Wang & Zhang

1	
2	
3	Tn5 transposase-based epigenomic profiling methods
4	are prone to open chromatin bias
5	
6	Meng Wang ^{1,2,3} and Yi Zhang ^{1,2,3,4,5,*}
7	
8	¹ Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115,
9	USA; ² Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston,
10	Massachusetts 02115, USA; ³ Division of Hematology/Oncology, Department of Pediatrics, Boston
11	Children's Hospital, Boston, Massachusetts 02115, USA; ⁴ Department of Genetics, Harvard
12	Medical School, Boston, Massachusetts 02115, USA; ⁵ Harvard Stem Cell Institute, WAB-149G,
13	200 Longwood Avenue, Boston, Massachusetts 02115, USA.
14	
15	
16	
17	*To whom correspondence should be addressed
18	E-mail: yzhang@genetics.med.harvard.edu
19	
20	
21	
22	Keywords: Tn5-based methods, low-input epigenomic profiling, open chromatin, comparative
23	analysis
24	
25	Manuscript information: 16 pages, 3 figures, 3 supplementary figures, 1 supplementary table
26	
27	

Wang & Zhang

28 Abstract

29

30	Epigenetic studies of rare biological samples like mammalian oocytes and preimplantation
31	embryos require low input or even single cell epigenomic profiling methods. To reduce sample
	loss and avoid inefficient immunoprecipitation, several chromatin immuno-cleavage-based
32	loss and avoid memcient infinunoprecipitation, several chromatin infinuno-cleavage-based
33	methods using Tn5 transposase fused with Protein A/G have been developed to profile histone
34	modifications and transcription factor bindings using small number of cells. The Tn5
35	transposase-based epigenomic profiling methods are featured with simple library construction
36	steps in the same tube, by taking advantage of Tn5 transposase's capability of simultaneous DNA
37	fragmentation and adaptor ligation. However, the Tn5 transposase prefers to cut open chromatin
38	regions. Our comparative analysis shows that Tn5 transposase-based profiling methods are prone
39	to open chromatin bias. The high false positive signals due to biased cleavage in open chromatin
40	could cause misinterpretation of signal distributions and dynamics. Rigorous validation is needed
41	when employing and interpreting results from Tn5 transposase-based epigenomic profiling
42	methods.
43	
44	
45	
46	
47	
48	
49	

Wang & Zhang

3

51 Introduction

73

Due to the sample loss and inefficient immunoprecipitation of traditional chromatin 52 immunoprecipitation (ChIP)-based methods, low-input epigenomic profiling methods are needed 53 for studying rare samples such as mammalian oocytes and preimplantation embryos¹. Several 54 low-input chromatin immunoprecipitation followed by sequencing (ChIP-seq) methods including 55 ULI-NChIP², scChIP-seq³ and STAR ChIP-seq⁴ have been developed. To overcome inefficient 56 immunoprecipitation, immunoprecipitation-free methods, such as CUT&RUN⁵ and scChIC-seq⁶ 57 that use chromatin immuno-cleavage (ChIC)⁷ strategy, have been developed. These low-input 58 methods have been widely used in studying epigenome reprogramming during early embryonic 59 development which have revealed distinct dynamics of different epigenetic markers^{4, 8-12}. 60 61 Recently, the Tn5 transposase-based¹³ library construction is getting popular because it can 62 fragment DNA while simultaneously adding library adaptors thus simplifying experimental 63 procedures and reducing sample loss^{14, 15}. Tn5 transposase-based epigenomic profiling methods 64

65 utilize Protein A (or Protein G) fused with Tn5 transposase (pA-Tn5) to cleave DNA at the

targets of primary antibody, allowing all procedures to be completed in the same tube without

67 immunoprecipitation step, which largely avoided sample loss. Several Tn5-based methods have

68 been developed to capture histone modifications or transcription factor (TF) binding using small

number of cells or even single cell, including CUT&Tag¹⁶, CoBATCH¹⁷, ACT-seq¹⁸, itChIP-

30 seq¹⁹, ChIL-seq²⁰ and Stacc-seq²¹. However, the Tn5 transposase is known to prefer accessible

DNA regions²². It has been noted that some of the Tn5-based methods are confounded by DNA
 accessibility²³, but no systematic comparative analysis has been done to determine to what extent

comparative analyses which reveal that, for some of the methods, overall ~30-50% false positive

the results of these methods are affected by chromatin accessibility. Here we present systematic

75 peaks can be contributed by open chromatin artefacts. Such high level of false positive peaks

76 could affect data interpretation leading to false conclusions, which raises concerns on choosing,

developing and interpreting results from Tn5-based epigenomic profiling methods.

Wang & Zhang

78 Results

79

80 Tn5-based epigenomic profiling methods have varied level of biases toward open

81 chromatins

CoBATCH¹⁷, CUT&Tag¹⁶, ACT-seq¹⁸ and Stacc-seq²¹ are very similar methods, which are based 82 on the in situ immuno-cleavage strategy (Fig. 1a). CoBATCH and CUT&Tag add primary 83 antibodies first, then add the pA-Tn5, while ACT-seq and Stacc-seq pre-incubate primary 84 85 antibodies with pA-Tn5. However, besides cleavage at the target sites, the free pA-Tn5 has the potential to tagment open chromatins. To wash out free pA-Tn5, these methods employ different 86 washing conditions. The CUT&Tag uses high salt (300 mM NaCl) washing to suppress 87 background tagmentation, CoBATCH and ACT-seq utilize milder washing conditions, while the 88 89 washing step is optional in Stacc-seq. The itChIP-seq, on the other hand, is an immunoprecipitation-based method that utilizes Tn5 to tagment DNA first before antibodies are 90 added to pull-down the target fragments. Thus, theoretically the itChIP-seq method should not be 91 92 confounded by open chromatins as antibody-based selectivity is applied after tagmentation.

