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ABSTRACT 33 

The seasonal nature in the outbreaks of respiratory viral infections with increased transmission 34 

during low temperatures has been well established. The current COVID-19 pandemic makes no 35 

exception, and temperature has been suggested to play a role on the viability and transmissibility 36 

of SARS-CoV-2. The receptor binding domain (RBD) of the Spike glycoprotein binds to the 37 

angiotensin-converting enzyme 2 (ACE2) to initiate viral fusion. Studying the effect of 38 

temperature on the receptor-Spike interaction, we observed a significant and stepwise increase in 39 

RBD-ACE2 affinity at low temperatures, resulting in slower dissociation kinetics. This translated 40 

into enhanced interaction of the full Spike to ACE2 receptor and higher viral attachment at low 41 

temperatures. Interestingly, the RBD N501Y mutation, present in emerging variants of concern 42 

(VOCs) that are fueling the pandemic worldwide, bypassed this requirement. This data suggests 43 

that the acquisition of N501Y reflects an adaptation to warmer climates, a hypothesis that remains 44 

to be tested. 45 

46 
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INTRODUCTION 47 

The etiological agent of the COVID-19 pandemic is the SARS-CoV-2 virus (1). While it will likely 48 

take years to understand the spread of SARS-CoV-2 infection in the human population, several 49 

factors could be modulating transmission dynamics and are currently being heavily scrutinized. 50 

As for other respiratory viruses, host immunity, population density, human behavioral factors, 51 

humidity and temperature likely modulate its transmission (2-7). Different steps in the replication 52 

cycle of coronaviruses could be affected by such factors, particularly viral entry. This process is 53 

mediated by the viral Spike (S) glycoprotein. The Spike glycoprotein uses its receptor binding 54 

domain (RBD) to interact with its host receptor angiotensin-converting enzyme 2 (ACE2) (8-10). 55 

Cleavage by cell surface proteases or endosomal cathepsins (8,11,12) releases the fusion peptide 56 

and triggers irreversible conformational changes in the Spike glycoprotein enabling membrane 57 

fusion and viral entry (13,14). 58 

 59 

Airway transmission of SARS-CoV-2 is confronted to the temperature gradient that exists in 60 

human airways. In the nasal mucosa it is around 30 to 32°C, it moves up to 32°C in the upper 61 

trachea, and around 36°C in the bronchi (15,16). Emerging results strongly suggest that the Spike 62 

glycoprotein of SARS-CoV-2 evolved to replicate in the upper airways (17). This was linked to 63 

Spike stability which was enhanced by the introduction of the D614G mutation (18-20) but also 64 

enhanced its use of cell-surface and endosomal proteases (17,21). Additionally, recent studies have 65 

noticed an increase replication of SARS-CoV-2 in primary human airway epithelial cells at 33°C 66 

compared to 37°C (22), while higher temperatures (39°C-40°C) decreased overall viral replication 67 

(23). Since it was previously documented that affinity of viral envelope glycoproteins for their 68 

receptor is modulated by temperature (24), herein, we evaluate to what extent temperature affects 69 
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the interaction of SARS-CoV-2 Spike with ACE2, and concomitantly, its effect on viral 70 

attachment. 71 

 72 

RESULTS 73 

Conservation of ACE2-interacting residues among SARS-CoV-2 Spike isolates 74 

We first evaluated the conservation of the ACE2-binding site on the SARS-CoV-2 Spike. Based 75 

on previously published structural data (25), ACE2 interacts with 17 key residues on the RBD 76 

primarily located on the receptor-binding motif (RBM). To determine the degree of conservation 77 

of these residues, we used the COVID-19 CoV Genetics program (26) and analyzed SARS-CoV-78 

2 sequences deposited in 2019-2020 or in 2021 (up to June 18th 2021). Over the 2019-2020 period, 79 

no major sequence variations were observed except for the N501Y mutation (4.4%), which started 80 

to arise at the end of the year in at least three independent lineages of interest (B.1.1.7, B.1.351, 81 

P.1) (27-29). In 2021 sequences, most residues were still found to be >99% conserved except for 82 

variations found at residues 417 (K417N, 1.5%; K417T, 2.6%) and 501 (N501Y, 65.2%), with the 83 

latter becoming predominant among all the deposited sequences in 2021 (Fig 1A). These mutations 84 

are found in emergent variants of concern (VOCs), including the B.1.1.7 (N501Y), B.1.351 85 

(K417N/N501Y) and P.1 lineages (K417T/N501Y) (30). Among them, the B.1.1.7 lineage (also 86 

known as alpha variant), which was first identified in the United Kingdom was shown to have 87 

increased infectivity and transmissibility (31,32). This lineage spread rapidly and is the major 88 

circulating strain in early 2021 worldwide, replacing the D614G strain which was predominant in 89 

2019-2020 (Fig 1B) (33). Sequence variations were also found in other RBM residues (Fig S1), 90 

notably mutations L452R (8.8%), E484K (7.7%), T478K (5.9%), S477N (2.2%) and N439K 91 
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(1.2%) which are also found in other various VOCs (34-38) and were shown to either increase 92 

infectivity or promote the evasion of antibody responses (30,34,38-42). 93 

 94 

Low temperatures increase SARS-CoV-2 Spike-ACE2 interaction 95 

To measure the effect of temperature on the Spike-ACE2 interaction, we use a system where we 96 

express the full-length native Spike at the surface of cells and measure its interaction with the 97 

ACE2 receptor using a recombinant ACE2-Fc chimeric protein. This recombinant protein is 98 

composed of an ACE2 ectodomain linked to a human IgG1 Fc (43). 293T cells were transfected 99 

with a plasmid encoding the SARS-CoV-2 wild-type (WT) Spike (Wuhan-Hu-1 strain). Forty-100 

eight hours post-transfection, cells were incubated at different temperatures (37°C, 22°C and 4°C) 101 

before measuring ACE2-Fc binding by flow cytometry. To ensure that any differential recognition 102 

was not linked to a temperature-dependent variation in Spike levels, we used the conformational-103 

independent S2-targeting monoclonal antibody (mAb) CV3-25 as an experimental control (44,45). 104 

As shown in Fig 1C, temperature did not alter CV3-25 recognition, indicating that temperature 105 

does not affect the overall amount of Spike at the surface of these cells. Therefore, the CV3-25 106 

mAb was used to normalize Spike expression levels among the different mutants or variants (Fig 107 

1D-F).  108 

 109 

Interestingly, we observed a gradual increase in ACE2-Fc recognition concomitant with the 110 

temperature decrease (Fig 1D), suggesting a temperature-dependent interaction between Spike and 111 

