of-the-art.

1 Introduction

Proteins have a myriad of diverse functions that underlie the complexity of life. Protein sequences
encode function via structure through the spontaneous folding of the sequence into the three dimen-
sional structure of the protein [1]. The effects of sequence mutations on function form a landscape
that reveals how function constrains sequence. Alterations at some sites in a protein sequence cannot
be tolerated because they are essential to the protein’s function. Other sites evolve together because
the structure and function is determined by them collectively. Mutations can enhance the activity of a
protein, attenuate it, or leave it unchanged.

The functional effect of sequence variations can be measured through deep mutational scanning
experiments [2]. Consisting of thousands to hundreds of thousands of measurements of protein
function, deep mutational scans give insight into the intrinsic constraints on a protein’s structure and
function. Due to the cost and difficulty of implementing such experiments, compilations of deep
mutational scanning data include experiments on a few dozens of proteins at most, relative to the tens
of thousands of proteins encoded in the human genome, and the millions more across the tree of life
that we would like to understand.

A model that learns the landscape linking sequence to function can provide insight into function
without having to do experiments. Unsupervised models of mutational effects can be learned from
sequences [3, 4]. Statistical patterns in a family of evolutionarily related protein sequences contain
information about structure and function [5–7]. This is because the properties of a protein act as
constraints on the selection of sequences through evolution [8].

In the natural language modeling community, there has been interest in zero-shot transfer of models
to new tasks. Massive language models can solve tasks they haven’t been directly trained on [9–11].
Recently protein language models have achieved state-of-the-art in various structure prediction tasks
[12–14]. Work to date has mainly focused on transfer in the classical representation learning setting,
using pre-trained features with supervision on the downstream task.
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Figure 1: Depiction of a mutational effect prediction task. The objective is to score the effect of
sequence mutations on the function of a protein. Deep mutational scanning experiments provide
ground truth experimental measurements of the protein’s function (fluorescence activity in the
example here) for a large set of single mutations or combinations of mutations. For each protein, the
prediction task is to score each possible mutation and rank its relative activity. Predictions for single
substitutions can be described in a score matrix. The columns are the positions in the sequence. The
rows are the possible variations at each position.

In this work we show that language models trained on large and diverse protein sequence databases can
predict experimental measurements of protein function without further supervision. Prior work has
focused on transferring the representations using supervision from experimental data [15, 16]. We find
that language models can transfer to predict functional measurements without supervision. Language
models perform zero-shot and few-shot prediction of mutational effects across a variety of proteins
with widely differing functions. We perform experiments with state-of-the-art protein language
models ESM-1b [12] and MSA Transformer [13]. We introduce a new protein language model,
ESM-1v, with zero-shot performance comparable to state-of-the-art mutational effect predictors.
Performance can be further improved by fine-tuning the model with sequences from the protein family.
Predictions capture the functional landscape of the protein, correlate with amino acid conservation
patterns in the core and surface, and identify residues responsible for binding and activity.

2 Zero-shot transfer

Zero-shot learning has classically described the extension of a classifier to a new set of classes that
have not been seen in training [17]. In natural language processing this idea has been extended to
describe the transfer of models to entirely new tasks without further training. Proposed as zero-data
learning by Larochelle et al. [18], this perspective on transfer has been at the center of recent work
understanding the generalization capabilities of large language models [9–11, 19]. The distinction
from representation learning is that the models are used directly without additional supervision for
the task. This means that the tasks must be learned purely from pre-training.

In this work we take a similar perspective on zero-shot transfer to that of GPT-3, described in Brown
et al. [10]. We define zero-shot transfer to be transfer of a model to a new task without any further
supervision to specialize the model to the task. We also consider the closely related idea of few-shot
transfer. Here as in Brown et al. [10] we define the few-shot setting to be one in which a few positive
examples are given to the model as inputs at inference time. As in the zero-shot setting, no gradient
updates are performed to specialize the model. Similar to Brown et al. [10], the claim is not one of
out-of-distribution generalization. The assumption is that in the pre-training stage, the model learns
information relevant to the tasks to which it will later be transferred. In the case of protein language
models, the pre-training dataset includes sequences from across evolution, which implies the model
may see examples of sequences from protein families on which it will be evaluated. The essential
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Figure 2: Steps involved in variant effect prediction methods. Compared with EVMutation [4] and
DeepSequence [20], MSA Transformer and ESM-1v require no task-specific model training for
inference. Moreover, ESM-1v does not require MSA generation.

departure from the standard approach in computational biology is that the model is general purpose
and can be applied across a variety of tasks without specialization.

Measurements of function, a property of central importance to the understanding and design of
proteins, are a practical ground for studying the generalization capability of protein language models.
Deep mutational scanning experiments measure the effects of thousands to hundreds of thousands
of mutations on a single protein, and have been performed on a variety of proteins having different
functions and using various forms of experimental measurement. We study zero-shot and few-shot
transfer of protein language models to function prediction using this data.

Supervised methods trained with data from experimental measurements [15, 16], and unsupervised
methods trained only on sequences [3, 4] have been developed for prediction of mutational effects.
Unsupervised mutational effect predictors are trained as task specific models on sequences from
an individual protein family. In this view every protein is an independent prediction task where
the objective is to score the effect of mutations on the protein’s function. While mutational effect
predictors trained on multiple sequence alignments (MSAs) are typically described as unsupervised,
they can also be seen as weakly supervised. Hsu et al. [15] observe that such models have weak
supervision on the task through the MSA, which describes the fitness landscape of the protein through
positive examples.

If protein language models can learn the information necessary to solve a task from pre-training,
then they can be applied directly to new instances of the task, without specialization. This would
mean that in practice a single general purpose model can be trained once and then applied to a variety
of possible tasks. Thus zero-shot and few-shot transfer represent fundamentally new unsupervised
learning capabilities that protein language models can bring to the computational biology toolkit.

