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Abstract 

It is increasingly understood that moment-to-moment brain signal variability – 

traditionally modeled out of analyses as mere “noise” – serves a valuable function role and 

captures properties of brain function related to development, cognitive processing, and 

psychopathology. Multiscale entropy (MSE) – a measure of signal irregularity across temporal 

scales – is an increasingly popular analytic technique in human neuroscience. MSE provides 

insight into the time-structure and (non)linearity of fluctuations in neural activity and network 

dynamics, capturing the brain’s moment-to-moment complexity as it operates on multiple time 

scales. MSE is emerging as a powerful predictor of developmental processes and outcomes. 

However, differences in data preprocessing and MSE computation make it challenging to 

compare results across studies. Here, we (1) provide an introduction to MSE for developmental 

researchers, (2) demonstrate the effect of preprocessing procedures on scale-wise entropy 

estimates, and (3) establish a standardized EEG preprocessing and entropy estimation pipeline 

that generates scale-wise entropy estimates that are reliable and capable of differentiating 

developmental stages and cognitive states. This novel pipeline – the Automated Preprocessing 

Pipe-Line for the Estimation of Scale-wise Entropy from EEG Data (APPLESEED) is fully 

automated, customizable, and freely available for download from 

https://github.com/mhpuglia/APPLESEED. The dataset used herein to develop and validate the 

pipeline is available for download from https://openneuro.org/datasets/ds003710. 
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Introduction 

Development signifies a time of great complexity and dynamism. Changes in cognitive 

capacity, processing speed, and behavioral repertoire cooccur with changes in the structure and 

function of complex neural networks. Recent work has turned to the study of brain signal 

variability to inform our understanding of the processes underlying the formation of these 

complex neural networks. While inadequate or excessive neural variability provides inconsistent 

representations of the external world, which might result in poorly integrated neural networks 

and detrimental behavioral outcomes (Bosl et al., 2011, 2017; Catarino et al., 2011; Gurau et al., 

2017; Sathyanarayana et al., 2020; Takahashi et al., 2010), a moderate amount of random noise 

in a system can, perhaps counterintuitively, enhance signal detection by improving the fidelity of 

an underlying signal (Figure 1) (Ward et al., 2006). Such variability is a fundamental property of 

neural systems at multiple hierarchical levels, and is thought to promote the exchange of 

information between neurons, neural synchrony, and the formation of robust, adaptable, and 

dynamic networks that are not overly reliant on any particular node (Fuchs et al., 2007; Mišić et 

al., 2015; Shew et al., 2009; Ward et al., 2006). It is therefore increasingly understood that the 

inherently fluctuating nature of the brain, which is often modeled out of analyses as mere 

“noise,” serves a valuable functional role (Faisal et al., 2008; Garrett et al., 2013, 2011; Stein et 

al., 2005; Ward et al., 2006). 

Multiscale Entropy. The multiscale entropy (MSE) algorithm (Costa et al., 2005, 2002) 

is among the most popular methods to quantify such moment-to-moment brain signal variability 

by calculating entropy – a measure of irregularity or unpredictability – across multiple time 

scales. Entropy at fine time scales is understood to reflect local information processing, while 
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entropy at coarser time scales relates to the long-range integration of information across distal 

neural nodes (Vakorin et al., 2013).  

MSE computation involves 1) coarse graining the time series to scale s by averaging 

together s successive, non-overlapping data points, and 2) computing sample entropy (Richman 

and Moorman, 2000) on the resulting time series (Costa et al., 2002). Sample entropy quantifies 

irregularity by determining how frequently a pattern of length m repeats relative to a pattern of 

length m+1. A similarity criterion, r, set as a proportion of the standard deviation of the time 

series, determines what points are considered indistinguishable. For any data point x, all points 

within x ± r are considered indistinguishable for pattern matching. Then, the negative natural log 

of the ratio of the count of m patterns to the count of m+1 patterns is computed. Higher sample 

entropy values therefore indicate higher irregularity in the data because patterns of length m+1 

reoccur less often than patterns of length m (Figure 2).  

In Costa’s original MSE algorithm (Costa et al., 2005, 2002), r is calculated as a 

percentage of the standard deviation of the original time series (i.e., scale 1) and remains 

constant across all scales. Using this method, it was shown that over increasingly coarse-grained 

time scales entropy increases for biological signals, such as heart rate or EEG data, but decreases 

for a completely random signal, such as white noise. It was argued that MSE was therefore 

capable of distinguishing truly “complex” time series from those that are completely random 

because “no new structures are revealed on larger scales” (Costa et al., 2005). However, a 

completely random time series should be highly irregular and unpredictable at any time scale, 

and therefore should yield high entropy values regardless of how the signal is coarse-grained. 

Instead, this decrease in entropy over time scales for random signals can be attributed to the fact 

that the standard deviation of a time series decreases with the coarse-graining procedure, and the 
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extent of this decrease is greatest for random signals (Figure 3). Because sample entropy 

explicitly incorporates the standard deviation of the time series when defining the similarity 

criterion r, r is larger for a time series with greater standard deviation, meaning the entropy 

algorithm is more likely to identify matches resulting in a lower entropy value (Shafiei et al., 

2019). Therefore, the original MSE algorithm conflates entropy with variance (Nikulin and 

Brismar, 2004). Recalculating the similarity criterion r at each time scale is a simple but critical 

modification to the MSE algorithm. Throughout the remainder of this article, we use “MSE” as 

an umbrella term to refer to any instance in which entropy is calculated across scales, but use 

“scale-wise entropy” to emphasize the importance of recalculating this parameter across scales 

and to differentiate when this modification is employed. 

