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Abstract 

Orthologous gene coevolution—which refers to gene pairs whose evolutionary rates covary 

across speciation events—is often observed among functionally related genes. We present a 

comprehensive gene coevolution network inferred from the examination of nearly three million 

orthologous gene pairs from 332 budding yeast species spanning ~400 million years of 

eukaryotic evolution. Modules within the network provide insight into cellular and genomic 

structure and function, such as genes functioning in distinct cellular compartments and DNA 

replication. Examination of the phenotypic impact of network perturbation across 14 

environmental conditions using deletion mutant data from the baker’s yeast Saccharomyces 

cerevisiae suggests that fitness in diverse environments is impacted by orthologous gene 

neighborhood and connectivity. By mapping the network onto the chromosomes of S. cerevisiae 

and the opportunistic human pathogen Candida albicans, which diverged ~235 million years 

ago, we discovered that coevolving orthologous genes are not clustered in either species; rather, 

they are most often located on different chromosomes or far apart on the same chromosome. The 

budding yeast coevolution network captures the hierarchy of eukaryotic cellular structure and 

function, provides a roadmap for genotype-to-phenotype discovery, and portrays the genome as 

an extensively linked ensemble of genes.  
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Introduction 

Genetic networks—diagrams wherein nodes represent genes and edges represent measured 

functional relationships between nodes—can elucidate how genes are organized into pathways 

and contribute to cellular functions, shedding light into the relationship between genotype and 

phenotype (Costanzo et al. 2010, 2016, 2019; Kuzmin et al. 2018). Given the rich information 

contained in or derived from genetic networks, numerous approaches that aim to capture some 

aspect(s) of functional relationships among genes in a genome (e.g., gene coexpression, genetic 

interaction) have been developed (Lezon et al. 2006; Baryshnikova et al. 2013; Wisecaver et al. 

2017). While these networks are highly informative, their availability and applicability is 

typically limited to select model organisms and single extant species or strains. Application of 

information from the genetic network of one organism to understand the biology of another 

requires assuming that the networks of the two organisms are conserved, which is not always the 

case (Tong et al. 2001; Pan et al. 2004; Onge et al. 2007; Mani et al. 2008; Dixon et al. 2008; 

Lehner 2011; Boucher and Jenna 2013; Lind et al. 2015; Sorrells and Johnson 2015; Monaco et 

al. 2015; Yang and Wittkopp 2017).  

 

One complementary, but poorly studied, method for constructing genetic networks is by 

measuring the coevolution of orthologous genes, which can be done by calculating the 

covariation of relative evolutionary rates among orthologous genes (Goh et al. 2000; Sato et al. 

2005; Clark et al. 2012; Steenwyk et al. 2021). Briefly, by estimating an orthologous gene’s 

phylogeny, one infers the rate (and changes in rate) of its evolution across the phylogeny; if the 

evolutionary rate values estimated for each branch of an orthologous gene’s phylogeny are 

significantly correlated with those of another gene’s phylogeny, the two orthologs are said to be 

coevolving. By estimating coevolution for all pairs of orthologous genes in a clade, one can infer 

the clade’s orthologous gene coevolution network, where nodes correspond to orthologs and 

edges correspond to the degree to which two orthologs coevolve (Steenwyk et al. 2021). Genetic 

networks based on gene coevolution leverage evolutionary information, whereas standard 

genetic networks rely on the correlation of functional data such as gene expression or the 

presence of genetic interactions among genes within a single extant species or strain.  
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Orthologous gene coevolution is often observed among genes that share functions, are 

coexpressed, or whose protein products are subunits in a multimeric protein structure, and can 

yield insights into the genotype-to-phenotype map (Findlay et al. 2014; Brunette et al. 2019). For 

example, screening for genes that have coevolved with genes in known DNA repair pathways 

across 33 mammals led to the identification of DDIAS, whose involvement in DNA repair was 

subsequently functionally validated (Brunette et al. 2019). Furthermore, four out of five proteins 

in the protein structural interactome map—a database of structural domain-domain interactions 

in the protein data bank (https://www.rcsb.org/)—exhibit signatures of gene coevolution (Kim et 

al. 2004). Although these and other studies have demonstrated that signatures of coevolution are 

a powerful method to detect functional associations among genes in the absence of functional 

data (Clark et al. 2012; Findlay et al. 2014; Raza et al. 2019; Brunette et al. 2019; Huang et al. 

2020; Talsness et al. 2020), the network biology principles of gene coevolution, especially 

between genes that have coevolved for hundreds of millions of years, remain unexplored. 

 

To unravel general principles of orthologous gene coevolutionary networks, we constructed the 

coevolution network of a densely sampled set of orthologs from one-third of known budding 

yeast species (332 species) that diversified over ~400 million years. The inferred network 

provides a hierarchical view of cellular function from broad bioprocesses to specific pathways. 