3 Method

Protein language models trained with the masked language modeling objective are supervised to
output the probability that an amino acid occurs at a position in a protein given the surrounding
context. We use this capability to score sequence variations. For a given mutation we can consider
the amino acid in the wildtype protein as a reference state, comparing the probability assigned to the
mutated amino acid with the probability assigned to the wildtype.
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Models Full Test
PSSM 0.460 0.460
EVMutation (published) 0.508 0.495
EVMutation (replication) 0.511 0.498
DeepSequence (published) 0.514 0.499
DeepSequence (replication) 0.520 0.506

MSA Transformer 0.542 0.524
ESM-1v (zero-shot) 0.510 0.483
ESM-1v (finetuned) 0.536 0.516

Table 1: Comparison of protein language models to state-of-the-art methods. Average |Spearman
ρ| on full and test sets. DeepSequence and ESM-1v models are each ensembles of 5 models. MSA
Transformer is a single model, but is ensembled across 5 random samples of the MSA.

We score mutations using the log odds ratio at the mutated position, assuming an additive model
when multiple mutations T exist in the same sequence:∑

t∈T
log p(xt = xmt

t |x\T )− log p(xt = xwt
t |x\T ) (1)

Here the sum is over the mutated positions, and the sequence input to the model is masked at every
mutated position.

3.1 Zero-shot and few-shot transfer

In the zero-shot setting, inference is performed directly on the sequence to be evaluated. Since the
MSA Transformer can take multiple sequences as input at inference time, we use this model in the
few-shot setting, where additional sequences from the protein family are provided along with the
sequence to be evaluated. In both the zero-shot and few-shot settings, only forward passes of the
models are performed during inference; no gradient updates are taken. Fig. 2 illustrates the approach
in comparison to the current practice of fitting a new model for each task.

3.2 Inference efficiency

Inference with ESM-1v is more efficient than current state-of-the-art methods. This is a result
of two important differences: (i) the effect of mutations can be inferred directly without training
a task-specific model; (ii) fitness landscapes can be predicted with a single forward pass. Time
requirements are summarized in Fig. 7.

3.3 Scoring with MSA Transformer

We score mutations with MSA Transformer using the log odds ratio and additive model in Eq. (1).
However, since MSA Transformer uses a set of sequences for inference, we input the sequence to be
evaluated as the first sequence, and provide additional sequences from the MSA as context. Masking
and scoring are performed on the first sequence only.

4 Results

4.1 Experimental setup

ESM-1v We train ESM-1v, a 650M parameter transformer language model for prediction of variant
effects, on 98 million diverse protein sequences across evolution. The model is trained only on
sequences, without any supervision from experimental measurements of function. We use Uniref90
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Figure 3: Per task performance. Comparison across 41 deep mutational scanning datasets. Points are
mean ± std of 20 bootstrapped samples. Validation proteins are shown to the left of the dividing line
and test proteins to the right. In 17 out of the 41 tasks, ESM-1v zero-shot has a higher |Spearman ρ|
than DeepSequence.

2020-03 [21], employing the ESM-1b architecture and masked language modeling approach of
Rives et al. [12]. The model attains a perplexity of 7.29 on a set of held-out Uniref90 sequences
(Table 10). We train five models with different seeds to produce an ensemble.

Evaluation Models are evaluated on a set of 41 deep mutational scans collected by Riesselman
et al. [20], which comprise a variety of tasks assessing a diverse set of proteins. Across tasks, the
experiments differ in the functions tested and in the measurements performed. We treat each deep
mutational scanning dataset as a separate prediction task, scoring each of the variants in the dataset
with the model. The tasks are split into a validation set of ten mutational scanning datasets and a test
set consisting of the remaining datasets. We evaluate performance by comparing the scores with the
experimental measurements using Spearman rank correlation.

Comparisons We compare with EVMutation [4] and DeepSequence [20], state-of-the-art unsuper-
vised variant prediction methods. Since the published versions of these methods use MSAs generated
from an earlier version of Uniref100, we generate new MSAs using the EVMutation methodology
and the version of Uniref100 concurrent with our pretraining dataset. We train the replications of
EVMutation and DeepSequence using their open source code. The same MSAs are also used in the
few-shot experiments with MSA Transformer, and for unsupervised fine-tuning experiments with
ESM-1v.

4.2 Language models enable zero-shot and few-shot prediction of the effects of mutations

ESM-1v and MSA Transformer models make state-of-the-art predictions. Table 1 compares overall
performance of the models across the 41 mutational scanning datasets. Fig. 3 presents a comparison
between ESM-1v and DeepSequence on each of the tasks. Zero-shot inference with ESM-1v has a
better correlation with experimental measurements than DeepSequence on 17 of the 41 datasets. The
41 bootstrapped means of the two methods are not statistically distinguishable via a paired t-test.

Table 2 compares protein language models in the zero-shot setting. ESM-1v outperforms existing
protein language models TAPE [22], UniRep [23], ProtBERT-BFD [14], and ESM-1b [12]. Fig. 8
breaks down performance across each of the tasks.

Pre-training data We examine the effect of the clustering level of pre-training data. Fig. 4
compares models pre-trained on datasets clustered at increasing sequence identity thresholds. ESM-
1b is trained on sequences clustered at a 50% identity threshold. Improvements are seen using a 70%
threshold with greatest improvement at 90%. Uniref100 performance appears to deteriorate early
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Models Full Test
Unirep 0.155 0.151
TAPE 0.171 0.175
ProtBert 0.428 0.399
ESM-1b 0.458 0.424
ESM-1v† 0.484 0.457
ESM-1v? 0.510 0.482

Table 2: Zero-shot performance. Average |Spearman ρ| on full and test sets. †Average performance
of five ESM-1v models. ?Ensemble of the five ESM-1v models.

in training despite being the largest of the datasets. These results establish a link between model
performance and the data distribution, highlighting the importance of training data in the design of
protein language models.

