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Abstract 

Motivation 

Bioinformaticians frequently navigate among a diverse set of coordinate systems: for example, converting between 
genomic, transcript, and protein coordinates. The abstraction of coordinate systems and feature arithmetic allows 
genomic workflows to be expressed more elegantly and succinctly. However, no publicly available software library offers 
fully featured interoperable support for multiple coordinate systems. As such, bioinformatics programmers must either 
implement custom solutions, or make do with existing utilities, which may lack the full functionality they require. 

Results 

We present BioCantor, a Python library that provides integrated library support for arbitrarily related coordinate 
systems and rich operations on genomic features, with I/O support for a variety of file formats. 

Availability and implementation 

BioCantor is implemented as a Python 3 library with a minimal set of external dependencies. The library is freely 
available under the MIT license at https://github.com/InscriptaLabs/BioCantor and on the Python Package Index at 
https://pypi.org/project/BioCantor/. BioCantor has extensive documentation and vignettes available on ReadTheDocs at 
https://biocantor.readthedocs.io/en/latest/. 

 

Introduction 

The term “genomic feature arithmetic” refers to coordinate operations on representations of genomic features such as 
genes, transcripts or non-coding elements. Examples of feature arithmetic operations include coordinate conversion 
between coordinate systems, binary set theoretic operations such as intersection or union of features, and unary 
operations such as iterating over windows of a feature or reversing the strand of a feature. A variety of computational 
tools exist that support feature arithmetic operations, both as command line utilities (Bedtools1; BEDOPS 2) and software 
libraries (Pybedtools 3; PyRanges 4; the GenomicFeatures5 BioConductor package). However, no library exists that 
supports rich feature arithmetic operations across arbitrarily related coordinate systems: for example, a series of nested 
coordinate systems including exon-relative, transcript-relative, and chromosome-relative coordinates. 

Here we present BioCantor, a Python library implementing a rich set of feature arithmetic operations including many not 
supported by other packages (Table 1). BioCantor facilitates importing and exporting common annotation file formats 
into a simple genome annotation data model, supports arbitrarily related coordinate systems and abstracts coordinate 
conversion from the user. 
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Example 
operation Diagram BioCantor statement(s) 

Corresponding 
functionality 
available in 

existing tools 

Convert between 
chromosome 
position and 
transcript relative 
position 

 

feature.parent_to_relative_pos(7887345) 
feature.relative_to_parent_pos(863) 


"#Bedtools 

"# BEDOPS 

"# Pybedtools 

"# PyRanges 
GenomicFeatures 
    
"# Chr to transcript 
    
%&'Transcript to chr 

Get location of 
one feature 
relative to another 
feature 

 

feature1.location_relative_to(feature2) 


"# Bedtools 

"# BEDOPS 

"# Pybedtools 

"# PyRanges 

"# GenomicFeatures 

Define multiple 
nested coordinate 
systems and 
convert location 
through multiple 
layers 

 

Single statements to: 
• Define a sequence that is a chunk of 

a chromosome, e.g. from a database 
• Define a feature on the sequence 
• Get an exon of the feature 
• Get exon coordinates relative to 

sequence 
• Get exon coordinates relative to 

chromosome 
• Get exon coordinates relative to 

transcript 


"# Bedtools 

"# BEDOPS 

"# Pybedtools 

"# PyRanges 

"# GenomicFeatures 

Take union of two 
features 

 

feature1.union(feature2) 


%&' Bedtools 

%&' BEDOPS 

%&' Pybedtools 

%&' PyRanges 

"# GenomicFeatures 

Extract spliced 
sequence of 
transcript 

 

feature.extract_sequence() 


%&' Bedtools 

"# BEDOPS 

%&' Pybedtools 

%&' PyRanges 

%&' GenomicFeatures 

Table 1. Example BioCantor operations and availability in existing tools. 

 

Results 

BioCantor paradigm 

The basis of the BioCantor paradigm is that objects are linked by parent/child relationships. Once a parent/child 
hierarchy is established, coordinate operations can move around the hierarchy with this detail abstracted to the user; 
for example, converting a feature annotation from one reference sequence to another. In most cases, parent/child 
relationships are used to establish the parent as the frame of reference for the location of the child, though these 
relationships may exist without defining a coordinate system. 

Three main object types populate this paradigm. Location objects represent blocked and stranded features. 
Sequence objects hold sequence data. Parent objects define parent/child relationships. Sequence and Parent 
are concrete classes. Location is an abstract class with three implementations: the singleton EmptyLocation, 
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SingleInterval (a contiguous interval with start and end coordinates), and CompoundInterval (a multi-block 
feature). 

