DYT-TOR1A Subcellular Proteomics Reveals Selective 1 **Vulnerability of the Nuclear Proteome to Cell Stress** 2 3 4 Kunal Shroff¹, Zachary F. Caffall¹and Nicole Calakos^{1,2,3,4*} 5 6 Departments of Neurology¹, Neurobiology², and Cell Biology³, Duke University Medical Center 7 8 ⁴Duke Institute for Brain Sciences, Duke University 9 Durham, North Carolina, USA 10 *Corresponding E-mail: nicole.calakos@duke.edu 11

12 Highlights

13	•	The DYT-TOR1A nuclear proteome under cell stress showed 3-fold greater protein
14		disruptions.
15	•	DYT-TOR1A MEFs show basal proteome alterations consistent with cell stress.
16	•	Thapsigargin modulation of WT stress-responsive proteins is blunted in DYT-TOR1A
17		MEFs.
18	•	TorsinB was identified as part of the cell-stress responsive proteome in WT MEFs.
19		
20		

21 Abstract

22	TorsinA is a AAA ⁺ ATPase that shuttles between the ER lumen and outer nuclear
23	envelope in an ATP-dependent manner and is functionally implicated in nucleocytoplasmic
24	transport. We hypothesized that the DYT-TOR1A dystonia disease-causing variant, ΔE TorsinA,
25	may therefore disrupt the normal subcellular distribution of proteins between the nuclear and
26	cytosolic compartments. To test this hypothesis, we performed proteomic analysis on nuclear and
27	cytosolic subcellular fractions from DYT-TOR1A and wildtype mouse embryonic fibroblasts
28	(MEFs). We further examined the compartmental proteomes following exposure to thapsigargin
29	(Tg), an endoplasmic reticulum (ER) stressor, because DYT-TOR1A dystonia models have
30	previously shown abnormalities in cellular stress responses. Across both subcellular
31	compartments, proteomes of DYT-TOR1A cells showed basal state disruptions consistent with
32	an activated stress response, and in response to thapsigargin, a blunted stress response. However,
33	the DYT-TOR1A nuclear proteome under Tg cell stress showed the most pronounced and
34	disproportionate degree of protein disruptions – 3-fold greater than all other conditions. The
35	affected proteins extended beyond those typically associated with stress responses, including
36	enrichments for processes critical for neuronal synaptic function. These findings highlight the
37	advantage of subcellular proteomics to reveal events that localize to discrete subcellular
38	compartments and refine thinking about the mechanisms and significance of cell stress in DYT-
39	TOR1A pathogenesis.
40	

- 41
- 42
- 43

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.10.451533; this version posted July 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

46 Keywords

- 47 Dystonia; Subcellular fractionation; TorsinA; Compartment-specific proteome; Stress Response;
- 48 Movement disorder
- 49

50 Abbreviations

- 51 Cyto, cytosolic fraction; DYT, DYT-TOR1A genotype; FC, fold change; GO, Gene Ontology;
- 52 LC, liquid chromatography; MEF, mouse embryonic fibroblast; MS, mass spectroscopy; Nuc,
- 53 nuclear fraction; RNC, relative nuclear concentration; RNP, ribonucleoprotein; Tg, thapsigargin;
- 54 Veh, vehicle control; WT, wildtype

55 Introduction

56	Dystonia is a neurological movement disorder characterized by involuntary twisting and
57	abnormal postures of the limbs, trunk, and/or face (Tarsy & Simon, 2006). Causes for dystonia
58	are diverse, ranging from exposure to anti-psychotic medications to neurodegenerative diseases
59	(Balint et al., 2018; Bressman, 2004; Jankovic & Tintner, 2001; van Harten et al., 1999). DYT-
60	TOR1A dystonia is a rare inherited autosomal dominant form of the disorder that is caused by an
61	in-frame trinucleotide deletion in the <i>Tor1a</i> coding sequence (n. Δ GAG, p. Δ E) and leads to an
62	early-onset, generalized dystonia (Ozelius et al., 1997).
63	
64	Since the discovery of <i>Tor1a</i> as the causal gene for DYT-TOR1A dystonia, a number of
65	groups have characterized the function of the encoded protein, TorsinA, in its normal and mutant
66	forms. TorsinA is a member of the AAA+ ATPase family of proteins. Although typically
67	TorsinA is predominantly in the lumen of the endoplasmic reticulum, perturbations preventing
68	ATP hydrolysis result in a prominent outer nuclear envelope distribution (Naismith et al., 2004).
69	These observations led to a model in which the protein shuttles between these two compartments
70	in an ATP hydrolysis-dependent manner (Naismith et al., 2004). Later studies identified two
71	TorsinA binding partners, LAP1 and LULL1, which localize to the nuclear envelope and ER
72	membrane, respectively (Chalfant et al., 2019; Chase et al., 2017; Esra Demircioglu et al., 2016;
73	Goodchild & Dauer, 2005; M. T. Jungwirth et al., 2011; Laudermilch et al., 2016; Nery et al.,
74	2008; Saunders et al., 2017; Vander Heyden et al., 2009). Thus, it was hypothesized that TorsinA
75	likely played a role in each of these compartments. More recent studies implicate TorsinA in
76	regulation of nucleocytoplasmic transport (Chalfant et al., 2019; Ding et al., 2021; György et al.,
77	2018; Jokhi et al., 2013; Laudermilch et al., 2016; Rampello et al., 2019; VanGompel et al.,

78	2015). Defects in nucleoporin localization and nuclear import kinetics have been described in
79	association with mutations in OOC-5, a TorsinA homolog in C. elegans, and in Torla in
80	mammalian neuronal cultures and knockout mouse models (Chalfant et al., 2019; Pappas et al.,
81	2018; VanGompel et al., 2015). In addition, impaired nuclear egress functions were found in
82	both DYT-TOR1A patient fibroblasts and cultured DYT-TOR1A mouse neurons (György et al.,
83	2018). These defects may be related to TorsinA's role in regulating nuclear budding, a process
84	essential for nuclear egress of mega-ribonucleoproteins (megaRNPs) (Jokhi et al., 2013; Speese
85	et al., 2012). Collectively, these findings suggest that TorsinA plays a role in regulating
86	nucleocytoplasmic transport, and that the DYT-TOR1A-associated TorsinA mutation, ΔE ,
87	impairs these functions.
88	
89	In addition to nucleocytoplasmic transport defects, our lab and several others have found
90	that multiple DYT-TOR1A dystonia model systems exhibit altered cellular stress response
91	pathways (Beauvais et al., 2016, 2018; Chen et al., 2010; Cho et al., 2014; Nery et al., 2011;
92	Rittiner et al., 2016; Zacchi et al., 2014; Zhao et al., 2016). It is currently unknown how the
93	DYT-TOR1A mutation specifically causes these cellular stress response defects. However,
94	alleviation of these defects by pharmacological and genetic approaches has been shown to
95	improve DYT-TOR1A associated cellular phenotypes (Rittiner et al., 2016), suggesting that
96	cellular stress responses may play an important role in DYT-TOR1A disease pathophysiology.
97	
98	Proteomics approaches have been previously used to study the consequences of the DYT-
99	TOR1A causative mutation in whole cell and tissue lysate preparations (Beauvais et al., 2016,
100	2018; Martin et al., 2009). These approaches have successfully identified disease model-

101	associated protein defects. However, because many subcellular compartments such as the
102	nucleus comprise only a proportionally small part of the total proteome, compartment-specific
103	defects are likely to be overlooked by such approaches. Recent studies of amyotrophic lateral
104	sclerosis demonstrate the potential for nucleocytoplasmic proteomic analyses by identifying
105	nucleus-specific defects in RNA transport and cytosol-specific defects in protein translation and
106	folding (J. E. Kim et al., 2017; Ortega et al., 2020). In the present study, we adopt a similar
107	nucleocytoplasmic fractionation technique alongside quantitative proteomics to address whether
108	the DYT-TOR1A mutation causes subcellular compartment-specific proteomic disruptions.
109	
110	Our results identify compartment- and stress-specific disruptions associated with the
111	DYT-TOR1A genotype that include disruptions of proteins that are normally cell stress
112	modulated and of TorsinA and TorsinB levels and localization. The most striking result however
113	was that, despite our leading hypothesis that defects in nucleocytoplasmic transport might affect
114	both compartments, the DYT-TOR1A mutation was found to cause the most pronounced and
115	disproportionate insult to the nuclear proteome and selectively under cell stress. This result
116	indicates that ΔE TorsinA causes a particular vulnerability to the integrity of the nuclear
117	
117	proteome in the face of cellular stressors.

119 Materials and Methods

120 Animals

121DYT-TOR1A knock-in mice $(Tor1a^{\Delta GAG/+})$ (courtesy of Dr. W. Dauer, University of122Michigan) (Goodchild et al., 2005) on C57BL/6 background were bred in standard housing

123 conditions with food and water provided ad libitum. All procedures were approved by the Duke124 University Institutional Animal Care and Use Committee (IACUC).

125

126 Mouse Embryonic Fibroblast (MEF) Extraction, Isolation, and Immortalization

127 To produce DYT-TOR1A model MEF and WT control MEF cell lines, female wildtype 128 C57BL/6 mice were crossed with male heterozygous DYT-TOR1A knock-in mice ($Tor1a^{\Delta GAG/+}$) 129 on a C57BL/6 background. MEF extraction occurred with minor modifications from the protocol 130 as described in (Jozefczuk et al., 2012). Three DYT-TOR1A MEF lines and three WT MEF lines were produced from littermates of a single litter. The pregnant dam was euthanized at 131 132 approximately 14 days post-coitum using isoflurane followed by decapitation. The uterine horns were dissected out and rinsed in 70% (v/v) ethanol and PBS (Gibco, Invitrogen) before placing 133 134 into a Petri dish containing PBS (Gibco, Invitrogen). Each individual embryonic sac was 135 separated from the uterine horns and placenta, and then placed into a separate dish containing 136 PBS. Each embryo was dissected out of the embryonic sac and its head and red organs were 137 removed. The remaining embryonic tissue was placed into a clean Petri dish where it was minced 138 with a sterile razor blade. 1 mL of 0.05% trypsin/EDTA (Gibco, Invitrogen) was added to each 139 dish. The mixture was transferred into a 15 mL Falcon tube and incubated at 37 °C for 30 140 minutes. After each 10 minutes of incubation, MEFs were dissociated via pipetting. Trypsin was 141 inactivated by adding 2 mL of fetal bovine serum-containing media ("MEF media" described in 142 Cell Culture section below) to each tube. The MEFs were then centrifuged at 500 x g for 5 143 minutes. The supernatant was removed, and the cell pellet was resuspended in 10 mL of warm 144 MEF media. This solution was then plated on TC dishes coated in 1% Matrigel (Corning). After

145	2 passages, the MEFs were genotyped and subsequently immortalized via the SV40 T antigen as
146	described in (H. Harding, 2003). Cell lines were used within 5 passages.
147	
148	Genotyping
149	All genotyping was conducted as previously described in (Goodchild et al., 2005).
150	
151	Cell Culture
152	MEFs were grown in MEF media which consisted of 500 mL of DMEM, high glucose,
153	pyruvate (Thermo Fisher, #11995), 50 mL of Fetal Bovine Serum, 5 mL of Antibiotic-
154	Antimycotic (Gibco, Invitrogen), 5 mL of 200 mM L-Glutamine (Gibco, Invitrogen), 5 mL of
155	MEM Non-Essential Amino Acids Solution (Gibco, Invitrogen), and 500 μ L of 2-
156	Mercaptoethanol (Sigma-Aldrich). MEFs were grown in incubators at 37 °C/5% CO ₂ .
157	
158	Thapsigargin Treatment and Subcellular Fractionation
159	Three separate experiments were performed exposing MEFs to the cell stressor,
160	thapsigargin (Tg). During each experiment, a pair of MEF lines (1 WT and 1 DYT-TOR1A) was
161	treated with either 1 μ M Tg dissolved in DMSO or an equivalent volume of DMSO (Vehicle
162	control, Veh). After six hours of treatment at 37 °C, the MEFs were subcellularly fractionated
163	into nuclear and cytosolic fractions. MEFs for subcellular fractionation were acquired through
164	trypsinization from 90% confluent TC plates. Subcellular fractionation of MEFs was then carried
165	out as described in (Suzuki et al., 2010). Briefly, the procedure involves a weak and brief
166	detergent extraction (0.01% NP40, 3 min., room temperature), centrifugation to collect the
167	supernatant (cytosolic fraction) and then further solubilization in the same buffer alongside

168	sonication to penetrate the double bilayer membranous nuclear compartment, with a second
169	centrifugation and supernatant collection for the nuclear fraction.

