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Figure 1: Setup, model and results. A. The goal of this study is to model the dorsal visual stream,
including V1, MT and MST. B. Model layout and training. C. Weights of the first layer. First layer
filters are selective in space-time. D. Sample tuning of layer 1 features (V1-like). E. Sample tuning
of layer 2 features (MT-like). F. Sample tuning curve of layer 3 features (MST-like).

Contrastive Predictive Coding (CPC) CPC is a self-supervised learning algorithm that learns to
predict the next latent state of a sequence (e.g. a video sequence) given its present and past states.
The details of the CPC algorithm can be found in [30] and [52], but we summarize it briefly here.
A sequence of video frames (xt) are passed as input to a 3D CNN. The CNN output (zt), which
is a latent representation of the video sequence, is fed to a recurrent neural net (RNN). The RNN
aggregates past and present latent states (i.e. CNN output) and generates a context variable as its
output (ct). The context variable is then passed to a single layer MLP which predicts the future latent
state of the video. The predicted latent state and the true latent state (positive pairs), along with
some incorrect examples of the next state (negative pairs) are given to a contrastive loss function.
Minimizing the contrastive loss maximizes the similarity of the predicted and the true next states, and
minimizes the similarity of the predicted and the false next states.

4 Results

4.1 3D resnets trained for self-motion learn dorsal-like representations

We hypothesized that learning to estimate self-motion from visual inputs would lead to dorsal stream-
like representations. As in the ventral stream, these representations begin in V1 with receptive fields
that encode simple, local features of stimuli. Through subsequent recombinations at different layers,
more complex and ecologically relevant encoding emerges. To test this hypothesis, we generated
self-motion videos in a simulation environment, and trained a 3D ResNet to predict its self-motion
parameters, namely head rotation and linear locomotion (see Methods for details).
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Qualitative matches to the dorsal stream The 6-layer 3D ResNet trained in this way learned
representations similar to single units in the primate dorsal stream. We focus our attention here on
layers 1, 2 and 3 of the network. Preferred features of layer 1 contained many spatiotemporally
slanted filters (Figure 1C), which are the building blocks of motion selectivity in primate V1 [53]. We
quantified this slant with the separability index σ2

1/
∑

i σ
2
i from the singular values of the grayscale

filters σi; this matched values reported in the literature for V1 [20] [.72 +/-.16 for trained network,
.71 +/- .15 in real V1 neurons; figure S1].

To gain insight into the stimulus selectivity of these representations, we generated optimal stimuli
for individual units in intermediate layers of the network by optimization [12]; we present static
screenshots of the intermediate preferred frame here, while gifs can be visualized online 1. Probed
in this fashion, many intermediate features in layer 1 preferred what looked like drifting gratings
(examples in Figure 1D), consistent with the selectivity of V1 cells [53, 54]. Hence, to further
probe the selectivity of these units, we used full contrast, drifting gratings of different spatial and
temporal frequencies, placed in the center of the visual field. Tuning curves in layer 1 (samples in
Figure 1) tended to have a bias towards direction selectivity, with a mean circular variance at the
preferred spatial and temporal frequency of 0.75 and a median direction selectivity index - defined as
1− rpref/rantipref on the centered tuning curves - of 0.98. This is somewhat higher than is typically
found in V1 [55], but it is close to the selectivity of the V1 neurons that actually project to higher
levels of the dorsal visual pathway [56].

Layer 2 units tended to prefer more spatially broadband moving stimuli, not unlike the plaids conven-
tionally used in probing MT cells [21] (Figure 1E, left column). Indeed, probing the representations
with sums of gratings revealed similar selectivity to a single grating in a subset of cells (Figure 1E,
middle column; pattern selectivity plots in Figure S1). These cells likely encode stimulus velocity in
a manner that is invariant of the composition of the stimulus [21]. Like MT cells, subunits in this
layer tended to be highly direction selective, with the average circular variance of the direction tuning
curves being .41.