Calculating MSE from EEG signals requires careful consideration of data preprocessing 

procedures. EEG is susceptible to non-brain artifacts that themselves operate on different time 

scales, such as low frequency drifts and skin potentials, and high frequency muscle activity and 

electrical interference. Therefore, the typical preprocessing procedures applied to EEG data such 

as bandpass filtering to remove low and high frequency bands, and data cleaning procedures 

such as independent components analysis (ICA), require particular consideration for EEG data 

that will be subjected to MSE analysis. However, there is no standardized preprocessing protocol 

for the calculation of MSE on EEG data, and the preprocessing choices employed across 

different research labs vary widely (Table 1). For example, some argue that EEG data should 

undergo minimal preprocessing prior to MSE calculation to avoid the introduction of temporal 

distortions (e.g. (Okazaki et al., 2015)), while others maintain that non-brain sources of noise 

should be removed through thorough data cleaning procedures (e.g. (Miskovic et al., 2016)).  

Here, we develop and validate a standardized approach to preprocessing EEG data for the 
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calculation of scale-wise entropy. We begin by reviewing previous work which has calculated 

MSE on pediatric EEG data to determine the range of preprocessing choices and the extent to 

which the critical modification to the MSE algorithm has been adopted (i.e., scale-wise entropy). 

We then select a representative range of preprocessing parameters and apply them to an infant 

EEG dataset to demonstrate the effect of preprocessing choices on scale-wise entropy estimates. 

Finally, we recommend a standardized approach to preprocessing and scale-wise entropy 

estimation that generates reliable scale-wise entropy estimates that are capable of differentiating 

developmental stages and cognitive states. Called the Automated Preprocessing Pipe-Line for the 

Estimation of Scale-wise Entropy from EEG Data (APPLESEED), this pipeline is made freely 

available as a fully automated and customizable MATLAB function that can be downloaded 

from https://github.com/mhpuglia/APPLESEED. The dataset used herein to develop and validate 

the pipeline is available for download from https://openneuro.org/datasets/ds003710 (Williams 

and Puglia, 2021). 

MSE Across Development: An Overview of Prior Pediatric EEG Research. To gain a 

comprehensive picture of the different preprocessing steps undertaken in the quantification of 

MSE in pediatric EEG, we conducted a literature search by entering the search terms 

("multiscale entropy" OR "multi-scale entropy" OR "MSE" OR “multi scale entropy” OR 

“sample entropy”) AND ("EEG" OR "electroencephalography") AND (“infan*” OR “newborn” 

OR “neonate” OR “child*” OR “adolescen*” OR “pediatric” OR “juvenile” OR “toddler” OR 

“developmental”)  into PubMed and Web of Science databases. This search revealed 98 unique 

articles, 40 of which met inclusion criteria for our review. Articles were included if they were 

written in English and described original research in which multiscale entropy was estimated 

from EEG data collected in a pediatric (≤ 16 years of age) sample. Three additional articles 
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identified through the reference lists of identified articles were also included. We extracted EEG 

recording, data preprocessing, and MSE algorithm parameters from each article (summarized in 

Table 1), which informed the selection of preprocessing methodology examined here. 

While many studies demonstrate change in MSE across development (Bosl et al., 2011; 

De Wel et al., 2017; Hasegawa et al., 2018; Kang et al., 2019; Lippé et al., 2009; McIntosh et al., 

2008; Miskovic et al., 2016; Polizzotto et al., 2016; Szostakiwskyj et al., 2017; Zhang et al., 

2009) or with developmental disorder (Begum et al., 2017; Chenxi et al., 2016; Eroğlu et al., 

2020; Kang et al., 2018; Liu et al., 2017; Okazaki et al., 2015; Rezaeezadeh et al., 2020; Simon 

et al., 2017; Wadhera and Kakkar, 2020; Weng et al., 2017), the vastly differing preprocessing 

choices and widespread failure to adopt the critical MSE algorithm modification of scale-wise 

recalculation of the similarity criterion makes it challenging to compare results across studies 

and realize the role of entropy in neurodevelopment.  

Automated Preprocessing Pipe-Line for the Estimation of Scale-wise Entropy from EEG 

Data (APPLESEED) 

Here, we introduce APPLESEED, the Automated Preprocessing Pipe-Line for the 

Estimation of Scale-wise Entropy from EEG Data, and validate this novel pipeline for the 

analysis of EEG data collected in pediatric populations. We use the term scale-wise entropy to 

emphasize that this pipeline adopts the critical modification to the MSE algorithm that 

recalculates the similarity criterion parameter across scales.  

APPLESEED is a fully automated and customizable MATLAB (The Math Works, 

Natick, MA) function that makes use of the freely available EEGLAB software (Delorme and 

Makeig, 2004) and associated plugins. APPLESEED was developed and validated using 

MATLAB 2017b and functions and scripts from EEGLAB v2021.1 (Delorme and Makeig, 2004) 
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(download link: https://sccn.ucsd.edu/eeglab/download.php), ERPLAB v8.10 (Lopez-Calderon 

and Luck, 2014) (available as an EEGLAB plugin, via EEGLAB > File > Manage EEGLAB 

extensions), MADE Pipeline v1.0 (Debnath et al., 2020) (download link: 

https://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline), ADJUST (Mognon et al., 

2011) (available as an EEGLAB plugin), and FASTER v1.0 (Nolan et al., 2010) (available as an 

EEGLAB plugin). 

Setting up to use APPLESEED. APPLESEED scripts can be downloaded from 

https://github.com/mhpuglia/APPLESEED, and include APPLESEED_setup(), which 

demonstrates how to prepare raw data for use in APPLESEED, APPLESEED(), which executes 

the preprocessing and entropy estimation pipeline on the prepared dataset, and 

APPLESEED_batch, which demonstrates how APPLESEED can be run as a batch across 

multiple subjects’ data. The dataset from this article is available for download from 

https://openneuro.org/datasets/ds003710 (Williams and Puglia, 2021). This provided dataset is 

organized according to the standardized Brain Imaging Data Structure (BIDS) format 

(Gorgolewski et al., 2016; Pernet et al., 2019), and we recommend that users follow this 

convention for naming and organizing their datasets for use with APPLESEED. In short, each 

subject’s EEG data is named as sub-<identifier>[_ses-<identifier>]_task-<identifier>[_acq-

<identifier>][_run-<identifier>]_eeg<.extension> (terms in brackets are optional, if applicable). 