93

To perform systematic comparative analysis of the Tn5-based epigenomic profiling methods, we 94 collected publicly available H3K27me3 data (Supplementary Table 1) of mouse embryonic 95 96 stem cells (mESCs) generated by CoBATCH, CUT&Tag, Stacc-seq and itChIP-seq. Since the protocols for ACT-seq and Stacc-seq are almost identical, and the original ACT-seq study did not 97 include H3K27me3, we analyzed the Stacc-seq data with conclusions applicable to ACT-seq. The 98 bulk ChIP-seq of H3K27me3 in mESCs was used as a reference for comparing the H3K27me3 99 peaks derived from these Tn5-based methods. The two different bulk ChIP-seq datasets^{24, 25} were 100 highly similar (Supplementary Fig. 1a, b) and the peaks were considered as true positive peaks 101 in mESCs. To determine whether each Tn5-based method was confounded by open chromatin, 102 we asked whether peaks that were not overlapped with bulk ChIP-seq peaks were instead 103 overlapped with open chromatin peaks derived from ATAC-seq in mESCs. The open chromatin 104

Wang & Zhang

105	revealed by ATAC-seq ²⁶ were highly similar to that revealed by DNase-seq ²⁵ in mESCs
106	(Supplementary Fig. 1c, d). As a control for low-input epigenomic profiling method without
107	using Tn5 transposase, we included the H3K27me3 dataset in mESCs generated by ULI-NChIP ⁸ .
108	A genome browser view around the Hoxb locus comparing the signals of Tn5-based methods
109	with those of bulk ChIP-seq, ULI-NChIP, and open chromatin (ATAC-seq and DNase-seq) (Fig.
110	1b) revealed: 1) CoBATCH, CUT&Tag, and Stacc-seq detected H3K27me3 peaks not present in
111	ChIP-seq or ULI-NChIP but overlapping with ATAC-seq and DNase-seq peaks (shaded); 2) For
112	peaks overlapping with ChIP-seq, the peak patterns were more similar to ATAC-seq and DNase-
113	seq rather than the ChIP-seq; 3) itChIP-seq showed the most similar pattern to that of the ChIP-
114	seq in this region, which was coincident with the fact that the immunoprecipitation-based itChIP-
115	seq procedure is different from the other pA-Tn5 immuno-cleavage-based methods (Fig. 1a).
116	
117	The above observation raised the possibility that at least some of the Tn5-based methods may be
118	biased toward open chromatin to generate false positive peaks. To explore this possibility, we
119	analyzed the overall signal distribution of these methods by first focusing on the transcription
120	start sites (TSS) of all coding genes. An analysis of the ChIP-seq datasets indicated that the
121	H3K27me3 signals were enriched in the TSSs of a subset of genes consisted of mainly the
122	Polycomb-group (PcG) targets, but with the majority of the genes, mostly of non-PcG targets,
123	lack the H3K27me3 signals around their TSSs (Fig. 1c). However, the CoBATCH and Stacc-seq
124	methods detected H3K27me3 enrichment at almost all the TSS regions including the non-PcG
125	targets, which were more similar to the open chromatin patterns detected by ATAC-seq (Fig. 1c).
126	The CUT&Tag method detected a weak signal enrichment at the TSSs without H3K27me3 ChIP-
127	seq signals. The itChIP-seq and ULI-NChIP methods detected a pattern more similar to that of
128	ChIP-seq although their signals were generally weaker (Fig. 1c). itChIP-seq is not an
129	immunoprecipitation-free method, thus its signals need to be normalized by input control, similar
130	to ChIP-seq and ULI-NChIP. For the immunoprecipitation-free methods, input DNA or IgG
131	control is usually not needed for signal normalization. Nevertheless, we tested whether the

Wang & Zhang

6

132	confounding of open chromatin signals could be eliminated by using input/IgG control. Using
133	the publicly available input/IgG controls for CoBATCH and Stacc-seq (no input/IgG control for
134	CUT&Tag), we recalculated the H2K27me3 enrichment and found that normalizing with
135	input/IgG did not improve the CoBATCH results (Fig. 1c). On the other hand, this normalization
136	did enhance the signals of Stacc-seq overlapping with ChIP-seq, while reduced the signals not
137	overlapping with ChIP-seq (Fig. 1c). However, the IgG control normalized Stacc-seq
138	H3K27me3 profile was still more similar to the ATAC-seq profile than that of the H3K27me3
139	ChIP-seq at the non-PcG targets (Fig. 1c).
140	

Next, we focused our analysis on open chromatin regions by dividing the open chromatin regions 141 into two groups that with or without H3K27me3 ChIP-seq signals (Fig. 1d). The CoBATCH and 142 143 Stacc-seq detected signals exhibit a clear enrichment at the open chromatin regions without ChIP-seq signals, and input/IgG control normalization did not change the situation. The 144 CUT&Tag method detected weak signals, while itChIP-seq and ULI-NChIP detected no signals 145 at the open chromatin regions without ChIP-seq signals (Fig. 1d). These results indicate that 146 147 some of the Tn5-based methods, particularly the CoBATCH and Stacc-seq, are biased toward open chromatin peaks that do not have H3K27me3 ChIP-seq signals. 148

149

150 Open chromatin is the source of false positive peaks detected by Tn5-based methods

Next we performed quantitative analysis to determine the level that each of the Tn5-based 151 method is confounded by open chromatin. To this end, we used the same criteria (p-value < 1e-4 152 and q-value < 0.01) in peak calling for each method. Peaks that overlapped with ChIP-seq peaks 153 154 were considered as true positives. Peaks that did not overlap with ChIP-seq peaks were considered as potential false positive signals, and were further analyzed to determine whether 155 they could be mapped to open chromatin (Fig. 2). We found 5,189 out of the 9,125 CoBATCH 156 peaks did not overlap with ChIP-seq peaks, but were mapped to open chromatin with strong 157 correlation to ATAC-seq signals (Fig. 2a). Indeed, 82.3% (4,270 out of 5,189) of the CoBATCH 158

Wang & Zhang

7

peaks that did not overlap with ChIP-seq peaks were overlapped with ATAC-seq peaks (Fig. 2b). 159 Peaks derived from CoBATCH normalized by IgG control showed even more false positives and 160 ATAC-seq signals also enriched in these false positive peaks (Supplementary Fig. 2a). A similar 161 162 analysis of the CUT&Tag dataset revealed 1,387 out of the 6,805 peaks were not overlapped with ChIP-seq peaks (Fig. 2c). Of these non-overlapping peaks, 24.2% (335 out of 1,387) were 163 overlapped with ATAC-seq peaks (Fig. 2d). For Stacc-seq, 1,687 out of the 6,190 peaks were not 164 overlapped with ChIP-seq peaks, but showed strong open chromatin signals (Fig. 2e). Of these 165 non-overlapping peaks, 75.6% (1,275 out of 1,687) were overlapped with ATAC-seq peaks (Fig. 166 2f). Peaks derived from Stacc-seq normalized by IgG control still showed open chromatin 167 enrichment for the false positive peaks (Supplementary Fig. 2b). On the other hand, the itChIP-168 seq peaks that showed no overlap with ChIP-seq peaks also did not overlap with ATAC-seq 169 170 peaks (Fig. 2g, h, Supplementary Fig. 2c). For ULI-NChIP, although about half of the peak regions showed no ChIP-seq signals, no ATAC-seq signals were detected in these non-171 overlapping regions (Fig. 2i, j). Collectively, these results indicate that the great majority of the 172 173 non-overlapping peaks detected by CoBATCH or Stacc-seq, and some of the non-overlapping peaks detected by CUT&Tag are mapped to open chromatin regions, and they could be false 174 positive artefacts. 175

