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Abstract 28 

 29 

Epigenetic studies of rare biological samples like mammalian oocytes and preimplantation 30 

embryos require low input or even single cell epigenomic profiling methods. To reduce sample 31 

loss and avoid inefficient immunoprecipitation, several chromatin immuno-cleavage-based 32 

methods using Tn5 transposase fused with Protein A/G have been developed to profile histone 33 

modifications and transcription factor bindings using small number of cells. The Tn5 34 

transposase-based epigenomic profiling methods are featured with simple library construction 35 

steps in the same tube, by taking advantage of Tn5 transposase’s capability of simultaneous DNA 36 

fragmentation and adaptor ligation. However, the Tn5 transposase prefers to cut open chromatin 37 

regions. Our comparative analysis shows that Tn5 transposase-based profiling methods are prone 38 

to open chromatin bias. The high false positive signals due to biased cleavage in open chromatin 39 

could cause misinterpretation of signal distributions and dynamics. Rigorous validation is needed 40 

when employing and interpreting results from Tn5 transposase-based epigenomic profiling 41 

methods. 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 
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Introduction 51 

Due to the sample loss and inefficient immunoprecipitation of traditional chromatin 52 

immunoprecipitation (ChIP)-based methods, low-input epigenomic profiling methods are needed 53 

for studying rare samples such as mammalian oocytes and preimplantation embryos1. Several 54 

low-input chromatin immunoprecipitation followed by sequencing (ChIP-seq) methods including 55 

ULI-NChIP2, scChIP-seq3 and STAR ChIP-seq4 have been developed. To overcome inefficient 56 

immunoprecipitation, immunoprecipitation-free methods, such as CUT&RUN5 and scChIC-seq6 57 

that use chromatin immuno-cleavage (ChIC)7 strategy, have been developed. These low-input 58 

methods have been widely used in studying epigenome reprogramming during early embryonic 59 

development which have revealed distinct dynamics of different epigenetic markers4, 8-12. 60 

 61 

Recently, the Tn5 transposase-based13 library construction is getting popular because it can 62 

fragment DNA while simultaneously adding library adaptors thus simplifying experimental 63 

procedures and reducing sample loss14, 15. Tn5 transposase-based epigenomic profiling methods 64 

utilize Protein A (or Protein G) fused with Tn5 transposase (pA-Tn5) to cleave DNA at the 65 

targets of primary antibody, allowing all procedures to be completed in the same tube without 66 

immunoprecipitation step, which largely avoided sample loss. Several Tn5-based methods have 67 

been developed to capture histone modifications or transcription factor (TF) binding using small 68 

number of cells or even single cell, including CUT&Tag16, CoBATCH17, ACT-seq18, itChIP-69 

seq19, ChIL-seq20 and Stacc-seq21. However, the Tn5 transposase is known to prefer accessible 70 

DNA regions22. It has been noted that some of the Tn5-based methods are confounded by DNA 71 

accessibility23, but no systematic comparative analysis has been done to determine to what extent 72 

the results of these methods are affected by chromatin accessibility. Here we present systematic 73 

comparative analyses which reveal that, for some of the methods, overall ~30-50% false positive 74 

peaks can be contributed by open chromatin artefacts. Such high level of false positive peaks 75 

could affect data interpretation leading to false conclusions, which raises concerns on choosing, 76 

developing and interpreting results from Tn5-based epigenomic profiling methods. 77 
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Results 78 

 79 

Tn5-based epigenomic profiling methods have varied level of biases toward open 80 

chromatins 81 

CoBATCH17, CUT&Tag16, ACT-seq18 and Stacc-seq21 are very similar methods, which are based 82 

on the in situ immuno-cleavage strategy (Fig. 1a). CoBATCH and CUT&Tag add primary 83 

antibodies first, then add the pA-Tn5, while ACT-seq and Stacc-seq pre-incubate primary 84 

antibodies with pA-Tn5. However, besides cleavage at the target sites, the free pA-Tn5 has the 85 

potential to tagment open chromatins. To wash out free pA-Tn5, these methods employ different 86 

washing conditions. The CUT&Tag uses high salt (300 mM NaCl) washing to suppress 87 

background tagmentation, CoBATCH and ACT-seq utilize milder washing conditions, while the 88 

washing step is optional in Stacc-seq. The itChIP-seq, on the other hand, is an 89 

immunoprecipitation-based method that utilizes Tn5 to tagment DNA first before antibodies are 90 

added to pull-down the target fragments. Thus, theoretically the itChIP-seq method should not be 91 

confounded by open chromatins as antibody-based selectivity is applied after tagmentation.  92 