Scoring methods We compare scoring methods on the validation set, including masked marginals,
wildtype marginals, mutant marginals, and psuedolikelihood. Table 5 shows that the masked marginal
approach (Eq. (1)) outperforms other scoring methods. The scoring methods are described in detail
in Appendix A.

Parameter count Previous work with protein language models has established a link between
model scale and learning of protein structure [12, 24]. We examine zero-shot transfer performance
as a function of parameter count. We train models using the same width, depth, and learning rate
as described in Henighan et al. [25], observing improvements with scale (Fig. 9). These findings
suggest that continued scaling of the models will further improve results.

4.3 MSA Transformer

We examine how the sequences provided to MSA Transformer affect few-shot transfer. Table 8
compares sequence selection methods that vary the diversity of the sequences. Providing a more
diverse set of sequences improves few-shot performance. Selecting a set of sequences to maximize
diversity outperforms selecting a diversity minimizing set of sequences. Random sampling performs
even better, and sampling sequences according to sequence weights [26] performs best.

We also vary the number of sequences used for inference. Fig. 11 shows few-shot performance as
a function of the number of sequences given as input. The model performs well using only a few
sequences, but performs best with 384 total sequences. In the main tables we report results sampling
384 sequences using sequence reweighting and ensembling predictions over five different subsamples
from the MSA.

4.4 Unsupervised fine-tuning on MSAs

While ESM-1v performs well when evaluated in the zero-shot setting, we explore whether results
can be improved by fine-tuning on the MSA. Fine-tuning on MSAs has been used in previous work
[23, 16] as a stage in transfer learning to specialize a pre-trained model to a protein family, before
applying supervision with labeled data. Here we consider using the fine-tuned model to make
unsupervised predictions directly, without adding supervision from experimental data.

We observe that naively fine-tuning the model on the MSA results in rapid overfitting and poor
performance on the prediction tasks (Fig. 12). While we experiment with a variety of approaches to
freezing parameters during fine-tuning, detailed in Appendix B, none produce significant improve-
ments. We find that an approach using pre-training sequences to regularize the fine-tuning performs
well and enables training of all parameters without overfitting (Fig. 13). Spiked fine-tuning improves
average absolute Spearman rho on the full dataset from 0.510 for zero-shot evaluation to 0.537 with
fine-tuning.
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Figure 4: Comparison of pre-training datasets. Average |Spearman ρ| on the single-mutation validation
set. While a 50% clustering threshold was used for ESM-1b, training with 90% clustering results in
a significant improvement on variant prediction tasks. Notably, models trained on Uniref100, the
largest dataset in this figure, appear to deteriorate early in training. These results establish a link
between model performance and the data distribution, and highlight the importance of training data
in the design of protein language models.

5 Analysis of models

Protein structure and function ESM-1v probabilities reflect the functional properties of sites
within the protein. We use the entropy of the model’s predictions for a position as a measure of its
estimation of conservation. The lowest entropy predictions cluster at binding sites. Fig. 14 compares
the distribution of the model’s entropy between binding sites and non-binding sites. A significant
difference is observed between the entropy assignment to binding and non-binding site residues.
Fig. 5 visualizes the side chains of the 10 lowest entropy residues as predicted by the model on
the crystal structure of DNA methyltransferase M.HaeIII interacting with its DNA substrate. In the
crystal structure a cytosine of the substrate is inserted into the active site of the enzyme. The low
entropy residues cluster in the active site and interact with the cytosine. Additional examples are
visualized in Fig. 18.

The model probabilities also correspond to structure. Fig. 15 compares the entropy assigned to sites
that are buried in the core of the protein vs. exposed on the surface. The model assigns significantly
lower entropy to sites that are in the core of the protein, consistent with the idea that tight packing
in the core places greater constraints on the selection of residues. Fig. 5B visualizes the entropy
assigned by the model to each position overlayed on the structure of Indole-3-glycerolphosphate
Synthase, a TIM barrel protein. Higher entropy is assigned to residues having outward facing side
chains on the alpha helices, while lower entropy is assigned to the inward facing positions. Fig. 17
compares the probability assigned to hydrophobic, polar, and charged amino acids for buried sites
vs. non-buried sites. The model prefers hydrophobic residues in the core and hydrophilic residues
on the surface. The model probabilities closely match the empirical probabilities and those from
the PSSM. Fig. 5C visualizes probability assigned to hydrophobic amino acids on the structure of
Sucrose-specific Porin, a transmembrane protein. The model predicts a hydrophobic band in the
center where the protein embeds in the membrane.

Calibration We evaluate model calibration using 15008 sequences with length < 1024 from the
trRosetta [30] dataset. ESM-1v probabilities for each amino acid at each position are calculated with
the masked marginal probability in Eq. (1). Fig. 6 shows that the model is generally well calibrated
for all amino acids except Methionine. ESM-1v always predicts Methionine as the first position in
the sequence since full protein sequences always start with it, so care must be used when applying the
model to subsequences. When excepting the first residue, the model achieves an average calibration
error (defined for the multi-class setting in Appendix D.4) of 0.006.
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Figure 5: ESM-1v reflects the molecular basis of function in proteins. (A) DNA methylase HaeIII
(pdbid: 1DCT [27]). Side chains for the top 10 positions with lowest prediction entropy shown
in blue. Low-entropy positions cluster in the active site. (B) TIM Barrel (pdbid: 1IGS [28]) with
residues colored by entropy. The model’s predictions for residues on the surface have highest entropy
(red) while those in the core have lower entropy (blue). Notably, residues on the alpha helices show
a clear gradient from high to low entropy as residues transition from surface-facing to core-facing.
(C) Sucrose-specific Porin (pdbid: 1A0T [29]), a transmembrane protein. The model predicts a
hydrophobic band where the protein is embedded in the membrane.