EEG file(s) are saved within an “eeg” sub-directory within a (session-level, if applicable, then) 

subject-level directory, housed within a study-wide parent directory (e.g., the path to the Brain 

Vision header file for the first recording of the provided dataset is: APPLESEED Example 

Dataset > sub-01 > ses-1 > eeg > sub-01_ses-1_task-appleseedexample_eeg.vhdr). 
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APPLESEED requires an EEGLAB dataset with an associated channel location structure 

as its input. If the data are not already in this format, the user can use the APPLESEED_setup()  

function to first import raw EEG data into EEGLAB. APPLESEED_setup() will automatically 

import raw data that is in a BIDS-approved file format (i.e., European Data Format, BrainVision 

Core Data Format, MATLAB toolbox EEGLAB, or Biosemi). If data are not in these formats, 

the user may edit Step 3 of APPLSEED_setup() or use the EEGLAB graphical user interface 

(GUI) to import the data using one of EEGLAB’s data import plugins that are available for many 

file format types (see 

https://eeglab.org/tutorials/04_Import/Importing_Continuous_and_Epoched_Data.html). Next, 

APPLESEED_setup() will assign channel locations 

(https://eeglab.org/tutorials/04_Import/Channel_Locations.html) using EEGLAB’s 

pop_chanedit() function. Alternatively, the user may specify the channel location file via the 

optional 'chanfile' input argument to APPLESEED(). We provide an example channel location 

file for the present dataset (in the “APPLESEED Example Dataset > code” directory). The data is 

then saved as an EEGLAB dataset within a subject-level (and, if applicable, session-level) 

directory within a “derivatives” folder housed in the parent directory (e.g., APPLESEED 

Example Dataset > derivatives > sub-01 > ses-1 > eeg > sub-01_ses-1_task-

appleseedexample_eeg.set). 

Running APPLESEED. APPLESEED is executed as a function from the MATLAB 

command line. Mandatory input arguments for APPLESEED() include the file name for the 

EEGLAB dataset created during setup, the full path to the study directory, and, if a task-based 

analysis, the full path to the location of an ERPLAB bin file. A bin file defines unique event 

codes in the dataset and how they should be grouped within a task condition. We provide an 
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example bin file for the present dataset (in the “APPLESEED Example Dataset > code” 

directory) and refer users to ERPLAB’s documentation for specifics on creating a bin file 

(https://github.com/lucklab/erplab/wiki/Assigning-Events-to-Bins-with-BINLISTER:-Tutorial). 

If event codes are found and no bin file is specified, a warning message will be displayed and the 

data will be treated as continuous, resting state data.  

The user may also specify additional, optional arguments to customize preprocessing 

parameters. The default parameters for these inputs are based on the recommendations from this 

manuscript. Table 2 provides a description of all possible APPLESEED() input arguments and 

the default values that will be assigned if the argument is not specified at the command line.  

Output files are saved within a subject-level (and, if applicable, session-level) directory 

within an “appleseed” folder housed in the parent directory (e.g., APPLESEED Example Dataset 

> appleseed > sub-01 > ses-1 > eeg), and include the final, preprocessed dataset, a logfile 

detailing each preprocessing step employed and any errors or warnings that occurred during 

pipeline execution, scale-wise entropy file(s) (one per condition if a task-based analysis), and 

interim datasets that allow users to examine trials and components marked for rejection. While 

we strongly recommend that users inspect these datasets to ensure artifacts and components are 

appropriately classified, this option may be turned off via the optional 'saverobust' input 

argument.  

The provided APPLESEED_batch script demonstrates how APPLESEED_setup() and 

APPLESEED() can be run as a batch across multiple subjects’ data, and runs APPLESEED for 

the present dataset (Williams and Puglia, 2021), which can be downloaded from 

https://openneuro.org/datasets/ds003710. Each step of APPLESEED is detailed below, and an 

overview of the pipeline is provided in Figure 4. 
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Preprocessing Step: Resampling. The first step in APPLESEED is to down-sample the 

data to a standardized sampling rate. In MSE, scales are directly related to the sampling rate of 

the native (scale 1) time series. For example, scale 1 for data sampled at 250 Hz, scale 2 for data 

sampled at 500 Hz, and scale 4 for data sampled at 1kHz comprise equivalent time scales. 

Therefore, scales cannot be directly compared across studies if different sampling rates are 

employed. For pipeline validation, we consider data down-sampled to 250 Hz and 500 Hz. Users 

may specify a resampling rate via the optional 'resamp' input argument. 

Preprocessing Step: Filtering. Filtering removes low-frequency drifts such as those 

associated with skin potentials, and high-frequency artifacts such as those introduced by muscle 

activity or electrical line noise. APPLESEED applies an infinite impulse response (IIR) 

Butterworth bandpass filter to the continuous EEG data. For pipeline validation, we consider 

high-pass cutoffs of 0.1, 0.2, and 0.3 Hz and low-pass cutoffs of 20, 30, and 50 Hz. Users may 

specify high- and low-pass cutoffs via the optional 'hp' and 'lp' input arguments, respectively. 

Preprocessing Step: Epoching. Next, the data is segmented into discrete epochs. For 

task-based studies, epochs are time-locked to stimulus onset. For resting-state studies, evenly-

spaced epochs are extracted from the continuous time series. The default epoch length for 

APPLESEED is 1000 ms. We recommend using the longest possible epoch that enables an 

appropriate balance between artifact rejection and subject retention for subsequent analysis. 

While shorter epochs are less likely to contain eye blink or motion artifacts, epochs must be long 

enough to contain sufficient continuous data points for a reliable estimation of entropy (Grandy 

et al., 2016) and to achieve the desired coarse-grained scales. Because the coarse-graining 

procedure employs a moving window, the number of data points decreases as a function of scale. 