 93 

To perform systematic comparative analysis of the Tn5-based epigenomic profiling methods, we 94 

collected publicly available H3K27me3 data (Supplementary Table 1) of mouse embryonic 95 

stem cells (mESCs) generated by CoBATCH, CUT&Tag, Stacc-seq and itChIP-seq. Since the 96 

protocols for ACT-seq and Stacc-seq are almost identical, and the original ACT-seq study did not 97 

include H3K27me3, we analyzed the Stacc-seq data with conclusions applicable to ACT-seq. The 98 

bulk ChIP-seq of H3K27me3 in mESCs was used as a reference for comparing the H3K27me3 99 

peaks derived from these Tn5-based methods. The two different bulk ChIP-seq datasets24, 25 were 100 

highly similar (Supplementary Fig. 1a, b) and the peaks were considered as true positive peaks 101 

in mESCs. To determine whether each Tn5-based method was confounded by open chromatin, 102 

we asked whether peaks that were not overlapped with bulk ChIP-seq peaks were instead 103 

overlapped with open chromatin peaks derived from ATAC-seq in mESCs. The open chromatin 104 
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revealed by ATAC-seq26 were highly similar to that revealed by DNase-seq25 in mESCs 105 

(Supplementary Fig. 1c, d). As a control for low-input epigenomic profiling method without 106 

using Tn5 transposase, we included the H3K27me3 dataset in mESCs generated by ULI-NChIP8. 107 

A genome browser view around the Hoxb locus comparing the signals of Tn5-based methods 108 

with those of bulk ChIP-seq, ULI-NChIP, and open chromatin (ATAC-seq and DNase-seq) (Fig. 109 

1b) revealed: 1) CoBATCH, CUT&Tag, and Stacc-seq detected H3K27me3 peaks not present in 110 

ChIP-seq or ULI-NChIP but overlapping with ATAC-seq and DNase-seq peaks (shaded); 2) For 111 

peaks overlapping with ChIP-seq, the peak patterns were more similar to ATAC-seq and DNase-112 

seq rather than the ChIP-seq; 3) itChIP-seq showed the most similar pattern to that of the ChIP-113 

seq in this region, which was coincident with the fact that the immunoprecipitation-based itChIP-114 

seq procedure is different from the other pA-Tn5 immuno-cleavage-based methods (Fig. 1a).  115 

 116 

The above observation raised the possibility that at least some of the Tn5-based methods may be 117 

biased toward open chromatin to generate false positive peaks. To explore this possibility, we 118 

analyzed the overall signal distribution of these methods by first focusing on the transcription 119 

start sites (TSS) of all coding genes. An analysis of the ChIP-seq datasets indicated that the 120 

H3K27me3 signals were enriched in the TSSs of a subset of genes consisted of mainly the 121 

Polycomb-group (PcG) targets, but with the majority of the genes, mostly of non-PcG targets, 122 

lack the H3K27me3 signals around their TSSs (Fig. 1c). However, the CoBATCH and Stacc-seq 123 

methods detected H3K27me3 enrichment at almost all the TSS regions including the non-PcG 124 

targets, which were more similar to the open chromatin patterns detected by ATAC-seq (Fig. 1c). 125 

The CUT&Tag method detected a weak signal enrichment at the TSSs without H3K27me3 ChIP-126 

seq signals. The itChIP-seq and ULI-NChIP methods detected a pattern more similar to that of 127 