171 Western Blotting

172 Lysates for Western analysis were produced either through the subcellular fractionation 173 protocol described earlier or via a whole-cell lysate produced with RIPA buffer-induced cell 174 lysis. Protein content from each lysate was determined via Bicinchoninic Acid (BCA) assay. 175 Samples were prepared such that each sample contained an equal mass of protein and 1x 176 Laemmli buffer. Samples were reduced and denatured with 2-mercaptoethanol and incubated at 177 97 °C for 5 minutes. Equal volumes of sample were loaded into the wells of an SDS-PAGE gel 178 along with a protein ladder. After 45 minutes electrophoresis at 175 V, the protein within the gel 179 was transferred to a nitrocellulose membrane.

180

181 Following transfer, the membrane was blocked in 5% BSA solution prepared in TBST for 182 1 hour at room temperature. The membrane was then incubated overnight on a shaker at 4 °C in 183 blocking solution amended with the primary antibody [anti-Lamin B1 (Abcam; ab16048; 184 1:1000), anti-GAPDH (Abcam; ab9485; 1:1000), anti-Na+/K+ - ATPase (Santa Cruz 185 Biotechnology; sc-21712; 1:500), anti-BiP (Santa Cruz Biotechnology; sc-13968; 1:500)]. 186 Following primary incubation, the membrane was washed three times with TBST for 5-10 187 minutes each time. The membrane was then re-blocked in blocking solution for 1 hour. 188 Membranes were then placed in blocking solution with secondary antibody [Alexa Fluor 790] 189 Goat anti-Rabbit and/or Alexa Fluor 680 Goat anti-Mouse (Thermo Fisher)] at a dilution of 190 1:1000. The membrane was incubated in the secondary solution for 1 hour before being washed

191	three times in	n TBST for 5	-10 minutes	per wash. Th	he membrane	was imaged	on a LI-COR

192 Odyssey Imaging System. The visualized bands were quantified using ImageJ.

193

194 Immunofluorescent Staining

195 MEF lines (three WT and three DYT-TOR1A) were plated into individual wells on a 96-196 well plate, such that each line was plated into eight wells. Four of the wells for every line were 197 treated with Veh and the other four wells for each line were treated with 1 µM Tg for six hours. 198 Following treatment, the wells were fixed with 4% paraformaldehyde, permeabilized and 199 blocked with blocking solution (0.1% Triton-X 100 in PBS, 1% bovine serum albumin, 10% 200 normal donkey serum) for 1 hour. The wells were then stained with a primary antibody [anti-201 Tbce (Thermo-Fisher, PA5-100346, 1:200), anti-Pds5B (Thermo-fisher; PA5-59029; 1:500)] 202 overnight at 4°C. Following three washes with wash buffer solution (0.1% BSA in PBS), secondary staining was conducted using Hoechst 33342 (MilliporeSigma; 1:1000) to stain the 203 204 nucleus and donkey Anti-rabbit Alexa Fluor 488 (Life Technologies; 1:1000) for 1 hour at room 205 temperature. Following three additional washes with wash buffer solution, the wells were filled 206 with dilution buffer (1% BSA, 1% normal donkey serum, 0.3% Triton X-100, and 0.01% sodium 207 azide in PBS). Sixteen imaging fields from each well were acquired at a magnification of 20x 208 from a Thermofisher CX5 HC imager. Images were acquired in both the blue and green channel 209 to identify the cell nuclei and quantify the protein of interest. Following image acquisition, 210 images were analyzed by CellProfiler 3.1.9 (McQuin et al., 2018). 211

- 211
- 212
- 213

214 Immunofluorescence Quantification and Data Analysis

215	Nuclei were identified via the blue channel Hoechst stain. The cytosol was identified via
216	the green channel protein immunofluorescence stain and nuclear position information as
217	determined from the blue channel Hoechst stain. Nuclear fluorescence was quantified by
218	integrating the intensity of the green channel protein immunofluorescence across pixels
219	identified as being part of the nucleus. Cytosolic fluorescence was quantified by integrating the
220	intensity of the green channel protein immunofluorescence across each pixel within the region
221	identified as being part of the cytosol.
222	
223	Puncta were identified via a modified speckle counting pipeline developed by
224	CellProfiler (McQuin et al., 2018). Analyses were conducted on image masks containing only
225	the nuclei, as well as image masks containing only the cytosol to quantify puncta in each of the
226	subcellular compartments. Puncta frequency was determined by taking the number of speckles
227	identified per image and then dividing by the number of nuclei or cytosolic areas within that
228	image. Puncta intensity was determined by integrating the intensity of all the puncta within the
229	field and dividing by the number of nuclei or cytosolic areas within that image.
230	

Each quantified value (nuclear fluorescence, cytosolic fluorescence, puncta frequency, puncta intensity) was calculated for each of the sixteen fields imaged per well and these sixteen values were averaged to produce a single mean value for each well. Unpaired t-tests were used to compare mean values from the four biological replicate wells across both genotypes with and without stress treatment.

237 Quantitative LC/MS/MS and Proteomic Analysis

238 Twenty-four samples in total were submitted to the Duke Proteomics and Metabolomics 239 Shared Resource (two subcellular fractions from each of the six MEF lines treated with either Tg 240 or Veh). While the fractions were collected over three separate cell culture experiments, they 241 were all analyzed within a single liquid chromatography with tandem mass spectroscopy 242 (LC/MS/MS) experiment. Fractions were first normalized to 10 µg and spiked with undigested 243 case in at a total of 20, 30, or 40 fmol/ μ g, then reduced with 10 mM dithiothreitol for 30 min at 244 80 °C, and alkylated with 20 mM iodoacetamide for 30 min at room temperature. Next, they 245 were supplemented with a final concentration of 1.2% phosphoric acid and 741 µL of S-Trap 246 (Protifi) binding buffer (90% MeOH/100mM TEAB). Proteins were trapped on the S-Trap, 247 digested using 20 ng/ μ L sequencing grade trypsin (Promega) for 1 hour at 47°C, and eluted using 248 50 mM TEAB, followed by 0.2% FA, and lastly using 50% ACN/0.2% FA. All fractions were 249 then lyophilized to dryness and resuspended in 20 µL 1% TFA/2% acetonitrile containing 12.5 250 fmol/µL yeast alcohol dehydrogenase (ADH YEAST). Three QC Pools were created: 1) 3 µL 251 from each of the nuclear fractions, 2) 3 uL from each of the cytosolic fractions 3) 3 μ L from each 252 of all of the fractions, both nuclear and cytosolic. All QC Pools were run periodically randomly 253 interspersed throughout the test fractions.

254

Quantitative LC/MS/MS was performed on 2 μL of each fraction, using a nanoAcquity
UPLC system (Waters Corp.) coupled to a Thermo Orbitrap Fusion Lumos high resolution
accurate mass tandem mass spectrometer (Thermo) via a nanoelectrospray ionization source.
Briefly, the fraction was first trapped on a Symmetry C18 20 mm × 180 μm trapping column (5
μL/min at 99.9/0.1 v/v water/acetonitrile), after which the analytical separation was performed

260	using a 1.8 μm Acquity HSS T3 C18 75 $\mu m \times 250$ mm column (Waters Corp.) with a 90-min
261	linear gradient of 5 to 30% acetonitrile with 0.1% formic acid at a flow rate of 400
262	nanoliters/minute (nL/min) with a column temperature of 55 °C. Data collection on the Fusion
263	Lumos mass spectrometer was performed in a data-dependent acquisition (DDA) mode of
264	acquisition with a r=120,000 (@ m/z 200) full MS scan from m/z $375 - 1500$ with a target AGC
265	value of 2e5 ions. MS/MS scans were acquired at Rapid scan rate (Ion Trap) with an AGC target
266	of 5e3 ions and a max injection time of 100 milliseconds. The total cycle time for MS and
267	MS/MS scans was 2 seconds. A 20s dynamic exclusion was employed to increase depth of
268	coverage. The total analysis cycle time for each fraction injection was approximately 2 hours.
269	
270	Following 35 total UPLC-MS/MS analyses (excluding conditioning runs, but including 3
271	replicate QC Pool, 4 replicate nuclear and 4 replicate cytosolic Pool injections), data was
272	imported into Proteome Discoverer 2.2 (Thermo Scientific Inc.), and analyses were aligned
273	based on the accurate mass and retention time of detected ions ("features") using Minora Feature
274	Detector algorithm in Proteome Discoverer. Protein levels are reported in arbitrary units (a.u.)
275	based on the relative peptide abundance measures which were calculated by area-under-the-
276	curve (AUC) of the selected ion chromatograms of the aligned features across all runs. The
277	MS/MS data was searched against the SwissProt M. musculus database (downloaded in Apr
278	2017) and an equal number of reversed-sequence "decoys" for false discovery rate
279	determination. Mascot Distiller and Mascot Server (v 2.5, Matrix Sciences) were utilized to
280	produce fragment ion spectra and to perform the database searches. Database search parameters
281	included fixed modification on Cys (carbamidomethyl) and variable modifications on Meth
282	(oxidation) and Asn and Gln (deamidation). Peptide Validator and Protein FDR Validator nodes

in Proteome Discoverer were used to annotate the data at a maximum 1% protein false discoveryrate.