176

177 High false positive rate due to open chromatin affected global distribution of peaks

To determine the relative reliability of the different Tn5-based epigenomic profiling methods, we 178 next calculated the false positive rate (FPR) caused by the Tn5 bias toward open chromatins. The 179 FPR is calculated by the number of peaks not overlapping with ChIP-seq but overlapping with 180 181 ATAC-seq peaks, divided with the total number of peaks (Fig. 3a, Supplementary Fig. 3). The FPR for CoBATCH was as high as 46.8-54.3%, in contrast the FPR for CUT&Tag was 4.9-5.8%. 182 For Stacc-seq, its FPR was 20.6-35.9%. The itChIP-seq and ULI-NChIP were almost not 183 affected by open chromatin artefacts. Since the FPRs calculated here only considered the non-184 overlapping peaks, and because the overlapping peaks could also be generated from open 185

Wang & Zhang

186	chromatin, instead of real H3K27me3 peaks as exemplified in Fig. 1b, the FPRs presented here
187	represented the lower limit. To calculate the FPR without a fixed p-value or q-value cutoff for the
188	peaks, we assessed the FPRs for top peaks ranked by p-values for each method. Results shown in
189	Fig. 3b indicated that most of the top peaks in CoBATCH represented open chromatin signals.
190	Interestingly, while replicate 1 of the Stacc-seq showed lower FPR for the top peaks but the FPR
191	gradually increased with more peaks, replicate 2 of Stacc-seq showed a relatively consistent FPR
192	(Fig. 3b). Consistent with the high FPR, clustering analysis indicated that CoBATCH and Stacc-
193	seq globally resembled open chromatin signals more closely than the H3K27me3 signals (Fig.
194	3c). These results indicate that CoBATCH and Stacc-seq have high false positive rates and thus
195	great care should be taken in interpreting the data generated by these two methods.
196	
197	
198	Discussion
199	
200	In summary, our analysis reveals that the Tn5-based epigenomic profiling methods could capture
	In summary, our analysis reveals that the Tn5-based epigenomic profiling methods could capture substantial confounding open chromatin signals. The severity of open chromatin bias varies a lot
200	
200 201	substantial confounding open chromatin signals. The severity of open chromatin bias varies a lot
200 201 202	substantial confounding open chromatin signals. The severity of open chromatin bias varies a lot among the different Tn5-based. CoBATCH and Stacc-seq are pone to open chromatin bias with
200 201 202 203	substantial confounding open chromatin signals. The severity of open chromatin bias varies a lot among the different Tn5-based. CoBATCH and Stacc-seq are pone to open chromatin bias with high false positive rates. Thus, no matter adding the antibody and pA-Tn5 sequentially
200 201 202 203 204	substantial confounding open chromatin signals. The severity of open chromatin bias varies a lot among the different Tn5-based. CoBATCH and Stacc-seq are pone to open chromatin bias with high false positive rates. Thus, no matter adding the antibody and pA-Tn5 sequentially (CoBATCH) or pre-incubating antibody with pA-Tn5 and adding together (Stacc-seq), both
200 201 202 203 204 205	substantial confounding open chromatin signals. The severity of open chromatin bias varies a lot among the different Tn5-based. CoBATCH and Stacc-seq are pone to open chromatin bias with high false positive rates. Thus, no matter adding the antibody and pA-Tn5 sequentially (CoBATCH) or pre-incubating antibody with pA-Tn5 and adding together (Stacc-seq), both procedures could result in high levels of bias toward open chromatin. Although CUT&Tag
200 201 202 203 204 205 206	substantial confounding open chromatin signals. The severity of open chromatin bias varies a lot among the different Tn5-based. CoBATCH and Stacc-seq are pone to open chromatin bias with high false positive rates. Thus, no matter adding the antibody and pA-Tn5 sequentially (CoBATCH) or pre-incubating antibody with pA-Tn5 and adding together (Stacc-seq), both procedures could result in high levels of bias toward open chromatin. Although CUT&Tag showed very weak H3K27me3 signals in non-PcG targets that resembled open chromatin
200 201 202 203 204 205 206 207	substantial confounding open chromatin signals. The severity of open chromatin bias varies a lot among the different Tn5-based. CoBATCH and Stacc-seq are pone to open chromatin bias with high false positive rates. Thus, no matter adding the antibody and pA-Tn5 sequentially (CoBATCH) or pre-incubating antibody with pA-Tn5 and adding together (Stacc-seq), both procedures could result in high levels of bias toward open chromatin. Although CUT&Tag showed very weak H3K27me3 signals in non-PcG targets that resembled open chromatin signals, its overall false positive rate due to open chromatin is much lower than that from the
200 201 202 203 204 205 206 207 208	substantial confounding open chromatin signals. The severity of open chromatin bias varies a lot among the different Tn5-based. CoBATCH and Stacc-seq are pone to open chromatin bias with high false positive rates. Thus, no matter adding the antibody and pA-Tn5 sequentially (CoBATCH) or pre-incubating antibody with pA-Tn5 and adding together (Stacc-seq), both procedures could result in high levels of bias toward open chromatin. Although CUT&Tag showed very weak H3K27me3 signals in non-PcG targets that resembled open chromatin signals, its overall false positive rate due to open chromatin is much lower than that from the CoBATCH despite both share almost identical experimental procedures (Fig. 1a). Thus, stringent
200 201 202 203 204 205 206 207 208 209	substantial confounding open chromatin signals. The severity of open chromatin bias varies a lot among the different Tn5-based. CoBATCH and Stacc-seq are pone to open chromatin bias with high false positive rates. Thus, no matter adding the antibody and pA-Tn5 sequentially (CoBATCH) or pre-incubating antibody with pA-Tn5 and adding together (Stacc-seq), both procedures could result in high levels of bias toward open chromatin. Although CUT&Tag showed very weak H3K27me3 signals in non-PcG targets that resembled open chromatin signals, its overall false positive rate due to open chromatin is much lower than that from the CoBATCH despite both share almost identical experimental procedures (Fig. 1a). Thus, stringent washing with high salt before tagmentation employed in the CUT&Tag method must have
200 201 202 203 204 205 206 207 208 209 210	substantial confounding open chromatin signals. The severity of open chromatin bias varies a lot among the different Tn5-based. CoBATCH and Stacc-seq are pone to open chromatin bias with high false positive rates. Thus, no matter adding the antibody and pA-Tn5 sequentially (CoBATCH) or pre-incubating antibody with pA-Tn5 and adding together (Stacc-seq), both procedures could result in high levels of bias toward open chromatin. Although CUT&Tag showed very weak H3K27me3 signals in non-PcG targets that resembled open chromatin signals, its overall false positive rate due to open chromatin is much lower than that from the CoBATCH despite both share almost identical experimental procedures (Fig. 1a). Thus, stringent washing with high salt before tagmentation employed in the CUT&Tag method must have contribute to the reduced open chromatin artefacts ²³ , but would affect sites with weak binding.