ChIP-seq although their signals were generally weaker (Fig. 1c). itChIP-seq is not an 128 

immunoprecipitation-free method, thus its signals need to be normalized by input control, similar 129 

to ChIP-seq and ULI-NChIP. For the immunoprecipitation-free methods, input DNA or IgG 130 

control is usually not needed for signal normalization. Nevertheless, we tested whether the 131 
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confounding of open chromatin signals could be eliminated by using input/IgG control. Using 132 

the publicly available input/IgG controls for CoBATCH and Stacc-seq (no input/IgG control for 133 

CUT&Tag), we recalculated the H2K27me3 enrichment and found that normalizing with 134 

input/IgG did not improve the CoBATCH results (Fig. 1c). On the other hand, this normalization 135 

did enhance the signals of Stacc-seq overlapping with ChIP-seq, while reduced the signals not 136 

overlapping with ChIP-seq (Fig. 1c). However, the IgG control normalized Stacc-seq 137 

H3K27me3 profile was still more similar to the ATAC-seq profile than that of the H3K27me3 138 

ChIP-seq at the non-PcG targets (Fig. 1c). 139 

 140 

Next, we focused our analysis on open chromatin regions by dividing the open chromatin regions 141 

into two groups that with or without H3K27me3 ChIP-seq signals (Fig. 1d). The CoBATCH and 142 

Stacc-seq detected signals exhibit a clear enrichment at the open chromatin regions without 143 

ChIP-seq signals, and input/IgG control normalization did not change the situation. The 144 

CUT&Tag method detected weak signals, while itChIP-seq and ULI-NChIP detected no signals 145 

at the open chromatin regions without ChIP-seq signals (Fig. 1d). These results indicate that 146 

some of the Tn5-based methods, particularly the CoBATCH and Stacc-seq, are biased toward 147 

open chromatin peaks that do not have H3K27me3 ChIP-seq signals. 148 

 149 

Open chromatin is the source of false positive peaks detected by Tn5-based methods  150 

Next we performed quantitative analysis to determine the level that each of the Tn5-based 151 

method is confounded by open chromatin. To this end, we used the same criteria (p-value < 1e-4 152 

and q-value < 0.01) in peak calling for each method. Peaks that overlapped with ChIP-seq peaks 153 

were considered as true positives. Peaks that did not overlap with ChIP-seq peaks were 154 

considered as potential false positive signals, and were further analyzed to determine whether 155 

they could be mapped to open chromatin (Fig. 2). We found 5,189 out of the 9,125 CoBATCH 156 

peaks did not overlap with ChIP-seq peaks, but were mapped to open chromatin with strong 157 

correlation to ATAC-seq signals (Fig. 2a). Indeed, 82.3% (4,270 out of 5,189) of the CoBATCH 158 
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peaks that did not overlap with ChIP-seq peaks were overlapped with ATAC-seq peaks (Fig. 2b). 159 

Peaks derived from CoBATCH normalized by IgG control showed even more false positives and 160 

ATAC-seq signals also enriched in these false positive peaks (Supplementary Fig. 2a). A similar 161 

analysis of the CUT&Tag dataset revealed 1,387 out of the 6,805 peaks were not overlapped 162 

with ChIP-seq peaks (Fig. 2c). Of these non-overlapping peaks, 24.2% (335 out of 1,387) were 163 

overlapped with ATAC-seq peaks (Fig. 2d). For Stacc-seq, 1,687 out of the 6,190 peaks were not 164 

overlapped with ChIP-seq peaks, but showed strong open chromatin signals (Fig. 2e). Of these 165 

non-overlapping peaks, 75.6% (1,275 out of 1,687) were overlapped with ATAC-seq peaks (Fig. 166 

