De novo whole-genome assembly of *Chrysanthemum makinoi*, a key wild ancestor to hexaploid Chrysanthemum

N. van Lieshout†, M. van Kaauwen†, L. Kodde†, P. Arens†, M.J.M. Smulders†, R.G.F. Visser†, & R. Finkers†.

†, Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
Running Title: *Chrysanthemum makinoi* genome

Keywords: *Chrysanthemum makinoi*, chrysanthemum, genome assembly, annotation

Corresponding Author:

Richard Finkers

Droevendaalsesteeg 1

6708 PB Wageningen

+31317484165

richard.finkers@wur.nl
ABSTRACT

Chrysanthemum is among the top ten cut, potted and perennial garden flowers in the world. Despite this, to date, only the genomes of two wild diploid chrysanthemums have been sequenced and assembled. Here we present the most complete and contiguous chrysanthemum de novo assembly published so far, as well as a corresponding ab initio annotation. The wild diploid Chrysanthemum makinoi is thought to be one of the ancestors of the cultivated hexaploid varieties which are currently grown all around the world. Using a combination of Oxford Nanopore long reads, Pacific Biosciences long reads, Illumina short reads, Dovetail sequences and a genetic map, we assembled 3.1 Gb of its sequence into 9 pseudochromosomes, with an N50 of 330 Mb and BUSCO complete score of 92.1%. Our ab initio annotation pipeline predicted 95,074 genes and marked 80.0% of the genome as repetitive. This genome assembly of C. makinoi provides an important step forward in understanding the chrysanthemum genome, evolution and history.

INTRODUCTION

As one of the most economically important ornamental crops (Anderson 2007), much time has been invested into understanding Chrysanthemum x morifolium and its related varieties and species. One of the key factors of its success as an ornamental crop is the diversity available in petal colors and flower shapes (Song et al. 2018), even though the underlying genomic and molecular basis of the shape traits is still poorly understood. This is partly due to the fact that it is a hexaploid with polysomic inheritance (van Geest et al. 2017b).

To begin to understand a hexaploid like C. x morifolium and its traits, we must first look at the whole genus and research the plant’s origins. The Chrysanthemum genus consists of species with a basic number of nine chromosomes but with variable ploidy level, from
diploid to decaploid (Wang et al. 2014). Native across Eurasia and the northern parts of North America, the genus consists of 40 different species (Liu et al. 2012; Liu 2020). More than ten were originally identified as potential source material for the domesticated C. x morifolium (Dowrick 1952; Ackerson 1967), including C. makinoi (syn. D. makinoi), C. indicum (syn. D. indicum), C. lavandulifolium (syn. D. lavandulifolium) and C. zawadskii (syn. D. zawadskii), predominantly in their hexaploid form. The hexaploid C. vestitum and tetraploid C. indicum were later again suggested as major donors based on comparative morphology, cytology, interspecific hybridization and molecular systematics (Ma et al. 2016). Diploids like C. nankingense, C. lavandulifolium and C. zawadskii have also repeatedly been identified as possible contributors (Dai et al. 2005; Liu et al. 2012; Ma et al. 2016). To date, no one has come up with a conclusive model for C. x morifolium.

C. makinoi is a wild diploid endemic to Japan. While research has been performed in the past with this diploid species (Tanaka 1960; Tanaka and Shimotomai 1968) no one has attempted to assemble its genome. In fact, to date, of the 40 chrysanthemum species only C. seticuspe (Hirakawa et al. 2019) and C. nankingense (Song et al. 2018) have whole-genome assemblies. The C. seticuspe assembly was made using only short read sequencing and had a total length of 2.722 Gb, with 354 212 contigs, an N50 of 44 741 bps and BUSCO score of 88.8% (Hirakawa et al. 2019), while C. nankingense was assembled using both long and short reads for a total length of 2.527 Gb, with 24 051 contigs, an N50 of 130 678 bps and BUSCO score of 92.7% (Song et al. 2018). Generating a more contiguous assembly of these diploids has been difficult as chrysanthemum genomes are very repetitive and heterozygous (Won et al. 2018a; Nguyen et al. 2020).
Long read data helps resolve the repetitive sequences and allows for more contiguous contigs to be assembled (van Dijk et al. 2018), so we proceeded with an approach that combined both long read, short read, and proximity ligation methods to build a truly robust assembly. This assembly, along with its corresponding organelle assemblies and transcriptome, will expand our understanding of not only the diploid *C. makinoi* but also help illuminate the complicated polyploidization story that led to *C. x morifolium* by providing a robust genomic foundation from which to expand.