We also explore the relationship between conservation (entropy of the PSSM) and the model’s
predicted entropy. Fig. 16 shows that these are well correlated (Pearson’s r = 0.44), suggesting the
model is able to identify conserved positions.

6 Related Work

6.1 Protein language models

In the past few years, a number of groups have developed language models for protein sequences
[23, 31, 14, 32, 33, 22, 13, 12]. These models have been used for many tasks, including supervised
low-N function prediction [16, 12], remote homology detection [22, 12], and protein generation [33].
The approach to the tasks typically involves transfer learning, where a pretrained language model is
fine-tuned for a particular problem. Vig et al. [34] and Rao et al. [24] found that transformer attention
corresponds to known biological properties such as structure and binding sites and can be used to
predict contacts.

6.2 Mutation effect prediction

Supervised and unsupervised methods have been developed for prediction of mutational effects.
Supervised methods train models using experimental measurements or labels from databases of
clinical variants. Standard machine learning tools including linear regression, random forests, and
support-vector machines can be used [35]. Models have been designed specifically for proteins, using
feature engineering such as Envision [36] and PolyPhen-2 [37], ensemble methods such as Revel
[38], MPC [39], CADD [40], and M-CAP [41], language models such as UniRep [23, 16] and ESM
[12], and other representation learning approaches [42, 43].
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Figure 6: Calibration plot for ESM-1v predictions on each of the 20 naturally occurring amino
acids on the trRosetta dataset. The multi-class classification is converted into a set of 20 one-
versus-all classifications for the purpose of this analysis. Left and right plots show calibration of all
positions and positions excluding the first residue, respectively. Since full sequences always start
with Methionine, the model overwhelmingly predicts it in the first position. When evaluating the
model on subsequences, such as those in the trRosetta dataset, this causes a miscalibration at the first
residue. Including the first residue, the model has an average calibration error (ACE) of 0.011 in the
first case and 0.006 in the second.

Unsupervised mutation effect predictors work by inferring the likelihood of a mutation from the
evolutionary landscape of the original protein. A density model fit to related sequences is used for
scoring. SIFT [44] is a first order approach using a position-specific-scoring-matrix. EVMutation [4]
extends this to a second-order approach by training a Potts model on the MSA. DeepSequence [20]
includes higher-order interactions by training a VAE on the MSA instead, using the ELBO to score
mutations. Riesselman et al. [45] proposes using an autoregressive model that does not require the
sequences to be aligned.

Hsu et al. [15] show that unsupervised mutational effect predictors can be extended to perform
supervised predictions, with better unsupervised predictors generally resulting in better supervised
predictors. This suggests improving unsupervised prediction can drive progress in both settings.
Concurrent with our work, Hie et al. [46] use open-source protein language models ESM-1b and
TAPE to predict the direction of evolution in protein fitness landscapes.

7 Discussion

Advances in language modeling at scale are bringing the goal of a general purpose model for proteins
closer to realization. This line of work aspires to a model that learns to read and write biology in
its native language, that can be directly applied across a range of protein understanding and design
tasks. For scalability, learning from sequences is important: while there are no central databases
of high-throughput functional measurements, and few compilations exist, billions of sequences are
available to learn from in sequence databases [47, 48]. Sequences give an unparalleled view into
the vast diversity and complexity of molecular parts invented by nature through billions of years of
evolution.

Unsupervised structure [49–51, 26, 52, 53] and function [3, 4] learning methods first effectively
realized the idea that biological properties could be read directly from sequences without supervision
from experimental measurements. However these methods are not general purpose in the sense that a
specialized model must be trained for every protein for which a prediction is to be made. We show
that the same performance can be realized by a general purpose model that has been trained across
many diverse protein families. Similar to observations on the learning of tertiary protein structure in
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large language models [12, 24], we find that increasing the scale of models leads to improvements
in function learning. The understanding of mutational landscapes in the models correlates with the
molecular basis of function in proteins, capturing binding sites and amino acid preferences that are
determined by the folded structure.

Zero-shot transfer is an interesting capability of large scale language models, and represents a major
point of departure from the unsupervised learning methods that are the basis for current state-of-the-
art inference of protein structure and function. The capability for zero-shot transfer implies that a
model can be trained once and then applied to perform inference for many tasks. It is also a window
into deeper questions about the forms of generalization that are possible in learning from sequences.
Reading structural and functional design principles from sequences is a necessary capability for
writing new biologically active sequences. Generalization in the zero-shot setting suggests the
potential for large language models to capture knowledge that can be transferred to generating new
functional proteins.
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A Extraction methods

ESM-1v is pre-trained to output the probability for each possible amino acid at a masked position.
We explore four methods of scoring the effects of mutations using the model:

• Masked marginal: Probabilities are extracted according to the mask noise during pre-
training. At each position, we introduce a mask token and record the model’s predicted
probabilities of the tokens at that position.

• Mutant marginal: Probabilities are extracted according to the random token noise during
pre-training. Among the 15% predicted positions in the sequence during pre-training, 10%
of those are randomly mutated and 10% retain their original identities. The model is tasked
to predict the correct token at those positions. Therefore, in this extraction method, we
follow the pre-training methodology by passing in mutated tokens and recording the model’s
probability that they are correct.

• Wildtype marginal: We perform a single forward pass using the wildtype sequence. This
method enables fast scoring as just a single forward pass is used.

• Pseudolikelihood: This method is proposed in the literature for scoring with masked
language models [54].

In all cases, we assume an additive model when multiple mutations are present in a sequence. Results
are summarized in Tables 5 and 7.