Wang & Zhang

9

lower biases. This coincides with the practice that no IgG control is needed for in situ immunocleavage-based profiling methods. The immunoprecipitation-based itChIP-seq utilizes Tn5 transposase to tagment DNA before immunoprecipitating the target DNA, thus its result is not affected by open chromatins. However, it is not an immunoprecipitation-free method, which requires input control, and its signal-to-noise intensities are not comparable to the immunocleavage-based methods when using small number of cells.

219

220 Given that Tn5-based methods are prone to open chromatin bias, cautions should be taken when the Tn5-based epigenomic profiling methods are used. We strongly recommend that evaluation 221 of the confounding open chromatin signals and estimation of the FPR are performed under 222 similar experimental conditions before these methods are used. We also suggest that in the future 223 development of Tn5-based epigenomic profiling methods, repressive marks such as H3K27me3 224 or H3K9me3 should be used in evaluating the confounding open chromatin signals, instead of 225 the active H3K4me3 mark used in the original publications of these methods. Since H3K4me3 226 largely colocalizes with open chromatins in mESCs, even the method mainly captures open 227 chromatin signals, the use of H3K4me3 to evaluate would still show high correlation with bulk 228 H3K4me3 ChIP-seq signals. Finally, cautions should be taken when interpreting data generated 229 by Tn5-based epigenomic profiling methods due to the high FPR of open chromatin artefacts. 230 231

232

233 **References**

- Carter, B. & Zhao, K. The epigenetic basis of cellular heterogeneity. *Nature reviews*.
 Genetics 22, 235-250 (2021).
- Brind'Amour, J. et al. An ultra-low-input native ChIP-seq protocol for genome-wide
 profiling of rare cell populations. *Nature communications* 6, 6033 (2015).
- Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin
 state. *Nature biotechnology* 33, 1165-1172 (2015).
- 241 4. Zhang, B. et al. Allelic reprogramming of the histone modification H3K4me3 in early
 242 mammalian development. *Nature* 537, 553-557 (2016).

Wang & Zhang

243	5.	Skene, P.J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution
244		mapping of DNA binding sites. <i>Elife</i> 6 (2017).
245	6.	Ku, W.L. et al. Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile
246		histone modification. Nature methods 16, 323-325 (2019).
247	7.	Schmid, M., Durussel, T. & Laemmli, U.K. ChIC and ChEC; genomic mapping of
248		chromatin proteins. Molecular cell 16, 147-157 (2004).
249	8.	Liu, X. et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-
250		implantation embryos. <i>Nature</i> 537 , 558-562 (2016).
251	9.	Zheng, H. et al. Resetting Epigenetic Memory by Reprogramming of Histone
252		Modifications in Mammals. Molecular cell 63, 1066-1079 (2016).
253	10.	Wang, C. et al. Reprogramming of H3K9me3-dependent heterochromatin during
254		mammalian embryo development. Nat Cell Biol 20, 620-631 (2018).
255	11.	Chen, Z., Djekidel, M.N. & Zhang, Y. Distinct dynamics and functions of H2AK119ub1
256		and H3K27me3 in mouse preimplantation embryos. <i>Nature genetics</i> 53 , 551-563 (2021).
257	12.	Mei, H. et al. H2AK119ub1 guides maternal inheritance and zygotic deposition of
258		H3K27me3 in mouse embryos. Nature genetics 53, 539-550 (2021).
259	13.	Reznikoff, W.S. Transposon Tn5. Annu Rev Genet 42, 269-286 (2008).
260	14.	Adey, A. et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by
261		high-density in vitro transposition. Genome biology 11, R119 (2010).
262	15.	Picelli, S. et al. Tn5 transposase and tagmentation procedures for massively scaled
263		sequencing projects. Genome research 24, 2033-2040 (2014).
264	16.	Kaya-Okur, H.S. et al. CUT&Tag for efficient epigenomic profiling of small samples and
265		single cells. Nature communications 10, 1930 (2019).
266	17.	Wang, Q. et al. CoBATCH for High-Throughput Single-Cell Epigenomic Profiling.
267		<i>Molecular cell</i> 76 , 206-216 e207 (2019).
268	18.	Carter, B. et al. Mapping histone modifications in low cell number and single cells using
269		antibody-guided chromatin tagmentation (ACT-seq). Nature communications 10, 3747
270		(2019).
271	19.	Ai, S. et al. Profiling chromatin states using single-cell itChIP-seq. Nat Cell Biol 21, 1164-
272		1172 (2019).
273	20.	Harada, A. et al. A chromatin integration labelling method enables epigenomic profiling
274		with lower input. Nat Cell Biol 21, 287-296 (2019).
275	21.	Liu, B. et al. The landscape of RNA Pol II binding reveals a stepwise transition during
276		ZGA. Nature 587, 139-144 (2020).
277	22.	Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y. & Greenleaf, W.J. Transposition of
278		native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-
279		binding proteins and nucleosome position. Nature methods 10, 1213-1218 (2013).
280	23.	Kaya-Okur, H.S., Janssens, D.H., Henikoff, J.G., Ahmad, K. & Henikoff, S. Efficient low-
281		cost chromatin profiling with CUT&Tag. Nature protocols 15, 3264-3283 (2020).
282	24.	Perino, M. et al. MTF2 recruits Polycomb Repressive Complex 2 by helical-shape-
283		selective DNA binding. Nature genetics 50, 1002-1010 (2018).

Wang & Zhang

11

- 284 25. Encode Project Consortium et al. Expanded encyclopaedias of DNA elements in the human
 285 and mouse genomes. *Nature* 583, 699-710 (2020).
- 286 26. Wu, J. et al. The landscape of accessible chromatin in mammalian preimplantation embryos.
 287 *Nature* 534, 652-657 (2016).