ACE2. Since temperature was suggested to also affect Spike stability (17,46,47) which in turn 112 

could explain its decreased receptor binding at 37°C, we introduced the D614G change, known to 113 

increase trimer stability (17,19) in combination or not with furin cleavage site mutations (FKO), 114 
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known to prevent Spike proteolytic cleavage (48). The same stepwise increase in ACE2-Fc binding 115 

at lower temperatures was observed with all Spike constructs (Fig 1D), indicating that low 116 

temperature can enhance ACE2-Fc binding independently of the strength of association between 117 

the S1 and S2 subunits. To extend these results to the Spike of emergent circulating strains, we 118 

evaluated ACE2-Fc binding to the Spike N501Y mutant and the Spike from the B.1.1.7 lineage. 119 

The N501Y mutation is located at the RBD-ACE2 interface and has been previously shown to 120 

strengthen the interaction with ACE2 by inserting an aromatic ring into a cavity at the binding 121 

interface (47,48). Despite significantly higher binding of ACE2-Fc at 37°C (Fig 1E), a similar 122 

enhancement was observed with both the N501Y mutant and the B.1.1.7 variant at low 123 

temperatures (Fig 1D). To evaluate whether this phenotype was conserved among other 124 

Betacoronaviruses, we also performed the same experiment using the closely related SARS-CoV-125 

1 Spike and similar changes were observed (Fig 1D).  126 

 127 

To confirm our observations in a more physiological model, we infected a highly permissive cell 128 

line (Vero E6) and primary airway epithelial cells (AECs) from two different healthy donors using 129 

authentic SARS-CoV-2 virus isolated from patients infected with SARS-CoV-2 D614G or B.1.1.7 130 

(Fig 1F). Using flow cytometry, we discriminated the infected cells using an anti-nucleocapsid 131 

mAb and measured the binding of ACE2-Fc at the cell surface. In agreement with results from 132 

transfected cells, the binding of ACE2 to cell surface Spike was higher at cold temperature (4°C) 133 

compared to 37°C for both D614G- and B.1.1.7-infected cells (Fig 1F). Importantly, ACE2 bound 134 

efficiently to the B.1.1.7 Spike at 37°C (Fig 1F). Similar level of binding could only be achieved 135 

for the D614G Spike by decreasing the temperature to 4°C (Fig 1F). Overall, low temperatures 136 

appear to promote Spike-ACE2 interaction independently of Spike trimer stability and emerging 137 
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mutations, although the B.1.1.7 variant exhibited a pronounced improvement in binding at warmer 138 

temperatures. 139 

 140 

Low temperatures improve the viral attachment of SARS-CoV-2 virions 141 

Next, we investigated the effect of enhanced ACE2 binding at low temperatures on SARS-CoV-2 142 

Spike functional properties, including its ability to mediate viral attachment and fusion, and the 143 

subsequent consequences on early viral replication kinetics. To assess viral attachment, we adapted 144 

a previously described virus capture assay (49) where we generate lentiviral particles bearing 145 

SARS-CoV-2 Spike and look at their ability to interact with ACE2-Fc immobilized on ELISA 146 

plates. In agreement with a better affinity for ACE2 at lower temperatures, more SARS-CoV-2 147 

D614G pseudoviral particles were captured at 4°C compared to 37°C (Fig 2A). In line with these 148 

results, we also observed enhanced infectivity and cell-to-cell fusion mediated by SARS-CoV-2 149 

Spike D614G at 4°C compared to 37°C, while a marginal increase was seen with an unrelated viral 150 

glycoprotein (VSV-G) (Fig 2B-C). Similarly, the capacity of soluble ACE2 (sACE2) to neutralize 151 

pseudovirions bearing SARS-CoV-2 Spike D614G was significantly improved when pre-152 

incubating the virus with sACE2 at 4°C when compared to 37°C prior infection of 293T-ACE2 153 

target cells (Fig 2D-E). Similar effects of temperature on Spike-mediated attachment and fusion, 154 

and on sensitivity to sACE2 neutralization were observed when using the Spike N501Y mutant or 155 

B.1.1.7 variant (Fig 2A-E). To analyze the impact of temperature on viral replication in a more 156 

physiological model, we used authentic SARS-CoV-2 D614G viruses to infect reconstituted 157 

primary human airway epithelia (MucilAir). Infections were performed at 4°C or 37°C for 30 158 

minutes, virus-containing medium was then discarded to remove any unbound virus before 159 

keeping the cells at 37°C for four days. While no significant differences in viral titers were 160 
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observed at 24h post-infection, viral replication at 96h post-infection was found to be significantly 161 

higher when the initial infection was performed at 4°C versus 37°C (Fig 2F). Altogether, this 162 

suggests that lower temperatures improve the initial attachment of SARS-CoV-2, which in turn 163 

can alter the subsequent kinetics of viral replication.  164 

 165 

Low temperatures enhance the affinity of SARS-CoV-2 RBD for ACE2 166 

We then evaluated whether the impact of temperature on ACE2 interaction could be recapitulated 167 

by the RBD alone. Isothermal titration calorimetry (ITC) was used to measure the binding of ACE2 168 

to RBD at different temperatures ranging from 10°C to 35°C (Fig S2A). The binding of ACE2 to 169 

RBD WT at 25°C is characterized by a dissociation constant (KD) of 19 nM in a process that is 170 

associated with a favorable change in enthalpy of – 20 kcal/mol, which is partially compensated 171 

by an unfavorable entropy contribution of 9.5 kcal/mol (Fig 3A & S2B). The data obtained at 172 

different temperatures reveal a 3-fold increase in binding affinity from 43 nM at 35°C to 14 nM at 173 

15°C. The observed effect of the temperature on KD is expected based on the known temperature 174 

dependence of Gibbs energy of binding, ΔG(T), which allows calculation of the expected KD values 175 

at any temperature (Fig S2C). Furthermore, as expected, the binding affinity of sACE2 to RBD 176 

N501Y was at least 6-fold higher than to RBD WT (Fig 3A). The KD value for the N501Y mutant 177 

is 2.9 nM at 25°C and the respective values for the enthalpy and entropy contributions are -16.6 178 

and 4.9 kcal/mol. The gain in affinity is the result of a loss in unfavorable entropy which is larger 179 

than and overcompensates the loss in favorable enthalpy. Compared to ACE2 binding to RBD WT, 180 

the increase in binding affinity upon a drop in temperature is larger for the N501Y mutant with the 181 