Users may specify an epoch length (in ms) via the optional 'eplen' input argument. 
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Optional Preprocessing Step: ICA Rejection. Data may then be cleaned via artifact 

correction including ICA decomposition and channel interpolation. Because ICA performs best 

with large amounts of relatively clean data (Luck, 2014), epochs with extreme voltages (default 

threshold ± 500 µV, users may specify an alternate value via the 'arxt' input argument) are first 

rejected as artifacts. Data is then subjected to ICA decomposition using the EEGLAB runica() 

function. Components contaminated with artifacts must then be identified and removed. This 

identification may be performed manually (Lippé et al., 2009; McIntosh et al., 2008; Puglia et 

al., 2020) – a time intensive and somewhat subjective process, or via an automated algorithm. 

While several automated algorithms for the identification of artifactual components exist, 

APPLESEED makes use of the MADE (Debnath et al., 2020) adjusted_ADJUST function, 

which is the only algorithm specifically designed to detect artifactual components in pediatric 

data (Leach et al., 2020). This algorithm is an adaptation of the ADJUST EEGLAB plugin 

(Mognon et al., 2011), which examines the spatial and temporal features of each component to 

identify components contaminated by blinks, eye movements, and generic discontinuities. The 

MADE adjusted_ADJUST function makes several important modifications to improve 

performance of this algorithm on pediatric data including improved eye blink detection and 

retaining any components that contain an alpha peak (Debnath et al., 2020). For pipeline 

validation we consider both “maximal” data cleaning (i.e., ICA rejection + channel interpolation) 

and no data cleaning. Users may specify whether to run ICA and which algorithm 

('adjusted_ADJUST', 'ADJUST', or 'manual') to use for the automatic identification of 

components for rejection via the optional 'runica' and 'icarejmethod' input arguments, 

respectively. 
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Preprocessing Step: Artifact rejection. Epochs with excessive amplitude standard 

deviations within a 200-ms sliding window with a 100-ms window step are discarded as artifacts. 

The default threshold value is set to 80�μV. If visual inspection reveals too many non-artifact 

epochs are rejected, users may wish to decrease this value, or if too many epochs with artifacts 

are retained, users may wish to increase this value. Users may specify a voltage threshold (in 

µV) for artifact rejection via the optional 'arsd' input argument. 

Optional Preprocessing Step: Channel Interpolation. Data may be further cleaned by 

channel interpolation. Problematic channels are identified and removed using the 

channel_properties() function from the FASTER EEGLAB plugin (Nolan et al., 2010). For each 

channel, this function computes and standardizes the channel’s correlation with other channels, 

the channel variance, and the channel’s Hurst exponent – a measure of long-range dependence 

within a signal (Nolan et al., 2010). If the value of one of these parameters exceeds 3 standard 

deviations from the mean, that channel is interpolated. APPLESEED’s default reference channel 

for the FASTER algorithm is Cz. Users may specify whether to run channel interpolation and an 

alternate FASTER reference channel via the optional 'chaninterp' and 'fastref' input arguments, 

respectively.   

Preprocessing Step: Re-referencing. Data are then re-referenced. By default, 

APPLESEED re-references to the average of all scalp electrodes, but users may specify an 

alternate re-referencing channel(s) via the optional 'reref' input argument.  

Preprocessing Step: Trial Selection. Finally, because the number of data points 

included in MSE calculation can influence the reliability of the estimates (Grandy et al., 2016), 

the final step of APPLESEED is trial selection of an equivalent number of trials across all 

participants by identifying the trials with total global field power (GFP) (McIntosh et al., 2008) 
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closest to the median GFP for each participant. By default, APPLESEED will select 10 trials, but 

we recommend increasing this number as much as possible such that doing so retains a sufficient 

number of participants for subsequent analyses. Users may specify the number of trials to retain 

and the method for selecting these trials via the optional 'trselcnt' and 'trselmeth' input arguments, 

respectively.  

Scale-wise Entropy Calculation. Scale-wise entropy is then calculated using these 

selected trials for all electrodes in each dataset. To orthogonalize signal mean and signal 

variance, APPLESEED computes sample entropy on the residuals of the EEG signal (i.e., after 

subtracting the within-person average response across trials within each condition) using an 

algorithm based on that created by Grandy and colleagues for the estimation of MSE across 

discontinuous epochs (Grandy et al., 2016).  

The default parameter values for entropy estimation are set to pattern length m��=��2 

and similarity criterion r��=��.5. Others have examined the effect of alternative m and r 

parameter values and found no substantial effect on the accuracy and precision of MSE estimates 

(Grandy et al., 2016). APPLESEED coarse-grains each time scale via moving window average, 

as in the original MSE algorithm. Critically, in scale-wise entropy, APPLESEED 

recalculates r for each scale. Users may specify alternative m and r values for entropy estimation 

via the optional 'm' and 'r' input arguments, respectively. 

Pipeline Development & Validation: 

To develop and validate APPLESEED, we iteratively applied multiple preprocessing 

parameters to an infant dataset (Williams and Puglia, 2021) that can inform both the test-retest 

reliability and the early developmental trajectory of scale-wise entropy. This dataset can be 

downloaded from https://openneuro.org/datasets/ds003710. 
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Sample. As part of a larger, ongoing longitudinal study in which infants undergo EEG at 

4, 8, and 12 months of age (Puglia et al., 2020), 14 infants were invited to return to the lab for 

EEG assessment within 1 week of their initial 4-month-old visit to establish the test-retest 

reliability of scale-wise entropy estimates. The primary caregiver accompanied the infant to all 

appointments and provided written informed consent for a protocol approved by the University 

of Virginia Health and Human Sciences Institutional Review Board. The target sample size for 

this test-retest reliability sample was determined via power analysis tables provided by Bujang 

and Baharum (Bujang and Baharum, 2017), which specify that 13 subjects are sufficient to detect 

an interclass correlation coefficient (ICC) of .70 based on two observations with 90% power. 