Interpolation of the gene coevolution network with of fitness assay data from single- and digenic 

S. cerevisiae mutants (Costanzo et al. 2010, 2016, 2021; Usaj et al. 2017) provides insight into 

subnetwork- and ortholog-specific potential to buffer genetic perturbations. Surprisingly, 

comparisons of genetic networks inferred from gene coevolution and genetic interactions yield 

similar functional insights; for example, hubs of genes tend to be functionally related and gene 

essentiality impacts gene connectivity wherein essential genes are more densely connected than 

non-essential genes. Unlike genetic interaction networks, gene coevolution networks can also 

provide evolutionary insights; for example, mapping the orthologous gene coevolution network 

onto the chromosomes of two model yeast genomes uncovers extensive inter-chromosomal and 

long-range intra-chromosomal associations, providing an ‘entangled’ view of the genome across 

evolutionary timescales. We anticipate these results will facilitate the generation, interpretation, 

and utility of these networks among other lineages in the tree of life. 
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Results 

A gene coevolution network 

We examined 2,898,028 pairs of orthologous genes from a dataset of 2,408 orthologous gene in 

332 budding yeast species. Broad network properties were stable across a range of thresholds for 

“significant” orthologous gene coevolution (Fig. S2). To conservatively define “significant” 

coevolution and therefore examine orthologous gene pairs with only robust signatures of 

coevolution, we implemented a high correlation coefficient threshold for significant orthologous 

gene coevolution (r ≥ 0.825; Pearson correlation among relative evolutionary rates). This 

resulted in 60,305 significant signatures of orthologous gene coevolution; Fig 1A, 1B, and S1), 

which were used to construct a network where nodes are orthologous genes and edges connect 

orthologous genes that are significantly coevolving (Fig. 1C). 

 

To determine how orthologous gene connectivity varied in the network, we examined patterns of 

dense and sparse connections for individual orthologous genes. Individual orthologous genes 

coevolved with a median of eight other orthologous genes, but connectivity varied substantially 

across the network (Fig. S3). For example, 1,091 orthologous genes have signatures of 

coevolution with five or fewer other orthologous genes and 601 orthologous genes are singletons 

(i.e., they are not significantly coevolving with other orthologous genes in the dataset). In 

contrast, 420 orthologous genes have signatures of coevolution with 100 or more other 

orthologous genes, and 21 orthologous genes coevolve with 400 or more others.  

 

Coevolving orthologous genes in the network are functionally related. For example, PEX1 and 

PEX6 are one of the pairs of genes with the highest observed correlation coefficient in 

evolutionary rates (Fig. S4). In S. cerevisiae, the two orthologous genes encode a 

heterohexameric complex responsible for protein transport across peroxisomal membranes 

(Ciniawsky et al. 2015) and mutations in either gene can lead to severe peroxisomal disorders in 

humans (Reuber et al. 1997). Functional enrichment among densely connected orthologous 

genes revealed that complex bioprocesses that require coordination among polygenic protein 

products are overrepresented (Fig. S5, Table S1). For example, CHD1, INO80, and ARP5, which 

encode proteins responsible for chromatin remodelling processes such as nucleosome sliding and 

spacing (Ayala et al. 2018), are coevolving with 400 or more other orthologous genes (Fig. S5, 
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Table S1). Taken together, these findings highlight that coevolution may be observed among 

orthologous genes that physically interact (e.g., PEX1 and PEX6) or contribute to highly intricate 

biological processes (e.g., INO80). More broadly, these data support the hypothesis that 

coevolving orthologous genes tend to have similar functions.   

 

To determine how connectivity varied within the network, we examined the properties of 

subnetworks across orthologous genes considered essential and nonessential in the model yeast 

S. cerevisiae or the opportunistic pathogen C. albicans (Winzeler et al. 1999; Segal et al. 2018). 

Essential genes are densely connected in the orthologous gene coevolutionary network, whereas 

nonessential genes exhibit sparser connections (Fig. 2A-D). To infer network communities—

clusters of orthologous genes that have more connections between them than between 

orthologous genes of different clusters—we used a hierarchical agglomeration algorithm (Fig. 

2A). Five large communities (clusters of more than 10 orthologous genes) were identified. Each 

community varied in size, community-to-community connectivity, and essential/nonessential 

orthologous gene composition. Specifically, the two largest communities, communities 1 and 2, 

share the most connections and belong to a higher-order cluster with the next two largest 

communities, communities 3 and 4 (Fig. 2E and S6). In contrast, the smallest community, 

community 5, does not cluster with the other communities. Similarly, essential genes are 

overrepresented in community 1 but are underrepresented in communities 2, 3, and in smaller 

communities of 10 or fewer orthologous genes (Fig. 2F; p < 0.01 for all tests; Fisher’s exact 

test). The result that S. cerevisiae and C. albicans essential genes are central hubs in coevolution 

network constructed from orthologous genes that represent 400 million years of budding yeast 

evolution mirrors observations from the S. cerevisiae genetic interaction network (Costanzo et al. 

2016).  

 

From processes to pathways: the budding yeast coevolution network captures the 

hierarchy of cellular function 

To gain insight into the functional neighborhoods of the orthologous gene coevolution network, 

we examined via gene ontology (GO) enrichment analysis (GeneOntologyConsortium 2004) the 

composition of each community. Among the highest-order cluster of communities (i.e., 

communities 1 through 4), we found that higher-order cellular processes including nucleic acid 
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metabolism (p = 0.040; Fisher’s exact test multi-test corrected using false discovery rate 

correction with Benjamini/Hochberg (FDR-BH)) and cellular anatomical entities (p = 0.020; 

Fisher’s exact test multi-test corrected using FDR-BH) are enriched. At the individual 

community level, we found that community 1 is enriched in orthologous genes with helicase 

activity (p = 0.005; Fisher’s exact test multi-test corrected using FDR-BH), ligase activity (p = 

0.004; Fisher’s exact test multi-test corrected using FDR-BH), and translation initiation factors 

(p = 0.024; Fisher’s exact test multi-test corrected using FDR-BH); community 2 is enriched in 

Golgi vesicle transport orthologous genes (p = 0.009; Fisher’s exact test multi-test corrected 

using FDR-BH); whereas singletons are enriched in GTPase activity (p = 0.016; Fisher’s exact 

test multi-test corrected using FDR-BH) and peroxiredoxin activity (p = 0.036; Fisher’s exact 

test multi-test corrected using FDR-BH) (Fig. 2G-I, Table S3).  