Wang & Zhang

289 Methods

290

Data collection. In the original papers that described each of the Tn5-based method, most used 291 292 H3K4me3 and/or H3K27me3 in mESCs for validation. However, the H3K4me3 in mESCs is mainly located at promoters in open chromatin regions. It is almost impossible to discriminate 293 the peaks generated by true H3K4me3 or open chromatins. Thus, we used the repressed marker 294 H3K27me3 in mESCs to evaluate the Tn5-based epigenomic profiling methods (summarized in 295 296 Supplementary Table 1), which had the most publicly available datasets for different methods besides H3K4me3. For multiple replicates with the same or different number of cells for each 297 method, we used the one with the best signal-to-noise ratio as the representative result for each 298 299 method.

300

Peak calling and signal track generation. For ChIP-seq, ULI-NChIP and Tn5-based methods, 301 raw sequencing reads were first trimmed using Trimmomatic²⁷ (version 0.39) to remove 302 303 sequencing adaptors and low-quality reads. The cleaned reads were mapped to mm10 reference genome using bowtie2²⁸ (version 2.4.2) with parameters: --local --very-sensitive-local --no-unal -304 -no-mixed --no-discordant --dovetail -I 10 -X 700 --soft-clipped-unmapped-tlen. PCR duplicates 305 were removed with Picard MarkDuplicates (version 2.23.4). Reads with mapping quality at least 306 307 30 were kept. For Tn5-based methods, proper paired reads with fragment length at least 178bp (nucleosome DNA size $140bp + 2 \times Tn5$ steric hindrance 19bp at both sides) were kept. For Tn5-308 based methods, to increase peaks resolution, the start and end positions for each fragment (one 309 read pair) were shifted for 19bp toward internal to account for the steric hindrance of Tn5 310 enzyme. Peaks were called using MACS 2^{29} callpeak (version 2.2.7.1) with parameters: -B – 311 SPMR -p 1e-4 -g mm --broad --broad-cutoff 1e-4 --keep-dup all --scale-to large. Peaks were 312 further filtered with q-value<0.01. The fold-change signal tracks were generated using MACS2 313 bdgcmp with input of treat-pileup and control-lambda bedgraph files generated from MACS2 314 callpeak in the last step. Peaks overlapping with mm10 blacklist regions 315

Wang & Zhang

316	(https://www.encodeproject.org/files/ENCFF547MET/) were removed. The ChIP-seq results
317	were pooling of two replicates. The ULI-NChIP results were pooling of all four replicates. The
318	ATAC-seq and DNase-seq datasets were analyzed using ENCODE ATAC-seq pipeline (version
319	1.9.3, https://github.com/ENCODE-DCC/atac-seq-pipeline).
320	
321	Peak comparison. Peaks were compared using bedtools ³⁰ intersect (version 2.29.2). Peaks with
322	at least half-length intersecting with ChIP-seq / ATAC-seq / DNase-seq peaks were considered as
323	overlapping (bedtools intersect parameters for getting overlapping peaks: -u -f 0.5; parameters
324	for getting non-overlapping peaks: -v -f 0.5). The signal enrichment heatmaps were plotted using
325	deeptools ³¹ (version 3.5.0) computeMatrix and plotHeatmap. The TSSs of coding genes in the
326	mouse genome were from GENCODE ³² mouse gene set M24. The genome browser snapshot
327	was generated with R package karyoploteR ³³ (version 1.18.0). The Pearson correlation and
328	clustering analysis were performed using deeptools multiBigwigSummary and plotCorrelation
329	with 5kb bin size and outliers removed.
330	
331	Data availability
332	The public datasets used in this study are summarized in Supplementary Table 1.
333	
334	Code availability
335	The code used to analyze the sequencing data is available at GitHub:
336	https://github.com/YiZhang-lab/ChIPpipes
337	
338	
339	References
340	27. Bolger, A.M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
341 342	 sequence data. <i>Bioinformatics</i> 30, 2114-2120 (2014). Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. <i>Nature methods</i>
343	9 , 357-359 (2012).
344	29. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome biology 9, R137

Wang & Zhang

14

345		(2008).
346	30.	Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic
347	2.1	features. <i>Bioinformatics</i> 26 , 841-842 (2010).
348 349	31.	Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. <i>Nucleic acids research</i> 44 , W160-165 (2016).
350	32.	Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes.
351		Nucleic acids research 47, D766-D773 (2019).
352 353	33.	Gel, B. & Serra, E. karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data. <i>Bioinformatics</i> 33 , 3088-3090 (2017).
354		
355		
356		
357	Ackno	owledgements
358	We that	ank Drs. Chunxia Zhang and Zhiyuan Chen for discussion and critical reading of the
359	manus	cript. This project was supported by the NIH (R01HD092465) and the HHMI. Y.Z. is an
360	Invest	igator of the Howard Hughes Medical Institute.
361		
362	Autho	r contributions
363	Y.Z. sı	apervised the project. M.W. performed the analysis. M.W. and Y.Z. wrote the manuscript.
364		
365	Comp	eting interests
366	The au	thors declare no competing interests.
367		
368		
369		