Approach Formal setting Task level supervision Representative
Meth-
ods

Supervised mutation
prediction

Supervised Direct supervision from ex-
perimental measurements

Reviewed
in [55]

Model trained on se-
quences from individ-
ual family

Unsupervised Weak positive supervision
from MSA

[4, 20]

Fine-tuning on experi-
mental data

Semi-supervised trans-
fer

Supervision from experi-
mental measurements

[23, 16,
12]

Fine-tuning on MSA Transfer learning with
weak-positive supervi-
sion

Weak positive supervision
from MSA

Introduced
for trans-
fer
learning
in [23]

Direct forward pass Zero-shot learning None This
work

Table 3: Zero-shot learning is a natural extension of the various approaches that have been used for
mutational effect prediction to date. Rather than training a new model for every task, a single general
purpose model is trained and can be directly applied across multiple tasks. The approach is fully
unsupervised, no information from experimental measurements of function is used.

Let xmt and xwt represent the mutant and wildtype sequences. We refer to x−i as the sequence x
with a mask introduced at position i. We refer to the set of mutations that are introduced as the set M .
For example, if mutations are introduced at positions 3 and 6, then M = {3, 6}.

Masked marginal probability (L forward passes) This method performs best among the four.
We introduce masks at the mutated positions and compute the score for a mutation by considering its
probability relative to the wildtype amino acid (Strategy a):∑

i∈M
log p(xi = xmt

i |x−M )− log p(xi = xwt
i |x−M )
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After pre-training, inference is fast. On average, it takes 10 seconds to label a deep mutational scan
from Riesselman et al. [20] with ESM-1v (Zero-shot, Single Forward Pass). Performance improves
marginally with the more expensive scoring scheme (Table 5).
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Figure 8: Pointplot of zero-shot performance of ESM-1v compared to earlier protein language models
on all 41 deep mutational scans. Points are mean ± std of 20 bootstrapped samples. Validation
proteins are shown to the left of the dividing line and test proteins to the right. ESM-1v is the best
performing method on 33 of the 41 deep mutational scans.

This formulation assumes an additive model, consistent with the training objective. We show that this
assumption is justified empirically by evaluating the model with different choices at the non-mutated
positions. First, the wildtype sequence (Strategy b):∑

i∈M
log p(xi = xmt

i |xmt
−i )− log p(xi = xwt

i |xwt
−i)

and the mutant sequence (Strategy c):∑
i∈M

log p(xi = xmt
i |xmt

−i )− log p(xi = xwt
i |xmt

−i )
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Clustering | Spearman ρ |
30% 0.456
50% 0.537
70% 0.552
90% 0.564
100% 0.458

Table 4: Average |Spearman ρ| on the single-mutation validation set after training a 650M parameter
Transformer model for 170,000 updates on various sequence identity clusterings of Uniref.

Method | Spearman ρ |
Masked marginal 0.582
Mutant marginal 0.578

Wildtype marginal 0.572
Pseudo-likelihood 0.552

Table 5: Benchmarking scoring schemes on the single-mutation validation set. The means across the
validation set are listed. The masked marginal scheme performs best.

Strategy (a), where we mask all positions at the same time, performs best on the PABP Yeast Doubles
validation dataset (Table 7).

Mutant marginal probability This method is analogous to the wildtype marginal probability,
except we use the mutant sequence instead.∑

i∈M
[log p(xi = xmt

i |xmt)− log p(xi = xwt
i |xmt)]

This method requires a single forward pass for every mutation.

Wildtype marginal probability (1 forward pass) In the fastest scheme, we perform a single
forward pass using the wildtype sequence as input. For a set of mutations at positions M , the score is:∑

i∈M
[log p(xi = xmt

i |xwt)− log p(xi = xwt
i |xwt)]

We find that the method performs well with a minor 1% decrease in absolute performance, while
requiring very limited computational resources. The strong performance indicates that the masked
language modeling objective causes the model to capture the fitness landscape of the protein in its
outputs.

Pseudolikelihood Psuedolikelihood has been proposed in the literature as a method to score
sequences using masked language models [54]. We compute the score as follows:∑

i

log p(xi = xmt
i |xmt

−i )− log p(xi = xwt
i |xwt

−i)

As mutation prediction is a ranking task and as the contribution from the second term is constant
throughout the deep mutation scan (i.e. the wildtype sequence is always the same), we can safely
drop it from the computation.

A.1 Evaluation

We compare the methods described above on the validation set, finding that the masked marginal
scheme performs best. To determine the specific mode of inference when multiple mutations are
present, we examine each method on the "doubles" component of the PABP Yeast dataset finding the
masked marginal (a) strategy performs best. This scoring method is used across the results.
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Input Consensus columns only | Spearman ρ |
MSA seed Yes 0.573
MSA seed No 0.567

Uniprot N/A 0.582

Table 6: ESM-1v performs better when including the full protein sequence as listed in Uniprot,
compared to using the seed sequence of the MSA corresponding to the deep mutational scan. Results
on single-mutation validation set. The means across the validation set are listed. We experiment with
a number of strategies for inference: (i) the consensus columns only; (ii) the aligned part of the query
sequence; and (iii) the complete Uniprot sequence. The complete Uniprot sequence performs best,
possibly because the model was pre-trained on complete Uniprot sequences. We use the MSA seed
sequence from the MSAs released by [20] corresponding to the deep mutational scans.

Method | Spearman ρ |
Masked marginal (a) 0.692
Masked marginal (b) 0.482
Masked marginal (c) 0.483

Mutant marginal 0.694
Wildtype marginal 0.672
Pseudo-likelihood 0.608

Table 7: Ablating scoring schemes on the PABP Yeast Doubles dataset. The masked marginal
scheme performs best when masking all mutated sites together. Mean absolute Spearman ρ across
the single-mutation validation tasks is reported.

A.2 Evaluating ESM-1v on subsequences

DeepSequence, EVMutation, and the MSA Transformer use the consensus columns of a MSA as
input. We construct MSAs using the seed sequences from the DeepSequence paper, which usually
correspond to a subsequence of the protein capturing the domain where the deep mutational scan was
performed.