MT cells are also known to be selective for stimulus speed, which is the ratio of temporal to spatial
frequencies [57]. A similar kind of selectivity emerged in layer 2 of the model, where many units
preferred higher temporal frequencies when the spatial frequencies were higher (example tuning curve
in Figure 1E). To quantify this selectivity, we probed the model units with a range of spatiotemporal
frequencies and fit the data with slanted Gaussian functions [58], which revealed a mean speed
selectivity index of -.14 in layer 1, compared to 0.58 in layer 2, the latter being similar to the value of
0.52 reported in MT [58]. Probing layer 2 units with moving dots, we found a majority of neurons
with simple receptive fields that prefer linear motion, with a smaller number of complex receptive
fields (Figure 1E, bottom right).

Finally, we found many cells in layer 3 that combined the outputs of lower-level units to generate
selectivity for more complex motion patterns (example cells in Figure 1F). Dot pattern probes revealed
selectivity for rotations, spirals or single axis expansion. As in primate area MST, these units tended
to emphasize expansion motion rather than contraction, similar to the bias experienced during forward
navigation (figure S1) [59].

Area Dataset Data Sampling Stimulus

V1 crcns-pvc1 [60, 61] 23 multi-units 30Hz Color movies
crcns-pvc4 [62, 63, 64] 25 single units 75Hz B&W movies

MT crcns-mt1 [44, 65] 88 single units 30Hz optic flow kinematograms
crcns-mt2 [46, 66] 44 single units 83Hz B&W motion-enhanced movies

MST packlab-mst [47] 36 single units 30Hz optic flow kinematograms

Table 1: Datasets

Regression analysis of representations Given that the trained network recapitulated many qual-
itative properties of the dorsal stream, we next investigated whether they quantitatively matched
dorsal stream areas, for which single-neuron data was available. We used ridge regression to learn

1https://flamboyant-babbage-94aa08.netlify.app/
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Figure 2: Alignment of layers of dorsal net to data. Horizontal lines: 95% CI of layer with maximal
alignment to area

a mapping from latent representations at each layer of the network to single neural responses to
complex stimuli, including black and white and color movies, along with random dot kinematograms
(See Methods and Table 1 for details). We learned a separate mapping for each layer of the network,
allowing us to match the depth of the network to each brain area. As seen in Figure 2, this showed a
tight hierarchical progression, with higher-level cortex matching higher-level layers in the ResNet.
The average best matching layer across cells with report correlation greater than .01 was 1.1 for V1
cells [(0.9, 1.5) 95% CI, bootstrap across cells], 2.0 for MT cells [(1.8, 2.3)] and 2.9 for MST cells
[(2.3, 3.4)]. Thus, broadly speaking, layers 1, 2 and 3 of the network recapitulated V1, MT and MST,
respectively.

4.2 Networks with alternative objectives do not account for responses in the dorsal stream

Category Name Dataset License Notes

SlowFast [67] slowfast Kinetics400 Apache Fast branch of SlowFast
i3d

R3D [68] r3d_18 Kinetics400 BSD 3-clause
r2plus1_18
mc3_18

CPC [30] cpc_ucf UCF101 own work R3D with 10 residual blocks
cpc_airsim Airsim R3D with 10 residual blocks

Gabor pyramid [46] gabor - own work
gabor_nomotion - Opposite directions averaged