Wang & Zhang

15

371 Figure legends

372

373 Fig. 1 | Signal distributions of Tn5-based epigenomic profiling methods

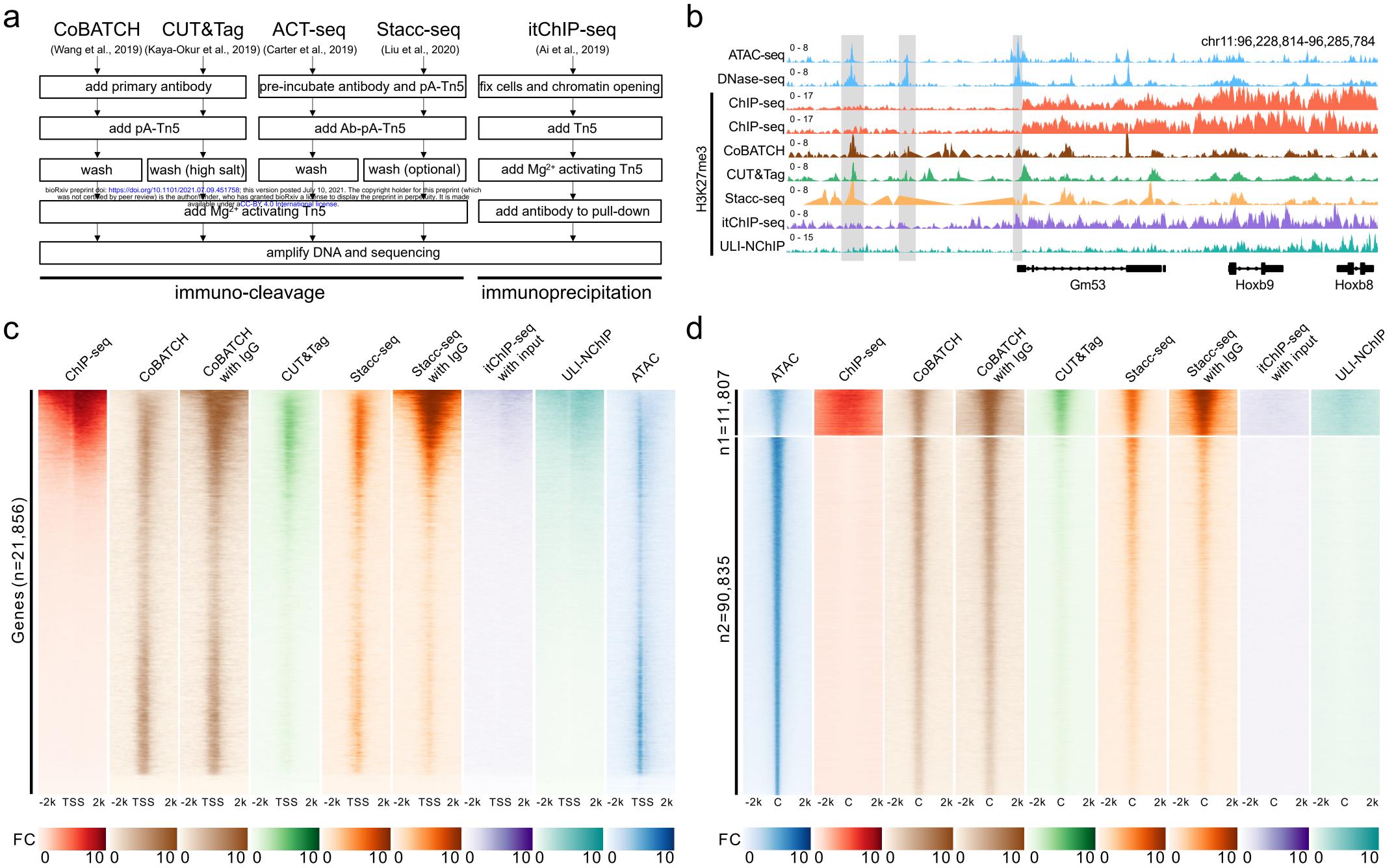
- a, Major experimental procedures for different Tn5-based epigenomic profiling methods. pA-
- Tn5: Protein A and Tn5 fusion complex; Ab: primary antibody.
- b, Genome browser snapshot around Hoxb cluster in mESCs for open chromatin fold-change
- signals (ATAC-seq and DNase-seq), and H3K27me3 fold-change signals for two ChIP-seq
- datasets, Tn5-based methods and ULI-NChIP. The itChIP-seq fold-change signals were
- normalized by input. The signals for CoBATCH, CUT&Tag and Stacc-seq were fold-changes
- 380 over background.
- 381 c, H3K27me3 signal enrichment for different methods around the transcription start sites
- 382 (TSS±2kb) of mouse coding genes, and was compared to ATAC-seq signals around the TSSs
- 383 (FC: fold-change over background/input).
- **d**, Signal enrichment for different methods at all open chromatin regions (n1: open chromatin
- regions with H3K27me3 ChIP-seq signals; n2: open chromatin regions without H3K27me3
- 386 ChIP-seq signals; C: center of ATAC-seq peaks; FC: fold-change over background/input).
- 387

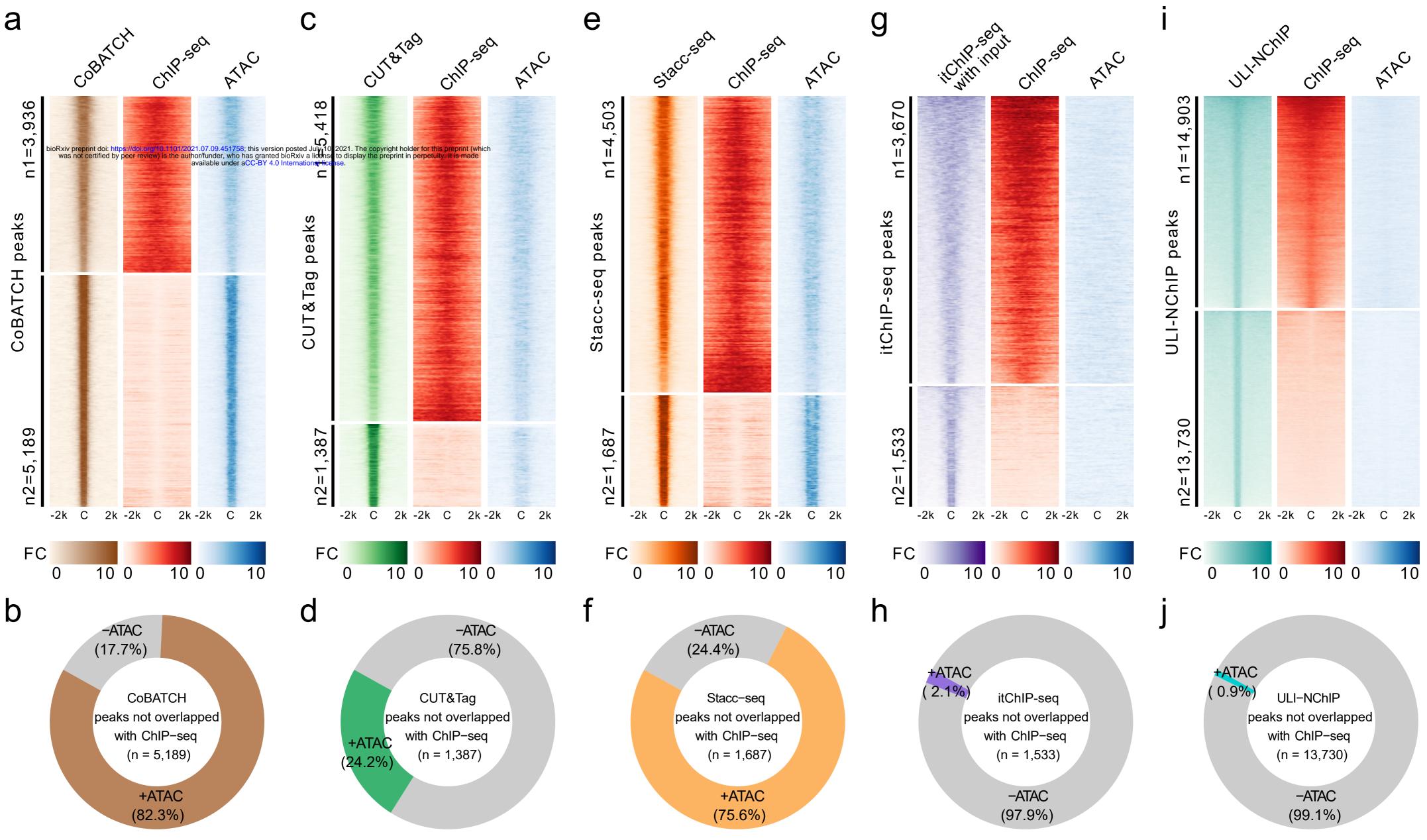
Fig. 2 | Evaluation of peaks from Tn5-based epigenomic profiling methods