MATERIALS & METHODS

Plant Material:

The *C. makinoi* Matsum. et Nakai or No. JP131333 Ryuunougiku plant, or *C. makinoi* for short, was obtained from the NARO (Tsukuba, Japan) genebank. Cuttings were grown in greenhouses at Wageningen University and Research (WUR-Unifarm) according to standard procedures.

DNA Extraction, Library Preparation and Sequencing:

High molecular weight DNA for long read sequencing was isolated from fresh young *C. makinoi* leaves using a modified (Bernatzky and Tanksley 1986) protocol. Libraries were prepped using the 1D ligation sequencing kits SQK-LSK108 and SQK-LSK109 (Oxford Nanopore Technologies; Oxford, UK) according to the instructions. The samples were sequenced on an Oxford Nanopore GridION using 40 flowcells and the standard protocol. Adaptors were removed using Porechop (Wick 2018) and reads were filtered using Filtlong (Wick 2019), which removed the worst 10% of reads from the shorter reads.
One sample was also sequenced using 4 differently sized insert libraries (270, 350, 400 and 500 bps) and 150 bp paired-end reads on an Illumina Hiseq 2500 (GenomeScan, Leiden, The Netherlands). Samples were processed using the NEBNext® Ultra DNA library Prep Kit from Illumina. Genome characteristics were estimated using Jellyfish v2.2.10 (Marçais and Kingsford 2011) k-mer counts and GenomeScope (Vurture et al. 2017).

High molecular weight DNA of C. makinoi was also sequenced by GenomeScan across 8 SMRT cells using a PacBio “Sequel SMRT Cell 1M v2” sequencer. Sample preparation was done based on the “PacBio SMRTbell Express Kit v1” protocol. The final library was selected using the Blue Pippin protocol for fragments larger than 15 kb. Primer and polymerase were attached using the “Sequel Binding and Internal Ctrl Kit2.1” kit and purification was done using the PacBio “Procedure & Checklist - AMPure® PB Bead Purification of Polymerase Bound SMRTbell® Complexes” protocol. Sequencing was performed for 10 hours on 7 of the cells and 20 hours for the remaining cell with the recommended amount of “DNA Internal Control Complex 2.1”. The raw data was assessed with the SMRT Link Analysis server v5.1.0.26367 by GenomeScan.

Four tissues (leaves, stems, floral buds, flowers) used in the study were obtained from a C. makinoi cultivated in a greenhouse under long-day conditions; 20-hr light/4-hr dark cycle, or under short-day conditions; 11-hr light/13-hr dark cycle, at Dekker Chrysanten (Hensbroek, the Netherlands). All collected plant tissues were frozen immediately in liquid N2 and stored at −70°C until the RNA was extracted and isolated using the RNeasy mini kit (Qiagen; Hilden, Germany) and library prepped using the SQK-PCS109 kit (Oxford Nanopore Technologies; Oxford, UK) according to the instructions. The samples were sequenced separately on an Oxford Nanopore GridION using 9 flowcells in total, according to the
standard protocol. Quality control was done using NanoComp v1.9.2 (De Coster et al. 2018) and fastq validator from fastq_utils v0.21.0 (Fonseca and Manning) with duplicate read IDs removed.

