
BioCantor: a Python library for genomic feature arithmetic in arbitrarily related coordinate systems

Pamela H. Russell1 and Ian T. Fiddes 1
1 Inscripta, Inc., Boulder, CO 80301

Abstract

Motivation

Bioinformaticians frequently navigate among a diverse set of coordinate systems: for example, converting between
genomic, transcript, and protein coordinates. The abstraction of coordinate systems and feature arithmetic allows
genomic workflows to be expressed more elegantly and succinctly. However, no publicly available software library offers
fully featured interoperable support for multiple coordinate systems. As such, bioinformatics programmers must either
implement custom solutions, or make do with existing utilities, which may lack the full functionality they require.

Results

We present BioCantor, a Python library that provides integrated library support for arbitrarily related coordinate
systems and rich operations on genomic features, with I/O support for a variety of file formats.

Availability and implementation

BioCantor is implemented as a Python 3 library with a minimal set of external dependencies. The library is freely
available under the MIT license at https://github.com/InscriptaLabs/BioCantor and on the Python Package Index at
https://pypi.org/project/BioCantor/. BioCantor has extensive documentation and vignettes available on ReadTheDocs at
https://biocantor.readthedocs.io/en/latest/.

Introduction

The term “genomic feature arithmetic” refers to coordinate operations on representations of genomic features such as
genes, transcripts or non-coding elements. Examples of feature arithmetic operations include coordinate conversion
between coordinate systems, binary set theoretic operations such as intersection or union of features, and unary
operations such as iterating over windows of a feature or reversing the strand of a feature. A variety of computational
tools exist that support feature arithmetic operations, both as command line utilities (Bedtools1; BEDOPS 2) and software
libraries (Pybedtools 3; PyRanges 4; the GenomicFeatures5 BioConductor package). However, no library exists that
supports rich feature arithmetic operations across arbitrarily related coordinate systems: for example, a series of nested
coordinate systems including exon-relative, transcript-relative, and chromosome-relative coordinates.

Here we present BioCantor, a Python library implementing a rich set of feature arithmetic operations including many not
supported by other packages (Table 1). BioCantor facilitates importing and exporting common annotation file formats
into a simple genome annotation data model, supports arbitrarily related coordinate systems and abstracts coordinate
conversion from the user.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 10, 2021. ; https://doi.org/10.1101/2021.07.09.451743doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.09.451743
http://creativecommons.org/licenses/by/4.0/

Example
operation Diagram BioCantor statement(s)

Corresponding
functionality
available in

existing tools

Convert between
chromosome
position and
transcript relative
position

feature.parent_to_relative_pos(7887345)
feature.relative_to_parent_pos(863)

"#Bedtools

"# BEDOPS

"# Pybedtools

"# PyRanges
GenomicFeatures

"# Chr to transcript

%&'Transcript to chr

Get location of
one feature
relative to another
feature

feature1.location_relative_to(feature2)

"# Bedtools

"# BEDOPS

"# Pybedtools

"# PyRanges

"# GenomicFeatures

Define multiple
nested coordinate
systems and
convert location
through multiple
layers

Single statements to:
• Define a sequence that is a chunk of

a chromosome, e.g. from a database
• Define a feature on the sequence
• Get an exon of the feature
• Get exon coordinates relative to

sequence
• Get exon coordinates relative to

chromosome
• Get exon coordinates relative to

transcript

"# Bedtools

"# BEDOPS

"# Pybedtools

"# PyRanges

"# GenomicFeatures

Take union of two
features

feature1.union(feature2)

%&' Bedtools

%&' BEDOPS

%&' Pybedtools

%&' PyRanges

"# GenomicFeatures

Extract spliced
sequence of
transcript

feature.extract_sequence()

%&' Bedtools

"# BEDOPS

%&' Pybedtools

%&' PyRanges

%&' GenomicFeatures

Table 1. Example BioCantor operations and availability in existing tools.

Results

BioCantor paradigm

The basis of the BioCantor paradigm is that objects are linked by parent/child relationships. Once a parent/child
hierarchy is established, coordinate operations can move around the hierarchy with this detail abstracted to the user;
for example, converting a feature annotation from one reference sequence to another. In most cases, parent/child
relationships are used to establish the parent as the frame of reference for the location of the child, though these
relationships may exist without defining a coordinate system.

Three main object types populate this paradigm. Location objects represent blocked and stranded features.
Sequence objects hold sequence data. Parent objects define parent/child relationships. Sequence and Parent
are concrete classes. Location is an abstract class with three implementations: the singleton EmptyLocation,

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 10, 2021. ; https://doi.org/10.1101/2021.07.09.451743doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.09.451743
http://creativecommons.org/licenses/by/4.0/

SingleInterval (a contiguous interval with start and end coordinates), and CompoundInterval (a multi-block
feature).