Retest data from one subject was of insufficient quality for analysis. Two participants failed to 

return for longitudinal assessment, and the data from one participant was of insufficient quality 

for analysis at subsequent visits. Therefore, the final dataset consists of 48 recording sessions, 

with reliability and longitudinal data for 11 infants (6 F), and reliability data, only, for an 

additional 2 infants (5 F). At the 4-month visit, infants ranged in age from 118 to 148 days (M = 

129.14). The time between the test and retest appointments ranged from 1 to 8 days (M = 5.54). 

At retest, infants ranged in age from 124 to 155 days (M = 134.5). Infants ranged in age from 219 

to 254 days (M = 241.18) at the 8-month visit, and from 334 to 427 days (M = 366.64) at the 12-

month visit. 

EEG Acquisition. The present analyses make use of visual trials in which the infants 

viewed dynamic, colorful 2400-ms video clips of faces and objects in alternating 18-s blocks. 

Across conditions, stimuli were matched on low-level stimulus properties including luminance, 

contrast, spatial frequency, and visual angle (Puglia et al., 2020). EEG was recorded from 32 

Ag/AgCl active actiCAP slim electrodes (Brain Products GmbH, Germany) affixed to an elastic 
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cap according to the 10–20 electrode placement system. EEG was amplified with a BrainAmp 

DC Amplifier and recorded using BrainVision Recorder software with a sampling rate of 

5�kHz, online referenced to FCz, and online band-pass filtered between 0.01 and 1�kHz. 

Infants were seated on their caregiver’s lap while undergoing EEG. Following a procedure 

widely used in developmental EEG experiments (Hoehl and Wahl, 2012), recording was 

terminated when the infant became fussy or inattentive. Participants successfully completed 4 to 

12 blocks (M = 14.10) of each condition, and each block consisted of 6 stimuli.   

Using this pipeline, we iteratively applied multiple preprocessing parameters to each 

infants’ dataset to determine what combination of parameters yielded reliable scale-wise entropy 

estimates that are sensitive to developmental changes and cognitive state. We applied the 

following preprocessing parameters to each infant’s EEG data: sampling rate (250 Hz, 500 Hz), 

high (0.1 Hz, 0.2 Hz, 0.3 Hz)- and low (20 Hz, 30 Hz, 50 Hz)-pass filter cutoffs, and whether 

artifact correction, i.e. via ICA and channel interpolation, was performed (no, yes), for a total of 

36 preprocessing iterations prior to scale-wise entropy calculation.  

To reduce the number of features considered, we averaged scale-wise entropy estimates 

across electrode regions of interest (ROIs, Figure 5) and frequency bands (see Table 3). The 

Frontal ROI consisted of electrodes Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, and FC6. The 

centro-temporal ROI consisted of electrodes T7, C3, Cz, C4, T8, TP9, CP5, CP1, CP2, CP6, and 

TP10. The parieto-occipital ROI consisted of electrodes P7, P3, Pz, P4, P8, PO9, O1, Oz, O2, 

and PO10.  

Effect of Preprocessing on Data Retention. The accuracy and precision of sale-wise 

entropy estimates increases as a function of the number of data points included in the calculation 

(Grandy et al., 2016). Furthermore, longer time series enable the investigation of coarser time 
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scales reflective of long-range integration (Vakorin et al., 2013). However, particularly within 

pediatric samples, EEG recordings are likely to be of short duration and contaminated with 

motion artifacts, yielding fewer usable trials. We therefore first examine how the proportion of 

data retained after preprocessing varies as a function of preprocessing parameters. Across all 36 

preprocessing pipelines considered, the number of retained epochs after preprocessing ranged 

from 15 to 64 (M = 35.29) for the Viewing Faces condition, and from 10 to 58 (M = 35.03) for 

the Viewing Objects condition.  

We entered proportion of data retained after preprocessing into a repeated measures 

analysis of variance (ANOVA) using the aov function within R (R Core Team, 2020), with 

sampling rate (250 Hz; 500 Hz), high-pass filter cutoff frequency (0.1 Hz, 0.2 Hz, 0.3 Hz), low-

pass filter cutoff frequency (20 Hz, 30 Hz, 50 Hz), data cleaning implementation (no, yes), 

experimental condition (viewing faces, viewing objects), and study visit (1, 2, 3) as within-

subjects factors. Proportion of data retained differed significantly by sampling rate (F(1,10) = 

7.01, p = 0.024) such that more data was retained for data sampled at 500 Hz, high-pass (F(2,20) 

= 39.54, p < 0.001) and low-pass filter cutoffs (F(2,20) = 19.58, p < 0.001) such that more 

aggressive filters were associated with a greater proportion of the data retained, and data 

cleaning implementation (F(1,10) = 93.39, p < 0.001), such that more data was retained when 

data cleaning procedures were implemented (Figure 6). Proportion of data retained did not differ 

significantly by experimental condition (F(1,10) = 0.03, p = 0.872) or across longitudinal visits 

(F(3,30) = 1.24, p = 0.311). Average MSE curves for each preprocessing pipeline can be viewed 

in Figure 7. High-pass filter cutoff impacts mid-range time scales such that a higher cutoff filter 

is associated with higher entropy values, regardless of sampling rate or data cleaning 

implementation (Figure 7A). Low-pass filter cutoff impacts fine-grained time scales such that a 
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higher cutoff filter is associated with higher entropy values, with a steeper initial slope for the 

lower sampling rate, regardless of data cleaning implementation (Figure 7B).  

Reliability of Scale-wise Entropy Estimates. To develop and validate a standardized 

methodology for preprocessing pediatric EEG data for scale-wise entropy analysis, we first 

determine the reliability of scale-wise entropy estimates following different preprocessing 

procedures. We first calculate ICC using the icc function of the irr R package (Gamer et al., 

2019) on overall scale-wise entropy estimates averaged across scales and ROIs for each 

condition. Only reliable estimates that are significantly reproducible in both experimental 

conditions are considered. Eight preprocessing pipelines yielded reliable ICC estimates across 

both Viewing Faces and Viewing Objects conditions (Table 4). ICC estimates for all bands, 

electrodes, and preprocessing parameters can be seen in Figure 8. Test-retest reliability curves 

for the final, recommended pipeline can be viewed in Figure 9A. 