Genome Assembly and Scaffolding:

Nanopore reads were base-called with Guppy v3.2 (Oxford Nanopore Technologies; Oxford, UK) and filtered to keep only the reads from the “pass” folder (Q≥7) that had a length above 20 Kb and the “fail” folder (Q<7) with a length over 50 Kb. PacBio reads over 30 Kb long were also added into this dataset. This combination of long reads was assembled using SMARTdenovo v1.0.0 (Liu et al. 2021) with “generate consensus” set to 1. Purge Haplotigs (Roach et al. 2018) was then used to flatten regions of heterozygosity into a single consensus sequence. Illumina data was subsequently used in conjunction with ntEdit v0.9 (Warren et al. 2019) in mode 2 and with a K=50 for 2 iterations to polish the contigs. Contiguity was further improved with the use of Hi-C and Chicago proximity ligation methods (Dovetail Genomics; Scotts Valley, USA). Final pseudo-molecule level scaffolding was performed using ALLMAPS v0.9.14 (Tang et al. 2015) and an integrated genetic map of hexaploid chrysanthemum (van Geest et al. 2017a) (see TABLE S1 and FIGURE S1). Some by-hand misassembly corrections, verified with the raw long read data, were also completed (see FIGURE S2). Contigs that remained unplaced among the nine chromosomes in the final assembly were filtered to remove contaminants and unusually high coverage reads. The final chromosomes were named and numbered following the linkage group assignments in a C. x morifolium cross found in (van Geest et al. 2017a). Read coverage was assessed using Qualimap bamqc v2.2.1 (Okonechnikov et al. 2016) and contaminants identified using Centrifuge v1.0.4 (Kim et al. 2016) and NCBI’s viral and bacterial libraries (accessed in
November 2019). The remaining reads were placed into a chromosome zero with N-gaps of 200 bps in between each contig.

Organelles were assembled by extracting Nanopore and Illumina reads that aligned to the available C. boreale chloroplast (Won et al. 2018b) and mitochondria (Won et al. 2018c) references using Minimap2 v2.17 (Li 2018) and BWA-MEM v0.7.17-r1198-flat (Li 2013) respectively. A hybrid assembly was then performed for each organelle using Unicycler v0.4.8 (Wick et al. 2017). This resulted in a single, circular scaffold assembly for the chloroplast and multiple circular scaffolds for the mitochondria. Based on a visual inspection of each of the mitochondria scaffolds against known chrysanthemum mitochondria assemblies, scaffold 1 was found to represent the entire sequence and was selected as the full circular assembly of the mitochondria genome.

Genome Analysis and Quality Assessments:

QUAST v5.0.2 (Gurevich et al. 2013) was used to determine the basic statistics of the final genome assembly such as total length, N50 and the number of contigs/scaffolds. BUSCO v4.0.5 (Simão et al. 2015) and the corresponding set of Embryophyta odb10 universal single-copy orthologs was also employed to assess the completeness of the genome.

Repeat and Transcript Annotation:

Before annotating the assembly, we soft-masked the repetitive sequences using RepeatModeler v2.0.1 (Flynn et al. 2020).

Gene prediction was done with the Funannotate v1.7.4 (Palmer 2017) pipeline. First the Funannotate pipeline was trained using the cDNA long reads, UniProtKB v2020_04 database
(Bateman 2019), and the BUSCO eukaryote odb9 protein database (Simão et al. 2015), to create the input dataset for the Funannotate predict pipeline. The predict pipeline was then run with standard settings and the GeneMark-ET, Augustus, GlimmerHMM’, and Snap algorithms. Afterwards filtering of the ab initio gene predictions was done using EVidenceModeler (EVM) (Haas et al. 2008).

To functionally annotate the predicted models, an initial comparison was done using blastp v2.6.0 (Camacho et al. 2009) against the SWISS-PROT v4 database (Bairoch and Apweiler 2000) with a cut-off e-value of 1.0E-3, word size of 6, max number of hits set to 20 and with the low complexity filter turned on. To identify the domains within the predicted model sets, InterProScan v5.26 (Jones et al. 2014) was used along with the panther v12.0 libraries. Finally the results were process by a stand-alone version of Blast2Go (Götz et al. 2008) using default settings.

Data Availability:

The final assembly and annotation files for *C. makinoi* Matsum. et Nakai or No. JP131333 Ryuunougiku are available for download at www.chrysanthemumgenome.wur.nl/, along with a genome browser. All the raw data as well as the assembly and annotations files can also be found at ENA under PRJEB44800. The plant accession is available through the NARO genebank.