All objects hold pointers to their own optional parent. Parent objects do not hold pointers to children and can be
reused for multiple children. Location objects, Sequence objects, and Parent objects can all have parents. Multi-
level hierarchies are established when Parent objects have their own parents.

Example: instantiating a Location object that refers to a parent sequence

sequence = Sequence('AAACCCAAAAAAAAAAAAAA', Alphabet.NT_STRICT)
location = SingleInterval(5, 8, Strand.PLUS, parent=sequence)

The Parent class is very flexible in order to accommodate different types of relationships. For example, a Parent
object can optionally hold a pointer to a Sequence, meaning that sequence is the frame of reference for an object with
that Parent. A Parent object can optionally hold a Location, meaning that is the location of the child relative to
that parent. Parent has several optional parameters which enable different types of relationships and operations.

Example: a Location points to a slice of a chromosome as its parent. The chromosome slice holds sequence
data. Additionally, the chromosome slice has its own Parent representing the location of the slice relative to
a chromosome.

chr_slice = Sequence('TTTTTTTTTT', Alphabet.NT_STRICT,
 parent=Parent(
 id="chr1",
 location=SingleInterval(1000, 1010, Strand.PLUS),
 sequence_type="chromosome"))

location = SingleInterval(5, 8, Strand.PLUS, parent=chr_slice)

Coordinates and coordinate conversion

Location classes represent blocked, stranded features with block coordinates represented by zero-based, end
exclusive coordinates. These classes provide a variety of conversion methods: coordinates and features can be
converted between any coordinate systems in the hierarchy with a single statement. In particular, seamless conversion
between genomic and transcript-relative coordinates enables expressive statements operating in transcript space.

Example: converting between transcript-relative and chromosome-relative coordinates

Define a feature; parent can be omitted; ambient coordinate system is implied
feature = SingleInterval(100, 200, Strand.MINUS)

Convert a feature-relative interval to parent (e.g implied chromosome) relative
chr_relative = feature.relative_interval_to_parent_location(7, 9, Strand.PLUS)

Convert a chromosome-relative coordinate to feature-relative
feat_relative_coord = feature.parent_to_relative_pos(130)

Feature arithmetic

Alongside the support for coordinate systems, feature arithmetic functionality includes standard set theoretic
operations (intersection, union, contains, overlaps, etc.) and other useful location operations. Splicing and strand are
handled seamlessly. Moreover, the library includes special support for transcripts, coding sequences, codons, and
translation, allowing users to quickly navigate among these features and retrieve their sequences.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 10, 2021. ; https://doi.org/10.1101/2021.07.09.451743doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.09.451743
http://creativecommons.org/licenses/by/4.0/

Example: feature arithmetic operations

Overlap
SingleInterval(5, 10, Strand.PLUS).has_overlap(SingleInterval(9, 20, Strand.PLUS))

Intersection
CompoundInterval([2, 8], [5, 13], Strand.PLUS).intersection(SingleInterval(4, 10,
Strand.PLUS))

Minus
SingleInterval(10, 20, Strand.PLUS).minus(SingleInterval(13, 15, Strand.PLUS))

Reverse strand
SingleInterval(5, 10, Strand.PLUS).reverse_strand()

Figure 1. Annotation data structure. AnnotationCollection objects hold any number of arbitrary intervals in a
contiguous genomic region on a single sequence. AnnotationCollection objects contain one or more
FeatureIntervalCollection and GeneInterval children. FeatureIntervalCollection are
thought of as generic regions of the genome, such as promoters or transcription factor binding sites. Both
GeneInterval and FeatureIntervalCollection have one or more TranscriptInterval or
FeatureInterval children respectively. TranscriptInterval objects have an optional child CDSInterval
object that model their coding potential.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 10, 2021. ; https://doi.org/10.1101/2021.07.09.451743doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.09.451743
http://creativecommons.org/licenses/by/4.0/

Figure 2. BioCantor file parsing. Parsers for GenBank and GFF3 files produce a JSON-serializable object model
representation. The object model can be converted to BioCantor interval objects, with optional sequence information.
These interval objects can be exported to GenBank, GFF3, NCBI Feature table (.tbl), and BED format.

Format Underlying Parser Notes
GenBank BioPython6 Automatically associates

sequence information.
GFF3 gffutils7
GFF3 + separate FASTA gffutils + BioPython Automatically associates

sequence information.
GFF3 + embedded FASTA gffutils + BioPython Automatically associates

sequence information.

Table 2. Annotation file parser support. BioCantor supports parsing GenBank files as well as GFF3 files with or without
FASTA files. Parsing GFF3 without FASTA will produce data structures that can perform coordinate arithmetic and be
exported to other file formats but lack sequence information.