286	Missing values were imputed after sample loading normalization in the following
287	manner. If less than half of the values are missing across all samples, values are imputed with an
288	intensity derived from a normal distribution defined by measured values within the same
289	intensity range (20 bins). If greater than half values are missing for a peptide across all samples
290	and a peptide intensity is $>$ 5e6, then it was concluded that peptide was misaligned and its
291	measured intensity is set to 0. All remaining missing values are imputed with the lowest 5% of
292	all detected values. All analyses presented here are based on these normalized values. The
293	complete proteomic dataset has been deposited with Mendeley data and is further detailed in a
294	Data In Brief accompanying article.
295	
296	
297	Data Analysis and Statistical Analysis
297 298	Data Analysis and Statistical Analysis Throughout the data collection phase of the study, cell genotype and stress-treatment
298	Throughout the data collection phase of the study, cell genotype and stress-treatment
298 299	Throughout the data collection phase of the study, cell genotype and stress-treatment
298 299 300	Throughout the data collection phase of the study, cell genotype and stress-treatment conditions were blinded variables. Unblinding occurred upon return of processed proteomic data.
298 299 300 301	Throughout the data collection phase of the study, cell genotype and stress-treatment conditions were blinded variables. Unblinding occurred upon return of processed proteomic data. For proteomic data analysis, proteins represented by only a single peptide were removed
298 299 300 301 302	Throughout the data collection phase of the study, cell genotype and stress-treatment conditions were blinded variables. Unblinding occurred upon return of processed proteomic data. For proteomic data analysis, proteins represented by only a single peptide were removed from the data set prior to further analysis to reduce the number of Type 1 errors. Unpaired t-test
298 299 300 301 302 303	Throughout the data collection phase of the study, cell genotype and stress-treatment conditions were blinded variables. Unblinding occurred upon return of processed proteomic data. For proteomic data analysis, proteins represented by only a single peptide were removed from the data set prior to further analysis to reduce the number of Type 1 errors. Unpaired t-test p-values and fold changes for each protein were calculated for each comparison. P-values and

306	than 0.05 and a DYT-TOR1A/WT or WT/DYT-TOR1A ratio greater than 1.5 (DYT-
307	TOR1A/WT fold change greater than $\pm \log_2(0.585)$) were considered as the "top hits" for further
308	analysis. Metascape was used to conduct a Gene Ontology analysis on the top hits (Zhou et al.,
309	2019). Top hits were analyzed using the entire discovered proteome as the background to
310	consider for enrichment.
311	
312	All other statistical testing used unpaired t-tests calculated by GraphPad Prism version
313	8.3.1 for MacOS unless otherwise indicated.
314	
315	Results
316	Subcellular Fractionation of Mouse Embryonic Fibroblasts (MEFs)
317	Immortalized murine embryonic fibroblast cell lines were prepared from $Tor1a^{\Delta GAG/+}$

318 (genotype hereafter abbreviated as DYT-TOR1A or DYT) and wildtype (WT) littermate 319 embryos according to standard methodology (Methods). Cultures from 3 independent lines for 320 each genotype were grown to confluence and then treated with either 1 µM thapsigargin (Tg) or 321 vehicle (Veh) for six hours prior to harvesting (Fig. 1A). Nuclear and cytosolic cellular fractions 322 were prepared according to previously described methods based on serial exposure to a mild 323 detergent extraction that does not significantly solubilize nuclear membranes, but is sufficient to 324 penetrate plasma membrane and enable extraction of cytosolic components and organelles, 325 followed by a nuclear membrane-solubilizing sonication step (Suzuki et al., 2010). Western 326 analysis was performed to confirm that markers for the nuclear (Lamin B1) and the cytosolic 327 (GAPDH, BiP, Na,K-ATPase α1) subcellular compartments were differentially distributed in the 328 fractions as predicted in both genotypes (Fig. 1B and Fig. S1). Nuclear and cytosolic fractions

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.10.451533; this version posted July 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

prepared from 3 independent cell lines for each genotype were then analyzed by quantitative
liquid chromatography-tandem mass spectrometry (LC/MS/MS).

331

332 A total of 4801 proteins were detected across all samples. Of those, 3921 proteins had at 333 least two distinct peptides and mapped to a unique mouse gene identifier using GSEA software; 334 these proteins were used for subsequent analyses. Over 90% of proteins were identified in both 335 subcellular fractions and treatment conditions (Fig. S2A). Recognizing that most proteins are 336 present in both subcellular compartments to varying degrees, we next calculated the relative 337 nuclear concentration (RNC) (nuclear level/total_{nuclear + cytosolic}) for each of the 3921 proteins. The 338 RNC has been used previously to characterize the proteome and demonstrated only a small 339 fraction of proteins being almost exclusive to nuclear or cytosolic fractions, with a majority of 340 proteins having intermediate RNC values (Wühr et al., 2015). The nucleocytoplasmic 341 distribution of proteins in our samples is consistent with those prior observations and was similar 342 across the two genotypes (Fig. 1C). In addition, we performed standard bioinformatic analysis 343 using Gene Ontology (GO) on the nuclear and cytosolic fraction proteomic datasets to determine 344 whether enrichments characteristic of nuclear and cytosolic components were detected in the 345 corresponding fractions (For ease of presentation, results of both genotypes were combined. 346 Individual genotype analyses yielded similar conclusions, data not shown). The top GO terms 347 associated with proteomics of the cytosolic fractions included "cytosolic part" (Fig. 1D). In 348 addition to cytosolic proteins, we also observed enrichment for cytosolic vesicle membrane 349 proteins as shown by the strong enrichment of the GO terms "membrane coat" and "Ficolin-1 350 rich granule lumen". Conversely, the top GO terms associated with nuclear fractions included 351 "nuclear body" (Fig. 1E). We further noted that GO analysis of the nuclear fraction also included 352 "mitochondrial membrane part" suggesting that mitochondria may be preferentially extracted 353 with the nuclear fraction. Together, these characterizations establish that components of the 354 nucleus and cytosol are relatively enriched in the nuclear and cytosolic fractions, respectively. 355

356

Fig. 1. Subcellular fractionation enriches for cytosolic and nuclear components similarly in both
WT and DYT-TOR1A cell lines. (A) Experimental design schematic. Mouse embryonic

359 fibroblasts (MEFs) were isolated from DYT-TOR1A heterozygous knock-in ($TOR1A^{\Delta GAG/+}$)

360	mice and wildtype litter mates. MEF lysates were fractionated into cytosolic (Cyto) and nuclear
361	(Nuc) fractions and then subjected to quantitative differential proteomics analysis. (B)
362	Representative Western blots of subcellular fraction markers in WT and DYT-TOR1A cell lines.
363	The nuclear membrane marker, Lamin B1, is predominately sequestered in the nuclear fraction
364	while GAPDH, Na-K ATPase α 1, and BiP (cytosolic, plasma membrane, and endoplasmic
365	reticulum resident proteins, respectively) are enriched in the cytosolic fraction. (C) Frequency
366	distribution of calculated relative nuclear concentration (RNC) values across the entire proteome
367	from WT (solid circles) and DYT-TOR1A (open circles) samples. RNC values are calculated for
368	each individual protein by taking the protein abundance within the nuclear fraction and dividing
369	by the sum of the nuclear and cytosolic fraction protein abundances (adapted from Wühr et al.,
370	2015). (D-E) Gene Ontology analysis of proteins enriched within the nuclear (D) and cytosolic
371	(E) fraction (dataset of combined genotypes using threshold of $p < 0.001$ by t-test).
272	

373 DYT-TOR1A Genotype-Dependent Subcellular Proteome Differences

374 To identify proteome differences caused by the DYT-TOR1A genotype, an average fold 375 change (FC) and p-value were calculated for each protein by comparing levels between WT and 376 DYT-TOR1A samples under basal conditions (Veh) (n = 3 independent biological replicates per 377 genotype). Using thresholds of an uncorrected p-value of less than 0.05 and fold change of ± 1.5 378 FC, which corresponds to a 50% increase in DYT-TOR1A levels relative to WT or WT levels 379 relative to DYT-TOR1A, we identified 152 proteins with genotype-dependent differences in the 380 cytosolic fractions (Fig. 2A). A similar number of differences were identified in the nuclear 381 fractions (Fig. 2B). There was less than 3% overlap between the differentially affected proteins 382 in the nuclear and cytosolic samples (Fig. S2B). Gene Ontology analysis of differentially

383	affected proteins revealed enrichment of proteins associated with mitochondrion organization
384	and ATP metabolism (Fig. S3). This GO term enrichment was present in both the nuclear and
385	cytosolic DYT-TOR1A-disrupted protein datasets (Fig. S3). These results are consistent with
386	processes that have been previously implicated in DYT-TOR1A dystonia (Beauvais et al., 2016;
387	Martin et al., 2009).

389 Prior studies have also described numerous cellular stress response defects in DYT-390 TOR1A dystonia models (Beauvais et al., 2016; Chen et al., 2010; C. E. Kim et al., 2010; Nery 391 et al., 2011; Rittiner et al., 2016; Zhao et al., 2016). Because many of these defects are apparent 392 only following stress treatment, we additionally performed the proteomic experiment in samples 393 after six hours of thapsigargin (Tg) exposure, a compound that causes cell stress by releasing 394 internal calcium stores. With Tg treatment, we found that cytosolic samples showed a similar 395 number of genotype-dependent differences as non-stressed (Veh) samples (115 proteins) (Fig. 396 2C). However, in striking contrast to cytosolic fractions, Tg treatment caused a greater than 3-397 fold increase in genotype-dependent differences in the nuclear proteome (624 proteins) relative 398 to the non-stressed samples (187 proteins) (Fig. 2D). These data reveal that among cytosolic and 399 nuclear compartments in basal and stressed states, the DYT-TOR1A genotype most severely 400 disrupts the composition of the nuclear proteome and does so selectively in the presence of a 401 cellular stressor.

402

Given the similarity in the number of protein differences between the cell stress and basal conditions in the cytosolic fractions, we next examined the extent to which genotype-dependent differences were due to the same proteins being affected in multiple conditions. Surprisingly,

406	there was little overlap - with less than 10% of proteins being shared between the stressed and
407	basal state conditions (Fig. S2B). These findings indicate that, in both the nuclear and cytosolic
408	fractions, the proteome disruptions caused by DYT-TOR1A under cell stress affects proteins that
409	are largely distinct from those in the basal state.
410	
411	Next, we evaluated genotype-dependent differences in the subcellular fractionation of
412	TorsinA itself. Multiple prior studies have found that the DYT-TOR1A mutation of <i>Tor1a</i> (ΔE
413	TorsinA) drives TorsinA mislocalization from the ER to the nuclear envelope (Bragg et al.,
414	2004; Calakos et al., 2010; Gonzalez-Alegre & Paulson, 2004; Goodchild & Dauer, 2004;
415	Hewett et al., 2000; Kustedjo et al., 2000; Liang et al., 2014; Naismith et al., 2004; Torres et al.,
416	2004). The results for TorsinA were not included in our proteomic analysis because TorsinA was
417	identified by only a single unique identifying peptide, and this is associated with an increased
418	risk for misidentifying proteins (Carr et al., 2004). However, given the particular relevance of
419	TorsinA data to this study, we used the single peptide data to examine its distribution between
420	nuclear and cytosolic compartments. We found that relative to WT samples, TorsinA levels were
421	significantly lower in cytosolic fractions of DYT-TOR1A samples ($p = 0.004$) and that there was
422	also a non-significant trend toward higher levels of TorsinA in nuclear fractions of DYT-TOR1A
423	samples ($p = 0.232$) significantly altering its distribution to be biased towards the nuclear
424	compartment (N/C ratio) (Fig. 2E).
425	
426	Interpretation of data from our approach and most other subcellular proteomic
427	approaches relies upon the assumption that cell constituents fractionate normally (Ortega et al.,

428 2020; Tribl et al., 2005). In Figure 1B-C, we observed that there were no obvious solubilization

429	differences between WT and DYT-TOR1A MEFs. Nonetheless, for any specific protein of
430	interest, the use of an orthogonal methodology would be a desirable validation step. To date,
431	conventional immunofluorescence has not revealed the TorsinA redistribution in genetic
432	construct-valid DYT-TOR1A cells that we detected here using quantitative proteomics. To
433	better understand the misdistribution of ΔE TorsinA and address the integrity of nuclear
434	envelope partitioning in DYT-TOR1A cells, we evaluated the partitioning of known nuclear
435	envelope proteins, the LINC complexes in WT and DYT-TOR1A MEFs (Fig. S4). We found
436	that LINC proteins present in our datasets enriched in the nuclear fraction as expected and
437	partitioned similarly in WT and DYT-TOR1A samples. We also present two examples of
438	conventional ICC validation. Levels of Tbce and Pds5b were significantly altered in DYT-
439	TOR1A in the nuclear compartment under Tg cell stress condition (Fig. S5-S6). Proteomic
440	analysis of Tbce showed a compartment-specific decrease in the Tg-nucleus and no difference in
441	cytosolic levels (Fig. S5B, D); findings which were replicated with conventional ICC (Fig. S5C,
442	E). Pds5b levels were significantly increased in DYT-TOR1A Tg-nuclear samples (Fig. S6B).
443	Using ICC, nuclear Pds5b immunostaining intensity was significantly different by genotype;
444	however, instead of increased, Pds5b staining was significantly decreased in DYT-TOR1A (Fig.
445	S6C). Interestingly, in WT cells, Pds5b was more commonly in strongly staining puncta, raising
446	the possibility that reduced solubility of punctate Pds5b might give rise to the proteomic result of
447	lower levels in WT cells (Fig. S6D, E). To summarize, while ICC for both proteins confirmed
448	genotype effects, these two examples highlight the range of disruptions that might underlie the
449	proteomic results.