389 Significant peaks (p-value<1e-4 and q-value<0.01) called from each method (a: CoBATCH, c:

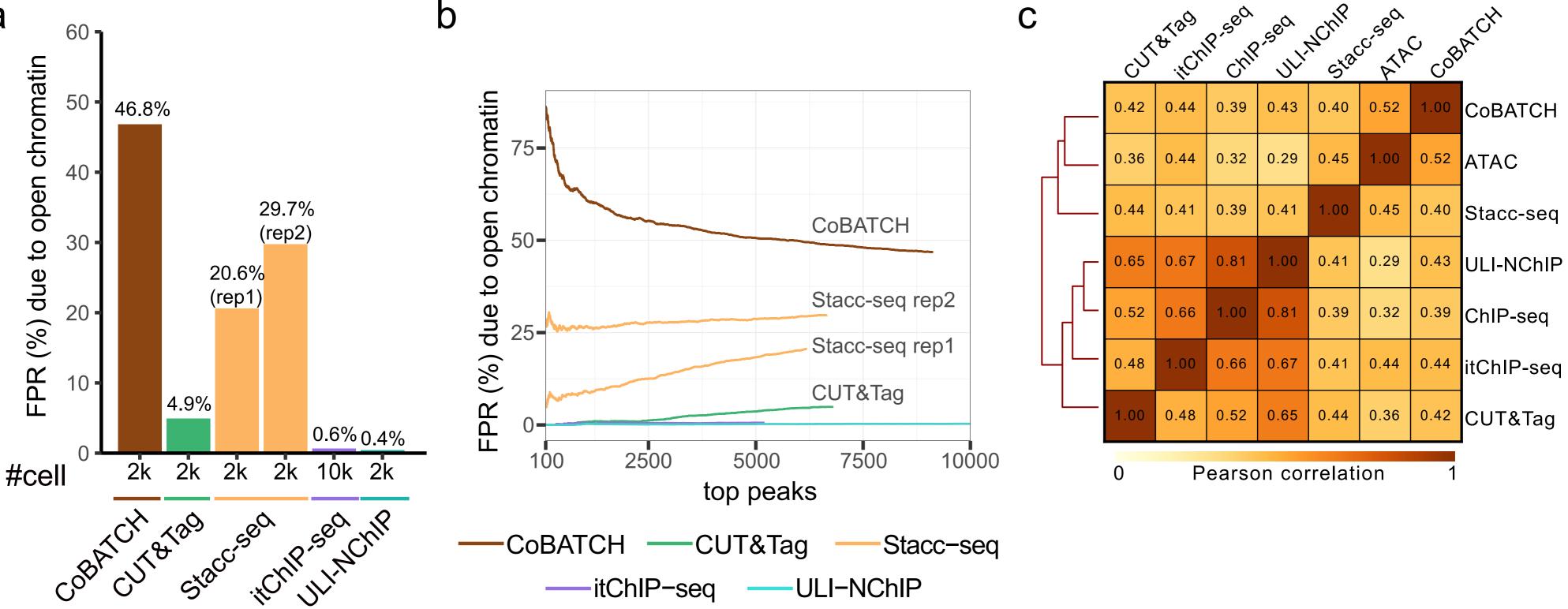
390 CUT&Tag, e: Stacc-seq, g: itChIP-seq, i: ULI-NChIP) were divided into two parts: n1 – peaks

391 overlapping with ChIP-seq peaks, n2 – peaks not overlapping with ChIP-seq peaks, and


392 compared with open chromatin signals measured by ATAC-seq (C: center of peaks called from

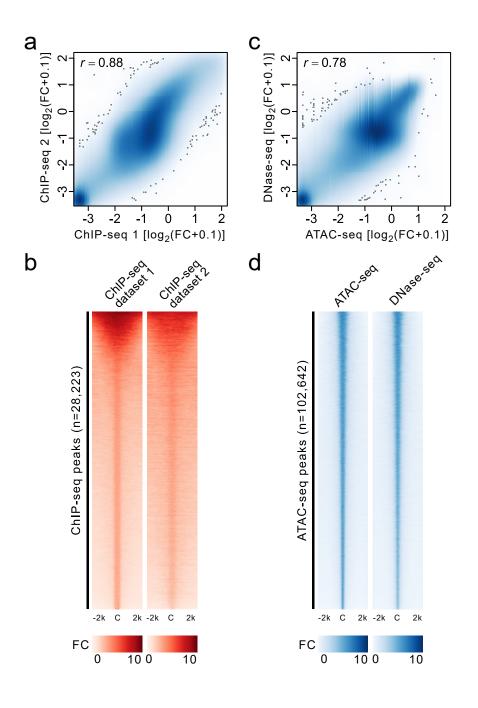

- each method; FC: fold-change over background/input). The itChIP-seq results shown in **g** and **h**
- were from 10k cells. For each method (b: CoBATCH, d: CUT&Tag, f: Stacc-seq, h: itChIP-seq,
- 395 **j**: ULI-NChIP), peaks that were not overlapped with ChIP-seq peaks were further compared to
- 396 ATAC-seq peaks (+ATAC: overlapping with ATAC-seq peaks; -ATAC: not overlapping with
- 397 ATAC-seq peaks).