 

Functional neighborhoods of coevolving orthologous genes within and between biological 

functions as well as cellular compartments and complex categories are also captured by the 

network. For example, orthologous genes involved in the biological functions of ribosome 

biogenesis, rRNA processing, and translation, which represent different functional categories, are 

extensively coevolving with one another (Fig. S7A). This finding suggests that the complexity of 

protein biosynthesis, a process that requires coordination among diverse biochemical functions, 

is captured in the coevolution of the underlying orthologous genes. Similarly, orthologous genes 

involved in nuclear processes or located in the cytoplasm tend to coevolve with orthologous 

genes in the same cellular compartment, however, substantial signatures of coevolution between 

orthologous genes from different cellular compartments are also observed (Fig. S7B).  

 

Finally, our network captures functional neighborhoods of coevolving orthologous genes at the 

level of pathways and complexes. We found strong signatures of coevolution among orthologous 

genes from specific pathways and complexes. For example, orthologous genes that encode 

proteins responsible for DNA replication coevolve with a larger number of other DNA 

replication orthologous genes than expected by random chance (p < 0.001; permutation test) 

(Fig. S8). Orthologous genes involved in DNA mismatch repair and nucleotide excision repair 

pathways, which participate in the repair of DNA lesions, have more signatures of coevolution 

than expected by random chance (p < 0.001 for each pathway; permutation test). Orthologous 
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genes in the phosphatidylcholine biosynthesis pathway, which is responsible for the biosynthesis 

of the major phospholipid in organelle membranes, and orthologous genes in the tricarboxylic 

acid cycle (also known as the Krebs cycle or citric acid cycle), a key component of aerobic 

respiration (Fig. S9), also have more signatures of coevolution than expected by random chance 

(p < 0.001 for each pathway; permutation test). Among complexes, orthologous genes that 

encode the minichromosome maintenance protein complex that functions as a DNA helicase, the 

DNA polymerase α-primase complex that assembles RNA-DNA primers required for replication, 

and DNA polymerase ε that serves as a leading strand DNA polymerase (Fig. 3) also coevolve 

with larger numbers of orthologs from the same complex than expected by random chance (p < 

0.001 for each multimeric complex; permutation test). Note, certain gene categories (e.g., 

transposons and hexose transporters) are not represented in our dataset of orthologous genes and 

could not be examined (see Methods).  

 

In summary, these findings reveal that functional aspects of the network can be viewed with 

varying degrees of specificity. For example, the highest-order insights (i.e., GO enrichment 

across communities 1, 2, 3, and 4) revealed coevolution among cellular anatomical entities 

whereas greater specificity—such as coevolution among orthologous genes responsible for Golgi 

vesicle transport—can be obtained by examining lower-order hubs of genes (e.g., GO 

enrichment in community 2). Furthermore, coevolutionary signatures can bridge distinct but 

related functional categories such as cellular compartments and complexes, highlighting the 

complex interplay of distinct functional modules over evolutionary time. Thus, the budding yeast 

coevolution network captures the hierarchy of cellular function from broad bioprocesses to 

specific pathways or multimeric complexes. 

 

The coevolution network constructed from budding yeast orthologous genes is distinct, but 

complementary, to the S. cerevisiae genetic interaction network 

To determine similarities and differences between our coevolution network inferred from 

orthologous genes in the budding yeast subphylum and the genetic interaction network inferred 

from digenic null mutants in the model organism S. cerevisiae (Costanzo et al. 2010; Usaj et al. 

2017), both data types were integrated into a single supernetwork (Fig. S10 and S11). We 

hypothesize that there will be broad similarities between the networks because they both capture 
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functional associations; however, we also hypothesize that the connectivity of individual nodes 

between the networks will sometimes differ because one network is built from ~400 million 

years of orthologous gene coevolution whereas the other from genetic interactions in a single 

extant species.  

 

Supporting this hypothesis, the community clustering observed in the gene coevolution network 

was also evident in the supernetwork; however, gene- / ortholog-wise connectivity at times 

differed suggesting each network harbors distinct and complementary insights (Fig. S10). For 

example, connectivity is similar for the gene / ortholog CDC6, which is required for DNA 

replication (Hartwell et al. 1970), between the two networks. Specifically, CDC6 is connected to 

96 genes / orthologs in both networks and 56 of the genes / orthologs are the same. This result 

suggests that the connectivity of the CDC6 gene in S. cerevisiae is broadly conserved across 

species from the budding yeast subphylum. In contrast, different gene- / ortholog-wise 

connectivity was observed for the choline kinase CKI1 (Hosaka et al. 1989; Kim et al. 1999); 

CKI1 is coevolving with 87 orthologs, has a significant genetic interaction with 10 genes, and 

seven of these genes / orthologs are shared by both networks. This result suggests that the 

connectivity of the CKI1 gene observed in S. cerevisiae is not broadly conserved across species 

from the budding yeast subphylum. This difference may be partially explained by the fact that 

CKI1 has a paralog, EKI1, which arose from an ancient whole genome duplication event that 

affected some, but not all, species in the subphylum (Marcet-Houben and Gabaldón 2015; Wolfe 

2015). These results reveal that orthologous gene coevolution networks inferred over 

macroevolutionary timescales and networks inferred from genetic interactions in single 

organisms offer complementary insights into functional relationships between genes.  

