bioRxiv preprint doi: https://doi.org/10.1101/2021.07.10.451876; this version posted July 12, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Inferring the demographic history of tetraploid
species from genomic data

Camille Roux, Xavier Vekemans and John Pannell

Abstract Genomic patterns of diversity and divergence are impacted by certain life
history traits, reproductive systems and demographic history. The latter is charac-
terised by fluctuations in population sizes over time, as well as by temporal patterns
of introgression. For a given organism, identifying a demographic history that devi-
ates from the standard neutral model allows a better understanding of its evolution,
but also helps to reduce the risk of false positives when screening for molecular
targets of natural selection. Tetraploid organisms and beyond have demographic
histories that are complicated by the mode of polyploidisation, the mode of inheri-
tance and different scenarios of gene flow between subgenomes and diploid parental
species. Here we provide guidelines for experimenters wishing to address these is-
sues through a flexible statistical framework: approximate Bayesian computation
(ABC). The emphasis is on the general philosophy of the approach to encourage fu-
ture users to exploit the enormous flexibility of ABC beyond the limitations imposed
by generalist data analysis pipelines.
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1 Introduction

The living world is characterised by an organisation of individuals into different
discrete groups, partially or totally reproductively isolated from each other: species.
Within a given species, genetic information at a given locus may be either invari-
ant, i.e. shared by all individuals of that species, or polymorphic, i.e. with different
segregating alleles. The relative importance of such monomorphic and polymorphic
loci along genomes differs between species and can be empirically quantified by
analyzing whole-genome sequences of individual samples of a given species. The
theoretical framework offered by population genetics seeks to explain the origins
of molecular diversity segregating within species, but also to understand how evo-
lutionary forces act over time on this genetic variation: either to maintain it or to
decrease it. Thus, with varying degrees of consequences, mutation, migration, ge-
netic drift and different forms of natural selection will both impact the proportion of
polymorphic positions in genomes and allele frequencies within populations. The
recent acquisition of large-scale population genomic data for non-model species has
facilitated investigations into the relative roles of these different forces in genome
evolution [1, 2]. In addition to the perspectives of bringing answers to fundamental
evolutionary questions offered by the recent sequencing technologies, they also pave
the way for numerous applications in conservation biology. Indeed, assuming that
the species is a fundamental unit in conservation biology programs, high-throughput
sequencing methods [3, 4] are now greatly facilitating the task of attributing indi-
viduals to different biological groups. In a complementary manner, the identifica-
tion of genomic regions involved in local adaptation is necessary to define relevant
ecotypes for reintroduction management project of endangered populations [5]. A
central point of this chapter is to highlight the general importance of characteris-
ing the demographic context in which species have evolved: how have effective
population sizes fluctuated over time? How important is migration in the genetic
composition of the population? Importantly, for methodological reasons since many
of the inferential biases associated with downstream sequencing analyses are likely
to arise when demography is neglected. This can be illustrated by current prac-
tices in population genomics. A popular way to identify genomic regions that have
recently experienced spatially-divergent selection is based on the “genomic scan”
of the Fygr statistic, i.e. a survey of variation of this statistic across genomic regions
aiming to identify regions with higher or lower values than the genomic background.
Fst quantifies the variance of allele frequencies among populations [6]. The aim of
these genomic scans for Fgr outliers is then to identify Fgy values that cannot be
explained by a drift-mutation-migration equilibrium alone. The usual interpretation
of an apparent increased variance is the action of strong and local adaptive pro-
cesses leading to contrasted directional selection effects in different populations.
And on the other tail of the Fgr genomic distribution, an apparently reduced vari-
ance in allele frequencies is interpreted as the action of balancing selection or a
local increase in introgression rate. Such Fgsr outliers methods have emerged early
in molecular population genetics, before the discovery of low or high-throughput
nucleotide sequencing, in order to infer the expected Fgr distribution under the as-
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sumption of selective neutrality, and then, to test for loci that are outliers of such
a null distribution [7]. However, numerous problems associated with this approach
were raised very shortly after its publication, notably pointing to the large influence
of migration patterns and population size on the theoretical variance of Fgr that
cannot be so easily neglected, regardless of the ploidy level [8, 9]. While Lewontin
and Krakauer’s seminal paper has gained impact in the modern literature with the
advance of high-throughput sequencing methods [10], the contemporary caveats as-
sociated with it have not received the same renewed attention [11], indicating that
the importance of demographic inferences beyond their descriptive aspects should
be recalled. As illustrated by Lotterhos and Whitlock by simulating the neutral evo-
lution of metapopulations placed in different landscapes, alternative demographic
histories can lead to different null distributions of Fgsr sharing the same genomic
average (Fig. 1; [12]).