Wang & Zhang


398 Fig. 3 | False positive rates of Tn5-based methods due to open chromatin

- 399 **a**, Overall false positive rate (FPR) due to open chromatin (measured by ATAC-seq) artefacts for
- 400 each method. The number of cells (#cell) used for each library was indicated below each bar.
- 401 **b**, False positive rate due to open chromatin (measured by ATAC-seq) artefacts for the top peaks
- 402 in each method.
- 403 c, Clustering of global H3K27me3 signals of each method with ATAC-seq and H3K27me3 ChIP-
- 404 seq based on the Pearson correlation between any two methods (The Pearson correlation
- 405 coefficients were shown in each box; bin size: 5kb).
- 406
- 407
- 408

Supplementary for

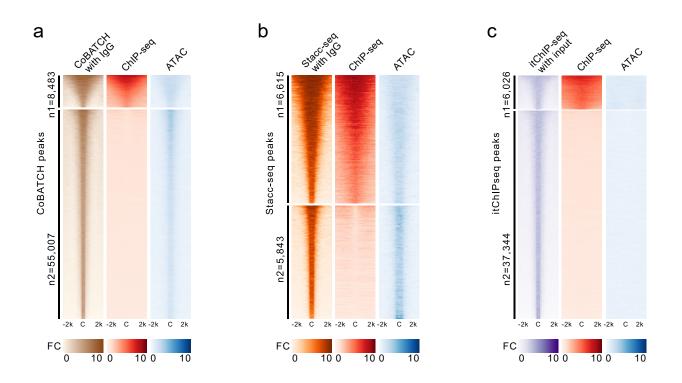

Tn5 transposase-based epigenomic profiling methods are prone to open chromatin bias

Meng Wang^{1,2,3} and Yi Zhang^{1,2,3,4,5,*}

¹Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA; ²Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA; ³Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; ⁴Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; ⁵Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, Massachusetts 02115, USA.

^{*}To whom correspondence should be addressed

E-mail: yzhang@genetics.med.harvard.edu

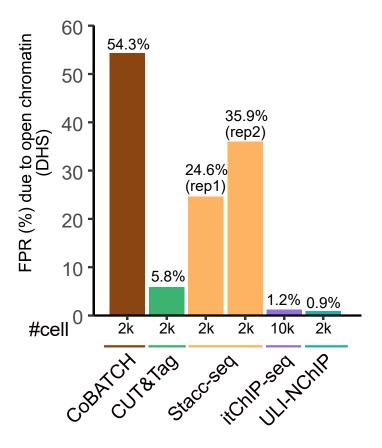

Supplementary Fig. 1 | Different ChIP-seq and ATAC-seq datasets in mESC are consistent

a, Pearson correlation of two H3K27me3 ChIP-seq datasets in mESC (bin size: 5kb).

b, Heatmap comparing H3K27me3 fold-change (FC) signals at the ChIP-seq peaks of two ChIP-seq datasets in mESCs (C: center of peaks in ChIP-seq dataset 1).

c, Pearson correlation of ATAC-seq and DNase-seq in mESC (bin size: 5kb).

d, Heatmap comparing open chromatin fold-change (FC) signals measured by ATAC-seq and DNase-seq in mESCs (C: center of peaks in ATAC-seq).



Supplementary Fig. 2 | Evaluation of peaks called from different methods with input / IgG normalization

a, Significant peaks (q-value<0.01) called from CoBATCH with IgG control normalization were compared with open chromatin signals measured by ATAC-seq (n1: CoBATCH peaks overlapping with ChIP-seq peaks; n2: CoBATCH peaks not overlapping with ChIP-seq peaks; C: center of CoBATCH peaks; FC: fold-change over IgG control).

b, Significant peaks (q-value<0.01) called from Stacc-seq with IgG control normalization were compared with open chromatin signals measured by ATAC-seq (n1: Stacc-seq peaks overlapping with ChIP-seq peaks; n2: Stacc-seq peaks not overlapping with ChIP-seq peaks; C: center of Stacc-seq peaks; FC: fold-change over IgG control).

c, Significant peaks (q-value<0.01) called from itChIP-seq (100 cells) with input control normalization were compared with open chromatin signals measured by ATAC-seq (n1: itChIP-seq peaks overlapping with ChIP-seq peaks; n2: itChIP-seq peaks not overlapping with ChIP-seq peaks; C: center of itChIP-seq peaks; FC: fold-change over input control).

Supplementary Fig. 3 | Overall false positive rate (FPR) due to open chromatin (measured by DNase-seq) artefacts for each method. The number of cells (#cell) used for each library was indicated below each bar.

Method	Sample name	Cell number	Data source	Accession
СоВАТСН	2k_mESC	2,000	GEO	GSM3711220
	100_mESC_rep1	100	GEO	GSM3711218
	100_mESC_rep2	100	GEO	GSM3711219
	IgG_2k_mESC_rep1	2,000	GEO	GSM3893775
	IgG_2k_mESC_rep2	2,000	GEO	GSM3893776
CUT&Tag	2k_mESC_rep1	2,000	GEO	GSM4476407
	2k_mESC_rep2	2,000	GEO	GSM4476406
	2k_mESC_rep1	2,000	GEO	GSM4010607
Stacc-seq	2k_mESC_rep2	2,000	GEO	GSM4010608
	IgG_mESC	NA	GEO	GSM4010609
	10k_mESC_rep1	10,000	GEO	GSM3609659
	10k_mESC_rep2	10,000	GEO	GSM3609660
itChIP-seq	100_mESC_rep1	100	GEO	GSM3609661
	100_mESC_rep2	100	GEO	GSM3609662
	input	10,000	GEO	GSM3609658
	500_mESC_rep1	500	GEO	GSM2082708
	500_mESC_rep2	500	GEO	GSM2082709
ULI-NChIP	500_mESC_rep3	500	GEO	GSM2082710
	500_mESC_rep4	500	GEO	GSM2082711
	input	500	GEO	GSM2082705
	mESC_rep1	bulk	GEO	GSM2472743
ChIP-seq (dataset 1)	mESC_rep2	bulk	GEO	GSM2472744
(untraster 1)	input	bulk	GEO	GSM2472755
	mESC_rep1	bulk	ENCODE	ENCFF001ZIB
ChIP-seq	mESC_rep2	bulk	ENCODE	ENCFF001ZIH
(dataset 2)	input_rep1	bulk	ENCODE	ENCFF001ZGK
	input_rep2	bulk	ENCODE	ENCFF001ZGM
ATAC-seq	50k_mESC	50,000	GEO	GSM2156965
DNase-seq	bulk	bulk	ENCODE	ENCSR000CMW

Supplementary Table 1 | Summary of public datasets used in this study.