 

Communities differ in capacity to compensate for perturbation 

Examinations of genome-wide gene dispensability in the model budding yeast S. cerevisiae and 

the opportunistic pathogen Candida albicans (Winzeler et al. 1999; Segal et al. 2018) suggest 

that single-organism genetic networks can buffer perturbations resulting from the deletion of 

individual genes. Thus, we sought to determine whether a gene’s dispensability varies in a 

community-dependent manner. To address this, we integrated information from the budding 

yeast orthologous gene coevolution network and genome-wide single-gene deletion fitness 
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assays (or, in the case of essential genes, expression suppression) of S. cerevisiae in 14 diverse 

environments (Costanzo et al. 2021) (Fig. S12 and S13). Here, single-gene deletion fitness 

assays serve as a proxy for network perturbation in which deletion of a single gene is analogous 

to removing a node from the network. We found that fitness of S. cerevisiae gene knockouts in 

different environments was significantly dependent on community and the number of coevolving 

genes per gene (Fig. 4; p < 0.001 for both comparisons, Multi-factor ANOVA). These 

observations support previous findings that the impact of single-gene deletions can be buffered 

but also highlight the importance of the architecture of the underlying genetic network. 

 

To further investigate the relationship between S. cerevisiae gene dispensability and structure of 

the coevolution network, we integrated S. cerevisiae genetic interaction data from double-gene or 

digenic deletion fitness assays, wherein positive and negative genetic interactions refer to 

positive and negative fitness effects in the digenic deletion mutants relative to those expected 

from the combined effects of the individual single-gene deletion mutants, respectively (Costanzo 

et al. 2010, 2016; Usaj et al. 2017). Although most digenic deletions were associated with 

negative genetic interactions, we unexpectedly found more instances of positive fitness effects 

for orthologous genes from the same community (e.g., deleting two genes whose orthologous 

genes are both in community 1) than for orthologous genes from different communities; the sole 

exception was digenic gene losses of orthologous genes in communities 1 and 2, which are 

highly connected (Fig. S14A). These results suggest that losses of two orthologous genes from 

the same community are difficult to buffer, but, if both orthologous genes are in the same 

subnetwork (or community), compensatory effects are more likely to be observed.  

 

Finally, to examine evolutionary gene loss in the context of the gene coevolution network, we 

investigated community-wide patterns of gene losses among genes lost in a lineage of budding 

yeasts previously reported to have undergone extensive gene losses (Steenwyk et al. 2019). 

These analyses revealed community 2 and singleton orthologs are more likely to be lost (Fig. 

S14B), which supports the hypothesis that gene losses do not occur stochastically (Albalat and 

Cañestro 2016). In summary, the architecture of the coevolution network is significantly 

associated with a gene’s dispensability. 
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An entangled genome: extensive inter- and long-range intra-chromosomal coevolution 

Gene order is not random among eukaryotes and physically linked genes tend to be involved in 

the same metabolic pathway or protein-protein complex (Hurst et al. 2004; Rokas et al. 2018). 

Thus, we hypothesized that coevolving orthologous genes will likely be physically linked or 

clustered onto yeast chromosomes. To test this hypothesis, we projected the budding yeast gene 

coevolution network onto the one-dimensional genome structure of S. cerevisiae and C. albicans, 

which diverged ~235 million years ago (Shen et al. 2018). We chose the genomes of these two 

organisms because they both have complete and high-quality chromosome-level assemblies. The 

two organisms also have distinct evolutionary histories; the lineage that includes S. cerevisiae 

underwent whole-genome duplication, whereas C. albicans underwent intra-species 

hybridization (Marcet-Houben and Gabaldón 2015; Mixão and Gabaldón 2020). These processes 

have contributed to differences in chromosome number (16 in S. cerevisiae vs. eight in C. 

albicans) and a lack of macrosynteny (Seoighe et al. 2000; Chibana et al. 2005; Wolfe 2006; 

Fitzpatrick et al. 2010; Dujon 2010) (Fig. 5A-B and Fig. S15-S16). 

 

Contrary to our hypothesis, we observed extensive inter-chromosomal and long-range intra-

chromosomal orthologous gene coevolution (Fig. 5 and Fig. S17-S23). Specifically, co-evolving 

orthologous gene pairs were commonly located on different chromosomes (Fig. 5C-D and Table 

S4). There was a near-perfect correlation between the number of intra-chromosomal signatures 

of coevolution (corrected by the number of genes on that chromosome in the dataset) and the 

number of inter-chromosomal signatures of coevolution (corrected by the number of genes on all 

other chromosomes in the dataset) (r = 0.95, p < 0.001 for S. cerevisiae; r = 0.98, p < 0.001 for 

C. albicans; Spearman correlation). This result suggests that orthologous genes located on the 

same or different chromosomes are equally like to be coevolving. Given the extensive 

coevolution among orthologous genes in the same or similar functional categories, these results 

support the notion that function, not chromosome structure, is the primary driver of coevolution 

over macroevolutionary timescales. 