Hence, the variance of Fgr across genomic regions can be strongly increased
according to the demographic scenario experienced by the studied organism. For
instance, for the same genomic average of Fsr, a two-dimensional isolation-by-
distance model (with a dispersal kernel) will increase the genomic variation when
compared to the island model where all sub-populations are equally connected by
gene flow. Additionally, this genomic variation can further increase as a result of col-
onization of empty niches from one or multiple refugia (Fig. 1). These expansions
are important processes in the history of species in response to continuous cycles
of historical climate fluctuations, impacting both marine and terrestrial organisms
[13]. Recent polyploid species are frequently more present in invasive ranges than
their closest diploid relatives [14, 15], suggesting that the island model is even less
likely to apply to them. Neglecting such demographic processes will therefore lead
to an increase in the false discovery rate when searching for genomic regions in-
volved in local adaptation, if the classic island model is blindly applied to a studied
organism without evaluating its relevance. Riverine or coastal organisms are thus
not expected to share the same null envelope as pelagic organisms for the same
genomic average Fgy [16]. Taking the specific demographic history of the studied
organism into account is then crucial to reduce the number of genomic regions er-
roneously claimed to be involved in local adaptation. Fortunately, methodological
developments in population genomics since the early 2000s have greatly facilitated
the exploration of sequenced data to capture the main demographic features behind
the observed genetic patterns. Because nowadays the whole ABC analysis can be
done in four short command lines in a Linux terminal, then the aim of this chap-
ter is not to detail one particular inferential tool among the many available to date
(for more details on the current state of the art, see the review by [17], but to detail
the steps that lead to the exploitation of the great flexibility of ABC (approximate
Bayesian computation; [18]) in particular to tackle the difficult issue of exploiting
polyploid genomic data, and by extension, all approaches based on comparisons
between simulations and observations.
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Fig. 1 Importance of demographic history on the null genomic distribution of Fgr.

Represented here are four metapopulations of d = 16 subpopulations/demes (filled circles) differ-
ing in their demographic history (adapted from [12]. Blue: island model where each deme is at
carrying capacity, and equally connected by gene flow to all other d — 1 demes (arrow). Green: iso-
lation by distance model with two-dimensional dispersal kernel. Red: range expansion model from
a single refugium (top left deme). Arrows indicate here the colonisation of previously free niches.
Yellow: range expansion model from two refugia (top left and bottom right). Curves represent the
genomic distribution of Fgr under each model. The four models produce different genomic Fgr
variation for the same mean. In particular, areas beyond the blue curve represent false positive Fst
outlier regions if the island model is taken as the null model.


https://doi.org/10.1101/2021.07.10.451876
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.10.451876; this version posted July 12, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Inferring the demographic history of tetraploid species from genomic data 5