2f). Peaks derived from Stacc-seq normalized by IgG control still showed open chromatin 167 

enrichment for the false positive peaks (Supplementary Fig. 2b). On the other hand, the itChIP-168 

seq peaks that showed no overlap with ChIP-seq peaks also did not overlap with ATAC-seq 169 

peaks (Fig. 2g, h, Supplementary Fig. 2c). For ULI-NChIP, although about half of the peak 170 

regions showed no ChIP-seq signals, no ATAC-seq signals were detected in these non-171 

overlapping regions (Fig. 2i, j). Collectively, these results indicate that the great majority of the 172 

non-overlapping peaks detected by CoBATCH or Stacc-seq, and some of the non-overlapping 173 

peaks detected by CUT&Tag are mapped to open chromatin regions, and they could be false 174 

positive artefacts. 175 

 176 

High false positive rate due to open chromatin affected global distribution of peaks 177 

To determine the relative reliability of the different Tn5-based epigenomic profiling methods, we 178 

next calculated the false positive rate (FPR) caused by the Tn5 bias toward open chromatins. The 179 

FPR is calculated by the number of peaks not overlapping with ChIP-seq but overlapping with 180 

ATAC-seq peaks, divided with the total number of peaks (Fig. 3a, Supplementary Fig. 3). The 181 

FPR for CoBATCH was as high as 46.8-54.3%, in contrast the FPR for CUT&Tag was 4.9-5.8%. 182 

For Stacc-seq, its FPR was 20.6-35.9%. The itChIP-seq and ULI-NChIP were almost not 183 

affected by open chromatin artefacts. Since the FPRs calculated here only considered the non-184 

overlapping peaks, and because the overlapping peaks could also be generated from open 185 
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chromatin, instead of real H3K27me3 peaks as exemplified in Fig. 1b, the FPRs presented here 186 

represented the lower limit. To calculate the FPR without a fixed p-value or q-value cutoff for the 187 

peaks, we assessed the FPRs for top peaks ranked by p-values for each method. Results shown in 188 

Fig. 3b indicated that most of the top peaks in CoBATCH represented open chromatin signals. 189 

Interestingly, while replicate 1 of the Stacc-seq showed lower FPR for the top peaks but the FPR 190 

gradually increased with more peaks, replicate 2 of Stacc-seq showed a relatively consistent FPR 191 

(Fig. 3b). Consistent with the high FPR, clustering analysis indicated that CoBATCH and Stacc-192 

seq globally resembled open chromatin signals more closely than the H3K27me3 signals (Fig. 193 

3c). These results indicate that CoBATCH and Stacc-seq have high false positive rates and thus 194 

great care should be taken in interpreting the data generated by these two methods. 195 

 196 

 197 

Discussion 198 

 199 

In summary, our analysis reveals that the Tn5-based epigenomic profiling methods could capture 200 

substantial confounding open chromatin signals. The severity of open chromatin bias varies a lot 201 

among the different Tn5-based. CoBATCH and Stacc-seq are pone to open chromatin bias with 202 

high false positive rates. Thus, no matter adding the antibody and pA-Tn5 sequentially 203 

(CoBATCH) or pre-incubating antibody with pA-Tn5 and adding together (Stacc-seq), both 204 

procedures could result in high levels of bias toward open chromatin. Although CUT&Tag 205 

showed very weak H3K27me3 signals in non-PcG targets that resembled open chromatin 206 

signals, its overall false positive rate due to open chromatin is much lower than that from the 207 

CoBATCH despite both share almost identical experimental procedures (Fig. 1a). Thus, stringent 208 

washing with high salt before tagmentation employed in the CUT&Tag method must have 209 

contribute to the reduced open chromatin artefacts23, but would affect sites with weak binding. 210 

Signal normalization with IgG control could not eliminate the confounding signals from open 211 

chromatins for CoBATCH and Stacc-seq, while CUT&Tag without IgG control could have much 212 
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lower biases. This coincides with the practice that no IgG control is needed for in situ immuno-213 

cleavage-based profiling methods. The immunoprecipitation-based itChIP-seq utilizes Tn5 214 

transposase to tagment DNA before immunoprecipitating the target DNA, thus its result is not 215 

affected by open chromatins. However, it is not an immunoprecipitation-free method, which 216 

requires input control, and its signal-to-noise intensities are not comparable to the immuno-217 