RESULTS & DISCUSSION

Raw Sequence Quality:

Nanopore sequencing resulted in 443.25 Gb of data with a read N50 of 22.6 kb. After base calling, removing adaptors and filtering for reads over 20 kb in length from the “pass” folder,
which had a Q score >7, and for reads over 50 kb in length from the “fail” folder, the dataset had a coverage of approximately 53x (assuming a haploid genome size of 3.1 GB) and consisted of 3,924,770 reads. Illumina HighSeq yielded 113.2, 142.0, 133.7 and 120.0 Gb of raw data for the 270, 350, 400 and 500 bp insert size libraries respectively. Between 90.5-94.6% of reads in each insert size had a quality “q” score greater or equal to 30. PacBio sequencing resulted in 70 Gb of data with an average subread length of 15.5 kb and a N50 of 24.1 kb. This meant a coverage of approximately 30.6x (assuming a haploid genome size of 3.1 GB).

The nanopore cDNA sequencing resulted in datasets with 4.8 – 7.9 million reads, an average N50 of 1.2-1.4 kb and between 5.0-7.9 Gb total (see TABLE 1).
<table>
<thead>
<tr>
<th>Source</th>
<th>Mean read length (b):</th>
<th>Mean read quality:</th>
<th>Number of reads:</th>
<th>Read length N50 (b):</th>
<th>Total bases:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf (short day)</td>
<td>977.0</td>
<td>9.0</td>
<td>7,587,930</td>
<td>1,189</td>
<td>7,413,732,394</td>
</tr>
<tr>
<td>Leaf (long day)</td>
<td>973.0</td>
<td>9.4</td>
<td>6,780,899</td>
<td>1,209</td>
<td>6,597,664,366</td>
</tr>
<tr>
<td>Calyx</td>
<td>1,040.2</td>
<td>10.0</td>
<td>4,833,397</td>
<td>1,247</td>
<td>5,027,548,849</td>
</tr>
<tr>
<td>Flower Disk Florets</td>
<td>1,012.1</td>
<td>9.5</td>
<td>7,072,131</td>
<td>1,331</td>
<td>7,157,901,095</td>
</tr>
<tr>
<td>Flower Buds</td>
<td>993.6</td>
<td>9.1</td>
<td>7,917,800</td>
<td>1,256</td>
<td>7,867,489,497</td>
</tr>
<tr>
<td>Flower Ray Florets</td>
<td>1,002.8</td>
<td>9.6</td>
<td>7,000,372</td>
<td>1,250</td>
<td>7,020,311,566</td>
</tr>
<tr>
<td>Meristem</td>
<td>1,048.0</td>
<td>10.2</td>
<td>5,075,164</td>
<td>1,263</td>
<td>5,318,808,662</td>
</tr>
<tr>
<td>Stem (short day)</td>
<td>997.1</td>
<td>9.5</td>
<td>7,936,023</td>
<td>1,232</td>
<td>7,912,613,286</td>
</tr>
<tr>
<td>Root</td>
<td>1,060</td>
<td>8.4</td>
<td>5,272,384</td>
<td>1,389</td>
<td>5,591,241,404</td>
</tr>
</tbody>
</table>

Genome Size and Characteristics:

K-mers (K=31) were extracted from the paired-end HiSeq Illumina reads, counted using Jellyfish v2.2.10 (Marçais and Kingsford 2011) and analyzed with GenomeScope (Vurture et al. 2017) to estimate the genome haploid length, heterozygosity and repeat content. The analysis converged and estimated a haploid genome size of 1.72 Gb, a heterozygosity of 1.51% (this value ranges from ~0-2% (Vurture et al. 2017)) and marked 53.6% of the
genome as unique (Figure 1). This indicates that the genome is repetitive and highly heterozygous. The haploid genome size of the chrysanthemum diploids has been estimated between 2.90 ± 0.03 Gb for *C. seticuspe* (Hirakawa *et al.* 2019) and 3.24 Gb for *C. nankingense* (Song *et al.* 2018) using flow-cytometry. The Genome Size Asteraceae Database (GSAD) estimates an average 1C of 3.82 GB for chrysanthemum using flow-cytometry, though this is likely an overestimation as the median is 3.1 GB (Garnatje *et al.* 2011). It is known that sequence based genome estimation methods underestimate genome size (Pflug *et al.* 2020) with GenomeScope being particularly sensitive to the k-mer count cut-off parameter (Vurture *et al.* 2017). This parameter is meant to distinguish repetitive sequences from organelle sequences, so that the repetitive k-mers are used to calculate the genome size while organelle k-mers are discarded, but this becomes impossible if the repetitive sequence k-mers are as abundant as the organelle k-mers (Vurture *et al.* 2017). With the high level of heterozygosity indicated by GenomeScope and confirmed with later analyses, it would be difficult to distinguish these k-mers from each other, resulting in many of the repetitive region k-mers also being discarded and producing a substantially underestimated genome size. We expect a true genome size closer to the cytometry predictions of *C. nankingense* and *C. seticuspe*.
After initial assembly with SMARTdenovo (Ruan et al.) we had 39,105 contigs, spanning 4.1 Gb and with an N50 of 139.2 kb. Purge Haplotigs (Roach et al. 2018) produced a flattened assembly of 15,236 contigs, spanning 3.1 Gb, with an N50 of 255.8 kb. After two rounds of polishing with ntEdit v0.9 (Warren et al. 2019) using Illumina data, the assembly size was 3.1 Gb, and made up of 15,226 contigs and with an N50 of 258.2 kb.
To scaffold the contigs, maps were generated using Hi-C and Chicago proximity ligation methods (Dovetail Genomics; Scotts Valley, USA). This method generated 4 254 scaffolds, covering a total length of 3.1 Gb and with an N50 of 168.9 Mb. The assembly was further superscaffolded into pseudochromosomes using ALLMAPS v0.9.14 (Tang et al. 2015) using a genetic map from a hexaploid *C. moriflorium* (van Geest et al. 2017a). This resulted in a final assembly that was 3.1 Gb long, scaffolded into 9 pseudochromosomes and with an N50 and L50 of 330.0 Mb and 5 scaffolds respectively (Table 2.).

The unplaced contigs were curated before being placed into chromosome 0 using the classification engine Centrifuge v1.0.4 (Kim et al. 2016). Of the 4 206 unplaced contigs, 824 were marked as coming from a non-eukaryote source and removed. The Illumina reads were also aligned back to all the contigs using Minimap2 v2.17 (Li 2018) and then their coverage was assessed using Qualimap v2.2.1 (Okonechnikov et al. 2016). Contigs with a coverage higher than one standard deviation from the average were removed. This resulted in a final set of 3 337 contigs, covering a total of 198.3 Mb, which were placed into chromosome 0.

BUSCO scores, which provide a set of universal single-copy orthologs, were also used to assess the completeness of the assemblies (see Table 3). Using the Embryophyta odb10 set with BUSCO v4.0.5 (Simão et al. 2015), the final assembly had a complete BUSCO score of 92.1% indicating a high overall quality. A full breakdown of the BUSCO score can be seen in Table 3.

For comparison, the exclusively short read based assembly of *C. seticuspe* had a total length of 2.722 Gb, with 354 212 contigs, an N50 of 44.7 kb and BUSCO score of 88.8% (Hirakawa...
et al. 2019). The *C. nankingense* assembly had a total length of 2.527 Gb, with 24 051 contigs, an N50 of 130.7 kb and BUSCO score of 92.7% (Song et al. 2018). Thus we were able to produce a substantially more contiguous assembly without sacrificing completeness.