2 Methods

2.1 Demography inferred from population genomic data.

It is important to begin this chapter by defining what demographic inference is,
particularly to avoid confusion with phylogenetic reconstruction. Firstly, the time
scale involved is not the same : phylogenetic reconstruction aims to group diver-
gent organisms according to their relative divergence for certain molecular and/or
morphological metrics, and then to propose a temporal sequence leading to the es-
tablished groups. In contrast, demographic reconstruction aims to describe the tem-
poral changes in patterns of migration and in effective population sizes that occurred
within a system of closely related species. In the early days of molecular population
genetics, relationships between genetic patterns and demographic processes were
proposed. For instance, since the per generation probability of having a coalescent
event in a sample of gene copies is proportional to 1/2Ne, where Ne is the num-
ber of diploid individuals making the population, then the total size of the sample
pedigree increases linearly with Ne. By assuming a mutation model with an infinite
number of sites, it follows that the number of SNPs in a population, for a given neu-
tral locus, increases linearly with the size of the coalescent tree, and hence, with Ne.
Thus, assuming a population whose size was constant in its recent history, it became
possible to estimate this value of Ne from the number of segregating polymorphic
sites observed at the sequenced neutral loci [19]. In addition to this relationship
with the number of SNPs at a given neutral locus, Ne is also linearly related to the
expected average number of nucleotide differences between pairs of sequences per
site (7r; [20, 21]. The effective number of individuals in the population therefore di-
rectly impacts both the number of SNPs observed in a given nucleotide sequence
alignment, but also the distribution of allelic frequencies. Deviations from this stan-
dard demographic model of constant population size leave different signatures in the
genomes, including the effects of variations in population sizes over time [22, 23],
migration between populations and/or introgression between species [24, 25] and
ancient population structure [26]. Demographic inferences thus aim to control for
the influences of different processes on patterns of intra-population polymorphism
and on patterns of interspecific divergence by capturing the signatures they have left
in the genomes. By integrating these different genomic signatures let by Ne varia-
tion, genetic structure and introgression into an inferential framework, it becomes
possible to interpret sequence data in the light of models deviating from the standard
neutral model (Fig. 2).

These more complex demographic models can be defined by sets of parameters
that constrain the evolution of one or more populations/species. For instance, four
parameters are sufficient to describe the simplest model of divergence of two gene
pools: the divergence time T (in number of generations) and the effective sizes of
the three populations (the ancestral one plus its two daughters). Under this model,
the age of subdivision of the ancestral population will affect the genomic Fgsr be-
tween the two diverging daughter populations A and B in different ways. Firstly,
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Fig. 2 Demographic model
of divergence from a common
ancestor.

In its simplest version, the
model describes the subdivi-
sion, Tl generations ago,
of an ancestral population
with Ne individuals into two
closely related populations
giving the future species A
and B. This demographic
model can be extended to add
i) population structure and ii)

migration between different S p . A S p . B

populations at different times.

Fgst increases monotonously with divergence from zero to one in the absence of
continuous migration or secondary contact between the diverging daughter popula-
tions (Fig. 3-A). Secondly, the variation in Fst across loci, initially low in the early
stages of divergence, will increase under the effect of drift and recombination, gen-
erating genomic heterogeneity in differentiation. Stochastic and progressive fixation
of different alleles between the two populations at different positions (initially from
standing variation, then, from derived mutations) finally tends to reduce the varia-
tion of the Fgr, producing somewhat homogeneously differentiated genomes (Fig.

3-B).
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The patterns of diversity encapsulated in the two-dimensional Site Frequency
Spectrum (SFS) also evolve as a result of genetic drift over time (Fig. 4). In the
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first generations immediately after the split a strong correlation in allele frequen-
cies is expected between closely related populations (Fig. 4 for Ty = 0.0001Ne
generations). At this level of divergence, the majority of SNPs correspond to shared
polymorphic sites between the two populations, inherited from the ancestral popu-
lation. Due to the sampling effect, some SNPs may appear to have fixed an allele in
one population that still segregates at high frequency in the other population. During
the divergence process, the proportion of genotyped SNPs exhibiting shared poly-
morphisms in intermediate frequencies decreases (Tspiic = 0.4Ne generations), until
it almost disappears (for Tyl > 1Ne) to the relative benefit of polymorphisms spe-
cific to one of the two populations, and finally, to fixed differences between them

[27].
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Fig. 4 Joint allelic frequency spectra (jSFS) during divergence.