Table 6 explores using the MSA seed sequence vs. the full Uniprot sequence for inference on the
validation set. We find that the full Uniprot sequence performs best, possibly because the model was
pre-trained on Uniprot sequences. We note in Figure Fig. 6 that the model captures some bias in the
Uniprot dataset, for example that most proteins begin with a methionine (corresponding to the start
codon).

B Unsupervised fine-tuning ESM-1v

Experimental setup We assess a number of approaches for fine-tuning ESM-1v on task-specific
MSAs. We evaluate modeling decisions by fine-tuning on tasks from the validation set and examining
the mean change in Spearman ρ over the course of training. For efficiency, we compute Spearman
ρ using the wildtype marginal strategy, as this requires just a single forward pass. After the final
modeling decisions are selected, we train all models for 7500 updates and evaluate on all proteins
using the masked marginals strategy. All models in this section were trained with a constant learning
rate of 10−5 using the masked language modeling objective. For reference, the ESM-1v pre-training
was performed with a target batch size of 1M tokens.

Unsupervised fine-tuning baselines The concept of unsupervised fine-tuning of an MSA has been
previously proposed [23, 16]. Fig. 12 studies a basic fine-tuning setup on the consensus columns of
the MSA. Each model is fine-tuned on a single MSA with a target batch size of 8192 tokens. We first
observe that that models overfit quickly if the entire model is trained. This results in a decrease in
Spearman ρ compared to initialization. As the fine-tuning is performed on the consensus columns
of the MSA, we sought to regularize the model by fine-tuning only the embeddings. As a PSSM
already captures information relevant to the task, we hypothesize that tuning the embeddings could
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Figure 9: Larger models perform better on variant prediction. We trained four models of various
scales, following the hyperparameters listed in Henighan et al. [25]. Results on single-mutation
validation set.

MSA Subsample Strategy Context size | Spearman ρ |
Diversity minimizing 256 sequences 0.255
Random 256 sequences 0.535 ± 0.024
HHFilter 256 sequences 0.550 ± 0.015
Sequence reweighting 256 sequences 0.578 ± 0.005

Table 8: Subsampling strategies for MSA Transformer evaluated on the single-mutation validation
set. Sequence reweighting performs best. When sampling methods are stochastic, 5 seeds are run and
the mean and standard deviation is reported. With HHFilter, we run with the -diff M parameter and
randomly subsample the output if more than M sequences are returned. We use a coverage parameter
of 75 and a sequence identity parameter of 99. Mean absolute Spearman ρ across the single-mutation
validation tasks is reported.

capture similar information and boost performance. Similarly, we experiment with tuning only the
layer normalizations, as these have also been recently shown to enable transfer to new tasks. In both
cases, we found no improvement to the average Spearman ρ. We also assessed label smoothing and
replacing the gap token with a mask token or a pad token finding no significant impact; for simplicity,
we omit label smoothing and use the mask token for future experiments.

Minimal models We also examine a set of minimal models, in which we freeze all parameters in
the Transformer and learn a projection from the ESM-1v outputs onto a PSSM, taking the sum of the
projection and the PSSM. We experiment with freezing the PSSM or allowing it to train. We did not
see a change in Spearman ρ of more than 0.01.

Spiked unsupervised fine-tuning Next, we examine a new strategy, which we call spiked
fine-tuning. In spiked fine-tuning, we regularize the fine-tuning by continuing to spike pre-
training sequences into the fine-tuning batch. In this setting, we train on the entire MSA, including
non-consensus positions. We find that spiked fine-tuning with a small ratio (0.01) of MSA tokens to
pre-training tokens performs best and enables training of all parameters without overfitting.

The final models were trained for 7500 updates using spiked fine-tuning with a batch size of 500k
tokens. To produce an ensemble, we perform the fine-tuning scheme on five models that were
pre-trained with different seeds. Each model was also fine-tuned with a unique seed.
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Figure 10: Filtering sequences with high sequence identity to the query improves performance. The
curve illustrates mean ± standard deviation across the 9 validation proteins. HHFilter is used to
filter the MSAs with coverage of 75 and various sequence identity values as shown on x-axis. After
filtering, 384 sequences are sampled for inference. Each sequence identity value s refers to using
sequences with no more than s% sequence identity to the seed sequence. The MSA Transformer
appears to primarily use sequences that are close to the seed sequence, yet performance drops if
sequences that are too similar remain in the MSA. Results are broken down across the single-mutation
validation set in Table 9.

Sequence Identity (%) 10 30 50 75 90 99 100
AMIE_PSEAE_Whitehead 0.025 0.461 0.467 0.365 0.665 0.654 0.622
BG505_env_Bloom2018 0.055 0.055 0.417 0.482 0.452 0.450 0.457
BLAT_ECOLX_Ranganathan2015 0.060 0.630 0.745 0.776 0.795 0.662 0.478
DLG4_RAT_Ranganathan2012 0.008 0.431 0.416 0.431 0.457 0.418 0.400
GAL4_YEAST_Shendure2015 0.080 0.287 0.366 0.441 0.576 0.542 0.388
SUMO1_HUMAN_Roth2017 0.131 0.430 0.516 0.541 0.500 0.492 0.495
TIM_SULSO_b0 0.026 0.581 0.633 0.625 0.649 0.324 0.632
UBC9_HUMAN_Roth2017 0.165 0.376 0.557 0.583 0.494 0.555 0.475
KKA2_KLEPN_Mikkelsen2014 0.192 0.484 0.560 0.601 0.637 0.616 0.602

Table 9: Filtering MSAs from the single-mutation validation set with HHFilter coverage 75 and
various sequence identity values. Filtering sequences to an identity threshold of 75% or 90%
consistently performs best. The Spearman rank correlation between MSA Transformer predictions
and experimental data is shown for each deep mutational scan.