All objects hold pointers to their own optional parent. Parent objects do not hold pointers to children and can be 
reused for multiple children. Location objects, Sequence objects, and Parent objects can all have parents. Multi-
level hierarchies are established when Parent objects have their own parents. 

Example: instantiating a Location object that refers to a parent sequence 
 
sequence = Sequence('AAACCCAAAAAAAAAAAAAA', Alphabet.NT_STRICT) 
location = SingleInterval(5, 8, Strand.PLUS, parent=sequence) 

 

The Parent class is very flexible in order to accommodate different types of relationships. For example, a Parent 
object can optionally hold a pointer to a Sequence, meaning that sequence is the frame of reference for an object with 
that Parent. A Parent object can optionally hold a Location, meaning that is the location of the child relative to 
that parent. Parent has several optional parameters which enable different types of relationships and operations. 

Example: a Location points to a slice of a chromosome as its parent. The chromosome slice holds sequence 
data. Additionally, the chromosome slice has its own Parent representing the location of the slice relative to 
a chromosome. 
 
chr_slice = Sequence('TTTTTTTTTT', Alphabet.NT_STRICT, 
                     parent=Parent( 
                         id="chr1",  
                         location=SingleInterval(1000, 1010, Strand.PLUS), 
                         sequence_type="chromosome")) 
 
location = SingleInterval(5, 8, Strand.PLUS, parent=chr_slice) 

 

Coordinates and coordinate conversion 

Location classes represent blocked, stranded features with block coordinates represented by zero-based, end 
exclusive coordinates. These classes provide a variety of conversion methods: coordinates and features can be 
converted between any coordinate systems in the hierarchy with a single statement. In particular, seamless conversion 
between genomic and transcript-relative coordinates enables expressive statements operating in transcript space. 

Example: converting between transcript-relative and chromosome-relative coordinates 
 
# Define a feature; parent can be omitted; ambient coordinate system is implied 
feature = SingleInterval(100, 200, Strand.MINUS) 
 
# Convert a feature-relative interval to parent (e.g implied chromosome) relative 
chr_relative = feature.relative_interval_to_parent_location(7, 9, Strand.PLUS) 
 
# Convert a chromosome-relative coordinate to feature-relative 
feat_relative_coord = feature.parent_to_relative_pos(130) 

 

Feature arithmetic 

Alongside the support for coordinate systems, feature arithmetic functionality includes standard set theoretic 
operations (intersection, union, contains, overlaps, etc.) and other useful location operations. Splicing and strand are 
handled seamlessly. Moreover, the library includes special support for transcripts, coding sequences, codons, and 
translation, allowing users to quickly navigate among these features and retrieve their sequences. 
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Example: feature arithmetic operations 
 
# Overlap 
SingleInterval(5, 10, Strand.PLUS).has_overlap(SingleInterval(9, 20, Strand.PLUS)) 
 
# Intersection 
CompoundInterval([2, 8], [5, 13], Strand.PLUS).intersection(SingleInterval(4, 10, 
Strand.PLUS)) 
 
# Minus 
SingleInterval(10, 20, Strand.PLUS).minus(SingleInterval(13, 15, Strand.PLUS)) 
 
# Reverse strand 
SingleInterval(5, 10, Strand.PLUS).reverse_strand() 
 

 

 

 
 

 

Figure 1. Annotation data structure. AnnotationCollection objects hold any number of arbitrary intervals in a 
contiguous genomic region on a single sequence. AnnotationCollection objects contain one or more 
FeatureIntervalCollection and GeneInterval children. FeatureIntervalCollection are 
thought of as generic regions of the genome, such as promoters or transcription factor binding sites. Both 
GeneInterval and FeatureIntervalCollection have one or more TranscriptInterval or 
FeatureInterval children respectively. TranscriptInterval objects have an optional child CDSInterval 
object that model their coding potential. 
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Figure 2. BioCantor file parsing. Parsers for GenBank and GFF3 files produce a JSON-serializable object model 
representation. The object model can be converted to BioCantor interval objects, with optional sequence information. 
These interval objects can be exported to GenBank, GFF3, NCBI Feature table (.tbl), and BED format. 