Four spectra describe here the allelic frequencies in two diploid sister species at four different di-
vergence times expressed in Ne generations, where Ne is the effective population size of the two
daughter populations and their common ancestor. From left to right: T = 0.0001Ne generations
ago, 0.4Ne, 1Ne and 4Ne. These spectra are formed from 20 haploid gametes sampled and se-
quenced from the two diploid populations/species A and B. For each SNP identified among the 40
sequences, the number of copies of the derived allele found in species A (x-axis) and B (y-axis) is
counted. Colours indicate the expected proportions of genotyped SNPs falling within each bin of
the jSFS. Shared polymorphisms are located in the inner square. Polymorphisms that are private to
a single species are in the external contour. Derived mutations that have become fixed in a single
species are in the lower right or higher left corners.

Exploiting information from this two dimensional SFS was first proposed by
Li and Stephan [28] in order to reconstruct the demographic history of Drosophila
melanogaster. They showed that the jSFS contained the information necessary to
capture major historical events : i) past population expansions in Africa; ii) rela-
tively recent establishment of D. Melanogaster in Europe; iii) a strong bottleneck
associated with this colonisation. Other methods have since followed up on this
approach by fitting demographic parameters to the jSFS, either by maximum like-
lihood [29, 30, 31] or by Bayesian approximation [32] procedures. More recently,
the information contained in the SFS has allowed alternative models of speciation to
be compared in order to highlight a secondary contact between the Mediterranean
and Atlantic lineages of the sea bass [33]. While these methods of reconstructing
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demographic histories from nucleotide sequencing data have since been widely ap-
plied to diploid organisms, some work has shown that they can also be successfully
extended to tetraploid species [34, 35]. The following section will therefore detail
how to apply such methods to tetraploid organisms, and how to take advantage of
their methodological flexibility to adapt to certain biological properties.

2.2 from tetraploid sequences to first inferences

To date, demographic inferences using ABC approaches have largely been applied
on diploid species, notably to: i) test demographic expansions and/or contractions
[36]; ii) test whether two populations/species are connected by ongoing gene flow
[37]); iii) test different demo-genetic models, e.g. to take into account the effects
of indirect selection on the genomic distribution of diversity [38, 39], or to iden-
tify molecular targets of selection against hybrid incompatibilities [40, 41]. In ad-
dition to these issues which are relevant for both diploid and polyploid species,
other questions specific to polyploids arise. One is often interested in distinguish-
ing between the establishment of a polyploid lineage following the doubling of its
genome within a single population (autopolyploidization) and its establishment as
a result of hybridization associated with genome doubling between two divergent
populations/species (allopolyploidization). Although the distinction between auto-
and allopolyploidy is conceptually important to gain insight into the origin of a given
tetraploid species under study, it is often achieved indirectly by deducting the evo-
lution mechanism from the mode of inheritance. Usually, disomic inheritance, i.e,
preferential pairings between only two homologous chromosomes, is interpreted
as indirect evidence of an allopolyploid origin. In contrast, polysomic inheritance
(random pairings among all homologous chromosomes) is interpreted as indirect
evidence of an autopolyploid origin. But tetrasomic inheritance in a recently du-
plicated tetraploid lineage will generally gradually evolve to disomic inheritance
[42], a process called “diploidisation”. This process results from the progressive
divergence between pairs of homeologous chromosomes, accelerated by reduced
local recombination rates (i.e, in case of large chromosomes), as well as by the sub-
fonctionalisation and neofonctionalisation processes acting on homeologous genes.
Because this process of diploidisation can be prevented at islands of recombination
between the two sub-genomes [43], differences in gene exchange between homeol-
ogous pairs across the genome can lead to mixed or intermediate inheritance models
that are called “heterosomy”, with some loci showing disomic and others tetrasomic
inheritance. Such mixed inheritance models are somewhat neglected in the popula-
tion genomic literature despite being well reported [44, 45, 46]. The evolution of
disomy in autotetraploids suggests that inferring the mode of polyploidisation from
the mode of inheritance only may be misleading, but there is much to learn by de-
coupling these properties. Here we describe how this can be achieved by detailing
key steps in demographic inference in tetraploids (Fig. 5):

1. Designing the models to be explored.


https://doi.org/10.1101/2021.07.10.451876
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.10.451876; this version posted July 12, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Inferring the demographic history of tetraploid species from genomic data 9

2. Processing of observed and simulated sequences.
3. Comparison between observation and simulations.
4. Checking the results.

sp.A sp.B M1 M2
[ N
>

< N\

b b

Observed Simulated
seguences sequences
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Algorithm for comparison

!