MotionNet [26] motionnet shifted images CCBY4.0

DorsalNet dorsalnet Airsim own work R3D with 4 residual blocks

Table 2: Models tested

Action recognition networks To examine the specificity of these results, we tested other networks
trained with different objective functions. Action recognition is a popular computer vision task,
and so we tested 3D ResNets trained on Kinetics400 [69]. These networks performed admirably in
explaining V1 responses, reaching an average R > .4 on the pvc1 dataset. However, across our MT
and MST datasets, performance was poor, failing to exceed that of a null model [70] consisting of a
3D Gabor pyramid (Table 3). We note that only a small fraction of V1 neurons project to the dorsal
stream, with the majority projecting to ventral stream areas; we interpret the relative performance
in V1 vs. MT and MST as a sign that these networks learned representations more aligned with the
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V1 MT MST
pvc1 pvc4 mt1 mt2 mst

slowfast .471 (.034) .361 (.042) .211 (.018) .281 (.015) .189 (.044)
i3d .457 (.036) .389 (.046) .213 (.018) .284 (.015) .219 (.044)

r3d_18 .403 (.032) .383 (.042) .217 (.018) .289 (.015) .224 (.046)
r2plus1d_18 .428 (.035) .382 (.042) .215 (.018) .282 (.015) .226 (.043)
mc3_18 .405 (.034) .393 (.045) .218 (.018) .276 (.014) .228 (.045)

cpc_ucf .271 (.044) .394 (.046) .214 (.018) .241 (.016) .190 (.045)
cpc_airsim .422 (.036) .384 (.045) .250 (.020) .360 (.017) .292 (.045)

gabor_nomotion .273 (.035) .353 (.038) .212 (.018) .188 (.014) .248 (.045)
gabor .325 (.036) .366 (.037) .249 (.019) .301 (.015) .394 (.054)

motionnet .276 (.042) .364 (.039) .238 (.018) .333 (.016) .441 (.053)

dorsalnet .364 (.043) .370 (.039) .251 (.019) .381 (.017) .454 (.054)

Table 3: Normalized pearson correlation (R; see Methods for definition) of different models on
different datasets. In parenthesis: standard error of the mean

ventral stream, supporting object recognition and by extension action recognition. Consistent with
this interpretation, we found that the first layer of 3D ResNets trained for action recognition did not
learn motion in the traditional sense (Figure S2). Instead, their filters were mostly separable in space
and time, meaning they were not selective for motion energy per se.

CPC Our results indicate that learning to estimate self-motion in a simulated environment creates
representations similar to those in the primate dorsal stream. The neural network architecture
(3D ResNets) was similar for the self-motion estimation objective and action recognition tasks.
However, both the task - prediction of self-motion parameters - and the stimulus ensemble - self-
motion sequences in the Airsim environment - differed. To tease apart the relative importance of
these two factors, we tested the ability of contrastive predictive coding (CPC) networks [30] to
account for responses in the dorsal stream when trained over different stimulus ensembles. CPC
is a self-supervised training method that finds predictive latent representations that can distinguish
between image sequences. Importantly, it is possible to apply the CPC objective to different stimulus
ensembles, thereby differentiating between task and stimulus ensemble effects. We trained an
11-layer network with a CPC objective on the UCF101 dataset and our Airsim dataset. The Airsim-
trained network performed significantly better than the UCF101-trained network, approaching the
performance of DorsalNet in MT but not in MST. Examining first layer filters revealed direction-
selective receptive fields after training on the Airsim dataset but not with UCF101 (Figure S2). This
is consistent with the training set being necessary, though not sufficient, to match primate dorsal
stream neurons.

MotionNet We next tested a much simpler 2-layer network from the neuroscience literature, which
was trained to estimate the linear motion of image patches [26]. The original model was a fully
connected architecture working on small image patches, and we made it convolutional by tiling. We
used the checkpoints shared by the authors as the model weights. While this network was trained on
a much smaller stimulus ensemble than Kinetics400, it scored far better in predicting MT and MST
responses than action recognition networks, though again significantly worse than DorsalNet. We
conclude that both an appropriate objective and a biologically relevant training dataset are important
for generating neural network models that quantitatively capture the selectivity of the primate dorsal
stream.