KD changing from 6.9 nM at 35°C to 1 nM at 15°C.  182 

 183 
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To better characterize how the temperature affects the binding kinetics between RBD and ACE2, 184 

we used biolayer interferometry (BLI) at the same temperatures as for ITC. RBD proteins were 185 

immobilized on biosensors and were soaked in increasing concentrations of sACE2, ranging from 186 

31.25 to 500 nM (Fig 3B). Again, affinity between RBD WT and sACE2 was found to be higher 187 

at lower temperatures (~10-fold increase between 35°C and 10°C). Changes in affinity were 188 

explained by a major decrease in the off rate kinetics at low temperatures, despite a concomitant 189 

decrease in on rate kinetics (Fig 3C, Table S1). Compared to its WT counterpart, introduction of 190 

the N501Y mutation significantly decreased the off rate resulting in a 4.6 fold increase in KD when 191 

performed at 25°C. Remarkably, RBD WT reached a similar affinity for sACE2 at 10°C than the 192 

one achieved by RBD N501Y at 25°C (Fig 3B). Altogether, this indicates that low temperatures 193 

or the N501Y mutation confer analogous affinity changes that are favorable for Spike RBD-ACE2 194 

interaction. 195 

 196 

Low temperatures modulate SARS-CoV-2 Spike trimer opening 197 

Since ACE2 interaction with Spike occurs when its RBD is in the “up” conformation (50-52), we 198 

sought to determine if temperature could also be modulating Spike trimer opening (i.e. RBD 199 

accessibility). To do so, we evaluated the degree of cooperativity between sACE2 monomer 200 

binding within the Spike trimers by calculating the Hill coefficient (h), since ACE2 is thought to 201 

interact with Spike RBDs in a sequential manner (51). The h values are calculated from the 202 

steepness of dose-response curves generated upon incubation of Spike-expressing cells with 203 

increasing concentrations of sACE2 as previously described (43). We observed that the binding 204 

cooperativity of ACE2 to Spike D614G was slightly negative at 37°C (h=0.816), while being 205 

neutral at 4°C (h=1.004) (Fig 4A). On the contrary, the binding cooperativity to Spike B.1.1.7 was 206 
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already slightly positive at 37°C (h=1.183) and was further improved at 4°C (h=1.371), suggesting 207 

that B.1.1.7 mutations could facilitate a coordinated Spike opening in addition to its increased 208 

ACE2-RBD interaction, thus fueling the viral entry process (Fig 4B). Spike conformational 209 

changes induced by temperature variation were also investigated by measuring the binding of the 210 

CR3022 mAb which specifically recognizes the RBD “up” conformation (53,54). Despite no clear 211 

change in binding affinity to RBD at low temperatures, CR3022 bound better to the membrane-212 

bound trimeric Spike at 4°C compared to 37°C (Fig 4C-D, Table S1). Since CR3022 is known to 213 

disrupt prefusion Spike trimer (RBD) (53,54), we also confirmed this phenotype using an 214 

uncleaved Spike version (Furin KO) (Fig 4C). However, the increase in binding by CR3022 at 4°C 215 

was minor compared to the one observed with ACE2-Fc and no change was seen at 22°C whereas 216 

ACE2-Fc binding was significantly higher (Fig 1D & 4C). This confirms that low temperatures 217 

facilitate the exposure of the RBD in the “up” conformation, but it is unlikely sufficient on its own 218 

to recapitulate the temperature-dependent modulation of ACE2 interaction described in Figures 1 219 

and 2. 220 

 221 

To better understand how low temperature affects the conformational dynamics of Spike and the 222 

propensity of RBD to sample the “up” conformation, we performed all-atom molecular dynamics 223 

(MD) simulations to measure the distance between the center of mass of the trimer and the center 224 

of mass of each RBD subunit using the structure of a fully glycosylated closed SARS-CoV-2 Spike 225 

ectodomain trimer as a model (Fig 4E) (14). Shown in Figure 4F is the RBD-to-trimer-center 226 

distances of all S1 subunits in three replicas for each temperature (37°C or 4°C). At 4°C, this 227 

distance is on average about 1.5 Å longer than at 37°C, suggesting that lower temperatures favor 228 

conformations that are, on average, closer to RBD opening than do higher temperatures. This 229 
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quaternary structural sensitivity to temperature is consistent with the observation that CR3022 is 230 

more reactive against full Spike trimers, but not RBD alone, at lower temperatures (Fig 4C-F). 231 

  232 

DISCUSSION 233 

In this study, we analyzed the role of temperature in modulating the affinity of SARS-CoV-2 Spike 234 

glycoprotein for its host receptor ACE2. We observed a significant enhancement in the affinity at 235 

low temperatures which could be explained by favorable thermodynamics changes leading to a 236 

stabilization of the RBD-ACE2 interface and by the triggering of more “open” conformations of 237 

the Spike trimer. Consequently, SARS-CoV-2 entry events and early replication kinetics were 238 

found to be amplified by enhanced viral adsorption at cold temperatures. This could potentially 239 

lead to higher transmissibility and faster replication in upper airway tissues upon exposure to the 240 

virus at lower seasonal temperatures. While we did not explore this possibility, temperature could 241 

also be affecting viral replication kinetics post-exposure and one could speculate that elevated 242 

body temperature resulting from SARS-CoV-2 infection (>38°C) could participate in limiting 243 

virus replication in vivo by interfering with viral entry, as previously suggested (55). 244 

 245 

In summary, our results suggest that the RBD from the original strain isolated in Wuhan requires 246 

lower temperature for optimal interaction with ACE2 whereas the N501Y mutation frees RBD 247 

from this requirement. Whether this mechanism contributes to viral transmission and the apparent 248 

lack of seasonality for VOCs transmitted at warmer temperatures remains to be demonstrated. Our 249 

results indicate that the RBD-ACE2 affinity should be taken into consideration when evaluating 250 

the impact of the temperature on SARS-CoV-2 transmission. 251 

252 
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Experimental procedures are provided as supporting information. 254 
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Figure Legends 616 

 617 

Figure 1. Enhanced binding of ACE2 to SARS-CoV-2 Spike at low temperatures. 618 

(A-B) Logo depictions of the frequency of SARS-CoV-2 Spike residues known to (A) contact with 619 

ACE2 or (B) corresponding to B.1.1.7 defining mutations. Worldwide sequences deposited in the 620 

GISAID database in 2019-2020 and in 2021 (up to June 18th, 2021) were aligned using the COVID 621 

CoV Genetics program. The height of the letter indicates its frequency over total sequences. 622 