Al o

P 1-P

Fig. 5 Three steps in ABC for demographic inferences.

The observed data is obtained by DNA/RNA sequencing of individuals from natural popula-
tions/species A and B. Sequences are then summarised by a vector of chosen statistics to quantify
the genomic patterns of polymorphism and divergence. Simulated data are exploited to obtain null
joint-distributions of the same summary statistics under each of the demographic scenarios to be
evaluated. The last step in model classification is a statistical comparison between simulated and
observed statistics in order to assign a probability P to the best supported model. P quantifies the
relative abilities of the compared models to produce simulations close to the observation.

2.2.1 Designing the models to be explored

The principle of ABC-like approaches is to first classify an arbitrary set of models
according to their ability to reproduce the observed data. This requires upstream
design of the alternative scenarios that an experimenter wishes to evaluate. It is
therefore crucial to put the hypothesis to be tested at the centre of the design. In
the speciation genomics literature, one of many questions of interest is whether or
not there is ongoing gene flow between two divergent species. So the experimenter
proceeds to design alternative demographic scenarios that may or may not lead to
species currently connected by gene flow [47, 48, 49, 50]. A first question of interest
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concerning polyploids could, for instance, be the auto- versus allopolyploid origins
(Fig. 6). In such models, each sub-genome making a tetraploid taxon is considered
to be a diploid population. Autopolyploidisation therefore involves simulating the
divergence of a diploid species into three diploid lineages at a time Twgp [34]:
one lineage resulting in a daughter diploid species (species A in fig. 6-A), which
is closely related to the other two lineages making the daughter tetraploid species
(species B in fig. 6-A). Similarly, allopolyploidisation is simulated by modelling two
divergence events taking place simultaneously at time Twgp, one between parental
species A and sub-genome A of species B, and, the other between parental species
C and sub-genome C of the tetraploid species B (fig. 6-B).

Fig. 6 Demographic speci- A Ne

ation scenarios with poly-

ploidization. T
Blue: diploid Past
species/populations.

Yellow: tetraploid T
species/populations, resulting Tsp it
from A autopolyploidization T

or B allopolyploidization TWGD ’
occurring Twgp genera- | N S

tions ago. Each of the two sp. A sp. B sp. C

sub-genomes forming the
tetraploid taxon are simulated
as two diploid populations
with or without gene flow
among them to mimic tetra-
somic versus disomic inher-
itance, respectively. A strict
bottleneck is assumed here
at the origin of the tetraploid
with a single founding indi-
vidual, followed by exponen-
tial population growth.