TABLE 2. C. MAKINOI DE NOVO GENOME ASSEMBLY METRICS ESTIMATED USING QUAST

<table>
<thead>
<tr>
<th>Assembly</th>
<th>C. makinoi V1.0 (9 chrs + chr0)</th>
</tr>
</thead>
<tbody>
<tr>
<td># N's per 100kbp</td>
<td>89.51</td>
</tr>
<tr>
<td># contigs/scaffolds</td>
<td>10</td>
</tr>
<tr>
<td>Total length</td>
<td>3 113 668 257</td>
</tr>
<tr>
<td>N50</td>
<td>330 012 911</td>
</tr>
<tr>
<td>N75</td>
<td>317 988 395</td>
</tr>
<tr>
<td>L50</td>
<td>5</td>
</tr>
<tr>
<td>L75</td>
<td>7</td>
</tr>
<tr>
<td>Largest contig/scaffold</td>
<td>376 468 909</td>
</tr>
<tr>
<td>GC Content (%)</td>
<td>36.01</td>
</tr>
</tbody>
</table>

TABLE 3 OUTPUT FROM THE BUSCO ANALYSIS PIPELINE TO ASSESS GENE COMPLEMENT COMPLETENESS

<table>
<thead>
<tr>
<th>BUSCO term</th>
<th>V1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete (%)</td>
<td>92.1</td>
</tr>
<tr>
<td>Complete and Single Copy (%)</td>
<td>83.8</td>
</tr>
<tr>
<td>Complete and Duplicated (%)</td>
<td>8.3</td>
</tr>
<tr>
<td>Fragmented (%)</td>
<td>1.8</td>
</tr>
<tr>
<td>Missing (%)</td>
<td>6.1</td>
</tr>
<tr>
<td>Total</td>
<td>1375</td>
</tr>
</tbody>
</table>
Repetitive Regions:

Using RepeatModeler (Flynn et al. 2020), 80.04% of the genome was marked as repetitive. Large genomes have accumulated repeats (Kelly and Leitch 2011) and the k-mer analysis already indicated we were dealing with a largely repetitive genome. Of the 6 799 identified repeat families in *C. makinoi*, 76.6% were identified as long terminal repeats (LTRs). Of the LTRs, 27.1% could be identified as *Copia* and 7.4% as *Gypsy*. A similar analysis in *C. nankingense* marked 69.6% of their assembly as repetitive and found LTRs to make up 67.7% of the identified tandem repeats, with 36.5% being *Copia* and 30.9% being *Gypsy* (Song et al. 2018). The lower rate of repetitiveness and identified LTRs in *C. nankingense* may be due to the difference in contiguity, with *C. nankingense* consisting of over 24 000 contigs (Song et al. 2018) to our 9 pseudochromosomes and 3 337 unplaced contigs, as it has been shown that more complete genome assemblies will identify more LTRs (Ou et al. 2018). Analysis of various Asteraceae has shown fluctuations between members in relative abundance of *Copia* vs *Gypsy*, with sunflower (*Helianthus annuus*) amplifying *Gypsy* over *Copia* (Cavallini et al. 2010; Buti et al. 2011; Natali et al. 2013; Giordani et al. 2014; Badouin et al. 2017) while horseweed (*Conyza canadensis*) and globe artichoke (*Cynara Cardunculus* var. *scolymus*) showed the reverse (Peng et al. 2014; Scaglione et al. 2016).

Earlier studies with *C. nankingense* and *C. boreale* suggested that in chrysanthemum the abundances of *Copia* and *Gypsy* were similar, with *Copia* being slightly more abundant and undergoing amplification slightly earlier (Won et al. 2018a; Song et al. 2018) but our results suggest that, at least in *C. makinoi*, there is a more substantial difference in abundance, like that seen in horseweed and globe artichoke. A systematic analysis of a variety of chrysanthemum species at various ploidy levels should be undertaken to gain better insight as these repeat types are a known driving force of plant genome evolution (Todorovska 2007).
Transcript Annotation:

Each algorithm in the Funannotate (Palmer 2017) pipeline produced a set of ab initio gene models (see TABLE S2). The evidence for each gene model was weighed using an EVM approach and identified 95,064 ab initio predicted gene models. This is higher than the plant average of 36,795 (Ramírez-Sánchez et al. 2016) but could be explained by the presence of pseudogenes (Xiao et al. 2016). Other Asteraceae including Artemisia annua (63,226 gene models) (Shen et al. 2018), sunflower (52,232 gene models) (Badouin et al. 2017), Mikania micrantha (46,351 gene models) (Liu et al. 2020), and C. seticuspe (71,057 gene models) (Hirakawa et al. 2019), and C. nankingense (56,870 gene models) (Song et al. 2018) also have substantially more than the average number of gene models. To investigate this further, an analysis of the structure and length of the annotated genes was also performed. The genes had an average coding sequence length of 876 bps and a maximum of 12,735 bps. This is shorter than the average plant gene length of 1,308 bps but within the first quartile of average plant gene length (Ramírez-Sánchez et al. 2016). In line with the finding that plants tend to have less exons per protein than other organisms (Ramírez-Sánchez et al. 2016), 15.9% of the genes in C. makinoi were found to consist of a single exon. The average intron length within our gene set was found to be 446 bps, with a range of 11-19,668 bps and median of 140 bps. This indicates that the majority of introns are relatively small. The distribution is similar to what has been found in maize (which had a mean of 516 bps and median of 146 bps) (Schnable et al. 2009).

Typically transposable elements accumulate in the centromeric and pericentromeric regions as they establish, maintain and stabilize the centromeres of eukaryotes (Klein and O’Neill 2018). Thus one can estimate the centromeric region of a chromosome based on a low gene density (Figure 2.; red ring) and high repetitive sequence density (Figure 2.; orange ring) but...
this pattern is not visible in *C. makinoi* as both the genes (red ring) and repetitive sequences (orange ring) are evenly distributed across. In fact, instead of clustering by region, the repetitive sequence density in *C. makinoi* has a positive Pearson Correlation value of 0.60 with gene density. A possible explanation for this correlation is that chrysanthemum, like other Asteraceae, have LTRs driving a lot of diversity (Wang *et al.* 2014). Each LTR family has its own distribution characteristics in plant genomes (Chen 2007; Zhang *et al.* 2014) and LTRs make up 76.6% of the identified repeat families in *C. makinoi*. The sheer volume of the LTRs that distribute in gene rich areas could be overwhelming the signal of repetitive sequences with a centromeric/pericentromeric preference. This is further supported by previous work on repetitive elements in *C. boreale* which found, using optical techniques, a strong enrichment for LTRs and that the majority of repetitive sequences identified did not show a preference for centromeric or peri-centromeric regions (Won *et al.* 2018a).

Blast2Go (Götz *et al.* 2008) was used to functionally annotate the final gene model set. From our predicted gene models, 11.0% were assigned a putative functional label and 2.9% an enzyme code. Looking at the GO-level distribution, the majority of the gene models that were annotated as relating to a biological process (P) or molecular function (F) could not be identified to a high level of specificity, except the cellular component (C) annotated genes (see FIGURE S3). This means that Blast2Go struggled to be more specific about the function of the identified biological process genes beyond i.e. “nitrogen compound metabolic process” but could get much more specific with the cellular component annotated genes.
FIGURE 2. CIRCOS PLOT SHOWING THE PSEUDOMOLECULES (OUTER RING), GENE DENSITY (RED RING), REPETITIVE ELEMENT CONTENT (ORANGE RING) AND GC CONTENT (YELLOW RING) WITH A BIN SIZE OF 500KB.

CONCLUSION

Having assembled the most complete and contiguous chrysanthemum genome available to date we have made an important step forward in our understanding of the genomics of this complex important ornamental crop. This reference will provide a guide for further research in chrysanthemum breeding traits, origin and strategies for assembling related higher ploidy varieties. This genome can act as a reference to assist in the ordering of other diploid
chrysanthemum sequences as well as help reduce the complexity of assembly in closely related polyploids as has been done in several other species (Lukaszewski et al. 2014; Li et al. 2015; Bertioli et al. 2016; Kyriakidou et al. 2018; Edger et al. 2019).

ACKNOWLEDGEMENTS

We would like to acknowledge and thank our industry partners, Deliflor Chrysanten, Dekker Chrysanten, Royal Van Zanten and Dümmen Orange as well as TKI T&U for their funding and support under TKI project KV1605-114. The National Agriculture and Food Organization (Japan) is also kindly acknowledged for sharing the *Chrysanthemum makinoi* plant accession JP131333 with us for this project.