C Datasets

C.1 Evaluation Tasks

We evaluate models on a set of 41 deep mutational scans collected by Riesselman et al. [20], which
comprise a variety of tasks assessing a diverse set of proteins. Across tasks, the experimental data
differ widely in the functions tested and in the experimental measurements performed. Of the 41
datasets, 37 are single-mutation only, 1 is double-mutation only, and the rest contain a variable
number of mutations per sequence between 1 and 28. The median number of mutations is 2979, and
the average is 16822; the smallest dataset has 37 mutations, and the largest has 496137. We randomly
select 9 single-mutation experiments as a validation set. We also ablate the multiple mutation scoring
approach on the double mutations from the PABP Yeast deep mutational scan. We exclude the 10
tasks used for validation and ablations from the test set. These datasets are reported in results for the
full set. While the original compilation has 43 datasets, we exclude the tRNA (which is not a protein)
and the toxin-antitoxin complex (which comprises multiple proteins).

We treat each deep mutational scanning dataset as a separate prediction task, scoring each of the
variants in the dataset with the model. We evaluate performance by comparing the scores with the
experimental measurements using Spearman rank correlation. Results are broken out between the
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Figure 11: Few-shot performance of the MSA Transformer is robust to the number of sequences used
for inference. Left: Varying the number of sequences used in inference. Right: Varying the number
of tokens used for inference. Since the number of sequences in each MSA varies, we assess the effect
of fixing the total number of tokens sampled from each MSA and drawing the corresponding number
of sequences to fill the context. Results on single-mutation validation set.
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Figure 12: Unsupervised fine-tuning baselines. Mean change in Spearman ρ across 9 models trained
on the single-mutation validation set tasks. The title of each plot denotes the parameters that are
trained. We find that fine-tuning the entire model results in overfitting, but limiting the training to just
the embeddings or just the layer norms does not improve performance with respect to the pre-trained
initialization. The choice of gap token and label smoothing has limited effect.

test set, which excludes the validation set, as well as the full set of 41 datasets. All ablations are
performed on the single mutant validation set or the PABP Yeast doubles experiment. Only the final
models are evaluated on the test set.

C.2 Pre-training datasets

For the clustering sweep in Fig. 4, we use the Uniref50 and Uniref90 databases from the 2020_03
release of Uniref [21], a publicly available database of proteins, clustered respectively to 50% and
90% sequence identity. For the 30% sequence identity dataset, we use Uniclust30 2020_03 [57].
For the 70% sequence identity dataset, we Uniref100 is hierarchically clustered to the 90%, then
70% sequence identity level. MMseqs settings are those used by Uniref: 80% overlap with longest
sequnece in the cluster, which translates to mmseqs-cluster –min-seq-id 90,70 –cov-mode 0
-alignment-mode 3 -c 0.8. In order to compute pre-training perplexities on a heldout validation
set, we randomly select 1% of sequences each from Uniref30, Uniref50, and Uniref90. We then
exclude sequences that are similar to the validation sequences by removing all sequences found with
MMSeqs search (–min-seq-id 0.xx) for validation set xx. We use the most sensitive settings in
MMSeqs –alignment-mode 3 –max-seqs 300 -s 7, taking the train set as the query database
and the validation set as the target database. We use settings -c 0.8 –cov-mode 0 to match the
settings of Uniref. Pretraining perplexities on the validation sets are reported in Table 10.
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Figure 13: Spiked unsupervised fine-tuning. Mean change in Spearman ρ across 9 models trained on
the single-mutation validation tasks. The title of each plot denotes the parameters that are trained;
and the ratio of MSA tokens to pre-training tokens. We find that a small ratio performs well and
reduces the tendency for the model to overfit, while preserving strong performance. Performance is
not improved if the fine-tuning is limited to just the embeddings or just the layer norms.
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Figure 14: Box plot comparing entropy scores for binding vs non-binding positions in structures
labeled in the Provis validation dataset (as described in Appendix B.4 of [34]). A Welch’s t-test
determines that the difference between the two means is statistically significant (p < 0.01).
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Figure 15: Box plot comparing entropy scores across residue depths in structures from the trRosetta
dataset. Residue depths are categorized based on the number of neighboring residues with C-beta
distance<10 angstroms. (exposed≤16, buried≥24 [56]). A one way Anova test determines that the
differences between all three means are statistically significant (p < 0.01).

C.3 Baselines

The MSAs used for training DeepSequence and EVMutation are generated from the 2017-10 ver-
sion of Uniref100, whereas the models we study are trained on sequences from Uniref90 2020-
03. In the case of MSA Transformer, the model is pre-trained on the 2018-03 Uniref, but we
use 2020-03 MSAs for inference. In order to provide a fair comparison, we regenerate MSAs
against the 2020-03 Uniref according to the methodology in Hopf et al. [4] and retrain EVMutation
(replication) and DeepSequence (replication) on these datasets using their open-source codebases.
For the viral proteins BF520_env_Bloom2018, BG505_env_Bloom2018, HG_FLU_Bloom2016,
PA_FLU_Sun2015, POLG_HCVJF_Sun2014, POL_HV1N5-CA_Ndungu2014, we compute the se-
quence weights with θ = 0.01 (versus default θ = 0.2) following Riesselman et al. [20]. In the
replication of the DeepSequence ensemble, for BF520_env_Bloom2018, BG505_env_Bloom2018,
one of the five runs failed so we reran with a different random seed.

C.4 Validation and test set

The single-mutation validation set consists of the following deep mutational scans:
AMIE_PSEAE_Whitehead, BG505_env_Bloom2018, BLAT_ECOLX_Ranganathan2015,
BRCA1_HUMAN_RING, DLG4_RAT_Ranganathan2012, GAL4_YEAST_Shendure2015,
POLG_HCVJF_Sun2014, SUMO1_HUMAN_Roth2017, TIM_SULSO_b0, UBC9_HUMAN_Roth2017,
KKA2_KLEPN_Mikkelsen2014.