cleavage-based methods when using small number of cells. 218 

 219 

Given that Tn5-based methods are prone to open chromatin bias, cautions should be taken when 220 

the Tn5-based epigenomic profiling methods are used. We strongly recommend that evaluation 221 

of the confounding open chromatin signals and estimation of the FPR are performed under 222 

similar experimental conditions before these methods are used. We also suggest that in the future 223 

development of Tn5-based epigenomic profiling methods, repressive marks such as H3K27me3 224 

or H3K9me3 should be used in evaluating the confounding open chromatin signals, instead of 225 

the active H3K4me3 mark used in the original publications of these methods. Since H3K4me3 226 

largely colocalizes with open chromatins in mESCs, even the method mainly captures open 227 

chromatin signals, the use of H3K4me3 to evaluate would still show high correlation with bulk 228 

H3K4me3 ChIP-seq signals. Finally, cautions should be taken when interpreting data generated 229 

by Tn5-based epigenomic profiling methods due to the high FPR of open chromatin artefacts. 230 

 231 

 232 
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Methods 289 

 290 

Data collection. In the original papers that described each of the Tn5-based method, most used 291 

H3K4me3 and/or H3K27me3 in mESCs for validation. However, the H3K4me3 in mESCs is 292 

mainly located at promoters in open chromatin regions. It is almost impossible to discriminate 293 

the peaks generated by true H3K4me3 or open chromatins. Thus, we used the repressed marker 294 

H3K27me3 in mESCs to evaluate the Tn5-based epigenomic profiling methods (summarized in 295 

Supplementary Table 1), which had the most publicly available datasets for different methods 296 

besides H3K4me3. For multiple replicates with the same or different number of cells for each 297 

method, we used the one with the best signal-to-noise ratio as the representative result for each 298 

method. 299 

 300 

Peak calling and signal track generation. For ChIP-seq, ULI-NChIP and Tn5-based methods, 301 

raw sequencing reads were first trimmed using Trimmomatic27 (version 0.39) to remove 302 

sequencing adaptors and low-quality reads. The cleaned reads were mapped to mm10 reference 303 

genome using bowtie228 (version 2.4.2) with parameters: --local --very-sensitive-local --no-unal -304 

-no-mixed --no-discordant --dovetail -I 10 -X 700 --soft-clipped-unmapped-tlen. PCR duplicates 305 

were removed with Picard MarkDuplicates (version 2.23.4). Reads with mapping quality at least 306 

30 were kept. For Tn5-based methods, proper paired reads with fragment length at least 178bp 307 

(nucleosome DNA size 140bp + 2 × Tn5 steric hindrance 19bp at both sides) were kept. For Tn5-308 

based methods, to increase peaks resolution, the start and end positions for each fragment (one 309 

read pair) were shifted for 19bp toward internal to account for the steric hindrance of Tn5 310 

enzyme. Peaks were called using MACS229 callpeak (version 2.2.7.1) with parameters: -B –311 

SPMR -p 1e-4 -g mm --broad --broad-cutoff 1e-4 --keep-dup all --scale-to large. Peaks were 312 

further filtered with q-value<0.01. The fold-change signal tracks were generated using MACS2 313 

bdgcmp with input of treat-pileup and control-lambda bedgraph files generated from MACS2 314 

callpeak in the last step. Peaks overlapping with mm10 blacklist regions 315 
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(https://www.encodeproject.org/files/ENCFF547MET/) were removed. The ChIP-seq results 316 

were pooling of two replicates. The ULI-NChIP results were pooling of all four replicates. The 317 

ATAC-seq and DNase-seq datasets were analyzed using ENCODE ATAC-seq pipeline (version 318 