451 Fig. 2. Compartment-specific proteome disruptions associated with DYT-TOR1A MEFs. (A-B)
452 Volcano plots showing proteome-wide differences in protein abundances between DYT-TOR1A
453 and WT cytosolic (A) and nuclear (B) fractions under basal conditions (Veh). Differences in

454	protein abundance are represented as fold change (using log ₂ transform) and p-value is calculated
455	by unpaired t-test for each protein (n=3 biological replicates). Horizontal dashed line indicates p-
456	value less than 0.05. Vertical dashed lines indicate fold changes of ± 1.5 . (C-D) Corresponding
457	volcano plots for fractions from thapsigargin-treated (Tg) cells. (E) Relative TorsinA peptide
458	levels (a.u.) in cytosolic (Veh) and nuclear (Veh) fractions and the nuclear:cytosolic (N/C) ratio.
459	Error bars indicate S.E.M For all comparisons, $n = 3$ biological replicates, p-value determined
460	by unpaired t-test (**p<0.01).

462 Thapsigargin Stress-Responsive Proteins in WT MEFs

463 Thus far, our proteomic analyses reveal that the largest DYT-TOR1A genotype-464 dependent disruption to the proteome was observed in the nuclear compartment under cell stress. 465 Since a number of prior studies have shown abnormalities in cell stress responses in DYT-466 TOR1A models, we asked whether the nuclear proteomic disruptions were predominantly 467 composed of proteins whose levels were normally modulated by cell stress. To address this, we 468 first used the WT datasets to identify the normal subset of stress-responsive proteins – i.e. 469 proteins whose levels significantly changed in response to thapsigargin cell stress. For each 470 protein and subcellular fraction of the WT samples, the ratio of levels in the Tg and Veh 471 conditions were calculated. Using thresholds of ± 1.5 FC and p-value < 0.05, we identified a total 472 of 513 proteins that we hereafter refer to as the "stress-responsive proteins". 473

474 Consistent with the global reduction in protein synthesis rates that occurs following ER 475 stress (Ron, 2002), Tg cell stress tended to downregulate more proteins (373 proteins) than it

476 upregulated (140 proteins) (Fig. 3A-B). Among the upregulated stress-responsive proteins in WT

477	samples, GO analysis revealed significant enrichment for proteins associated with the PERK-
478	mediated unfolded protein response ($p=0.002$, Fold Enrichment = 10.8). This enrichment is
479	expected given that thapsigargin is thought to promote cellular stress response through a PERK-
480	dependent mechanism (H. P. Harding et al., 2000). Individual examples of two proteins
481	associated with this pathway, Herpud1 and NFkB p105, are shown (Fig. 3C-D).
482	
483	Lastly, in reviewing the stress-responsive proteins we identified in WT samples, we were
484	surprised to see the paralog of TorsinA, TorsinB, among them. TorsinB levels were significantly
485	increased by stress in the nuclear fractions and decreased in the cytosolic fractions, resulting in a
486	greater than doubling of its relative nucleocytoplasmic distribution (nuclear:cytosolic protein
487	levels = N/C ratio) (Fig. 3E). A similar trend was seen for TorsinA (Fig. 3F). This finding
488	suggests for the first time that redistribution of Torsin proteins toward the nucleus may be part of
489	the normal cellular stress response.

492	Fig. 3. Thapsigargin stress modulation of protein levels in wildtype MEFs. (A-B) Volcano plots
493	showing proteome-wide differences in protein abundances due to thapsigargin (Tg) treatment in
494	wildtype cytosolic (A) and nuclear (B) fractions. Differences in protein abundance are
495	represented as fold change (using log ₂ transform) and p-value is calculated by unpaired t-test for
496	each protein (n=3 biological replicates). Horizontal dashed line indicates p-value less than 0.05.
497	Vertical dashed lines indicate fold changes of ±1.5 fold change (FC) (C-F) Cytosolic and nuclear
498	fraction protein levels (a.u.) and the corresponding nuclear:cytosolic (N/C) ratios are shown for
499	Herpud1, NF κ B p105, TorsinB, and TorsinA in Veh (WT) and Tg treatment (WT + Tg)
500	conditions (n = 3 biological replicates; *p<0.05;**p<0.01;****p<0.0001, unpaired t-test). Error
501	bars indicate S.E.M

502

DYT-TOR1A MEFs Show Basal Elevations and Blunted Stress Responses of 503

Normally Stress-Responsive Proteins 504

505 Having defined the normal stress-responsive shifts in the proteome, we next evaluated 506 whether the WT stress-responsive proteins were enriched among DYT-TOR1A disrupted 507 proteins. We found that stress-responsive proteins were significantly enriched among the DYT-508 TOR1A disrupted proteins. This enrichment was present across all conditions and subcellular 509 fractions. To visualize this, in Fig. 4 we show the DYT-TOR1A/WT comparison datasets using 510 the color scheme from Fig. 3 to indicate the nature of the WT stress response (i.e. upregulated or 511 downregulated in Fig. 3A-B). Notably, under basal conditions (Veh), WT stress-responsive 512 proteins were not uniformly distributed but rather tended to align with the directionality of their 513 normal modulation by cell stress. As a group, the proteins upregulated by thapsigargin within 514 WT MEFs were significantly enriched among the subset of proteins upregulated in DYT-TOR1A

515	basally (Cyto: p=7.68e-8; Nuc: p=5.98e-12) (Fig. 4A-B). Similarly, the group of proteins
516	downregulated by Tg treatment in WT MEFs were significantly enriched among the subset of
517	proteins downregulated in DYT-TOR1A basally (Cyto: p=6.92e-6; Nuc: p=8.81e-11) (Fig. 4A-
518	B). This analysis reveals that the basal state proteome of DYT-TOR1A MEFs reflects an
519	activated cell stress state prior to exogenous Tg cell stress treatment.
520	
521	Following Tg stress treatment, we again found significant overlap between the normal
522	(WT) stress-responsive proteins and DYT-TOR1A genotype-dependent protein disruptions in
523	both subcellular compartments (Fig. 4C-D). However, under Tg cell stress, the directionality of
524	the genotype-dependent disruptions was opposite to that of the normal stress response (visualized
525	by the colored symbols concentrating on the opposite side of the volcano plots, Fig. 4C-D).
526	Upregulated WT stress-responsive proteins were significantly enriched among the subset of
527	downregulated proteins in Tg-treated DYT-TOR1A fractions when compared to Tg-treated WT
528	fractions (Cyto: p=4.38e-12; Nuc: p=9.92e-3) (Fig. 4C-D). Likewise, downregulated WT stress-
529	responsive proteins were significantly enriched among the subset of upregulated proteins in Tg-
530	treated DYT-TOR1A fractions compared to Tg-treated WT fractions (Cyto: p=4.67e-13; Nuc:
531	p=2.09e-12) (Fig. 4C-D). These findings are consistent with a blunted stress response in DYT-
532	TOR1A MEFs following Tg cell stress.
533	

534 At the level of individual proteins, we noticed that these same trends could be seen in the 535 N/C ratios of NF κ B p105 and TorsinA, but also, that for others, stress-regulation was unaffected 536 by the DYT-TOR1A genotype (e.g. Herpud1 and TorsinB) (Fig. 5A-D, S3). Given this variation, 537 we sought to quantify the average degree of modulation across the entire population of WT

538	stress-responsive proteins. We measured the fold change for each of the 140 WT stress-
539	upregulated proteins and 373 WT stress-downregulated proteins in each condition relative to its
540	level in the basal state WT samples (Veh), and then calculated the mean fold change for all up-
541	or downregulated proteins in each condition (Fig. 5E-F). This analysis shows that in the basal
542	state, levels of WT stress-responsive proteins in DYT-TOR1A samples already have modulations
543	in the direction consistent with stress responses – the mean level of WT stress-upregulated
544	proteins was ~ 60 percent (p = 8.63e-19) higher than WT basal levels, while the mean level of
545	WT stress-downregulated proteins was ~15 percent lower ($p = 1.95e-5$). These findings indicate
546	that the nuclear and cytosolic proteomes in DYT-TOR1A MEFs show modulations consistent
547	with a stressed state basally.
548	
549	In WT cells, cell stress by Tg exposure caused a threefold change in the mean level of
550	upregulated and downregulated WT stress-responsive proteins (Fig. 5E-F). By comparison, in
551	DYT-TOR1A MEFs, Tg caused only a twofold change in the levels of these same WT stress-
552	responsive proteins (upregulated: p= 8.63e-19; downregulated: p=3.40e-16) (Fig. 5E-F). These
553	results indicate that while the DYT-TOR1A proteome does respond to cellular stress, the
554	magnitude of the response is significantly reduced.