Residues corresponding to the WIV04 reference sequence are shown in black and residues 623 

corresponding to VOCs are shown in violet. A box with a cross inside (☒) indicates the presence 624 

of a residue deletion. (C-E) Cell-surface staining of transfected 293T cells expressing SARS-CoV-625 

2 Spike (WT, D614G, Furin KO, D614G Furin KO, D614G N501Y or B.1.1.7 variant) or SARS-626 

CoV-1 Spike (WT) using (C) CV3-25 mAb or (D-E) ACE2-Fc. (F) Cell-surface staining of Vero 627 

E6 or primary human AECs from two healthy donors infected with authentic SARS-CoV-2 viruses 628 

(D614G or B.1.1.7 variant) using ACE2-Fc. (C,E,F) The graphs shown represent the binding of 629 

primary antibodies performed at 37°C, 22°C or 4°C. Panel D is depicting the binding of ACE2-Fc 630 

at 37°C only. ACE2-Fc binding was normalized to CV3-25 binding in each experiment at each 631 

temperature. The graphs shown represent the median fluorescence intensities (MFI). Error bars 632 

indicate means ± SEM. These results were obtained in at least 3 independent experiments. 633 

Statistical significance was tested using (C-E) one-way ANOVA with a Holm-Sidak post-test or 634 

(F) a paired T test (*p < 0.05; ***p < 0.001; ****p < 0.0001; ns, non significant). 635 

 636 

Figure 2. SARS-CoV-2 viral attachment and infectivity is higher at low temperatures. 637 
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(A) Pseudoviruses encoding the luciferase gene (Luc+) and bearing SARS-CoV-2 Spike (D614G 638 

or D614G N501Y) were tested for virus capture by ACE2-Fc at 37°C or 4°C. RLU obtained using 639 

ACE2-Fc were normalized to the signal obtained with the CV3-25 mAb. (B) Pseudoviruses Luc+ 640 

bearing SARS-CoV-2 Spike (D614G, D614G N501Y or B.1.1.7), or VSV-G as a control, were 641 

used to infect 293T-ACE2 cells. Virions were incubated at 37°C, 22°C or 4°C for 1h prior infection 642 

of 293T-ACE2 cells for 48h at 37°C. (C) Cell-to-cell fusion was measured between 293T effector 643 

cells expressing HIV-1 Tat and SARS-CoV-2 Spike (D614G or B.1.1.7) which were incubated at 644 

37°C or 4°C for 1 h prior co-culture with TZM-bl-ACE2 target cells. (B-C) RLU were normalized 645 

to the signal obtained with cells pre-incubated at 37°C. (D-E) Pseudoviruses Luc+ bearing SARS-646 

CoV-2 Spike (WT, D614G or B.1.1.7) were used to infect 293T-ACE2 cells in presence of 647 

increasing concentrations of sACE2 at 37°C for 1h prior infection of 293T-ACE2 cells. Fitted 648 

curves and IC50 values were determined using a normalized non-linear regression. (F) Authentic 649 

SARS-CoV-2 D614G virus was used to infect reconstituted human airway epithelia. Viral 650 

attachment was performed at 37°C or 4° and cells were further cultured at 37°C for 96h. Viral 651 

titers (RNA copies/mL) were monitored at 24h and 96h post-infection using one-step qRT-PCR. 652 

Viral titer values were normalized to the signal obtained with virions adsorbed to the cells at 37°C. 653 

Error bars indicate means ± SEM. These results were obtained in at least 3 independent 654 

experiments. Statistical significance was tested using (A,C,F) an unpaired T test or (B) one-way 655 

ANOVA with a Holm-Sidak post-test (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, 656 

non significant). 657 

 658 

Figure 3. Enhanced affinity of SARS-CoV-2 RBD for ACE2 at low temperatures. 659 
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(A) The thermodynamic parameters of sACE2 binding to SARS-CoV-2 RBD WT or N501Y 660 

measured by ITC at 10°C, 15°C, 25°C and 35°C. The graphs shown represent the affinity (KD), 661 

enthalpy (ΔH) and entropy (-TΔS) values obtained at the different temperatures. All ITC titration 662 

curves and thermodynamics values are shown in Figure S2. (B-C) Binding kinetics between 663 

SARS-CoV-2 RBD (WT or N501Y) and sACE2 assessed by BLI at different temperatures. (B) 664 

Biosensors loaded with RBD proteins were soaked in two-fold dilution series of sACE2 (500 nM 665 

to 31.25 nM) at different temperatures (10°C, 15°C, 25°C or 35°C). Raw data are shown in blue 666 

and fitting model is shown in red (C) Graphs represent the affinity constants (KD), on rates (Kon) 667 

and off rates (Koff) values obtained at different temperatures and calculated using a 1:1 binding 668 

model. All BLI data are summarized in Table S1. 669 

 670 

Figure 4. SARS-CoV-2 Spike trimer “opens” at low temperatures 671 

(A-B) Binding of sACE2 to SARS-CoV-2 Spike (A) D614G or (B) B.1.1.7 expressed on 293T 672 

cells was measured at 37°C or 4°C by flow cytometry. Cells were preincubated with increasing 673 

amounts of sACE2 and its binding was detected using an anti-ACE2 staining. The Hill coefficients 674 

were determined using GraphPad software. (C) Cell-surface staining of transfected 293T cells 675 

expressing SARS-CoV-2 Spike (WT or Furin KO) using the CR3022 mAb when performed at 676 

37°C, 22°C or 4°C. (A-C) The graphs shown represent the median fluorescence intensities (MFI). 677 

Error bars indicate means ± SEM. These results were obtained in at least 3 independent 678 

experiments. Statistical significance was tested using (C) one-way ANOVA with a Holm-Sidak 679 

post-test (*p < 0.05; ****p < 0.0001; ns, non significant). (D) Binding kinetics between RBD WT 680 

and CR3022 mAb assessed by BLI at 10°C, 25°C or 35°C. Biosensors loaded with RBD were 681 

soaked in two-fold dilution series of CR3022 (100 nM to 6.25 nM). Raw data are shown in blue 682 
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and fitting model (1:1 binding model) is shown in red. All BLI data are summarized in Table S1. 683 

(E) Snapshot of SARS-CoV-2 Spike ectodomain (PDB 6VXX) (14) with one RBD indicated in 684 

transparent surface and one protomer’s RBD-to-trimer-center-of-mass distance indicated with a 685 

cylinder. (F) Traces of the RBD-to-trimer distances from three replicas each of all-atom, fully 686 

glycosylated and solvated MD simulations of the closed SARS-CoV-2 S trimer at 4°C (blues) and 687 