LITERATURE CITED

Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos et al., 2009 BLAST+: Architecture and applications. BMC Bioinformatics 10:

Fonseca, N., and J. Manning fastq_utils. GitHub.

Li, H., 2013 Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.

Liu, Y., 2020 Genetic structure and phenotypic differences among and within extant populations of Chrysanthemum arcticum L. and C. a. subsp. arcticum: University of Minnesota.

Liu, B., J. Yan, W. Li, L. Yin, P. Li et al., 2020 Mikania micrantha genome provides insights

Natali, L., R. M. Cossu, E. Barghini, T. Giordani, M. Buti et al., 2013 The repetitive component of the sunflower genome as shown by different procedures for assembling next generation sequencing reads. BMC Genomics 14: 686.

comparisons in beetles (Coleoptera). G3 Genes, Genomes, Genet. 10: 3047–3060.

Ruan, J., H. Li, D. Li, and W. Lin SMARTdenovo. GitHub.

Schnable, P. S., D. Ware, R. S. Fulton, J. C. Stein, F. Wei et al., 2009 The B73 maize genome: Complexity, diversity, and dynamics. Science (80-.). 326: 1112–1115.

Zhanga, H., B. Zhu, B. Qi, X. Gou, Y. Dong et al., 2014 Evolution of the BBAA component
of bread wheat during its history at the allohexaploid level. Plant Cell 26: 2761–2776.

SUPPLEMENTARY TABLES AND FIGURES

TABLE S1 ALLMAPS SUMMARY BETWEEN THE HEXAPLOID INTEGRATED GENETIC MAP AND C. MAKINOI SCAFFOLDS THAT DETAILS THE MARKER STATS FOR THE SEQUENCES THAT WERE ANCHORED, ONLY ORIENTED OR UNPLACED

<table>
<thead>
<tr>
<th></th>
<th>Anchored</th>
<th>Oriented</th>
<th>Unplaced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markers (unique)</td>
<td>48 482</td>
<td>48 393</td>
<td>910</td>
</tr>
<tr>
<td>Markers per Mb</td>
<td>16.6</td>
<td>16.6</td>
<td>4.0</td>
</tr>
<tr>
<td>N50 Scaffolds</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Scaffolds</td>
<td>81</td>
<td>63</td>
<td>4 238</td>
</tr>
<tr>
<td>Scaffolds with 1 marker</td>
<td>8</td>
<td>0</td>
<td>105</td>
</tr>
<tr>
<td>Scaffolds with 2 markers</td>
<td>7</td>
<td>5</td>
<td>62</td>
</tr>
<tr>
<td>Scaffolds with 3 markers</td>
<td>2</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>Scaffolds with ≥4 markers</td>
<td>64</td>
<td>56</td>
<td>72</td>
</tr>
<tr>
<td>Total bases</td>
<td>2 914 525 386 (92.7%)</td>
<td>2 912 184 103 (92.6%)</td>
<td>229 073 915 (7.3%)</td>
</tr>
</tbody>
</table>
FIGURE S2 ALLMAP VISUALIZATION OF PSEUDOCHROMOSOME ASSEMBLIES AGAINST A HEXAPLOID GENETIC MAP BEFORE (A) AND AFTER (B) ONT VERIFIED BY-HAND CORRECTIONS
TABLE S2 NUMBER OF GENE MODELS PRODUCED BY EACH ALGORITHM AS PART OF THE FUNANNOTATE PIPELINE

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Number of Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genemark</td>
<td>212 885</td>
</tr>
<tr>
<td>Augustus</td>
<td>81 180</td>
</tr>
<tr>
<td>High Quality Augustus</td>
<td>23 894</td>
</tr>
<tr>
<td>GlimmerHMM'</td>
<td>977 715</td>
</tr>
<tr>
<td>Snap</td>
<td>557 986</td>
</tr>
</tbody>
</table>

FIGURE S3 GO-LEVEL DISTRIBUTIONS OF SPECIFICITY FROM THE C. MAKINOI ANNOTATIONS SORTED BY FUNCTION