556

Fig. 4. WT Tg-stress-responsive proteins are non-randomly distributed among DYT-TOR1A genotype-dependent proteome disruptions. Volcano plots showing proteome-wide differences in protein abundances between DYT-TOR1A and WT cytosolic and nuclear fractions under basal (A, B) and thapsigargin-treated (C, D) conditions. For proteins found to be Tg-modulated in WT samples (Fig. 3), the directionality of the WT sample modulation is indicated by symbol color (see Legend). Differences in protein abundance are represented as fold change (using log₂ transform) and p-value is calculated by unpaired t-test for each protein (n=3 biological

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.10.451533; this version posted July 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- replicates). Horizontal dashed line indicates p-value less than 0.05. Vertical dashed lines indicate
- fold changes of ± 1.5 FC. Asterisks indicate p-value calculated by Fisher's exact test for overlap
- 566 between the indicated subsets of DYT1 disrupted proteins and WT Tg-stress-responsive proteins
- 567 in the white quadrants (**p<0.01; ****p<0.0001).
- 568

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.10.451533; this version posted July 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

570	Fig. 5. DYT-TOR1A MEFs show proteome-wide disruptions consistent with an elevated basal-
571	state stress response and a blunted response to Tg stress. (A-D) Individual protein examples of
572	Tg stress-induced shifts in protein abundance between nuclear and cytosolic fractions are shown
573	for NFκB p105 (A), TorsinA (B), Herpud1 (C), and TorsinB (D) in WT and DYT-TOR1A MEFs
574	(n=3 biological replicates) (*p<0.05; **p<0.01; ***p<0.001, unpaired t-test). (E-F) Mean fold
575	change calculated across all WT Tg-stress-responsive upregulated (n=140) (E) and
576	downregulated (n=373) (F) proteins. For this calculation, protein levels (a.u.) from WT and
577	DYT-TOR1A fractions treated with either Tg or Veh were normalized to the protein level
578	measured in the WT Veh-treated fraction from the same subcellular compartment ($n=3$ FC
579	values per protein to calculate mean value). Significance was determined by unpaired t-test
580	between mean FC values for 140 upregulated stress-responsive proteins (E)(****p<0.0001) and
581	373 downregulated stress-responsive proteins (F)(****p<0.0001). Error bars indicate S.E.M
582	
582 583	Dysregulation of WT Stress-Responsive Proteins Does Not Explain
	Dysregulation of WT Stress-Responsive Proteins Does Not Explain Accentuated Proteome Disruption in Stressed Nuclear DYT-TOR1A
583	
583 584	Accentuated Proteome Disruption in Stressed Nuclear DYT-TOR1A
583 584 585	Accentuated Proteome Disruption in Stressed Nuclear DYT-TOR1A Fractions
583 584 585 586	Accentuated Proteome Disruption in Stressed Nuclear DYT-TOR1A Fractions Thus far, we have found that WT stress-responsive proteins are significantly enriched
583 584 585 586 587	Accentuated Proteome Disruption in Stressed Nuclear DYT-TOR1A Fractions Thus far, we have found that WT stress-responsive proteins are significantly enriched among the proteins whose levels are disrupted by DYT-TOR1A (Fig. 4). Because this
583 584 585 586 587 588	Accentuated Proteome Disruption in Stressed Nuclear DYT-TOR1A Fractions Thus far, we have found that WT stress-responsive proteins are significantly enriched among the proteins whose levels are disrupted by DYT-TOR1A (Fig. 4). Because this enrichment is similarly observed in both subcellular compartments and under both basal and Tg
583 584 585 586 587 588 589	Accentuated Proteome Disruption in Stressed Nuclear DYT-TOR1A Fractions Thus far, we have found that WT stress-responsive proteins are significantly enriched among the proteins whose levels are disrupted by DYT-TOR1A (Fig. 4). Because this enrichment is similarly observed in both subcellular compartments and under both basal and Tg cell stress (Fig. 4), it cannot explain the large, Tg and nucleus-selective disruption of 624

593	stress (Fig. 6A-C). A GO analysis was performed on the set of 624 proteins differentially
594	regulated in DYT-TOR1A + Tg nuclear fractions as compared to the WT + Tg nuclear fractions
595	(Fig. 6D, Table S1). Enrichments included "neuron cellular homeostasis" (p=0.002, Fold
596	Enrichment=4.5), "mRNA-containing ribonucleoprotein (RNP) complex export from the
597	nucleus" (p=0.004, Fold Enrichment = 1.8), and "axonal transport" (p=0.006, Fold
598	Enrichment=2.3) (Fig. 6D and Table S1). These GO terms suggest that in addition to the
599	pervasive disruptions in cell stress responses, the DYT-TOR1A genotype may also cause
600	particular liabilities in the nucleus under cell stress among proteins generally important for
601	synaptic and neuronal function.

604	Fig. 6. Stress-dependent nuclear proteome disruptions in DYT-TOR1A MEFs associate with
605	critical neuronal processes. (A) Absolute number of proteins with significant genotype effects
606	(FC > \pm 1.5, p<0.05) in each cellular fraction and treatment condition. (B, C) Proteome-wide
607	results for genotype effects comparing directionality of fold change between the nuclear and
608	cytosolic compartments in the vehicle (B) and thapsigargin (C) conditions. Blue shading denotes
609	zones of reciprocal relationships. Gray shaded regions are FC less than ± 1.5 . (D) Gene Ontology
610	analysis of the 624 proteins in the Tg-nuclear fractions with significant DYT-TOR1A genotype-
611	dependent effects (FC > ± 1.5 , p<0.05).

613 **Discussion**

614 In this study, we performed quantitative proteomic analysis of nuclear and cytosolic-615 enriched fractions prepared from DYT-TOR1A and WT MEFs in order to identify cell 616 compartment-specific disruptions. This proteomic approach was driven by our hypothesis that 617 some protein level disruptions caused by the DYT-TOR1A genotype may differentially manifest 618 between the nuclear and cytosolic compartments given associations of TorsinA and ΔE TorsinA 619 with nuclear envelope structure and nuclear transport functions (Chase et al., 2017; Ding et al., 620 2021; Gonzalez-Alegre & Paulson, 2004; Goodchild et al., 2005; Goodchild & Dauer, 2004, 621 2005; György et al., 2018; Jokhi et al., 2013; M. T. Jungwirth et al., 2011; Laudermilch et al., 622 2016; Naismith et al., 2004; Nery et al., 2011; Pappas et al., 2018; Rampello et al., 2019; Tanabe 623 et al., 2016; VanGompel et al., 2015). To date, proteomic studies of dystonia have examined 624 whole cell and tissue lysates (Beauvais et al., 2016; Martin et al., 2009; Zakirova et al., 2018). 625 Using nucleocytoplasmic proteomics, we discovered that the DYT-TOR1A mutation 626 disproportionately causes the nuclear proteome to be disrupted by cell stress. There were 3-fold

627	more disrupted proteins in the thapsigargin-treated nuclear proteome than any other condition
628	(Fig. 6). Although this effect occurred under Tg cell stress and we found that levels of many
629	proteins that were normally modulated by Tg were disrupted in DYT-TOR1A, the majority of
630	the affected proteins were not part of the WT stress-responsive subset. In addition to this novel
631	finding, our datasets provide further support for several prior observations in the field. For
632	example, in both subcellular compartments, DYT-TOR1A samples show evidence of impaired
633	mitochondrial function and stress responses (Beauvais et al., 2016; Cao et al., 2005; Chen et al.,
634	2010; Martin et al., 2009; Nery et al., 2011; Rittiner et al., 2016).
635	
636	To begin to address the potential impact of the stress-dependent nuclear proteome
637	disruptions in DYT-TOR1A MEFs on dystonia pathophysiology, we conducted Gene Ontology
638	analysis. Despite the source cells being non-neuronal, a number of GO terms with particular
639	importance for neuronal function were enriched (Fig. 6). These include: "Neuron Cellular
640	Homeostasis", "Negative Regulation of Collateral Sprouting", "mRNA-containing
641	Ribonucleoprotein Complex Export from the Nucleus", "Axonal Transport", "Regulation of
642	Microtubule Motor Activity", "Positive Regulation of TORC1 Signaling", and "Regulation of
643	Neurological System Process". One of the identified biological functions enriched among the
644	stress-dependent nuclear proteome disruptions caused by the DYT-TOR1A genotype was
645	"mRNA-containing ribonucleoprotein complex export from the nucleus". Prior studies have
646	made an association between a particular type of RNP complex, a "megaRNP" and TorsinA
647	function (Jokhi et al., 2013). In D. melanogaster, nuclear egress of the megaRNP is essential for
648	proper synaptic development of the neuromuscular junction (Speese et al., 2012). More
649	generally, ribonucleoprotein complexes are known to play an integral role in the maintenance,

650 stress response, and plasticity of synapses, and RNP disruptions are associated with a number of 651 neurological diseases (Khalil et al., 2018; Ross Buchan, 2014). Therefore, taken together, the GO 652 processes involving RNP complexes, transport processes, and neuronal homeostasis are 653 potentially interrelated and predict impact on critical brain processes. Our findings suggest that 654 these processes may be most disrupted in settings of cell stress - whether due to inherent states, 655 such as development, or exogenous cell stressors. An important future direction is to determine 656 whether the stress-dependent vulnerability of the nuclear proteome observed in this study also 657 exists within the mammalian central nervous system and, if so, which neural cells are most 658 affected by this vulnerability.

659

660 Our proteomic data identify protein levels that differ because of the DYT-TOR1A 661 genotype. In interpreting these data, there are a number of factors that could lead to altered 662 protein levels. Such factors include changes in protein synthesis rates, protein degradation rates, 663 transport between subcellular compartments or aggregation state. TorsinA is well known to 664 move between the lumen of the endoplasmic reticulum and the outer nuclear envelope in an 665 ATP-hydrolysis dependent manner (Goodchild & Dauer, 2004, 2005; Naismith et al., 2004; 666 Vander Heyden et al., 2009; Zhao et al., 2013). Moreover, a number of experimental approaches 667 have shown that TorsinA deletion or ΔE TorsinA overexpression disrupts this trafficking and 668 nuclear envelope structure (Ding et al., 2021; Gonzalez-Alegre & Paulson, 2004; Goodchild et 669 al., 2015; Goodchild & Dauer, 2004; M. T. Jungwirth et al., 2011; Naismith et al., 2004; Torres 670 et al., 2004; Vander Heyden et al., 2009). We therefore found it notable that our proteomic data 671 did not provide support for a model where ΔE TorsinA restricts protein trafficking between the 672 nucleus and cytosol. More specifically, we performed an analysis across the entire detected

673 proteome irrespective of the p-values to determine if we could detect even a trend for proteins to 674 show reciprocal relationships between nuclear and cytosolic fractions (i.e. lowering in one 675 compartment and increasing in the other) (Fig. 6B-C, blue areas). Such changes would be 676 represented in the colored quadrants of those graphs and create an elliptical skewing. However, 677 in this analysis, we saw no trends for reciprocal changes. Instead, we see that basally, there was 678 little if any skew (Fig. 6B) and that with thapsigargin, the major modulation was restricted to the 679 nuclear compartment (e.g. data expanding horizontally, nuclear fold-change axis) with little 680 change vertically (cytosolic fold-change axis) (Fig. 6C). We therefore favor models other than 681 nucleocytoplasmic transport defects to explain the bulk of proteome disruption in DYT-TOR1A 682 MEFs. As one example of alternative models, compartment-specific protein level disruptions 683 could arise by dysregulation of compartment-specific protein degradation mechanisms, such as 684 the nuclear proteasome or ER-associated degradation mechanisms (Enenkel, 2014; Nery et al., 685 2011). We are interested in testing this possibility in future studies.

686

687 In addition to identifying nuclear compartment-specific disruptions that were largely 688 unrelated to WT stress-responsive proteins, we also made a number of novel observations about 689 the integrity of the stress response in DYT-TOR1A cells. Foremost among these, by using a 690 proteome-wide approach as opposed to monitoring a small number of proteins of interest, we 691 found that, as a group, proteins whose levels were normally modulated by cell stress (in this 692 experiment, by thapsigargin) tended to show deviations toward their stress response in the basal 693 state in DYT-TOR1A cells (Fig. 4,5E-F). This result suggests that the DYT-TOR1A genotype 694 induces a basally elevated stress state.