 

Format Underlying Parser Notes 
GenBank BioPython6 Automatically associates 

sequence information. 
GFF3 gffutils7   
GFF3 + separate FASTA gffutils + BioPython Automatically associates 

sequence information. 
GFF3 + embedded FASTA gffutils + BioPython Automatically associates 

sequence information. 
 

Table 2. Annotation file parser support. BioCantor supports parsing GenBank files as well as GFF3 files with or without 
FASTA files. Parsing GFF3 without FASTA will produce data structures that can perform coordinate arithmetic and be 
exported to other file formats but lack sequence information. 

 

Feature collections 

BioCantor provides container classes to combine sets of transcripts into a gene (GeneInterval), sets of arbitrary 
features into a collection, (FeatureIntervalCollection), and sets of genes and/or features into an arbitrary 
collection (AnnotationCollection) (Figure 1). For example, an AnnotationCollection object could 
represent the full annotation of a chromosome loaded in from a GenBank or GFF3 file. AnnotationCollection 
objects can be queried for subsets of features overlapping specific coordinates. 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2021. ; https://doi.org/10.1101/2021.07.09.451743doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.09.451743
http://creativecommons.org/licenses/by/4.0/


Example: Constructing and using AnnotationCollection objects 
 
# load data from a GFF3 with embedded FASTA (this file is a BioCantor test file) 
 
from inscripta.biocantor.io.gff3.parser import parse_gff3_embedded_fasta, 
ParsedAnnotationRecord 
rec = list( 
    ParsedAnnotationRecord.parsed_annotation_records_to_model( 
        parse_gff3_embedded_fasta("tests/data/INSC1006_chrI.gff3") 
    ) 
)[0] 
 
# take a look at a (non-coding) transcript 
 
rec.genes[0].transcripts[0] 
 
>>> <TranscriptInterval((16174-18079:-), cds=[None], symbol=GI526_G0000001)> 
 
# convert transcription oriented coordinate to chromosome 
 
rec.genes[0].transcripts[0].transcript_pos_to_sequence(10) 
 
>>> 18068 
 
# get translation of a coding transcript 
 
str(rec.genes[1].transcripts[0].get_protein_sequence())[:10] 
 
>>> 'MTSEPEFQQA' 

 

 

Data models and file formats 

All of the BioCantor data structures are representable in JSON format, allowing them to be serialized to disk (Figure 2). 
In order to facilitate building these representations, BioCantor includes parsers for GenBank and GFF3(+FASTA) (Table 2) 
format annotation files. In order to provide interoperability with common bioinformatics workflows, BioCantor data 
models can also be exported to GFF3, GenBank, BED, and NCBI TBL format. 

 

Example: JSON representation of BioCantor gene model 
 
{ 
    "transcripts": [ 
        { 
            "exon_starts": [ 
                37461 
            ], 
            "exon_ends": [ 
                39103 
            ], 
            "strand": "PLUS", 
            "cds_starts": [ 
                37637 
            ], 
            "cds_ends": [ 
                39011 
            ], 
            "cds_frames": [ 
                "ZERO" 
            ], 
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            "qualifiers": { 
                "gene": [ 
                    "GDH3" 
                ] 
            }, 
            "is_primary_tx": false, 
            "transcript_id": "GI526_G0000002", 
            "transcript_symbol": "GDH3", 
            "transcript_type": "protein_coding", 
            "sequence_name": "CM021111.1", 
            "sequence_guid": null, 
            "protein_id": "KAF1903245.1", 
            "product": "GDH3 isoform 1", 
            "transcript_guid": null, 
            "transcript_interval_guid": "b78ce7f0-e8c4-0004-c92a-7e03ea6020f9" 
        } 
    ], 
    "gene_id": "bc2688c9-db1f-42eb-b69c-353548e54174", 
    "gene_symbol": "GDH3", 
    "gene_type": "protein_coding", 
    "locus_tag": "GI526_G0000002", 
    "qualifiers": { 
        "gene": [ 
            "GDH3" 
        ] 
    }, 
    "sequence_name": "CM021111.1", 
    "sequence_guid": null, 
    "gene_guid": "068b5fd8-0235-c816-45de-c0e0414bd67f" 
} 

 

 

Conclusions 

BioCantor enables elegant genomic workflows to be expressed in custom Python code through full end-to-end support 
of rich feature operations. Furthermore, the abstraction of coordinate operations lets programmers operate in multiple 
simultaneous coordinate systems without the need to keep track of coordinate arithmetic. The flexible paradigm can be 
deployed to address any use case requiring genomic feature arithmetic. 
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