5 Self-motion estimation performance correlates with dorsal stream match

Across our baselines, there was a large range in the ability of different models to reproduce dorsal
stream data. We asked whether this heterogeneity could be linked to performance on a self-motion
estimation task. We froze the weights of our baseline networks and trained linear decoders to estimate
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self-motion parameters on the AirSim dataset from hidden layer representations. We excluded
DorsalNet and Airsim-trained CPC from these comparisons. Across our baselines, there was a highly
significant correlation between self-motion estimation performance and match to MT and MST
neurons (Figure S3; Table S2). Interestingly, when looking at individual self-motion parameters, head
rotation estimation accuracy was most correlated with performance on MT and MST datasets. Thus,
those networks which happen to be best at self-motion estimation, especially head rotation, can best
explain responses in the dorsal stream, consistent with a formative role of self-motion estimation in
dorsal stream representations.

6 Limitations

Non-exhaustive search We show that learning to estimate one’s self-motion from visual cues leads
to representations which are similar to those of the dorsal stream. We benchmark against several other
candidate models, including localized frequency detectors, which form a sparse basis for images
[71], predictive coding models, models trained for action recognition, and models trained trained
to estimate the motion of small image patches. This does not preclude the existence of a different
objective that better accounts for some aspects of the data; an open benchmark in the style of [14]
could reveal other objectives compatible with the data.

Data limitations To the best of our knowledge, we used all of the relevant publicly available
non-human primate data for this study. Most of this data was collected more than a decade ago in
time-consuming single-electrode experiments, with electrode drift, loss of fixation, short recording
times and small numbers of recordings per experiment being significant limitations. Improvements in
recording technology as well as better-designed hypothesis-driven studies could allow the collection
of more discriminative data in the future. Our study paves the way for closed-loop experiments to
verify that the estimated stimuli indeed maximally drive dorsal stream neurons [72, 73].

7 Discussion

Systems neuroscience aims to explain how the brain solves behavioral tasks at the algorithmic level
[17]. While a rich literature has linked the ventral visual stream to the task of object recognition, little
work has focused on understanding how and why dorsal streams representations emerge. Noting the
critical role of self-motion estimation across the animal kingdom [74], we hypothesized that training
an artificial neural net in a self-supervised fashion on self-motion estimation from image sequences
would lead to representations similar to the dorsal stream. We verified this qualitatively by probing
networks with artificial stimuli and by finding maximizing stimuli. We confirmed these findings
quantitatively by benchmarking existing computer vision networks on a gauntlet of neural data [14].

In the framework of [17], the objective, learning rule and architecture specify how a task is to be
solved by an artificial or biological neural network. Implicit in the framework is a fourth critical
ingredient: the curriculum, or distribution of training examples. Our work focuses on how an
objective, learning rule and curriculum interact to form representations similar to the dorsal stream.
In contradistinction with previous work, we focus on a single architecture of 3D ResNets, a coarse
approximation to early and intermediate visual processing stages, highlighting the formative role of
objective, learning rule and curriculum in the creation of useful representations for action.

Maximizing stimuli reveal selectivity Systems identification has long been used in systems neu-
roscience to estimate preferred stimuli in different brain areas [53, 54, 43, 46, 49, 20, 47, 75, 44].
More recently, systems identification has been used to better understand mechanisms of selectivity
in deep neural nets [12]. Given the breadth of available systems identification results in brains, we
suggest that systems identification is a particularly powerful tool to relate brains and artificial neural
nets, especially when combined with benchmarking: it can offer clues as to why certain networks
perform better than others. In this article, we identified direction selectivity in the first layer as a
strong clue that networks develop good motion representations.

Action recognition is a ventral stream task Our work shows that ANNs trained on the standard
computer vision task of action recognition fail to learn motion representations that correlate with
single neurons in MT and MST. [76] reported that on Kinetics400 and UCF101, a single image is
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sufficient to get within 6% of the action recognition accuracy of a full image sequence, indicating
that motion has a limited role in action recognition in these datasets. Motion selectivity can be
reintroduced via a parallel optic flow pathway [77] or by enforcing that the network reproduce dense
optic flow following early layers [78, 79], with modest improvements in classification accuracy. Our
benchmarks strongly suggest that current action recognition datasets can be solved without motion
and that good motion representations cannot emerge from supervised learning on them alone. Our
results are consistent with psychophysical findings that motion is not necessary for the perception of
biological motion [80].