696 Basal elevation of the cellular stress response has been observed in other DYT-TOR1A 697 cellular models. For example, BiP, a key stress-responsive protein, is upregulated in an 698 unstressed C. elegans DYT-TOR1A transgenic model (Chen et al., 2010). In this study, the 699 investigators further noted that in response to cell stress (using tunicamycin, a glycosylation 700 inhibitor), DYT-TOR1A model worms had an exaggerated BiP response. Tunicamycin increased 701 BiP expression in both WT and DYT-TOR1A samples, but to a greater degree in DYT-TOR1A. 702 To explain the elevated stress response both basally and following stress, the authors speculated 703 that DYT-TOR1A cells have a reduced buffering capacity against cell stress. In our data, we 704 confirm the observations of Chen and colleagues - levels of BiP are greater in DYT-TOR1A 705 than WT basally and increase more in DYT-TOR1A than WT in response to thapsigargin (Fig. 706 S7B). However, by looking at the entire set of experimentally identified stress-responsive 707 proteins, we further recognized that the BiP response was not representative of the average 708 response to cell stress in DYT-TOR1A MEFs. Instead, we find that the DYT-TOR1A genotype 709 *lowers* the overall stress response relative to WT (Fig. 5E-F). Blunting of the stress response has 710 also been reported in primary fibroblasts from DYT-TOR1A patients and cerebellar tissue from 711 DYT-TOR1A mouse models (Beauvais et al., 2016; Rittiner et al., 2016). Based on our new 712 findings, we postulate that homeostatic dysregulation of stress signaling pathways may have 713 developed due to the chronically elevated stress response in DYT-TOR1A cells that exists prior 714 to exogenous stress treatment. An important area for future studies in DYT-TOR1A is to identify 715 the biological mechanisms inciting basal cell stress and driving homeostatic dysregulation. 716

Although our proteomic experiments were not designed to address single protein-level
hypotheses, our results make three preliminary novel observations regarding Torsins. First, to

719 our knowledge, we make the first observation that TorsinB is a stress-responsive protein. 720 Second, levels of TorsinA also appear to be stress-modulated. However, in contrast to TorsinB, 721 TorsinA stress modulation is impaired (occluded) in DYT-TOR1A cells, while the response of 722 TorsinB appears normal (Fig. 5B, D). This difference between TorsinA and TorsinB is 723 noteworthy because a number of prior studies have highlighted the potential for TorsinB to 724 substitute for loss of TorsinA function in DYT-TOR1A (M. Jungwirth et al., 2010; Tanabe et al., 725 2016; Vasudevan et al., 2006), including a recent study which shows that overexpression of 726 TorsinB rescues abnormal movement phenotypes observed in forebrain specific Torla and *Tor1a/Tor1b* combined conditional knockout as well as selective *Tor1a*^{Δ GAG} knock-in mouse 727 728 models (Li et al., 2020). Our data provide additional support for the rationale of such therapeutic 729 approaches. Third and last, with the sensitivity afforded by proteomic methodologies, we find 730 that TorsinA is mislocalized toward the nuclear compartment in DYT-TOR1A cells with genetic 731 construct validity. Although mislocalization of ΔE TorsinA has been widely observed across labs 732 and experimental settings (Bragg et al., 2004; Calakos et al., 2010; Gonzalez-Alegre & Paulson, 733 2004; Goodchild & Dauer, 2004; Hewett et al., 2000; Kustedjo et al., 2000; Liang et al., 2014; 734 Naismith et al., 2004; Torres et al., 2004), to our knowledge it has never been documented in a 735 construct-valid genetic model for DYT-TOR1A dystonia (e.g. *Tor1a* $\Delta GAG/+$). Our results 736 therefore provide experimental support for the idea that ΔE TorsinA mislocalization exists in the 737 genetically relevant setting and it may only be the matter of degree that differs from 738 overexpression models. 739

740

Conclusions

743	We have newly identified a stress-dependent and nuclear compartment-specific proteome
744	disruption caused by the DYT-TOR1A genotype. Our findings suggest that key brain processes
745	involving neuronal homeostasis, transport, and RNP export may be selectively impaired in DYT-
746	TOR1A by cell stress through effects on the nuclear proteome. Alongside further understanding
747	TorsinA's role in modifying cellular stress responses, our results open a new research direction
748	for DYT-TOR1A dystonia pathophysiology which is to understand this compartment-specific
749	vulnerability and its consequences for brain function.
750	

752 753	Author Contributions:
753 754 755	KS – Conceptualization, Investigation, Formal analysis, Writing – Original Draft, Review & Editing
756	ZFC –Supervision, Validation, Writing – Review & Editing
757	NC – Conceptualization, Funding acquisition, Supervision, Writing – Review & Editing
758	The conceptualization, I and ing acquisition, supervision, writing review & Eating
759	
760	
761	Acknowledgements:
762	
763	The authors wish to acknowledge critical expertise and suggestions provided by Shataakshi
764	Dube, William Dauer, Connor King, Miranda Shipman, Erik Soderblom and the Duke
765	Proteomics and Metabolomics Core. K.S. thanks the members of his undergraduate thesis
766	committee, Ron Grunwald and Matthew Oliver, for continued support and guidance.
767	
768	
769	
770	Funding:
771	
772	Huang Undergraduate Summer Research Fellowship (K.S.), Duke Health Scholar award (N.C.),
773	Cure Dystonia Now (N.C.), Dystonia Medical Research Foundation (N.C.) and Tyler's Hope for
774	a Dystonia Cure (N.C.).
775	
776	
777	
778	Declarations of Competing Interest:
779	
780	The authors have no competing financial interest.
781	

782 **References**

- 783 Balint, B., Mencacci, N. E., Valente, E. M., Pisani, A., Rothwell, J., Jankovic, J., Vidailhet, M.,
- 785 https://doi.org/10.1038/s41572-018-0023-6
- 786 Beauvais, G., Bode, N. M., Watson, J. L., Wen, H., Glenn, K. A., Kawano, H., Charles Harata,
- 787 X. N., Ehrlich, M. E., & Gonzalez-Alegre, P. (2016). Disruption of Protein Processing in
- 788 the Endoplasmic Reticulum of DYT1 Knock-in Mice Implicates Novel Pathways in Dystonia
- 789 Pathogenesis. https://doi.org/10.1523/JNEUROSCI.0669-16.2016
- 790 Beauvais, G., Rodriguez-Losada, N., Ying, L., Zakirova, Z., Watson, J. L., Readhead, B., Gadue,
- 791 P., French, D. L., Ehrlich, M. E., & Gonzalez-Alegre, P. (2018). Exploring the Interaction
- 792 Between eIF2α Dysregulation, Acute Endoplasmic Reticulum Stress and DYT1 Dystonia in
- the Mammalian Brain. *Neuroscience*, *371*, 455–468.
- 794 https://doi.org/10.1016/j.neuroscience.2017.12.033
- 795 Bragg, D. C., Kaufman, C. A., Kock, N., & Breakefield, X. O. (2004). Inhibition of N-linked
- glycosylation prevents inclusion formation by the dystonia-related mutant form of torsinA.
- 797 *Molecular and Cellular Neuroscience*, *27*(4), 417–426.
- 798 https://doi.org/10.1016/j.mcn.2004.07.009
- Bressman, S. B. (2004). Dystonia genotypes, phenotypes, and classification. In *Advances in neurology*.
- 801 Calakos, N., Patel, V. D., Gottron, M., Wang, G., Tran-Viet, K. N., Brewington, D., Beyer, J. L.,
- 802 Steffens, D. C., Krishnan, R. R., & Züchner, S. (2010). Functional evidence implicating a
- 803 novel TOR1A mutation in idiopathic, late-onset focal dystonia. *Journal of Medical*
- 804 *Genetics*, 47(9), 646–650. https://doi.org/10.1136/jmg.2009.072082

805	Cao, S., Gelwix, C. C., Caldwell, K. A., & Caldwell, G. A. (2005). Torsin-mediated protection
806	from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. Journal of
807	Neuroscience, 25(15), 3801-3812. https://doi.org/10.1523/JNEUROSCI.5157-04.2005
808	Carr, S., Aebersold, R., Baldwin, M., Burlingame, A., Clauser, K., & Nesvizhskii, A. (2004).
809	The need for guidelines in publication of peptide and protein identification data: Working
810	group on publication guidelines for peptide and protein identification data. In Molecular
811	and Cellular Proteomics (Vol. 3, Issue 6, pp. 531-532). American Society for Biochemistry
812	and Molecular Biology. https://doi.org/10.1074/mcp.T400006-MCP200
813	Chalfant, M., Barber, K. W., Borah, S., Thaller, D., & Lusk, C. P. (2019). Expression of TorsinA
814	in a heterologous yeast system reveals interactions with lumenal domains of LINC and
815	nuclear pore complex components. <i>Molecular Biology of the Cell</i> , 30(5), 530–541.
816	https://doi.org/10.1091/mbc.E18-09-0585
817	Chase, A. R., Laudermilch, E., Wang, J., Shigematsu, H., Yokoyama, T., & Schlieker, C. (2017).
818	Dynamic functional assembly of the Torsin AAA+ ATPase and its modulation by LAP1.
819	Molecular Biology of the Cell. https://doi.org/10.1091/mbc.E17-05-0281
820	Chen, P., Burdette, A. J., Porter, J. C., Ricketts, J. C., Fox, S. A., Nery, F. C., Hewett, J. W.,
821	Berkowitz, L. A., Breakefield, X. O., Caldwell, K. A., & Caldwell, G. A. (2010). The early-
822	onset torsion dystonia-associated protein, torsinA, is a homeostatic regulator of endoplasmic
823	reticulum stress response. Human Molecular Genetics, 19(18), 3502-3515.
824	https://doi.org/10.1093/hmg/ddq266
825	Cho, J. A., Zhang, X., Miller, G. M., Lencer, W. I., & Nery, F. C. (2014). 4-Phenylbutyrate
826	Attenuates the ER Stress Response and Cyclic AMP Accumulation in DYT1 Dystonia Cell
827	Models. PLoS ONE, 9(11), e110086. https://doi.org/10.1371/journal.pone.0110086

828	Ding, B.	. Tang. `	Y Ma.	S., Akter	. M., Liu	. M. L.	Zang, T	& Zhang.	C. L.	(2021). Disease

829 modeling with human neurons reveals lmnb1 dysregulation underlying dyt1 dystonia.

Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.2507-20.2020

831 Enenkel, C. (2014). Nuclear transport of yeast proteasomes. In *Biomolecules* (Vol. 4, Issue 4, pp.

832 940–955). MDPI AG. https://doi.org/10.3390/biom4040940

- 833 Esra Demircioglu, F., Sosa, B. A., Ingram, J., Ploegh, H. L., & Schwartz, T. U. (2016).
- 834 Structures of torsinA and its disease-mutant complexed with an activator reveal the
- 835 molecular basis for primary dystonia. *ELife*. https://doi.org/10.7554/eLife.17983
- 836 Gonzalez-Alegre, P., & Paulson, H. L. (2004). Aberrant Cellular Behavior of Mutant TorsinA
- 837 Implicates Nuclear Envelope Dysfunction in DYT1 Dystonia. Journal of Neuroscience,

838 24(11), 2593–2601. https://doi.org/10.1523/JNEUROSCI.4461-03.2004

- 839 Goodchild, R. E., Buchwalter, A. L., Naismith, T. V., Holbrook, K., Billion, K., Dauer, W. T.,
- 840 Liang, C. C., Dear, M. L., & Hanson, P. I. (2015). Access of torsinA to the inner nuclear
- 841 membrane is activity dependent and regulated in the endoplasmic reticulum. *Journal of Cell*

842 *Science*, *128*(15), 2854–2865. https://doi.org/10.1242/jcs.167452

843 Goodchild, R. E., & Dauer, W. T. (2004). Mislocalization to the nuclear envelope: An effect of

844 the dystonia-causing torsinA mutation. *Proceedings of the National Academy of Sciences of*

845 *the United States of America*, 101(3), 847–852. https://doi.org/10.1073/pnas.0304375101

- 846 Goodchild, R. E., & Dauer, W. T. (2005). The AAA+ protein torsinA interacts with a conserved
- domain present in LAP1 and a novel ER protein. *Journal of Cell Biology*, *168*(6), 855–862.
- 848 https://doi.org/10.1083/jcb.200411026
- 849 Goodchild, R. E., Kim, C. E., & Dauer, W. T. (2005). Loss of the dystonia-associated protein
- torsinA selectively disrupts the neuronal nuclear envelope. *Neuron*, 48(6), 923–932.