 

Examination of intra-chromosomal coevolution revealed variation in orthologous gene pair 

distances along the genome. Two coevolving orthologous genes on the same chromosome can be 

kilobase-to-megabase distances from one another (Fig. 5G-H). The distribution of the closest 
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distance between an orthologous gene and its coevolving partners revealed a positively skewed 

distribution with a similar range of kilobase-to-megabase associations (Fig. S23). In S. 

cerevisiae, the number of intra-chromosomal signatures of coevolution is correlated with the 

number of genes on a chromosome represented in the dataset, whereas in C. albicans the number 

of intra-chromosomal signatures of coevolution is correlated both with chromosome length and 

with the number of genes on a chromosome represented in the dataset (Fig. S24). Examination of 

the distances between orthologous genes in our dataset and their coevolving partners revealed 

that long-range intra-chromosomal coevolution was not an artifact of gene sampling (Fig. S24). 

Investigation of the interplay between orthologous gene coevolution and chromosomal contacts 

using a three-dimensional model of the S. cerevisiae genome (Duan et al. 2010) revealed 

signatures of coevolution occur independent of chromosomal contacts (Fig. S26). 

 

Extensive inter- and intra-chromosomal associations are exemplified by INO80, which encodes a 

chromatin remodeler and has coevolved with 591 orthologous genes on all other chromosomes in 

both S. cerevisiae and C. albicans (Fig. 5I-J). To date, few examples of inter-chromosomal 

associations between loci are known. One example includes concerted copy number variation 

between 45S and 5S rDNA loci in humans; imbalance in copy number is thought to be associated 

with disease (Gibbons et al. 2014, 2015). Our observations suggest extensive inter-chromosomal 

and long-range intra-chromosomal functional associations may be more common than previously 

appreciated. 

 

Discussion 

We constructed a genetic network based on orthologous gene coevolution from a densely 

sampled set of orthologs across the budding yeast subphylum. These analyses are distinct from 

genetic interaction- and gene expression-based genetic networks in that they leverage 

evolutionary, rather than functional, data. Thus, coevolution networks infer functionally 

conserved relationships among orthologous genes across entire lineages, whereas genetic 

networks infer functional relationships among genes in a single extant species or strain 

(irrespective of whether these relationships are conserved in other species or not). Gene 

coevolution networks are also distinct from networks constructed from correlated presence and 

absence patterns of orthologs across a lineage (an approach known as phylogenetic profiling 
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(Cokus et al. 2007; Pellegrini 2012)) in that coevolutionary networks depict relationships among 

orthologs conserved in the majority of taxa. Examination of the global coevolution network, 

communities therein, and signatures of orthologous gene coevolution among bioprocesses, 

complexes, and pathways reveals that the network reflects the hierarchy of cellular function. 

 

Comparison of the budding yeast coevolution network to the genetic interaction-based network 

of S. cerevisiae revealed numerous notable similarities and differences. For example, both 

methods found that gene essentiality significantly impacts connectivity wherein essential genes / 

orthologous genes are more densely connected than nonessential genes / orthologous genes (Fig. 

2). This finding suggests that genes with more essential cellular functions are more likely central 

hubs in the coevolution network (Mnaimneh et al. 2004; Costanzo et al. 2010, 2016, 2021; 

Wisecaver et al. 2017). Similarities were also observed among genes with broadly conserved 

functions. For example, the majority of genes / orthologs connected to CDC6, a gene required for 

the fundamental and widely conserved process of DNA replication (Hartwell et al. 1970), in the 

orthologous gene coevolution network and the genetic interaction-based network were the same 

(Costanzo et al. 2010; Usaj et al. 2017).  

 

Similarities between genetic interaction and gene coevolution networks were also observed when 

examining the impact of gene deletion(s) on fitness. For example, in the gene coevolution 

network, negative fitness outcomes were associated with genetic perturbations of community 1, 

which is enriched in essential genes,  and buffering is largely observed when genes belong to the 

same community (Figure 4). In the genetic interaction network, deletion of genes from the same 

essential complex resulted in negative genetic interactions whereas deletion of genes from the 

same nonessential complex were often associated with positive genetic interactions (Costanzo et 

al. 2016). These striking similarities suggest that, despite using different data types to infer 

genetic interaction networks and gene coevolutionary networks (i.e., functional and evolutionary 

data, respectively), functional associations between genes can be encoded in their coevolutionary 

histories; thus, functional insights can be inferred from gene coevolution networks. 

 

In contrast, differences between the two networks are likely driven by the fact that not all parts of 

the genetic interaction-based network of any single organism are conserved across an entire 
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lineage (Tong et al. 2001; Pan et al. 2004; Onge et al. 2007; Mani et al. 2008; Dixon et al. 2008; 

Lehner 2011; Boucher and Jenna 2013; Lind et al. 2015; Sorrells and Johnson 2015; Monaco et 

al. 2015; Yang and Wittkopp 2017). The more distinct the evolutionary histories of genes or 

pathways of species used to construct an orthologous gene coevolution network, the more 

divergent the topologies of the genetic interaction-based network of a species in that lineage will 

be from the coevolution network of the entire lineage. For example, CKI1, a choline kinase, gene 

connectivity substantially differed in the two networks. This may be in part driven by an ancient 

whole genome duplication event and retention of the duplicate gene copy in some, but not all, 

budding yeast species (Marcet-Houben and Gabaldón 2015; Wolfe 2015). Taken together, these 

results indicate that similarities and differences between networks inferred using orthologous 

gene coevolution from a lineage and networks inferred based on genetic interactions from a 

single organism are driven by divergence in individual organisms’ genetic networks; thus, these 

methods offer distinct insights into functional associations among genes. 