Scale-wise entropy Estimates are sensitive to developmental stage and cognitive 

state. Next, we examined how scale-wise entropy estimates change across development, and 

whether these estimates were capable of differentiating perceptual states across the two viewing 

conditions. For each frequency band and ROI, scale-wise entropy estimates were entered into 

repeated measures ANOVAs with within-subject factors of visit (1, 2, 3) and experimental 

condition (viewing faces, viewing objects). Greenhouse-Geisser correction was applied to any 

factors violating the assumption of sphericity (Mauchly's test p-value ≤ 0.05). Preprocessing 

procedures that consistently yielded significant effects within at least 5 of the 6 frequency bands 

were considered further. Of these, one preprocessing pipeline overlapped with a preprocessing 

pipeline that generated reliable scale-wise estimates across conditions. When considering all 

electrodes, we find a significant main effect of age on scale-wise entropy estimates within the 
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gamma+ (F(2,20) = 3.62, p = .045), gamma (F(2,20) = 3.61, p = .046), and delta (F(2,20) = 5.01, 

p = .017) frequency bands. In general, entropy increases from 4- to 8-months for fine-grained 

scales, but decreases within the delta frequency band over this time period (Figure 9A). We find 

a significant interaction between age and condition within the beta (F(2,20) = 4.37, p = .027) and 

alpha (F(2,20) = 3.71, p = .043) frequency bands. This interaction shows that there is no 

distinction between entropy estimates at the 4- and 8-month-old visits, but by the 12-month visit, 

entropy is capable of distinguishing between viewing conditions (Figure 9A). 

When considering scale-wise entropy across frequency bands and ROIs, we find a 

significant main effect of age in frontal beta (F(1.33,13.26) = 6.08, p = .021), centro-parietal 

gamma+ (F(2,20) = 4.68, p= .021), gamma (F(1.27,12.7) = 9.93, p = .005), beta (F(1.19,11.94) = 

9.66, p = .007), and delta (F(2,20) = 5.34, p = .014), and parieto-occipital theta (F(2,20) = 4.71, p 

= .021). Again, entropy generally increases from 4- to 8-months for fine-grained scales, but 

decreases over this time period for coarse-grained scales (Figure 10B). We also find a significant 

interaction between age and condition within parieto-occipital gamma (F(2,20) = 5.20, p = 

0.015) and beta (F(2,20) = 4.75, p = 0.021). This interaction shows again that there is no 

distinction between entropy estimates at the 4- and 8-month-old visits, but by the 12-month visit, 

entropy within parietal and occipital regions, specifically, is capable of distinguishing between 

viewing conditions (Figure 10B). The developmental trajectory of scale-wise entropy as 

calculated by the final, recommended pipeline can be viewed in Figure 9B. 

Recommendations and Conclusions 

We find a single preprocessing pipeline generates scale-wise entropy estimates that are 

both (1) significantly reliable across recording sessions occurring approximately 1 week apart in 

two experimental conditions, and (2) capable of differentiating cognitive states and 
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developmental stages from 4- to 8-months-of-age. We therefore developed APPLESEED to 

automatically accomplish the following recommended preprocessing steps and scale-wise 

entropy estimation: data (down)sampling at 250 Hz, bandpass filtering with 0.3-50 Hz cutoffs, 

segmenting the data into 1000 ms (or longer, if possible) epochs, extreme artifact rejection, data 

cleaning via extreme artifact rejection, rejection of ICA components contaminated with artifacts 

via the automated adjusted_ADJUST algorithm, artifact rejection using a peak-to-peak moving 

window, channel interpolation of problematic channels identified via the FASTER package, re-

referencing to the average of all scalp electrodes, and the selection of 10 (or more, if possible) 

trials across all participants via global field power. Finally, scale-wise entropy is calculated on 

the residuals of the EEG signal with pattern length m = 2 and similarity criterion r = 0.5 

recalculated for each coarse-grained time scale.  

While some prior work has examined the reliability and psychometric properties of MSE 

(Grandy et al., 2016; Kaur et al., 2019; Kuntzelman et al., 2018), these efforts employed the 

original, unmodified MSE algorithm that fails to recalculate r at each coarse-grained time scale – 

thereby conflating time series variance with entropy and hindering the ability to attribute any 

results to time series irregularity, specifically. We are the first to our knowledge to systematically 

examine the effect of preprocessing procedures, to make recommendations specifically for the 

use of scale-wise entropy in pediatric EEG datasets, and to provide freely available scripts to 

accomplish a standardized preprocessing pipeline for scale-wise entropy calculation adopting the 

critical variance-normalization algorithm modification. 

Limitations and future directions. The sample size for the present study was based on a 

power analysis for ICC estimation, and it cannot be overlooked that the sample size for the 

present study is small. While we may therefore be underpowered to detect condition-specific 
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effects across developmental stages, it should be noted that our exploratory results align with 

hypothesized effects. Specifically, scale-wise entropy differentiates visual conditions in the 

parieto-occipital ROI beginning at 12-months of age. This result, in particular, highlights the 

plausibility of our results. Visual processing occurs in the occipital and parietal cortices, and we 

have previously shown scale-wise entropy associations within the visual domain do not yet 

emerge at 4 months of age in a larger sample (Puglia et al., 2020). These data suggest that brain 

signal entropy may be sensitive to developmental trajectories that aligns with sensory system 

maturation. Converging lines of research suggest that infants do not initially rely on visual cues 

for perception (Fernald, 1992; Mumme et al., 1996; Walker-Andrews, 1997). As with many 

mammals, the visual system matures later in development (Gottlieb, 1971), and in humans visual 

acuity does not reach adult levels until age 3 (Catford and Oliver, 1973).   