37°C (reds) with dataset averages shown in heavy traces. 688 
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SUPPLEMENTAL MATERIAL 1 

 2 

EXPERIMENTAL PROCEDURES 3 

 4 

Ethics statement 5 

Primary airway epithelial cells (AECs), isolated from lung biopsies collected from healthy 6 

individuals were provided by the CRCHUM’s Respiratory Cell and Tissue Biobank from the 7 

Respiratory Health Research Network of Québec with informed written consent prior to 8 

enrollment in accordance with Institutional Review Board approval (#CE08.063) and approval of 9 

the research study by the CRCHUM institutional review board (protocol #20.454). Research 10 

adhered to the standards indicated by the Declaration of Helsinki. 11 

 12 

Sequence alignment 13 

The Logo plots (1) were created using the WebLogo program 14 

(https://weblogo.berkeley.edu/logo.cgi) and the COVID-19 CoV Genetics interface (2) 15 

(https://covidcg.org/) using the GISAID database (https://www.gisaid.org/) to identify single-16 

nucleotide polymorphism (SNP). The alignments correspond to the worldwide available 17 

sequences deposited between December 15th, 2019 and December 31st, 2020 (2019-2020 18 

alignment) or January 1st, 2021 and June 18st, 2021 (2021 alignment), which includes 486,432 19 

and 1,195,746 individual sequences of SARS-CoV-2 Spike RBD (residues 319-541), 20 

respectively. The relative height of each letter within individual stack represents the frequency of 21 

the indicated amino acid at that position. The numbering of all the Spike amino acid sequences is 22 

based on the prototypic WIV04 strain of SARS-CoV-2, where 1 is the initial methionine (3). 23 
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 24 

Cell lines, primary cells and viruses 25 

293T human embryonic kidney cells (ATCC), Vero E6 african green monkey kidney cells 26 

(ATCC), Cf2Th (ATCC), 293T-ACE2 and TZM-bl-ACE2 cells were maintained at 37°C under 27 

5% CO2 in Dulbecco's Modified Eagle Medium (DMEM) (Wisent), supplemented with 5% fetal 28 

bovine serum (FBS) (VWR) and 100 U/mL penicillin/streptomycin (Wisent). 293T-ACE2 and 29 

TZM-bl-ACE2 cells stably expressing human ACE2 are derived from 293T cells and TZM-bl 30 

cells, respectively (4,5). Cf2Th cells are SARS-CoV-2-resistant canine thymocytes and were 31 

used in the virus capture assay. 293T-ACE2 and TZM-bl-ACE2 cells were then cultured in 32 

medium supplemented with 2 µg/mL of puromycin (Millipore Sigma). Primary human airway 33 

epithelial cells (AECs) used in Figure 1F were isolated from bronchial biopsies collected from 34 

two healthy subjects (two males, mean age of 49 yrs). Briefly, bronchial tissues were rinsed and 35 

then incubated overnight at 4°C with MEM medium (Life Technologies) supplemented with 36 

7.5% NaHCO3 (Sigma-Aldrich), 2 mM L-glutamine, 10 mM HEPES (ThermoFisher Scientific), 37 

0.05 mg/ml gentamycin, 50 U/ml penicillin-streptomycin, 0.25 μg/ml Fungizone (Life 38 

Technologies) and containing 0.1% protease (from Streptomyces griseus; Sigma-Aldrich) and 10 39 

μg/ml DNAse (Deoxyribonuclease I from bovine pancreas; Sigma-Aldrich). The protease and 40 

DNAse activities were then neutralized with FBS (Life Technologies). AECs were gently 41 

scraped off the remaining tissue and red blood cells were removed by treatment with ACK lysis 42 

buffer (0.1 mM NH4Cl, 10 μM KHCO3, 10 nM EDTA). After counting, the freshly isolated cells 43 

were seeded into flasks coated with Purecol (Cedarlane) and collagen IV (Sigma-Aldrich), and 44 

grown in a mix (50:50) of PneumacultEx (STEMCELL Technologies) and CnT-17 (CellnTec 45 

Advanced Cell Systems) media for two days, and then in CnT-17 until the confluence is reached. 46 
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AECs were then detached with a trypsin solution before seeding into 6 wells plates coated with 47 

Purecol and collagen IV, cultured in CnT-17 until confluency (~5 days) ad then in BEGM 48 

(Lonza) for two days before experimentations. Authentic SARS-CoV-2 viruses used in Figure 1F 49 

were isolated, sequenced and amplified from clinical samples obtained from patients infected 50 

with SARS-CoV-2 D614G or B.1.1.7 by the Laboratoire de Santé Publique du Québec (LSPQ). 51 

SARS-CoV-2/Québec/CHUL/21697 is a clinical sample isolated in Quebec City, Canada and  52 

then amplified on Vero E6 cells. Virus was sequenced by MinION technology (Oxford Nanopore 53 

technologies, Oxford, UK). All work with infectious using SARS-CoV-2 authentic virus was 54 

performed in a Biosafety Level 3 (BSL3) facilities at Université de Montréal and Université 55 

Laval using appropriate positive pressure air respirators and protective equipments. 56 

 57 

Plasmids and site-directed mutagenesis 58 

The plasmids expressing the wildtype SARS-CoV-2 and SARS-CoV-1 Spikes were previously 59 

reported (6,7). The plasmid encoding for SARS-CoV-2 S RBD (residues 319-541) fused with a 60 

hexahistidine tag was previously described (8). The mutations in full-length Spike (D614G, 61 

N501Y and/or R682S/R683S) or RBD (N501Y) expressors were introduced using the 62 

QuikChange II XL site-directed mutagenesis protocol (Agilent Technologies). The presence of 63 

the desired mutations was determined by automated DNA sequencing. The plasmid encoding the 64 

SARS-CoV-2 Spike from the B.1.1.7 lineage (Δ69-70, Δ144, N501Y, A570D, D614G, P681H, 65 

T716I, S982A and D1118H) was codon-optimized and synthesized by Genscript (9). The 66 

plasmid encoding for soluble human ACE2 (residues 1–615) fused with an 8xHisTag was 67 

reported elsewhere (10). The plasmid encoding for the ACE2-Fc chimeric protein, a protein 68 

composed of an ACE2 ectodomain (1–615) linked to an Fc segment of human IgG1 was 69 
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previously reported (11). The vesicular stomatitis virus G (VSV-G)-encoding plasmid 70 