 

Another difference between the two networks is that the budding yeast coevolution network 

offers novel evolutionary insights, which cannot be inferred from genetic interaction networks in 

a single species. For example, hubs of genes do not only represent functionally related genes but 

also genes whose function has been maintained across long evolutionary timescales. 

Furthermore, interpolation of the gene coevolution network and one-dimensional and three-

dimensional chromosome structure offers novel insights into the interplay of chromosome 

structure and coevolution. Despite there being few known examples of inter-chromosomal gene 

associations (Gibbons et al. 2015), we find extensive signatures of inter- and long-range intra-

chromosomal coevolution (Fig. 5, S21-S22), which suggests that gene function, not location, 

drives orthologous gene coevolution over macroevolutionary timescales. These results uncover a 

previously underappreciated degree of genome-wide coevolution that has been maintained over 

millions of years of budding yeast evolution, raising the hypothesis that evolution and function 

of eukaryotic genomes are best viewed as extensively linked ensembles of genes. 

 

In summary, we highlight complementary and novel insights that can be inferred using 

coevolutionary networks compared to other methods to infer genetic networks. Insights and 
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methods used herein will facilitate the generation, interpretation, and utility of these networks for 

other lineages in the tree of life.  
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Methods 

Inferring gene coevolution 

To infer gene coevolution across ~400 million years of budding yeast evolution, we first 

obtained 2,408 orthologous sets of genes (hereafter referred to OGs) from 332 species (Shen et 

al. 2018). These 2,408 orthologous genes are from diverse GO bioprocesses but are 

underrepresented for gene functions known to be present in multiple copies, such as transposons 

and hexose transporters (Table S5). Thus, we conclude that the 2,408 orthologous sets of genes 

span a broad range of cellular and molecular functions. Examination of over and 

underrepresentation of genes from the various chromosomes of S. cerevisiae and C. albicans 

revealed no chromosome was over or underrepresented in the 2,408 orthologs (Table S6), 

suggesting each chromosome is equally represented in our dataset. 

 

Next, we calculated covariation of relative evolutionary rates of all 2,898,028 pairs from the 

2,408 orthologous sets of genes. To do so, we developed the CovER (Covarying Evolutionary 

Rates) pipeline for high-throughput genome-scale analyses of orthologous gene covariation 

based on the mirror tree principle (Fig. 1). The mirror tree principle is conceptually similar to 

phylogenetic profiling—wherein correlations in gene presence/absence patterns across a 

phylogeny are used to identify functionally related genes (Pellegrini et al. 1999)—but instead 

uses correlations in orthologous genes’ relative evolutionary rates (Pazos and Valencia 2001; 

Clark et al. 2012; de Juan et al. 2013).  

 

To implement the CovER pipeline, single gene trees constrained to the species topology were 

first inferred using IQ-TREE, v1.6.11 (Nguyen et al. 2015) (Fig. 1). Thereafter, all pairwise 

combinations of gene trees were examined for significant signatures of coevolution (Fig. 1B). 

Differences in taxon occupancy between gene trees are accounted for by pruning both 

phylogenies to the set of maximally shared taxa. To mitigate the influence of factors that can 

lead to high false positive rates, such as time since speciation and mutation rate, and increase the 

statistical power of calculating gene coevolution, branch lengths were transformed into relative 

rates by correcting the gene tree branch length by the corresponding branch length in the species 

phylogeny (Sato et al. 2005; Clark et al. 2012; Chikina et al. 2016). Single data point outliers 

(defined as having corrected branch lengths greater than five) are known to cause false positive 
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correlations and were removed (Clark et al. 2012). Branch lengths were then Z-transformed and 

a Pearson correlation coefficient was calculated for each pair of orthologs. The CovER algorithm 

has been integrated into PhyKIT, a UNIX toolkit for phylogenomic analysis (Steenwyk et al. 

2021). 

 

Network construction 

Complex interactions between orthologous gene pairs were further examined using a network 

wherein nodes represent orthologs and edges connect orthologs that are coevolving. Following 

our previous work (Steenwyk et al. 2021), we considered orthologous gene pairs with a 

covariation coefficient of 0.825 or greater to have a significant signature of coevolution. This 

threshold resulted in 60,305 / 2,898,026 (2.08%) significant signatures of coevolution (Fig. S1). 

To explore the impact of our choice of a covariation coefficient threshold, we examined two 

measures that describe how densely the network is connected: edge density (the proportion of 

present edges out of all possible edges) and transitivity (ratio of triangles that are connected to 

triples); as well as two measures that describe how diffuse the network is: mean distance 

(average path length among pairs of nodes) and diameter (the longest geodesic distance). Across 

a wide range of thresholds of significant orthologous gene coevolution (Pearson correlation 

coefficient range of [0.600-0.900] with a step of 0.005), we found that the choice of threshold 

had little impact on network structure (Fig. S2). 