- 851 https://doi.org/10.1016/j.neuron.2005.11.010
- 852 György, B., Cruz, L., Yellen, D., Aufiero, M., Alland, I., Zhang, X., Ericsson, M., Fraefel, C., Li,
- Y. C., Takeda, S., Hyman, B. T., & Breakefield, X. O. (2018). Mutant torsinA in the
- 854 heterozygous DYT1 state compromises HSV propagation in infected neurons and
- 855 fibroblasts. *Scientific Reports*, 8(1). https://doi.org/10.1038/s41598-018-19865-2
- Harding, H. (2003). Immortalization of MEF with SV40 T antigen. In Internet.
- 857 Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., & Ron, D. (2000). Perk is essential for
- translational regulation and cell survival during the unfolded protein response. *Molecular*
- 859 *Cell*, 5(5), 897–904. https://doi.org/10.1016/S1097-2765(00)80330-5
- 860 Hewett, J., Gonzalez-Agosti, C., Slater, D., Ziefer, P., Li, S., Bergeron, D., Jacoby, D. J.,
- 861 Ozelius, L. J., Ramesh, V., & Breakefield, X. O. (2000). Mutant torsinA, responsible for
- 862 early-onset torsion dystonia, forms membrane inclusions in cultured neural cells. *Human*
- 863 *Molecular Genetics*. https://doi.org/10.1093/hmg/9.9.1403
- Jankovic, J., & Tintner, R. (2001). Dystonia and parkinsonism. Parkinsonism and Related
- 865 *Disorders*, 8(2), 109–121. https://doi.org/10.1016/S1353-8020(01)00025-6
- Jokhi, V., Ashley, J., Nunnari, J., Noma, A., Ito, N., Wakabayashi-Ito, N., Moore, M. J., &
- 867 Budnik, V. (2013). Torsin Mediates Primary Envelopment of Large Ribonucleoprotein
- 868 Granules at the Nuclear Envelope. *Cell Reports*.
- 869 https://doi.org/10.1016/j.celrep.2013.03.015
- 870 Jozefczuk, J., Drews, K., & Adjaye, J. (2012). Preparation of mouse embryonic fibroblast cells
- suitable for culturing human embryonic and induced pluripotent stem cells. *Journal of*
- 872 *Visualized Experiments*. https://doi.org/10.3791/3854
- Jungwirth, M., Dear, M. L., Brown, P., Holbrook, K., & Goodchild, R. (2010). Relative tissue

- 874 expression of homologous torsinB correlates with the neuronal specific importance of
- 875 DYT1 dystonia-associated torsinA. *Human Molecular Genetics*, 19(5), 888–900.
- 876 https://doi.org/10.1093/hmg/ddp557
- Jungwirth, M. T., Kumar, D., Jeong, D. Y., & Goodchild, R. E. (2011). The nuclear envelope
- localization of DYT1 dystonia torsinA-ΔE requires the SUN1 LINC complex component.
- 879 BMC Cell Biology, 12. https://doi.org/10.1186/1471-2121-12-24
- Khalil, B., Morderer, D., Price, P. L., Liu, F., & Rossoll, W. (2018). mRNP assembly, axonal
- transport, and local translation in neurodegenerative diseases. In *Brain Research* (Vol.
- 882 1693, Issue Pt A, pp. 75–91). Elsevier B.V. https://doi.org/10.1016/j.brainres.2018.02.018
- Kim, C. E., Perez, A., Perkins, G., Ellisman, M. H., & Dauer, W. T. (2010). A molecular
- 884 mechanism underlying the neural-specific defect in torsinA mutant mice. *Proceedings of the*
- 885 *National Academy of Sciences of the United States of America.*
- 886 https://doi.org/10.1073/pnas.0912877107
- 887 Kim, J. E., Hong, Y. H., Kim, J. Y., Jeon, G. S., Jung, J. H., Yoon, B. N., Son, S. Y., Lee, K. W.,
- Kim, J. Il, & Sung, J. J. (2017). Altered nucleocytoplasmic proteome and transcriptome
- distributions in an in vitro model of amyotrophic lateral sclerosis. *PLoS ONE*, *12*(4).
- 890 https://doi.org/10.1371/journal.pone.0176462
- 891 Kustedjo, K., Bracey, M. H., & Cravatt, B. F. (2000). Torsin A and its Torsion Dystonia-
- 892 Associated Mutant Form Are Lumenal Glycoproteins that Exhibit Distinct Subcellular
- 893 Localizations Running title: Biochemical characterization of torsin A. JBC Papers in Press.
- Laudermilch, E., Tsai, P. L., Graham, M., Turner, E., Zhao, C., & Schlieker, C. (2016).
- 895 Dissecting Torsin/cofactor function at the nuclear envelope: A genetic study. *Molecular*
- *Biology of the Cell*, *27*(25), 3964–3971. https://doi.org/10.1091/mbc.E16-07-0511

- Li, J., Liang, C. C., Pappas, S. S., & Dauer, W. T. (2020). TorsinB overexpression prevents
- abnormal twisting in DYT1 dystonia mouse models. *ELife*, 9.
- 899 https://doi.org/10.7554/eLife.54285
- 900 Liang, C. C., Tanabe, L. M., Jou, S., Chi, F., & Dauer, W. T. (2014). TorsinA hypofunction
- 901 causes abnormal twisting movements and sensorimotor circuit neurodegeneration. *Journal*
- 902 of Clinical Investigation, 124(7), 3080–3092. https://doi.org/10.1172/JCI72830
- 903 Martin, J. N., Bair, T. B., Bode, N., Dauer, W. T., & Gonzalez-Alegre, P. (2009). Transcriptional
- and proteomic profiling in a cellular model of DYT1 dystonia. *Neuroscience*, 164(2), 563–
- 905 572. https://doi.org/10.1016/j.neuroscience.2009.07.068
- 906 McQuin, C., Goodman, A., Chernyshev, V., Kamentsky, L., Cimini, B. A., Karhohs, K. W.,
- 907 Doan, M., Ding, L., Rafelski, S. M., Thirstrup, D., Wiegraebe, W., Singh, S., Becker, T.,
- 908 Caicedo, J. C., & Carpenter, A. E. (2018). CellProfiler 3.0: Next-generation image
- 909 processing for biology. *PLoS Biology*. https://doi.org/10.1371/journal.pbio.2005970
- 910 Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J.,
- 911 Puigserver, P., Carlsson, E., Ridderstråle, M., Laurila, E., Houstis, N., Daly, M. J.,
- 912 Patterson, N., Mesirov, J. P., Golub, T. R., Tamayo, P., Spiegelman, B., Lander, E. S.,
- 913 Hirschhorn, J. N., ... Groop, L. C. (2003). PGC-1α-responsive genes involved in oxidative
- 914 phosphorylation are coordinately downregulated in human diabetes. *Nature Genetics*.
- 915 https://doi.org/10.1038/ng1180
- 916 Naismith, T. V., Heuser, J. E., Breakefield, X. O., & Hanson, P. I. (2004). TorsinA in the nuclear
- 917 envelope. Proceedings of the National Academy of Sciences of the United States of
- 918 *America*, 101(20), 7612–7617. https://doi.org/10.1073/pnas.0308760101
- 919 Nery, F. C., Armata, I. A., Farley, J. E., Cho, J. A., Yaqub, U., Chen, P., Da Hora, C. C., Wang,

920	Q., Tagaya, M., Klein, C., Tannous, B., Caldwell, K. A., Caldwell, G. A., Lencer, W. I., Ye,
921	Y., & Breakefield, X. O. (2011). TorsinA participates in endoplasmic reticulum-associated
922	degradation. Nature Communications, 2(1). https://doi.org/10.1038/ncomms1383
923	Nery, F. C., Zeng, J., Niland, B. P., Hewett, J., Farley, J., Irimia, D., Li, Y., Wiche, G.,
924	Sonnenberg, A., & Breakefield, X. O. (2008). TorsinA binds the KASH domain of nesprins
925	and participates in linkage between nuclear envelope and cytoskeleton. Journal of Cell
926	Science, 121(20), 3476-3486. https://doi.org/10.1242/jcs.029454
927	Ortega, J. A., Daley, E. L., Kour, S., Samani, M., Tellez, L., Smith, H. S., Hall, E. A., Esengul,
928	Y. T., Tsai, Y. H., Gendron, T. F., Donnelly, C. J., Siddique, T., Savas, J. N., Pandey, U. B.,
929	& Kiskinis, E. (2020). Nucleocytoplasmic Proteomic Analysis Uncovers eRF1 and
930	Nonsense-Mediated Decay as Modifiers of ALS/FTD C9orf72 Toxicity. Neuron, 106(1),
931	90-107.e13. https://doi.org/10.1016/j.neuron.2020.01.020
932	Ozelius, L. J., Hewett, J. W., Page, C. E., Bressman, S. B., Kramer, P. L., Shalish, C., De Leon,
933	D., Brin, M. F., Raymond, D., Corey, D. P., Fahn, S., Risch, N. J., Buckler, A. J., Gusella, J.
934	F., & Breakefield, X. O. (1997). The early-onset torsion dystonia gene (DYT1) encodes an
935	ATP-binding protein. Nature Genetics. https://doi.org/10.1038/ng0997-40
936	Pappas, S. S., Liang, C. C., Kim, S., Rivera, C. A. O., & Dauer, W. T. (2018). TorsinA
937	dysfunction causes persistent neuronal nuclear pore defects. Human Molecular Genetics.
938	https://doi.org/10.1093/hmg/ddx405
939	Rampello, A. J., Laudermilch, E., Vishnoi, N., Prohet, S. M., Zhao, C., Patrick Lusk, C., &
940	Schlieker, C. (2019). Torsin ATPases are required to complete nuclear pore complex
941	biogenesis in interphase 1 2. https://doi.org/10.1101/821835
942	Rittiner, J. E., Caffall, Z. F., Hernández-Martinez, R., Sanderson, S. M., Pearson, J. L.,