(pSVCMV-IN-VSV-G) was previously described (12). 71 

 72 

Protein expression and purification 73 

FreeStyle 293F cells (Thermo Fisher Scientific) were grown in FreeStyle 293F medium (Thermo 74 

Fisher Scientific) to a density of 1 x 106 cells/mL at 37°C with 8 % CO2 with regular agitation 75 

(150 rpm). Cells were transfected with a plasmid coding for SARS-CoV-2 S RBD, sACE2 or 76 

ACE2-Fc using ExpiFectamine 293 transfection reagent, as directed by the manufacturer 77 

(Thermo Fisher Scientific). One week later, cells were pelleted and discarded. Supernatants were 78 

filtered using a 0.22 µm filter (Thermo Fisher Scientific). The recombinant RBD and sACE2 79 

proteins were purified by nickel affinity columns, as directed by the manufacturer (Invitrogen). 80 

The ACE2-Fc chimeric protein was purified by protein A affinity columns, as directed by the 81 

manufacturer (Cytiva). The recombinant protein preparations were dialyzed against phosphate-82 

buffered saline (PBS) and stored in aliquots at -80°C until further use. To assess purity, 83 

recombinant proteins were loaded on SDS-PAGE gels and stained with Coomassie Blue. 84 

 85 

Flow cytometry analysis of cell-surface staining (transfected cells) 86 

Using the standard calcium phosphate method, 10 μg of Spike expressor and 2 μg of a green 87 

fluorescent protein (GFP) expressor (pIRES2-eGFP; Clontech) was transfected into 2 × 106 293T 88 

cells. At 48h post transfection, 293T cells were stained with anti-Spike monoclonal antibodies 89 

CV3-25 (13) or CR3022 (14) (5 µg/mL) or using the ACE2-Fc chimeric protein (20 µg/mL) for 90 

45 min at 37℃, 22℃ or 4℃. Alternatively, to determine the Hill coefficients, cells were 91 

preincubated with increasing concentrations of sACE2 (0 to 719 nM) at 37°C or 4°C. sACE2 92 
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binding was detected using a polyclonal goat anti-ACE2 (RND systems). Alexa Fluor-647-93 

conjugated goat anti-human IgG (H+L) Abs (Invitrogen) and Alexa Fluor-647-conjugated 94 

donkey anti-goat IgG (H+L) Ab (Invitrogen) were used as secondary antibodies to stain cells for 95 

30 min at room temperature. The percentage of transfected cells (GFP+ cells) was determined by 96 

gating the living cell population based on the basis of viability dye staining (Aqua Vivid, 97 

Invitrogen). Samples were acquired on a LSRII cytometer (BD Biosciences) and data analysis 98 

was performed using FlowJo v10.5.3 (Tree Star). Hill coefficient analyses were done using 99 

GraphPad Prism version 9.1.0 (GraphPad). 100 

 101 

Flow cytometry analysis of cell-surface staining (infected cells) 102 

SARS-CoV-2 authentic viruses (D614G or B.1.1.7 variant) were used to infect Vero E6 cells or 103 

primary AECs at a multiplicity of infection (MOI) of 0.0001 or 0.1, respectively. At 48h post-104 

infection, cells were detached by PBS-EDTA and were stained with Abs for 30 min at 37℃ or 105 

4℃. Alexa Fluor-647-conjugated goat anti-human IgG (H+L) Ab (Invitrogen) was used as  106 

secondary antibody to stain cells for 30 min at room temperature. Cells were then fixed with PBS 107 

containing 4% paraformaldehyde for 48h at 4℃. Then the cells were stained intracellularly for 108 

SARS-CoV-2 nucleocapsid (N) antigen, using the Cytofix/Cytoperm fixation/permeabilization 109 

kit (BD Biosciences) and an anti-N mAb (clone mBG17; Kerafast) conjugated with the Alexa 110 

Fluor 488 dye according to the manufacturer’s instructions (Invitrogen). The percentage of 111 

infected cells (N+ cells) was determined by gating the living cell population based on the basis of 112 

viability dye staining (Aqua Vivid, Invitrogen). Samples were acquired on a LSRII cytometer 113 

(BD Biosciences) and data analysis was performed using FlowJo v10.5.3 (Tree Star). 114 

 115 
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Virus capture assay 116 

The SARS-CoV-2 virus capture assay was previously reported (15). Briefly, pseudoviral 117 

particles were produced by transfecting 2×106 293T cells with pNL4.3 Luc R-E- (3.5 μg), 118 

plasmids encoding for SARS-CoV-2 Spike (3.5 μg) proteins and VSV-G (1 μg) using the 119 

standard calcium phosphate method. Forty-eight hours later, virus-containing supernatants were 120 

collected, and cell debris were removed through centrifugation (1,500 rpm for 10 min). CV3-25 121 

antibodies or ACE2-Fc proteins were immobilized on white MaxiSorp ELISA plates (Thermo 122 

Fisher Scientific) at a concentration of 5 μg/mL in 100 μL of PBS overnight at 4°C. Unbound 123 

proteins were removed by washing the plates twice with PBS. Plates were subsequently blocked 124 

with 3% bovine serum albumin (BSA) in PBS for 1 hour at room temperature, followed by 1 125 

hour incubation at 37℃ or 4℃. Meanwhile, virus-containing supernatants were pre-tempered at 126 

37°C or 4°C for 1 hour. After washing plates twice with PBS, 200 μL of virus-containing 127 

supernatant were added to the wells. After 30 min of incubation at 37°C or 4°C, supernatants 128 

were discarded, and the wells were washed with PBS three times. Virus capture was visualized 129 

by adding 1×104 SARS-CoV-2-resistant Cf2Th cells per well in complete DMEM. Forty-eight 130 

hours post-infection, cells were lysed by the addition of 30 μL of passive lysis buffer (Promega) 131 

and one freeze-thaw cycle. An LB942 TriStar luminometer (Berthold Technologies) was used to 132 

measure the luciferase activity of each well after the addition of 100 μL of luciferin buffer (15 133 

mM MgSO4, 15 mM KH2PO4 [pH 7.8], 1 mM ATP, and 1 mM dithiothreitol) and 50 μL of 1 134 

mM D-luciferin potassium salt (ThermoFisher Scientific). 135 

 136 

Pseudovirus infectivity and neutralization assay 137 
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293T-ACE2 target cells were infected with single-round luciferase-expressing lentiviral particles 138 

(4). Briefly, 293T cells were transfected by the calcium phosphate method with the lentiviral 139 

vector pNL4.3 R-E- Luc (NIH AIDS Reagent Program) and a plasmid encoding for SARS-CoV-140 