1.9.3, https://github.com/ENCODE-DCC/atac-seq-pipeline). 319 

 320 

Peak comparison. Peaks were compared using bedtools30 intersect (version 2.29.2). Peaks with 321 

at least half-length intersecting with ChIP-seq / ATAC-seq / DNase-seq peaks were considered as 322 

overlapping (bedtools intersect parameters for getting overlapping peaks: -u -f 0.5; parameters 323 

for getting non-overlapping peaks: -v -f 0.5). The signal enrichment heatmaps were plotted using 324 

deeptools31 (version 3.5.0) computeMatrix and plotHeatmap. The TSSs of coding genes in the 325 

mouse genome were from GENCODE32 mouse gene set M24. The genome browser snapshot 326 

was generated with R package karyoploteR33 (version 1.18.0). The Pearson correlation and 327 

clustering analysis were performed using deeptools multiBigwigSummary and plotCorrelation 328 

with 5kb bin size and outliers removed. 329 

 330 

Data availability 331 

The public datasets used in this study are summarized in Supplementary Table 1. 332 

 333 

Code availability 334 

The code used to analyze the sequencing data is available at GitHub: 335 

https://github.com/YiZhang-lab/ChIPpipes 336 

 337 
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Figure legends 371 

 372 

Fig. 1 | Signal distributions of Tn5-based epigenomic profiling methods  373 

a, Major experimental procedures for different Tn5-based epigenomic profiling methods. pA-374 

Tn5: Protein A and Tn5 fusion complex; Ab: primary antibody.  375 

b, Genome browser snapshot around Hoxb cluster in mESCs for open chromatin fold-change 376 

signals (ATAC-seq and DNase-seq), and H3K27me3 fold-change signals for two ChIP-seq 377 

datasets, Tn5-based methods and ULI-NChIP. The itChIP-seq fold-change signals were 378 

normalized by input. The signals for CoBATCH, CUT&Tag and Stacc-seq were fold-changes 379 

over background.  380 

c, H3K27me3 signal enrichment for different methods around the transcription start sites 381 

(TSS±2kb) of mouse coding genes, and was compared to ATAC-seq signals around the TSSs 382 

(FC: fold-change over background/input).  383 

d, Signal enrichment for different methods at all open chromatin regions (n1: open chromatin 384 

regions with H3K27me3 ChIP-seq signals; n2: open chromatin regions without H3K27me3 385 

ChIP-seq signals; C: center of ATAC-seq peaks; FC: fold-change over background/input). 386 

 387 

Fig. 2 | Evaluation of peaks from Tn5-based epigenomic profiling methods  388 

Significant peaks (p-value<1e-4 and q-value<0.01) called from each method (a: CoBATCH, c: 389 

CUT&Tag, e: Stacc-seq, g: itChIP-seq, i: ULI-NChIP) were divided into two parts: n1 – peaks 390 

overlapping with ChIP-seq peaks, n2 – peaks not overlapping with ChIP-seq peaks, and 391 

compared with open chromatin signals measured by ATAC-seq (C: center of peaks called from 392 

each method; FC: fold-change over background/input). The itChIP-seq results shown in g and h 393 

were from 10k cells. For each method (b: CoBATCH, d: CUT&Tag, f: Stacc-seq, h: itChIP-seq, 394 

j: ULI-NChIP), peaks that were not overlapped with ChIP-seq peaks were further compared to 395 

ATAC-seq peaks (+ATAC: overlapping with ATAC-seq peaks; -ATAC: not overlapping with 396 

ATAC-seq peaks). 397 
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Fig. 3 | False positive rates of Tn5-based methods due to open chromatin  398 

a, Overall false positive rate (FPR) due to open chromatin (measured by ATAC-seq) artefacts for 399 

each method. The number of cells (#cell) used for each library was indicated below each bar.  400 

b, False positive rate due to open chromatin (measured by ATAC-seq) artefacts for the top peaks 401 

in each method.  402 

c, Clustering of global H3K27me3 signals of each method with ATAC-seq and H3K27me3 ChIP-403 

seq based on the Pearson correlation between any two methods (The Pearson correlation 404 

coefficients were shown in each box; bin size: 5kb). 405 

 406 

 407 

 408 

 409 
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Supplementary Fig. 1 | Different ChIP-seq and ATAC-seq datasets in mESC are consistent  

a, Pearson correlation of two H3K27me3 ChIP-seq datasets in mESC (bin size: 5kb).  