For ablations studies with multiple mutations the following dataset is used:
PABP_YEAST_Fields2013-doubles

The test set consists of the following deep mutational scans:
B3VI55_LIPSTSTABLE, B3VI55_LIPST_Whitehead2015, BF520_env_Bloom2018,
BG_STRSQ_hmmerbit, BLAT_ECOLX_Ostermeier2014, BLAT_ECOLX_Palzkill2012,
BLAT_ECOLX_Tenaillon2013, BRCA1_HUMAN_BRCT, CALM1_HUMAN_Roth2017,
HG_FLU_Bloom2016, HIS7_YEAST_Kondrashov2017, HSP82_YEAST_Bolon2016,
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Figure 16: Entropy of PSSM versus ESM-1v predicted entropy on the trRosetta dataset. PSSM
entropy determines the level of conservation at a given position in a protein family. ESM-1v entropy
is well correlated with PSSM entropy (Pearson’s r = 0.44), suggesting the model is able to identify
conserved positions.
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Figure 17: Predicted distribution of hydrophobic, polar and charged amino acids at the surface
and core of proteins in the trRosetta dataset. We compare to the actual proportion in the protein
structure. We classify residues into buried, intermediate or exposed by residue depths based on
the number of neighboring residues with C-beta distance < 10 angstroms (exposed ≤ 16, buried
≥ 24) [56]. ESM-1v and PSSM both see increased hydrophobicity predictions for buried residues, in
correspondence with the ground truth data. Predicted probabilities are produced by introducing a
mask token at each position.

IF1_ECOLI_Kishony, MK01_HUMAN_Johannessen, MTH3_HAEAESTABILIZED_Tawfik2015,
P84126_THETH_b0, PABP_YEAST_Fields2013-singles, PA_FLU_Sun2015,
POL_HV1N5-CA_Ndungu2014, PTEN_HUMAN_Fowler2018, RASH_HUMAN_Kuriyan,
RL401_YEAST_Bolon2013, RL401_YEAST_Bolon2014, RL401_YEAST_Fraser2016,
TIM_THEMA_b0, TPK1_HUMAN_Roth2017, TPMT_HUMAN_Fowler2018,
UBE4B_MOUSE_Klevit2013-singles, YAP1_HUMAN_Fields2012-singles.

D Methodology

D.1 Model selection

ESM-1b and MSA Transformer model checkpoints are selected based on performance on the single
mutation validation set. Open sourced checkpoints are used for ESM-1b and other protein language
model baselines.

D.2 Treatment of synonymous mutations

Synonymous mutations are mutations in DNA that do not change the protein sequence that is
expressed. The deep mutational scanning datasets that we evaluate here can therefore include DNA
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mutations that do not change the protein sequence itself. Synonymous mutations are excluded from
results.

D.3 Bootstraps

To compute bootstraps for the pointplots, we randomly resample each deep mutational scan (with
replacement) and compute the Spearman ρ between the experimental data and model predictions.

D.4 Average calibration error

The standard expected calibration error (ECE) performs poorly for highly imbalanced data [58].
Following Neumann et al. [58] and Nixon et al. [59] we adapt average calibration error for the
multi-class setting as follows:

1

K

K∑
k=1

1

B+
k

B+
k∑

b=1

|acc(b, k)− conf(b, k)|

where K is the number of classes, B+
k is the number of non-empty bins for class k, and acc and

conf are the accuracy and confidence for bin b and class k.

E Performance by MSA depth

We examine the relationship between the number of related sequences in the pre-training set and
performance on the task. We use Jackhmmer [60] version 3.3.1 with a bitscore threshold of 27 and 8
iterations to construct MSAs from the ESM-1v training set. We do not observe a strong correlation
between MSA depth and the observed absolute value of Spearman ρ (Figure Fig. 19).

F Compute costs

ESM-1v models are pre-trained for 6 days on 64 V100 GPUs. Weights for the MSA Transformer were
retrieved from the open-source repository released by the authors; the model was pre-trained for 13
days on 128 V100 GPUs. Once trained, the models can be used directly for function prediction tasks.
Forward inference is efficient, meaning that for applications of the models, the additional compute is
minimal. In total, five ESM-1v models were trained on various Uniref clustering thresholds to five
different levels: 30%, 50%, 70%, 90%, and 100%. For the 90% sequence identity level, five total
models with different random seeds were trained, for use in an ensemble. As illustrated in Fig. 7,
inference is inexpensive by comparison. Batch inference was performed with preemptible, short
(shorter than one hour), single V100 GPU jobs on a shared compute cluster.

Clustering Valid (30%) Valid (50%) Valid (90%)
30% 8.93 8.33 7.29
50% 8.90 7.77 6.27
70% 9.05 7.80 5.85
90% 9.37 8.10 5.56
100% 9.89 8.65 6.05

Table 10: Perplexities on heldout pre-training validation sequences after training a 650M parameter
Transformer model for 170,000 updates on various sequence identity clusterings of Uniref.
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Figure 18: ESM-1v accurately captures functional properties. Further examples. The ten positions
with lowest predicted entropy highlighted in blue. (A) Kanamycin kinase APH(3’)-II (pdbid: 1ND4
[61]). The highlighted residues interact with the kanamycin aminoglycoside, as well as the magnesium
and sodium ions. (B) Thiamin pyrophosphokinase 1 (pdbid: 3S4Y). Residue 216 is one of the 10
lowest entropy residues, and we highlight it on the other chain (in cyan) to show both chains of the
dimer interacting with the thiamine diphosphate.
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Figure 19: Relation between MSA depth and zero-shot performance of ESM-1v. We use JackHMMer
[60] version 3.3.1 with a bitscore threshold of 27 and 8 iterations to construct MSAs from the ESM-1v
training set. We do not observe a strong correlation between MSA depth and the observed |Spearman
ρ|.
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