Feature collections

BioCantor provides container classes to combine sets of transcripts into a gene (GeneInterval), sets of arbitrary
features into a collection, (FeatureIntervalCollection), and sets of genes and/or features into an arbitrary
collection (AnnotationCollection) (Figure 1). For example, an AnnotationCollection object could
represent the full annotation of a chromosome loaded in from a GenBank or GFF3 file. AnnotationCollection
objects can be queried for subsets of features overlapping specific coordinates.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 10, 2021. ; https://doi.org/10.1101/2021.07.09.451743doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.09.451743
http://creativecommons.org/licenses/by/4.0/

Example: Constructing and using AnnotationCollection objects

load data from a GFF3 with embedded FASTA (this file is a BioCantor test file)

from inscripta.biocantor.io.gff3.parser import parse_gff3_embedded_fasta,
ParsedAnnotationRecord
rec = list(
 ParsedAnnotationRecord.parsed_annotation_records_to_model(
 parse_gff3_embedded_fasta("tests/data/INSC1006_chrI.gff3")
)
)[0]

take a look at a (non-coding) transcript

rec.genes[0].transcripts[0]

>>> <TranscriptInterval((16174-18079:-), cds=[None], symbol=GI526_G0000001)>

convert transcription oriented coordinate to chromosome

rec.genes[0].transcripts[0].transcript_pos_to_sequence(10)

>>> 18068

get translation of a coding transcript

str(rec.genes[1].transcripts[0].get_protein_sequence())[:10]

>>> 'MTSEPEFQQA'

Data models and file formats

All of the BioCantor data structures are representable in JSON format, allowing them to be serialized to disk (Figure 2).
In order to facilitate building these representations, BioCantor includes parsers for GenBank and GFF3(+FASTA) (Table 2)
format annotation files. In order to provide interoperability with common bioinformatics workflows, BioCantor data
models can also be exported to GFF3, GenBank, BED, and NCBI TBL format.

Example: JSON representation of BioCantor gene model

{
 "transcripts": [
 {
 "exon_starts": [
 37461
],
 "exon_ends": [
 39103
],
 "strand": "PLUS",
 "cds_starts": [
 37637
],
 "cds_ends": [
 39011
],
 "cds_frames": [
 "ZERO"
],

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 10, 2021. ; https://doi.org/10.1101/2021.07.09.451743doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.09.451743
http://creativecommons.org/licenses/by/4.0/

 "qualifiers": {
 "gene": [
 "GDH3"
]
 },
 "is_primary_tx": false,
 "transcript_id": "GI526_G0000002",
 "transcript_symbol": "GDH3",
 "transcript_type": "protein_coding",
 "sequence_name": "CM021111.1",
 "sequence_guid": null,
 "protein_id": "KAF1903245.1",
 "product": "GDH3 isoform 1",
 "transcript_guid": null,
 "transcript_interval_guid": "b78ce7f0-e8c4-0004-c92a-7e03ea6020f9"
 }
],
 "gene_id": "bc2688c9-db1f-42eb-b69c-353548e54174",
 "gene_symbol": "GDH3",
 "gene_type": "protein_coding",
 "locus_tag": "GI526_G0000002",
 "qualifiers": {
 "gene": [
 "GDH3"
]
 },
 "sequence_name": "CM021111.1",
 "sequence_guid": null,
 "gene_guid": "068b5fd8-0235-c816-45de-c0e0414bd67f"
}

Conclusions

BioCantor enables elegant genomic workflows to be expressed in custom Python code through full end-to-end support
of rich feature operations. Furthermore, the abstraction of coordinate operations lets programmers operate in multiple
simultaneous coordinate systems without the need to keep track of coordinate arithmetic. The flexible paradigm can be
deployed to address any use case requiring genomic feature arithmetic.

References

1. Quinlan AR and Hall IM. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics.
doi:10.1093/bioinformatics/btq033.

2. Neph, S. et al. (2012) BEDOPS: high-performance genomic feature operations. Bioinformatics.
doi:10.1093/bioinformatics/bts277

3. Dale RK, Pedersen BS, and Quinlan AR. (2011) Pybedtools: a flexible Python library for manipulating genomic datasets and
annotations. Bioinformatics. doi:10.1093/bioinformatics/btr539

4. Stovner EB and Saetrom P. (2019) PyRanges: efficient comparison of genomic intervals in Python. Bioinformatics.
doi:10.1093/bioinformatics/btz615

5. Lawrence M et al. (2013) Software for Computing and Annotating Genomic Ranges. PLoS Computational Biology.
doi:10.1371/journal.pcbi.1003118

6. Cock, P. et al. (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics.
Bioinformatics. doi:10.1093/bioinformatics/btp163

7. Dale R. gffutils [Internet]. Github; Available: https://github.com/daler/gffutils

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 10, 2021. ; https://doi.org/10.1101/2021.07.09.451743doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.09.451743
http://creativecommons.org/licenses/by/4.0/