943	Tsukayama	, K. K., L	iu, A. Y	., Xiao,	C., T	racy, S.	Shipman	. M. K.	, Hickey	v. P.	, Johnson,	J.,

- 944 Scott, B., Stacy, M., Saunders-Pullman, R., Bressman, S., Simonyan, K., Sharma, N.,
- 945 Ozelius, L. J., ... Calakos, N. (2016). Functional Genomic Analyses of Mendelian and
- 946 Sporadic Disease Identify Impaired eIF2α Signaling as a Generalizable Mechanism for
- 947 Dystonia. *Neuron*, 92(6), 1238–1251. https://doi.org/10.1016/j.neuron.2016.11.012
- Ron, D. (2002). Translational control in the endoplasmic reticulum stress response. *Journal of*
- 949 *Clinical Investigation*, *110*(10), 1383–1388. https://doi.org/10.1172/jci16784
- 950 Ross Buchan, J. (2014). MRNP granules Assembly, function, and connections with disease. In
- 951 *RNA Biology* (Vol. 11, Issue 8, pp. 1019–1030). Landes Bioscience.
- 952 https://doi.org/10.4161/15476286.2014.972208
- 953 Saunders, C. A., Harris, N. J., Willey, P. T., Woolums, B. M., Wang, Y., McQuown, A. J.,
- 954 Schoenhofen, A., Worman, H. J., Dauer, W. T., Gundersen, G. G., & Luxton, G. W. G.
- 955 (2017). TorsinA controls TAN line assembly and the retrograde flow of dorsal perinuclear
- 956 actin cables during rearward nuclear movement. *The Journal of Cell Biology*, 216(3), 657–
- 957 674. https://doi.org/10.1083/jcb.201507113
- 958 Speese, S. D., Ashley, J., Jokhi, V., Nunnari, J., Barria, R., Li, Y., Ataman, B., Koon, A., Chang,
- 959 Y. T., Li, Q., Moore, M. J., & Budnik, V. (2012). Nuclear envelope budding enables large
- 960 ribonucleoprotein particle export during synaptic Wnt signaling. *Cell*, *149*(4), 832–846.
- 961 https://doi.org/10.1016/j.cell.2012.03.032
- 962 Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A.,
- 963 Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene
- 964 set enrichment analysis: A knowledge-based approach for interpreting genome-wide
- 965 expression profiles. *Proceedings of the National Academy of Sciences of the United States*

- 966 *of America*, 102(43), 15545–15550. https://doi.org/10.1073/pnas.0506580102
- 967 Suzuki, K., Bose, P., Leong-Quong, R. Y., Fujita, D. J., & Riabowol, K. (2010). REAP: A two
- 968 minute cell fractionation method. *BMC Research Notes*. https://doi.org/10.1186/1756-0500-
- 969 3-294
- 970 Tanabe, L. M., Liang, C. C., & Dauer, W. T. (2016). Neuronal Nuclear Membrane Budding
- 971 Occurs during a Developmental Window Modulated by Torsin Paralogs. *Cell Reports*,
- 972 *16*(12), 3322–3333. https://doi.org/10.1016/j.celrep.2016.08.044
- 973 Tarsy, D., & Simon, D. K. (2006). Dystonia. New England Journal of Medicine.
- 974 https://doi.org/10.1056/NEJMra055549
- 975 Torres, G. E., Sweeney, A. L., Beaulieu, J. M., Shashidharan, P., & Caron, M. G. (2004). Effect
- 976 of torsinA on membrane proteins reveals a loss of function and a dominant-negative
- 977 phenotype of the dystonia-associated ΔE -torsinA mutant. *Proceedings of the National*
- 978 Academy of Sciences of the United States of America, 101(44), 15650–15655.
- 979 https://doi.org/10.1073/pnas.0308088101
- 980 Tribl, F., Gerlach, M., Marcus, K., Asan, E., Tatschner, T., Arzberger, T., Meyer, H. E.,
- 981 Bringmann, G., & Riederer, P. (2005). "Subcellular proteomics" of neuromelanin granules
- 982 isolated from the human brain. In *Molecular and Cellular Proteomics* (Vol. 4, Issue 7, pp.
- 983 945–957). American Society for Biochemistry and Molecular Biology Inc.
- 984 https://doi.org/10.1074/mcp.M400117-MCP200
- 985 van Harten, P. N., Hoek, H. W., & Kahn, R. S. (1999). Fortnightly review: Acute dystonia
- 986 induced by drug treatment. *BMJ*, *319*(7210), 623–626.
- 987 https://doi.org/10.1136/bmj.319.7210.623
- 988 Vander Heyden, A. B., Naismith, T. V., Snapp, E. L., Hodzic, D., & Hanson, P. I. (2009).

- 989 LULL1 retargets torsinA to the nuclear envelope revealing an activity that is impaired by
- 990 the DYT1 dystonia mutation. *Molecular Biology of the Cell*, 20(11), 2661–2672.
- 991 https://doi.org/10.1091/mbc.E09-01-0094
- 992 VanGompel, M. J. W., Nguyen, K. C. Q., Hall, D. H., Dauer, W. T., & Rose, L. S. (2015). A
- 993 novel function for the Caenorhabditis elegans torsin OOC-5 in nucleoporin localization and
- nuclear import. *Molecular Biology of the Cell*. https://doi.org/10.1091/mbc.E14-07-1239
- 995 Vasudevan, A., Breakefield, X. O., & Bhide, P. G. (2006). Developmental patterns of torsinA
- and torsinB expression. *Brain Research*, 1073–1074(1), 139–145.
- 997 https://doi.org/10.1016/j.brainres.2005.12.087
- 998 Wühr, M., Güttler, T., Peshkin, L., McAlister, G. C., Sonnett, M., Ishihara, K., Groen, A. C.,
- 999 Presler, M., Erickson, B. K., Mitchison, T. J., Kirschner, M. W., & Gygi, S. P. (2015). The
- 1000 Nuclear Proteome of a Vertebrate. *Current Biology*, 25(20), 2663–2671.
- 1001 https://doi.org/10.1016/j.cub.2015.08.047
- 1002 Zacchi, L. F., Wu, H. C., Bell, S. L., Millen, L., Paton, A. W., Paton, J. C., Thomas, P. J.,
- 1003 Zolkiewski, M., & Brodsky, J. L. (2014). The bip molecular chaperone plays multiple roles
- during the biogenesis of torsina, an aaa atpase associated with the neurological disease
- early-onset torsion dystonia. *Journal of Biological Chemistry*, 289(18), 12727–12747.
- 1006 https://doi.org/10.1074/jbc.M113.529123
- 1007 Zakirova, Z., Fanutza, T., Bonet, J., Readhead, B., Zhang, W., Yi, Z., Beauvais, G., Zwaka, T.
- 1008 P., Ozelius, L. J., Blitzer, R. D., Gonzalez-Alegre, P., & Ehrlich, M. E. (2018). Mutations in
- 1009 THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and
- 1010 functions. *PLoS Genetics*, 14(1). https://doi.org/10.1371/journal.pgen.1007169
- 1011 Zhao, C., Brown, R. S. H., Chase, A. R., Eisele, M. R., & Schlieker, C. (2013). Regulation of

1012	Torsin ATPases by LAP1	and LULL1. Proceedings of the Nation	al Academy of Sciences of

- 1013 *the United States of America*, *110*(17). https://doi.org/10.1073/pnas.1300676110
- 1014 Zhao, C., Brown, R. S. H., Tang, C. H. A., Hu, C. C. A., & Schlieker, C. (2016). Site-specific
- 1015 proteolysis mobilizes TorsinA from the membrane of the endoplasmic reticulum (ER) in
- 1016 response to ER stress and B cell stimulation. *Journal of Biological Chemistry*, 291(18),
- 1017 9469–9481. https://doi.org/10.1074/jbc.M115.709337
- 1018 Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., Benner, C., &
- 1019 Chanda, S. K. (2019). Metascape provides a biologist-oriented resource for the analysis of
- 1020 systems-level datasets. *Nature Communications*. https://doi.org/10.1038/s41467-019-09234-
- 1021

- 1022
- 1023

1024

1025

1027 conditions. Western blot protein level (a.u.) was quantified by densitometric analysis of the

1028 fluorescent signal. N = 3 independent measures per condition.

- 1029
- 1030

<sup>Fig. S2. Overlap of LC/MS/MS identified proteins across experimental conditions. (A) Overlap
of LC/MS/MS identified proteins between nuclear and cytosolic fractions treated with either Tg
or Veh. (B) Pairwise overlap of DYT-disrupted proteins between nuclear and cytosolic fractions
treated with either Tg or Veh.</sup>

¹⁰³⁸ Gene Ontology analysis of the 152 cytosolic fraction proteins showing DYT-TOR1A/WT or

- 1040 fraction showing DYT-TOR1A/WT or WT/DYT-TOR1A FC > 1.5 and p < 0.05. Red bars
- 1041 highlight Gene Ontology terms associated with mitochondrial organization or ATP metabolism.

¹⁰³⁹ WT/DYT-TOR1A FC > 1.5 and p < 0.05. (B) Gene Ontology analysis of the 187 nuclear

**

Protein Level (x10⁶)

4.0

2.0

0.0

WT NUC

M DY DY OY

- 1044 Fig. S4. LINC proteins fractionation across genotype following Veh treatment. Protein levels in
- 1045 the nuclear and cytosolic fractions of both WT and DYT-TOR1A cell lines for (A) Sun1, (B)
- 1046 Sun2, (C) Nesprin1, (D) Nesprin2, and (E) Nesprin3. Significance was determined by unpaired t-
- 1047 test (n=3 biological replicates; *p<0.05; **p<0.01).
- 1048

Fig. S5. Quantification of Tbce protein by immunocytochemical staining. (A) Representativeimages of Tbce immunofluorescence in WT and DYT-TOR1A MEF lines treated with either

1052	Veh or Tg. (Scale bar = $100 \mu m$) (B) Quantitative proteomics data on Tbce protein levels within
1053	the nuclear fractions. (C) Quantification of Tbce immunofluorescence within the nucleus. (D)
1054	Quantitative proteomics data on Tbce protein levels within the cytosolic fractions. (E)
1055	Quantification of Tbce immunofluorescence within the cytosol. For the proteomics data,
1056	significance was determined by unpaired t-test (n=3 biological replicates; **p<0.01). For the
1057	immunofluorescence data, significance was determined by unpaired t-test (n=12 biological
1058	replicates with 4 distinct wells being quantified for each of the three unique cell lines per
1059	genotype; *p<0.05).

Fig. S6. Quantification of Pds5b protein by immunocytochemical staining. (A) Representative
images of Pds5b immunofluorescence in WT and DYT-TOR1A MEF lines treated with either

1064	Veh or Tg. (Scale bar = $100 \ \mu m$) (B) Quantitative proteomics data on Pds5b protein levels
1065	within the nuclear fractions. (C) Quantification of Pds5b immunofluorescence within the
1066	nucleus. (D) Quantification of Pds5b puncta frequency within the nucleus. (E) Quantification of
1067	cumulative Pds5b puncta intensity within the cell nucleus. For the proteomics data, significance
1068	was determined by unpaired t-test (n=3 biological replicates; **p<0.01). For the
1069	immunofluorescence data, significance was determined by unpaired t-test (n=12 biological
1070	replicates with 4 distinct wells being quantified for each of the three unique cell lines per
1071	genotype; *p<0.05, ***p<0.001).

Fig. S7. Genotype and Tg stress effects on subcellular fractionation of BiP. (A-B) LC/MS/MS
quantified relative protein abundance of BiP in the cytosolic (A) and nuclear (B) fraction. (C)
Ratio of nuclear/cytosolic protein levels. Significance was determined via unpaired t-test (n=3
biological replicates; *p<0.05; **p<0.01)

1079