This is an opportunity to raise a central point in model design: a demographic
hypothesis test frequently involves a test between at least two different categories of
scenarios that differ for the hypothesis to evaluate. In the popular example of a test
for recent introgression between two species of interest, several scenarios can lead
to ongoing gene flow. Not exclusively, ongoing gene flow between two species can
be the result of secondary contact between them after a past allopatric divergence.
But such ongoing gene flow may also have occurred continuously between these two
lineages, without interruption, since their divergence from their common ancestor.
Similarly, the absence of migration between two species may be the result of a re-
duction in gene flow which may be sudden or progressive over time. Hence, testing
the hypothesis of current gene flow between two species would consist in compar-
ing two categories of scenarios: secondary contact or continuous migration versus
sudden interruption or progressive interruption of gene flow. Categorising the hy-
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potheses to be tested in this way allows possible confounding effects to be taken into
account, which, when neglected, can bias the biological conclusions drawn from the
inferences [39]. Applied to the elucidation of the mode of polyploidisation, several
sub-models can compose each of the two categories auto- and allopolyploidisation.
Both categories can be simulated assuming tetrasomic autopolyploids only and di-
somic allopolyploids only. In this case, an ABC approach will risk interpreting a
functionally disomic autopolyploid as a species with allopolyploid origin. Assessing
the mode of polyploidisation therefore requires implementing the different modes of
inheritance (disomic, heterosomic, tetrasomic) for both origins [35]. This is an illus-
tration of the power of simulation-based approaches such as ABC, where confound-
ing effects (for instance: disomic = allopolyploid) can be avoided by regrouping
variants of the same scenario. This is now possible thanks to the great flexibility of-
fered by the various simulators available [51, 52, 53, 54, 55, 56, 57, 58, 59]. Because
the two diploid sub-genomes constituting the tetraploid species can be simulated
as two diploid populations, then, the process of recombination between the sub-
genomes under tetrasomic inheritance is equivalent to infinite gene flow between
sub-populations. In contrast, disomic inheritance is equivalent to a strict isolation
between sub-populations. In between, mixed inheritance (heterosomy) corresponds
to a proportion a of the genome where homeologous chromosomes are connected
by gene flow, and 1-a are isolated. Hence, if @ is assumed to be equal to 1 then in-
heritance is strictly tetrasomic, and strictly disomic if one assumes @=0. Detecting
whether a species is autopolyploid or allopolyploid using ABC or supervised deep
learning approaches requires, at a minimum, simulating 6 different demographic
scenarios, corresponding to all combinations between origin ([autopolyploidy, al-
lopolyploidy]) and inheritance ([disomy, heterosomy, tetrasomy]) [35]. Recently,
Booker et. al. [60] have gone further by adding different migration sub-scenarios
within these two categories and successfully applied this approach to hundreds of
loci obtained using exome capture from the North American gray treefrogs Hyla.
They test the same 6 models, with the addition of: 1) models with gene flow from
Hyla chrysoscelis (diploid) to H. versicolor (tetraploid); 2) gene flow in both di-
rections (but at non-necessarily symmetrical rates). Using an ABC approach, they
strongly reject models with strict reproductive isolation between these two frog
species suggesting introgression is effective despite differences in ploidy levels. It is
important to be mindful that while the ABC or deep learning method will provide
greater support to one of the proposed models (or categories of models) relative
to the others, this relative support depends solely on the arbitrarily chosen set of
alternative models. By analogy, the ABC will strongly support the 12-sided die”
model in a 12 versus 6-sided comparison, if the actual model is the untested 20-sided
die. The philosophy of this approach, in essence, is to classify models relatively to
each other. Thus, the interpretation of the results must always be expressed in the
light of the set of compared models rather than as definitive conclusions decou-
pled from the initial model design. In our initial study [35], we proposed a set of
models for which a sample mimicking that of the experimenter (in terms of num-
ber of individuals, number and length of sequenced loci) would be simulated for a
number of replicates set by the user. The purpose of such simulations is to empiri-
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cally produce joint distributions of N summary statistics (more details about them
in the next section) under the different scenarios to be evaluated. In practice, this
is done by running the script run_ABC _polyploid_v2.py of our ABC_WGD pipeline
(https://github.com/popgenomics/ABC_WGD). Our intention here being to ac-
company the new user in the logic of the analysis, but we invite the interested reader
to follow the Readme of the GitHub repository for a more technical tutorial that will
be adapted to possible future updates.

2.2.2 Processing of observed and simulated sequences

ABC methods are based on the comparison between simulations performed accord-
ing to different alternative models and observations derived from the analysis of
real data. The comparison is made through summary statistics which are used to
describe the observed patterns of polymorphism and divergence genome-wide: the
model receiving the strongest relative support being the one that produces com-
binations of summary statistics closest to the observed data. A step that becomes
crucial is therefore the choice of relevant summary statistics. We will not develop
here the issue concerning the number of statistics to choose, as major improvements
brought by Random Forest algorithms now allow the use of a large number of them
without loss of power [61]. Nowadays, the experimenter wishing to apply a custom
ABC approach needs to focus on two important aspects of the choice of summary
statistics:

1. Which statistics best capture past demographic events?
2. Which statistics can be quantified on the observed dataset (i.e. statistics requiring
phased data? Is the identification of parental sub-genomes required? etc... )

A strength of ABC is its adaptability to different sampling and sequencing strate-
gies. This flexibility circumvents problems that arise when calculating summary
statistics for a polyploid. One of them is to phase the haplotypes, and to attribute
each sequenced copy to one of the two parental sub-genomes. We proposed in 2015
[35] a simple approach, with the aim of being transferable to the widest range of
sampling and sequencing strategies (and ploidy levels), by using only summary
statistics based on allelic frequencies (figures 7 and 8).