b, Heatmap comparing H3K27me3 fold-change (FC) signals at the ChIP-seq peaks of two ChIP-

seq datasets in mESCs (C: center of peaks in ChIP-seq dataset 1).  

c, Pearson correlation of ATAC-seq and DNase-seq in mESC (bin size: 5kb).  

d, Heatmap comparing open chromatin fold-change (FC) signals measured by ATAC-seq and 

DNase-seq in mESCs (C: center of peaks in ATAC-seq). 
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Supplementary Fig. 2 | Evaluation of peaks called from different methods with input / IgG 

normalization  

a, Significant peaks (q-value<0.01) called from CoBATCH with IgG control normalization were 

compared with open chromatin signals measured by ATAC-seq (n1: CoBATCH peaks 

overlapping with ChIP-seq peaks; n2: CoBATCH peaks not overlapping with ChIP-seq peaks; C: 

center of CoBATCH peaks; FC: fold-change over IgG control).  

b, Significant peaks (q-value<0.01) called from Stacc-seq with IgG control normalization were 

compared with open chromatin signals measured by ATAC-seq (n1: Stacc-seq peaks overlapping 

with ChIP-seq peaks; n2: Stacc-seq peaks not overlapping with ChIP-seq peaks; C: center of 

Stacc-seq peaks; FC: fold-change over IgG control).  

c, Significant peaks (q-value<0.01) called from itChIP-seq (100 cells) with input control 

normalization were compared with open chromatin signals measured by ATAC-seq (n1: itChIP-

seq peaks overlapping with ChIP-seq peaks; n2: itChIP-seq peaks not overlapping with ChIP-seq 

peaks; C: center of itChIP-seq peaks; FC: fold-change over input control). 
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Supplementary Fig. 3 | Overall false positive rate (FPR) due to open chromatin (measured 

by DNase-seq) artefacts for each method. The number of cells (#cell) used for each library was 

indicated below each bar. 
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Supplementary Table 1 | Summary of public datasets used in this study. 

Method Sample name Cell number Data source Accession 

CoBATCH 

2k_mESC 2,000 GEO GSM3711220 

100_mESC_rep1 100 GEO GSM3711218 

100_mESC_rep2 100 GEO GSM3711219 

IgG_2k_mESC_rep1 2,000 GEO GSM3893775 

IgG_2k_mESC_rep2 2,000 GEO GSM3893776 

CUT&Tag 
2k_mESC_rep1 2,000 GEO GSM4476407 

2k_mESC_rep2 2,000 GEO GSM4476406 

Stacc-seq 

2k_mESC_rep1 2,000 GEO GSM4010607 

2k_mESC_rep2 2,000 GEO GSM4010608 

IgG_mESC NA GEO GSM4010609 

itChIP-seq 

10k_mESC_rep1 10,000 GEO GSM3609659 

10k_mESC_rep2 10,000 GEO GSM3609660 

100_mESC_rep1 100 GEO GSM3609661 

100_mESC_rep2 100 GEO GSM3609662 

input 10,000 GEO GSM3609658 

ULI-NChIP 

500_mESC_rep1 500 GEO GSM2082708 

500_mESC_rep2 500 GEO GSM2082709 

500_mESC_rep3 500 GEO GSM2082710 

500_mESC_rep4 500 GEO GSM2082711 

input 500 GEO GSM2082705 

ChIP-seq 
(dataset 1) 

mESC_rep1 bulk GEO GSM2472743 

mESC_rep2 bulk GEO GSM2472744 

input bulk GEO GSM2472755 

ChIP-seq 
(dataset 2) 

mESC_rep1 bulk ENCODE ENCFF001ZIB 

mESC_rep2 bulk ENCODE ENCFF001ZIH 

input_rep1 bulk ENCODE ENCFF001ZGK 

input_rep2 bulk ENCODE ENCFF001ZGM 

ATAC-seq 50k_mESC 50,000 GEO GSM2156965 

DNase-seq bulk bulk ENCODE ENCSR000CMW 
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