Additionally, while APPLESEED is capable of processing resting state data, we only 

considered a task-based dataset consisting of passive viewing of visual stimuli for this initial 

validation study. Finally, we only considered the effects of sampling rate, high- and low-pass 

filter cutoffs, and a limited number of data cleaning algorithms. Alternative preprocessing 

procedures and entropy computation parameters may differentially impact results. For example, 

other coarse-graining methods may reveal alternative, complementary signatures of neural 

dynamics to the traditional moving-average window coarse-graining procedure employed here 

(Kosciessa et al., 2020). To overcome these limitations of the present study, and the limitations 

in interpreting prior results generated across a wide range of preprocessing procedures, we make 

APPLESEED freely available as a fully automated and customizable pipeline to facilitate future 

large-scale, multi-site investigations of scale-wise entropy effects throughout development using 

standardized, reproducible, and justified methods.  
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Figures 

 

 

Figure 1. Adding random noise to a signal enhances signal detection. A theoretical 

illustration demonstrating that a signal that is below the threshold for detection (panel 1) can be 

enhanced and more accurately represented by the addition of a moderate amount of random noise

(panel 2). However, inadequate (panel 3) or excessive (panel 4) noise provides inconsistent 

representations of the signal.  

 

  

ise 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2021. ; https://doi.org/10.1101/2021.07.10.450198doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.10.450198
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

A 

  

B  

 

Figure 2 The multiscale entropy algorithm illustrated. (A) A coarse-grained time series is 

first computed for scale s by averaging together s consecutive, non-overlapping data points of the 

original time series (Scale 1). Entropy is then calculated on the coarse-grained time series. (B) 

Entropy measures the irregularity in a time series by determining how frequently a pattern of 

length m repeats relative to a pattern of length m+1. A similarity criterion, r, is set as a 

proportion of the standard deviation of the time series to determine which points are considered 

indistinguishable. For any data point x, all points within x ± r (illustrated with dashed lines) are 

considered indistinguishable. In this example, if m = 2, the first pattern of length m (points 1 and 

2: red, green) repeats 4 times, whereas the first pattern of length m+1 (points 1, 2, 3: red, green, 
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blue) repeats 2 times. The pattern template is then shifted forward 1 point such that matches of 

pattern m consisting of points 2 and 3, and pattern m+1 consisting of points 2, 3, and 4, are 

counted, and so on. Entropy is then calculated as the negative natural log of the ratio of the count 

of all pattern-length m repeats to the count of all pattern-length m+1 repeats: �ln � ��������

�������	
�
�. 

Consequently, low entropy values indicate regularity in a time series; if pattern length m+1 

occurs as often as pattern length m, e.g.: �ln ��
�
� �  �ln�1
 � 0. Conversely, high entropy 

values indicate high irregularity because patterns of length m+1 occur less often than patterns of 

length m, e.g.: �ln ��
�
� �  �ln�2
 � 0.69.  
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Figure 3 Coarse graining differentially impacts standard deviation across signal types. The 

original multiscale entropy curve involves setting the similarity criterion, r, as a proportion of the 

standard deviation (SD) of the native time series (Scale 1) and applying the parameter to all 

subsequent time scales. However, SD decreases as the scaling factor increases according to the 

statistical properties of the original time series. Here we plot a time series and its SD for 

simulated white noise (left), a sinusoidal wave (middle), and EEG signal (right) over scales 1, 

10, 20, 30, 40, and 50. SD decreases most for white noise and least for the sine wave. 

he 
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Figure 4 Overview of APPLESEED Preprocessing Pipeline. A flowchart depicting the 

preprocessing steps undertaken in APPLESEED. Blue coloring indicates steps for which 

alternative parameters were tested during the validation of this pipeline, and the boldfaced font 

indicates which parameter was ultimately selected for the optimized pipeline. AR – artifact 

rejection; SD – standard deviation; GFP – global field power. 
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Figure 5 Electrode Cap Montage & Regions of Interest. EEG was recorded from 32 channels 

aligned according to the standard 10-20 system. To reduce the number of features considered, 

scale-wise entropy was averaged across electrode regions of interest (ROIs). These include the 

frontal ROI (red), the centro-temporal ROI (yellow), and the parieto-occipital ROI (blue).  
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Figure 6 Proportion of data retained across preprocessing parameters. Results from a 

repeated measures ANOVA revealed that proportion of data retained significantly varies by 

sampling rate, high- and low-pass filter cutoffs, and data cleaning procedures.  
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Figure 7 Impact of preprocessing procedures on scale-wise entropy curves. Scale- wise 

entropy is plotted as a function of sampling rate and data cleaning implementation for (A,B) 

High-pass filter cutoffs and (C,D) low-pass filter cutoffs considered in the development and 

validation of our pipeline. A & C depict scale-wise entropy curves for all considered scales. B & 

D depict a zoomed-in view for specific scales that depict the maximum impact of filtering.  
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Figure 8 Test-retest reliability estimates across preprocessing parameters. The intraclass 

correlation coefficient (ICC) assessing the reliability of scale-wise entropy from the 4-month 

visit to the retest visit (approximately 1 week later) is plotted for each scale, electrode, and 

preprocessing parameter. In general, finer scales have higher reliability estimates across 

electrodes. Hotter colors represent higher ICCs. 
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B. 