This approach assumes having a good confidence in the allelic count for each
SNP, regardless of the ploidy level. This means an absence of sequencing bias,
where all of the four copies of a gene carried by an auto- or allotetraploid indi-
vidual are taking into account when assessing the genotype. Different tools propose
to genotype sequencing data from polyploid organisms, by dealing more or less ef-
ficiently with sequencing errors, allelic bias and overdispersion, among them: the
method of Li [62, 63], GATK [64], fitPoly [65] and updog [66]. Once the sampled
genotypes are genotyped, it becomes possible without phasing to define a minimum
but still efficient set of statistics suitable for demographic inference, among them:
m; Watterson’s 8, Tajima’s D, Fsr, raw divergence D, net divergence D,. The pur-
pose of these statistics is to quantify the patterns of polymorphism and divergence,
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Fig. 7 Summarizing the data by using classical statistics in population genetics.

Three loci were sequenced in two diploid (species A in blue) and two tetraploids (species B in
yellow) individuals. The white and black circles indicate alternative alleles at the identified SNPs.
A set of 7 summary statistics is calculated for each locus. The vector containing the means and
standard deviations of each statistic will be used as the input for inferences.

in order to find the model that best reproduces them. Experimenters wishing to ap-
ply/develop an ABC approach to studying the history of their model organism must
bear in mind that there is no single 'magic’ statistic that will resolve on its own
the history of an organism: demographic signatures are essentially retrieved in the
joint combination of different statistics. More precisely, demography impacts the
genomic distributions of different statistics [67]. Quantiles of these genomic dis-
tributions, usually mean and standard deviation, should then be used as summary
statistics, although any method describing a distribution would be relevant (figures
7-A and 7-B). A dataset consisting of several sequenced loci in different individuals
from related species is finally summarised into a vector of statistics (Fig. 7-C) from
which inferences will be made, in order to propose the simulated model-parameter
combination reproducing the best this vector of observations. In addition to standard
population genetics statistics, SFS can also be treated as a vector of summary statis-
tics (Fig. 8). The latter does not require phased data, nor attribution to one of the
parental subgenomes, making it applicable to genomic data in tetraploids. Each bin
making the SFS becomes an independent statistic summarising the observed data.
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Fig. 8 Joint site frequency
spectrum as summary statis-
tics.

The example found in figure
7-A is now summarised by
an SFS, where each bin cor-
responds to the allelic count
of the derived allele (black)
within the sampled and se-
quenced populations/species. . . . .

number of copies in sp.A (2n)

The number of SNPs within 0 2 4 6 8

each bin can be used as a number of copies in sp.B (4n)
statistic for inferences.

The representation of closely related diploid and tetraploid populations in the
form of a SFS highlights the effects of modes of inheritance on genomic patterns
(Fig. 9). During autopolyploidisation with tetrasomic inheritance, the bottleneck as-
sociated with the emergence of the tetraploid taxon rapidly purges a large amount
of the polymorphism segregating in the ancestral population. As a result of such
strong bottleneck, each bin of the inner square (i.e, corresponding to shared poly-
morphism) or on the bottom edge (i.e, polymorphisms exclusive to the tetraploid
lineage) of the SES represents about a proportion of 0.0001 of the total number of
SNPs found in a diploid/tetraploid alignment 0.01Ne generations after genome du-
plication. In this autopolyploidisation scenario, the first tetraploid individual is the
result of a panmictic mating within the parental diploid population. The associated
bottleneck thus generates a peak of heterozygosity (representing about twenty per
cent of the genotyped SNPs) in the generations immediately after genome duplica-
tion, but which will quickly fade as a result of recombination associated to unbi-
ased Mendelian segregation. At this same stage in the divergence process, the most
represented category of SNP is the polymorphism segregating only in the diploid
species (Fig. 9-A, left edge). Although the polymorphism within the newly estab-
lished tetraploid population represents a very small part of the genome, alleles can
segregate in frequencies between zero and one due to the recombination between the
four copies. From the early stages of divergence, genomic patterns differ between
tetrasomic autopolyploid and disomic allopolyploid. In the latter, the most prevalent
category of SNPs is the stabilisation of alleles at frequency 0.5 in the tetraploid (Fig.
9-B).