Self-supervision through cross-modal prediction We train DorsalNet in a supervised way. From
the agent’s perspective, however, corollary discharges of the motor plan are available, as well as
vestibular inputs. Thus, the objective can be viewed as a self-supervised objective which aims to
predict one modality or channel of the input from the other, in line with other proxy tasks including
colorization and audiovisual alignment [81, 82, 83]. Because multisensory integration and corollary
discharges are ubiquitous across mobile animals [84], self-supervision through cross-modal prediction
could be potentially widely used across species to learn useful representations.

Evolution and learning in sensory systems Thompson [85] identifies four set of constraints
against which in silico models of sensory systems can be evaluated:

• Whether it can perform a relevant task
• Whether it accounts for neural activity
• Whether it is biologically plausible
• Whether it could have evolved

We presented a model of the dorsal stream that is trained to estimate self-motion. It accounts for
neural responses in 3 different areas, taken from 5 different datasets. The model weights can be
learned by the agent through biologically plausible self-supervision, since the approximate parameters
of self-motion are known to the agent, via corollary discharges and vestibular and proprioceptive
inputs [28]. Self-motion estimation is particularly important for gaze stabilization, which evolved in
tandem with the earliest visual functions [86, 87], and continues to be necessary for visual processing,
including that performed in the ventral pathway [88]. Given this evolutionary pressure, some
aspects of the dorsal pathway are likely hard-coded in the genome, while others are learned through
development [89]; further work will focus on better understanding the relative role of evolution vs.
learning in dorsal stream processing. This work and its follow-ups thus have the potential to elucidate
long-standing questions about how sensory systems evolved.
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Parameter Value

Environments AirSimNH, TrapCamera
Dataset size 39645 movies, 112x112x10 frames
Nominal FPS 30
Heading (yaw) VonMises(0, 2.5) (rad)
Heading (pitch) VonMises(0, 16) (rad)
Head rotation (yaw) Normal(σ = π/6) (rad/s)
Head rotation (pitch) Normal(σ = π/18) (rad/s)
Walking speed Uniform(0, 3) (m/s)
Height from ground Uniform(1.4, 2) (m)
Step size 0.003
Training epochs 100
Layers 0: 64 7x7x5 conv filters, stride 1x1x1

1: leaky ReLU, 3x3x1 maxpooling, 2x downsampling, batch norm
2: residual block

branch 1: 64 filters projected to 32 via 1x1x1 convs
branch 2: 32 1x1x1 filters, 8 3x3x1, 32 1x1x1, batch norm

3: residual block, 32 1x1x3 filters, 8 3x3x1, 32 1x1x1, batch norm
4: residual block, 32 1x1x1 filters, 8 3x3x1, 32 1x1x1, batch norm
5: residual block, 32 1x1x3 filters, 8 3x3x1, 32 1x1x1, batch norm

Table S1: Airsim dataset and training

metric overall pitch yaw rotation pitch rotation yaw speed
area

v1 -0.39 0.13 0.11 -0.36 -0.54 -0.12
mt -0.66 -0.05 -0.02 -0.51 -0.64 -0.40
mst -0.53 0.05 0.05 -0.51 -0.69 -0.13

Table S2: Correlation between loss on heading task and performance on data from different areas
across models and layers

8 Supplementary information

A B layer 1 layer 2 C
layer 3 optic flow 

population tuning curve

Figure S1: A: Separability index of layer 1. B: pattern index for layers 1 and 2. C: population curves
for optic flow in layer 3
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Figure S3: Correlation between heading loss and performance on dorsal stream datasets across
networks and layers
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