 

Network substructure is commonly referred to as community structure and describes a set of 

orthologs that are more densely connected with each other but more sparsely connected with 

other sets (or communities) of orthologs. To identify the community structure of our global 

orthologous gene coevolution network, a hierarchical agglomeration algorithm that conducts 

greedy optimization of modularity was implemented (Newman 2004).  

 

Enrichment analysis 

To determine functional category enrichment among sets of orthologs, gene ontology (GO) 

enrichment analysis was conducted. To do so, a background set of GO annotations were curated 

from the 2,408 orthologous genes (Shen et al. 2018). Specifically, for an orthologous group of 

genes, GO associations were mapped from the representative gene from S. cerevisiae (Goffeau et 
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al. 1996). If an S. cerevisiae gene was not present, the annotation from the representative gene 

from C. albicans was chosen (Jones et al. 2004). When neither species was represented in an 

orthologous group, we considered the function of the orthologous group to be uncertain and did 

not assign a GO term. Significance in functional enrichment was assessed using a Fischer’s exact 

test with Benjamini Hochberg multi-test correction (α = 0.05) using goatools, v1.0.11 

(Klopfenstein et al. 2018). GO annotations were obtained from the Gene Ontology Consortium 

(http://geneontology.org/; release date: 2020-10-09). Higher-order summaries of GO term lists 

were constructed using GO slim annotations and REVIGO (Supek et al. 2011). Over and 

underrepresentation of essential genes across communities and genes on the various 

chromosomes were examined using the same approach in R, v4.0.2 (https://cran.r-project.org/). 

 

Pathway analysis 

To examine coevolution between genes in pathways, we first determined the genes belonging to 

pathways of interest. To do so, we leveraged pathway information in the KEGG database 

(Kanehisa et al. 2016) and the Saccharomyces Genome Database (SGD; 

https://www.yeastgenome.org/). To determine if there are more signatures of coevolution within 

a pathway than expected by random chance, we conducted permutation tests. The null 

distribution was generated by randomly shuffling coevolution coefficients across all ~3 million 

orthologous gene pairs 10,000 times and then determining the number of coevolving pairs among 

the pairs of the pathway of interest for each iteration. 

 

Integrating gene loss information 

To estimate the impact of network perturbation, fitness of single-gene deletions and genetic 

interaction scores inferred from digenic deletions from were combined with information from the 

orthologous gene coevolution network (Costanzo et al. 2010, 2016, 2021; Usaj et al. 2017). For 

example, the relationship between gene-/ortholog-wise community, connectivity, and fitness in 

diverse environments was evaluated. To determine if genes / orthologs were equally likely to be 

lost across communities, we examined patterns of gene losses in Hanseniaspora spp., which 

have undergone extensive gene loss compared to other budding yeasts (Steenwyk et al. 2019). 

 

Projecting the network onto genome structure and organization 
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To gain insight into the relationship between genome structure and the orthologous gene 

coevolution network, we projected the network onto the complete chromosome genome 

assemblies of S. cerevisiae and C. albicans (Goffeau et al. 1996; Jones et al. 2004; van het Hoog 

et al. 2007; Muzzey et al. 2013). Prior to mapping the network onto the genome assemblies, we 

investigated genome-wide synteny using orthology information from the Candida Gene Order 

Browser (Fitzpatrick et al. 2010). Thereafter, the network was projected onto each genome 

assembly using Circos, v0.69 (Krzywinski et al. 2009). Examination of the distance between 

coevolving orthologous genes and chromosomal contacts was conducted using a three-

dimensional model of the S. cerevisiae genome (Duan et al. 2010). 
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Data Availability 

To facilitate other researchers to explore the gene coevolution information, we created a web 

application, the budding yeast coevolution network 

(https://github.com/JLSteenwyk/budding_yeast_coevolution_network), written in the R 

programming language (https://cran.r-project.org/). All other supplementary information 

including single gene phylogenies used to examine coevolution and Pearson covariation 
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coefficients among relative evolutionary rates for all pairwise combinations of orthologous 

groups of genes will be available on figshare upon publication (doi: 

10.6084/m9.figshare.14501964).  
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Figures and figure legends 

 

Figure 1. Constructing the budding yeast orthologous gene coevolution network. (A) We 

determined coevolution in a set of 2,408 single gene trees in which branch lengths were inferred 

along the species tree topology. (B) Coevolution of orthologous genes was evaluated across all 

pairwise combinations of orthologous genes using the CovER function in PhyKIT, v0.1 

(Steenwyk et al. 2021). (C) Significantly coevolving pairs of orthologous genes were used to 

construct a global network of orthologous gene coevolution where nodes correspond to 

orthologous genes and edges connect orthologous genes that are significantly coevolving. 
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Figure 2. Network modules reflect modules of bioprocesses. (A) The global network of 

orthologous gene coevolution. Subnetworks of orthologous genes that are essential (B) and 

nonessential (C) in S. cerevisiae and C. albicans. (D) Examination of network properties reveals 

that the essential gene subnetwork has higher values for metrics of network density (i.e., 

transitivity and edge density), whereas the nonessential gene network has higher values for 

metrics that measure how diffuse the network is (i.e., mean distance and diameter). (E) Network 

community detection revealed five major subnetworks or communities. Orthologous genes from 
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each community are depicted in the same color in panel A and genes from small communities 

with 10 or fewer orthologous genes are depicted in gray. There are 804, 740, 161, 39, and 15 

genes in the five largest communities (communities 1-5).  Edge width reflects the number of co-

evolving orthologous gene pairs between the two communities and node size reflects the number 

of orthologous genes in each community. Higher-order community clustering revealed 

communities 1 through 4 cluster together, whereas community 5 is a singleton as denoted by the 

dashed line. (F) Community 1 is overrepresented with orthologs whose genes are essential in S. 