2 Spike or VSV-G at a ratio of 5:4. Two days post-transfection, cell supernatants were harvested 141 

and used fresh for infectivity measurements or stored at –80°C until use for virus neutralization 142 

measurements. 293T-ACE2 target cells were seeded at a density of 1×104 cells/well in 96-well 143 

luminometer-compatible tissue culture plates (Perkin Elmer) 24h before infection. To assess 144 

pseudovirus infectivity, freshly produced recombinant viruses were incubated for 1h at 37°C, 145 

22°C or 4°C and were added to the target cells followed by incubation for 48h at 37°C. To 146 

measure virus neutralization by sACE2, recombinant viruses in a final volume of 100 μl were 147 

incubated with the increasing sACE2 concentrations (0 to 12,000 nM) for 1h at 37°C or 4°C and 148 

were then added to the target cells followed by incubation for 48h at 37°C; cells were lysed by 149 

the addition of 30 μl of passive lysis buffer (Promega) followed by one freeze-thaw cycle. An 150 

LB942 TriStar luminometer (Berthold Technologies) was used to measure the luciferase activity 151 

of each well after the addition of 100 μl of luciferin buffer (15 mM MgSO4, 15 mM KH2PO4 [pH 152 

7.8], 1 mM ATP, and 1 mM dithiothreitol) and 50 μl of 1 mM D-luciferin potassium salt 153 

(ThermoFisher Scientific). The neutralization half-maximal inhibitory dilution (IC50) represents 154 

the sACE2 concentration inhibiting 50% of the infection of 293T-ACE2 cells by recombinant 155 

viruses bearing the indicated surface glycoproteins at different temperatures. 156 

 157 

Cell-to-cell fusion assay 158 

To assess the cell-to-cell fusion between Spike-expressing effector cells and ACE2-expressing 159 

target cells (5), 2×106 293T cells were co-transfected with plasmid expressing HIV-1 Tat (1 µg) 160 
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and a plasmid expressing SARS-CoV-2 Spike (4 µg) using the calcium phosphate method. Two 161 

days after transfection, Spike-expressing 293T (effector cells) were detached with PBS-EDTA 1 162 

mM and incubated for 1 h at 37°C or 4°C. Subsequently, effector cells (1 × 104) were added to 163 

TZM-bl-ACE2 target cells that were seeded at a density of 1×104 cells/well in 96-well 164 

luminometer-compatible tissue culture plates 24 h before the assay. Cells were co-incubated for 165 

6 h at 37°C and 5% CO2, after which they were lysed by the addition of 40 μl of passive lysis 166 

buffer (Promega) and one freeze thaw cycle. An LB942 TriStar luminometer (Berthold 167 

Technologies) was used to measure the luciferase activity of each well after the addition of 100 168 

μl of luciferin buffer (15 mM MgSO4, 15 mM KH2PO4 [pH 7.8], 1 mM ATP, and 1 mM 169 

dithiothreitol) and 50 μL of 1 mM D-luciferin potassium salt (ThermoFisher Scientific). 170 

 171 

Viral infection of reconstituted human airway epithelia (MucilAir) 172 

For this experiment, an ex vivo system was used. This consists of an air liquid interface that 173 

mimicks the human upper airway epithelium. The primary nasal cells were isolated from a pool 174 

of 14 donors (MucilAir, Epithelix). The experiment was performed in quadruplicate and cells 175 

were cultured in medium provided by manufacturer. Before infection, MucilAir wells were 176 

washed with warm OptiMEM medium (ThermoFisher Scientific) and then were pre-incubated at 177 

4°C or 37°C for 15 min. Apical poles were then infected directly with 200 μL of virus (SARS-178 

CoV-2/Québec/CHUL/21697) at a multiplicity of infection (MOI) of 0.015 and then incubated at 179 

4°C or 37°C during 30 min. After this adsorption phase, virus-containing medium was removed 180 

and all MucilAir wells were placed at 37°C. Samples were collected from apical washes (200 μL 181 

of OptiMEM) at different timepoints post-infection (24h and 96h) and 100 μL were used to 182 

extract RNA (MagNA Pure LC, Total nucleic acid isolation kit, Roche Applied Science). Viral 183 
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titers were determined by RT-qPCR one-step (QuantiTect Virus +ROX Vial Kit, Qiagen). To 184 

monitor the viability and health conditions of infected primary epithelial cells, transepithelial 185 

electrical resistance (TEER) was measured using a dedicated volt-ohm meter (Millicell® ERS-2, 186 

Millipore Sigma) and no significant difference was observed between cells infected at 4°C or 187 

37°C. 188 

 189 

Isothermal Titration Calorimetry (ITC) 190 

Calorimetric titration experiments were performed using a MicroCal VP-ITC (Malvern 191 

Panalytical). The reagents were prepared in PBS pH 7.4, and then exhaustively dialyzed prior to 192 

the experiments. Any further dilutions of the reagents were made using the dialysate to avoid any 193 

unnecessary heats of dilution associated with the injections. All reagents were thoroughly 194 

degassed prior to the experiments. The enthalpy and affinity of binding at each temperature were 195 

determined from a complete titration of either RBD WT or the N501Y mutant with sACE2. The 196 

sACE2 solution at 11 - 13 µM was injected in 10 µL aliquots into the stirred calorimetric cell (v 197 

~ 1.4 mL) containing RBD protein at ~ 1.5 µM. The titrations of RBD WT were performed at 198 

10°C, 15°C, 25°C, and 35°C, while the titrations of the N501Y mutant were performed at 15°C, 199 

25°C, and 35°C. The injection peaks were integrated, and the heat associated with binding was 200 

obtained after subtraction of the heats of dilution. The association constant, KA (the dissociation 201 

constant, KD =1/KA), the enthalpy change, ΔH, and the stoichiometry, N, were obtained by 202 

nonlinear regression of the data to a single-site binding model using Origin with a fitting 203 

function made in-house. Gibbs energy, ΔG, was calculated from the binding affinity using ΔG = 204 

-RTlnKA, (R = 1.987 cal/(K × mol)) and T is the absolute temperature in kelvin). The entropy 205 

contribution to Gibbs energy, -TΔS, was calculated from the relation ΔG = ΔH -TΔS. The Gibbs 206 
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energy of binding, ΔG(T), as a known temperature dependence which allows calculation of the 207 

KD values at any temperature according to: 208 

    (1) 209 

 
          (2) 210 

where ΔHref and ΔSref are the respective enthalpy and entropy changes at the known reference 211 

temperature Tref, T is the absolute temperature in kelvin, R the gas constant (1.987 cal/(K × 212 

mol)), and ΔCp the change in heat capacity upon binding. The ΔCp value for ACE2 binding is -213 