 

Figure 9 Scale-wise entropy curves generated with APPLESEED. A. Average test-retest 

reliability scale-wise entropy curves for each condition generated with the final preprocessing 

pipeline. B. Scale-wise entropy curves depicting the average developmental trajectory for each 

condition from 4- to 12-months of age. 
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B 

 

Figure 10 Scale-wise entropy across conditions and development. Results from a repeated 

measures ANOVA depicting the effect of age and condition on scale-wise entropy estimates 

across the whole brain (A) and within regions of interest (B) for each frequency band. Significant 

effects are indicated in each panel. ns – not significant; FR – frontal ROI; CT – centro-temporal 

ROI; PO – parieto-occipital ROI.  
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Tables 

Article Count Parameter 
Final sampling rate 

4 1000 
1 512 
9 500 
8 256 
8 250 
5 200 
1 167 
1 128 
2 125 
3 multiple 

1 ns 

Filtering 

31 

Bandpass  
High-pass: 0-1.5 [.5] 

Low-pass: 20-120 [40;50] 
5 Notch 50; 60 [60] 
2 Lowpass 40; 64 

5 ns 

Artifact correction 
7 ICA + Interpolation 
3 ICA 

33 None/ns 

m 
33 2 

1 3 
1 4 

8 ns 

r 
9 0.15 

17 0.20 
2 0.25 
6 0.50 

9 ns 

Scale-wise r 
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2 Yes 
41 No/ns 

 

Table 1 Summary of prior research applying MSE analysis to pediatric EEG data. The 

results of our literature review are summarized by key preprocessing and entropy algorithm 

parameters and the number of articles that employed each particular parameter including the 

sampling rate (native or after down-sampling), the method and frequency cutoffs for filtering, 

whether/which artifact correction methods were employed, the entropy m, pattern length 

parameter, the entropy r, similarity criterion parameter, and whether or not r was recalculated at 

each scale. Ns- parameter not specified. Numbers in brackets indicate the most frequently 

employed value. 
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Argument Description Default Value 
Required 

'filenamebase' 
A string specifying the name of the input 
dataset without the file extension 

NA 

'parentdir' A string specifying the full path to the 
parent directory that contains the input 
dataset 

NA 

'binfile' 
Required if a task-based analysis; a string 
specifying the full path to the bin file 
defining event codes in the dataset 

No bin file: data will 
be treated as resting-

state 

Optional 
'saverobust' 'on' - save interim datasets enabling the 

inspection of artifacts /components marked 
for rejection 
'off' - do not save interim datasets 

'on' 

'resamp' A number defining resampling rate (Hz) 250 

'hp' A number defining high-pass filter cutoff 
(Hz) 

0.30 

'lp' A number defining low-pass filter cutoff 
(Hz) 

50 

'eplen' A number defining epoch length (ms) 1000 

'arxt' A number defining the threshold for 
identification of extreme voltage artifacts 
(µV) 

500 

'runica' 'on' - run ica 
'off' - do not run ica 

'on' 

'icarejmethod' A string specifying the method to identify 
components contaminated with artifacts: 
'adjusted_ADJUST' - applies the algorithm 
from Leach et al., 2020. 
 'ADJUST' - applies the algorithm from 
Mognon et al., 2011. 
'manual' - opens a “Reject components by 
map” EEGLAB window in which users can 
click on each component to manually 
inspect it and, if necessary, toggle the 
accept/reject button to mark it for rejection. 
Once the “Reject components by map” 
window is closed, the pipeline will resume. 

'adjusted_ADJUST' 

'arsd' A number defining artifact rejection via 
moving-window standard deviation 

80 
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threshold (µV) 

'chainterp' 'on' - perform channel interpolation via 
FASTER 
'off' - do not perform channel interpolation 

1 

'chanfile' 

A string specifying the full path to the 
channel location file, required for channel 
interpolation. 

 This file should be 
saved to the input 
dataset following  
data import (see 
APPLESEED_setup()).  

'fastref' 
A string specifying the name of the channel 
to be used as the reference channel for the 
FASTER channel interpolation algorithm 

'Cz' 

'reref' A string specifying the channel(s) for 
referencing 

'Average' 

'trselcnt' A number specifying the number of trials to 
retain across all participants 

10 

'trselmeth' A string specifying the method to select an 
equivalent number of trials across all 
participants 
'gfp' - global field power 
'first' - select the first n='trselcnt' trials 
'last' - select the last n='trselcnt' trials 

'gfp' 

'm' A number specifying the pattern length 
parameter for entropy computation 

2 

'r' A number specifying the similarity criterion 
parameter for entropy computation 

0.5 

 

Table 2 APPLESEED input arguments. A description of all required and optional input 

arguments to the APPLESEED() function including the argument flag and the default value if the 

argument is not specified.  
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Frequency Band Hz  250 Hz Scales (n) 500 Hz Scales (n) 
Delta < 4 63 - 83 (21) 126 - 166 (41) 
Theta 4 - 7 32 - 62 (31) 63 - 125 (63) 
Alpha 8 - 12 20 - 31 (12) 39 - 62 (24) 
Beta 13 - 29 9 - 19 (11) 17 - 38 (22) 
Gamma 30 - 100 3 - 8 (6) 5 - 16 (12) 
Gamma+ 101+ 1 - 2 (2) 1 - 4 (4) 
 

Table 3 The summarization of scale-wise entropy estimates by frequency bands. For both 

considered sampling rates (250 Hz, 500 Hz), the scale range and total number of scales (n) that 

fell within each frequency band.  
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Sampling 
Rate (Hz) 

High-
Pass 

Cutoff 
(Hz) 

Low-
Pass 

Cutoff 
(Hz) 

Artifact 
Correction 

Viewing Faces 
Condition 

Viewing Objects 
Condition 

ICC p ICC p 
250 0.2 50 No 0.49 0.041 0.55 0.016 
250 0.3 20 No 0.45 0.039 0.45 0.047 
250 0.3 20 Yes 0.53 0.019 0.51 0.034 
250 0.3 50 Yes 0.47 0.048 0.55 0.024 
500 0.2 50 No 0.46 0.047 0.59 0.010 
500 0.3 20 No 0.41 0.048 0.50 0.027 
500 0.3 30 No 0.46 0.035 0.48 0.037 
500 0.3 50 No 0.63 0.007 0.44 0.050 

 

Table 4 Preprocessing pipelines that produce reliable scale-wise entropy estimates. The 

eight preprocessing pipelines that yielded significantly reliable results across the test (4-months-

of-age) and retest (within 1 week) visits in both the face viewing and object viewing conditions 

across all scales and all electrode ROIs. The values for the final, recommended APPLESEED 

parameters are highlighted in bold font. ICC – intraclass correlation coefficient; p – p-value. 
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