cerevisiae and C. albicans whereas all other communities are underrepresented with essential 

genes. (G-I) Communities differ in enriched terms; for example, enriched molecular functions in 

community 1 includes orthologous genes associated with helicase, ligase, and translation 

initiation factor activities. MF and BP represent molecular functions and biological processes, 

respectively. Each enriched GO term is represented by a circle where circle color reflects -log10 

p-value from a Fischer’s exact test with Benjamini Hochberg multi-test correction and the size of 

each circle represents GO term uniqueness, a measure of GO term dissimilarity to other enriched 

GO terms wherein higher values reflect greater uniqueness. Complete enrichment results for 

each community are reported in Table S3. The box to the right of panel F is the legend for the 

whole figure. 
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Figure 3. Extensive coevolution in DNA replication genes. Cartoon representation of DNA 

replication. Exemplary complex specific subnetworks are depicted in i, ii, and iii. (i) Extensive 

coevolution between orthologous genes that encode the helicase, minichromosome maintenance 

(MCM) complex, which functions as a helicase. (ii) Coevolution in the orthologous genes that 

encode the DNA polymerase α-primase complex and (iii) DNA polymerase ε complex, which 

are responsible for RNA primer synthesis and leading strand DNA synthesis, respectively. Edges 

in blue connect orthologous genes that are significantly coevolving. Orthologous genes and 

complexes in bold have signatures of coevolution. Orthologous genes and complexes are colored 

according to community assignment. Complexes, such as the DNA polymerase α-primase 

complex, are depicted in multiple colors reflecting the multiple communities represented within 

the complex. There is significant coevolution across all DNA replication orthologous genes (p < 

0.001; permutation test) as well as the multimeric complexes such as the MCM complex (p < 

0.001 for each pathway; permutation test).  
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Figure 4. The impact of perturbing the orthologous gene coevolutionary network through 

single-gene deletion in diverse environments is dependent on community and gene 

connectivity. (A) Multi-factor ANOVA results indicate community, environment, the interaction 

between community and environment, and the interaction between environment and the number 

of coevolving orthologous genes per orthologous gene are significantly associated with the 

fitness of a single-gene deletion strain (relative to the wild-type strain). (B) Fitness of single-

gene deletion strains in diverse environments is impacted by community. (C) Similarly, fitness of 

single-gene deletion strains in diverse environments is impacted by the number of coevolving 

orthologous genes the deleted node is connected to. These results indicate that fitness in diverse 

environments is impacted by orthologous gene neighborhood and connectivity in the network. In 

both panels, each color corresponds to a different environment that fitness was measured in. Df 

represents degrees of freedom; Sum of Sq. represents sum of squares; Mean of Sq. represents 

Mean of squares. 
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Figure 5. Extensive long range and inter-chromosomal gene coevolution. (A & B) The 

number and size of chromosomes differ in (A) S. cerevisiae and (B) C. albicans. Black lines 

indicate locations of centromeres. (C & D) The numbers of genes with only inter-chromosomal 

(blue), both inter- and intra-chromosomal (orange), or only intra-chromosomal (green) signatures 

of orthologous gene coevolution reveal substantially more inter-chromosomal associations than 

intra-chromosomal ones. (E & F) The relationship between the number of intra-chromosomal 

signatures of orthologous gene coevolution corrected by the number of genes on the same 

 

es 
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chromosome (x-axis) and the number of inter-chromosomal signatures of orthologous gene 

coevolution corrected by the number of genes on other chromosomes (y-axis) reveals intra- and 

inter-chromosomal associations are equally likely, suggesting function, rather than genetic 

neighborhood, is the primary driver of orthologous gene coevolution. Each color represents a 

different chromosome. Regression lines are depicted for each chromosome using a linear model. 

A summary regression line is depicted in black. (G & H) Distribution of distances among intra-

chromosomal signatures of orthologous gene coevolution reveals long-range coevolution is 

common. (I & J) An exemplary orthologous gene, INO80, reveals how a single orthologous gene 

can be coevolving with other orthologous genes on the same or other chromosomes. The first, 

innermost track depicts the various chromosomes of either yeast in which chromosome 1 is 

shown at the 12 o’clock position and increasing chromosome number is depicted in a clock-wise 

manner. The second track shows genes on the plus or minus strand. The third track shows the 

same data for the genes present in our dataset and each gene is colored according to the 

community they are part of. The scatter plot shows the number of coevolving orthologous genes 

per orthologous gene. Larger circles represent orthologous genes that are connected to more 

orthologous genes in the network. The links depict orthologous genes that are coevolving with 

INO80 and each link is colored according to the chromosomal location of the other orthologous 

gene it is coevolving with. Colors in E-H as well as ideogram and link colors in J correspond 

chromosomes as depicted in A and B. 
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