380 cal/(K × mol) for RBD WT and -425 cal/(K × mol) for RBD N501Y, which is obtained from 214 

the temperature dependence of the enthalpy change (Fig 3A). Figure S2C shows a plot of the 215 

experimental dissociation constants at different temperatures together with the expected values 216 

calculated from ΔCp and the enthalpy change at 25°C.  217 

 218 

Biolayer interferometry (BLI) 219 

Binding kinetics were performed on using an Octet RED96e system (ForteBio) at different 220 

temperatures (10°C, 15°C, 25°C, 35°C) with shaking at 1,000 RPM. Amine Reactive Second-221 

Generation (AR2G) biosensors were hydrated in water, then activated for 300 s with a solution 222 

of 5 mM sulfo-NHS and 10 mM EDC (ForteBio) prior to amine coupling. Either SARS-CoV-2 223 

RBD WT or the N501Y mutant were loaded into AR2G biosensor at 12.5 µg/mL at 25°C in 10 224 

mM acetate solution pH 5 (Fortebio) for 600 s then quenched into 1 M ethanolamine solution pH 225 

8.5 (Fortebio) for 300 s. Loaded biosensor were placed in 10X kinetics buffer (ForteBio) for 120 226 

s for baseline equilibration. Association of sACE2 (in 10X kinetics buffer) to the different RBD 227 

proteins was carried out for 180 s at various concentrations in a two-fold dilution series from 500 228 

nM to 31.25 nM prior to dissociation for 300 s. The data were baseline subtracted prior to fitting 229 
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performed using a 1:1 binding model and the ForteBio data analysis software. Calculation of on 230 

rates (kon), off rates (koff), and affinity constants (KD) was computed using a global fit applied to 231 

all data. Alternatively, affinity of the CR3022 mAb at various concentrations in a two-fold 232 

dilution series from 100 nM to 6.25 nM for the immobilized SARS-CoV-2 RBD WT was 233 

assessed at different temperatures (10°C, 25°C, 35°C). 234 

 235 

Molecular dynamics simulations 236 

A fully glycosylated model of the closed SARS-CoV-2 S ectodomain trimer was built from the 237 

6VXX PDB entry (16). Six independent replicas with explicit waters were generated. Three were 238 

run for 100 ns at 37°C using NAMD 2.14 (17) (2 fs time step, Langevin thermostat with 5/ps 239 

frequency) and three were run for 100 ns at 4°C. The CHARMM36 force-field (18) and TIP3P 240 

water model were used. Configuration snapshots were saved every 2 ps.  The instantaneous 241 

distance between the center of mass of the trimer and the center of mass of each receptor binding 242 

domain (residues 330 to 521 in each S1 subunit) was measured. 243 

 244 

Statistical Analysis 245 

Statistics were analyzed using GraphPad Prism version 9.1.0 (GraphPad, San Diego, CA, USA). 246 

Every data set was tested for statistical normality and this information was used to apply the 247 

appropriate (parametric or nonparametric) statistical test. P values <0.05 were considered 248 

significant; significance values are indicated as * P<0.05, ** P<0.01, *** P<0.001, **** 249 

P<0.0001. 250 

251 
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SUPPLEMENTAL TABLE 252 

 253 

Table S1. Binding kinetics between SARS-CoV-2 RBD and its ligands quantified by 254 

biolayer interferometry. 255 

 256 

SUPPLEMENTAL FIGURE CAPTIONS 257 

 258 

Figure S1. Sequence conservation of RBM residues among SARS-CoV-2 Spike isolates. 259 

Logo depictions of the frequency of selected SARS-CoV-2 Spike residues from the receptor 260 

binding motif (RBM). Worldwide sequences deposited in the GISAID database in 2021 (January 261 

1st, 2021 to June 18th, 2021) were aligned using the COVID CoV Genetics program, which 262 

includes 1,195,746 individual sequences. Residue numbering is based on the SARS-CoV-2 263 

WIV04 reference strain. The height of the letter indicates its frequency of total deposited 264 

sequences. Residues corresponding to the WIV04 reference sequence are shown in black and 265 

residues corresponding to emerging VOCs are shown in violet. 266 

 267 

Figure S2. Titration of sACE2 binding to SARS-CoV-2 RBD by isothermal titration 268 

calorimetry. 269 

(A) ITC data from calorimetric titrations of SARS-CoV-2 RBD (WT and N501Y) with sACE2 at 270 

different temperatures. The top panel of each graph shows the heat flow, dQ/dt, as a function of 271 

time and the bottom panel shows the integrated heat associated with each injection (Q) as a 272 

function of the molar ratio between the concentrations of sACE2 and RBD in the cell. The solid 273 

line represents the result from best nonlinear least squares fit of the data to a single-site binding 274 
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model. (B) Table summarizing the thermodynamic parameters for the binding of sACE2 to 275 

SARS-CoV-2 RBD (WT and N501Y). The values for the dissociation constant, KD, and 276 

enthalpy, ΔH, were obtained directly from nonlinear regression of the ITC data (A), while Gibbs 277 

energy, ΔG, and the entropy contribution, -TΔS, were calculated as described in the method 278 

section. (C) The KD values for the binding of sACE2 to SARS-CoV-2 RBD WT (filled circles) 279 

and N501Y (filled squares) as a function of temperature. The dashed lines correspond to the 280 

expected values calculated from ΔCp and the enthalpy change at 25 °C.281 
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Table S1. Affinity between SARS-CoV-2 RBD and its ligands quantified by biolayer 

interferometry. 

Ligands Temperature KD (nM) Kon (M-1s-1) Koff (s-1) 

sACE2 + RBD WT 10°C 47.6 2.37 x 104 1.13 x 10-3 

15°C 68.5 2.86 x 104 1.96 x 10-3 

25°C 161 4.27 x 104 6.88 x 10-3 

35°C 472 6.83 x 104 3.22 x 10-2 

sACE2 + RBD N501Y 10°C 10.7 2.47 x 104 2.65 x 10-4 

15°C 11.9 2.69 x 104 3.19 x 10-4 

25°C 41.5 3.59 x 104 1.49 x 10-3 

35°C 86.5 6.83 x 104 5.91 x 10-3 

CR3022 + RBD WT 10°C 0.124 1.51 x 105 1.87 x 10-5 

25°C 0.649 1.77 x 105 1.15 x 10-4 

35°C 0.457 2.03 x 105 9.26 x 10-5 
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