The other difference is the absence of alleles segregating at frequencies above
0.5 in the disomic allotetraploid. Hence, the process of polyploidisation has a dras-
tic immediate effect on polymorphism patterns. The time since genomic duplication
will mainly contribute to increase the relative importance of segregating polymor-
phism in the tetraploid. These marked differences in the SFS mean that an ABC
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Fig. 9 Joint allelic frequency spectra (jSFS) after whole genome duplication.

Joint spectra describing the distribution of allelic frequencies for a pair of diploid (10 sampled
individuals) and tetraploid species (5 sampled individuals). The genome duplication took place
Ne generations after the separation of the ancestral population. The four jSFS represent genomic
patterns after 0.01, 0.25, 0.75 and 1 Ne generation after the A. autopolyploidization (tetrasomic)
or B. allopolyploidization (disomic).

approach will be able to correctly distinguish a tetrasomic autotetraploid from a di-
somic allotetraploid with near 100% accuracy. If all three types of inheritance (dis-
omy, heterosomy, tetrasomy) are taken into account for each of the two origins (auto
and allo), then the rate of identification of the correct auto- versus alloploidization
remains high, but is strongly impacted by the extent of genomic tetrasomy. Thus,
ABC will correctly support the (auto or allo) tetraploid origin in ~ 99% of cases if
the species is disomic, in ~ 90% of cases if the species is heterosomic, and ~ 80%
of cases [35] if the species is tetrasomic. Increasing the extent of recombination be-
tween homeologous chromosomes leads to a loss of information about the mode of
polyploidization. This is a consequence of genetic drift, which increases the possi-
bility of losing one of the two parental genomes when the new tetraploid population
is still restricted to a few individuals. This biological explanation of the error rate
of the ABC in classifying models puts it into perspective. Indeed, if one of the two
parental genomes has been lost by drift in the early generations of a sufficiently
tetrasomic allotetraploid population, then the species is genomically autotetraploid.

2.2.3 Comparison between observation and simulations

In order to make statistical inferences using an ABC approach, three objects are

needed:
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1. A vector of summary statistics obtained from the observations (Fig. 7-C).

2. A reference table obtained from the simulations, with columns corresponding to
the vector of summary statistics and rows corresponding to different simulation
replicates.

3. A vector of the variable to be estimated (categorical indicator variable in the
case of a model comparison; continuous variable in the case of a demographic
parameter under a given model), in correspondence with rows of the reference
table.

The reference table is obtained thanks to the pipeline described in the previ-
ous sections in order to simulate the experimenter’s sample (number of individ-
uals, number of sequenced loci/chromosomes) under the demographic scenarios
to be studied and, to obtain summary statistics from the performed simulations.
While the aim of this book chapter is to encourage experimenters to appropri-
ate existing simulation tools in order to develop a pipeline for their biological
questions, such a project may scare neophytes. For this reason, we have devel-
oped a turnkey version of such a pipeline, freely available on GitHub: https:
//github.com/popgenomics/ABC_WGD

The run_ABC_polyploid v2.py command alone will produce the reference ta-
ble needed for downstream analysis by combining two output files named ABC-
stat.txt and ABCjsfs.txt, for different combinations of polyploidisation and inher-
itance modes. A third file is produced, priorfile.txt, which contains the values of
parameters, randomly drawn from appropriate distributions according to the pri-
ors set by the experimenter, which were used to produce each simulation replicate.
The command run_ABC_polyploid_v2.py simply takes as arguments the name of
the model to be simulated (auto, allo), the inheritance mode (disomic, heterosomic,
tetrasomic), the limits of the parameter values to be explored (priors) and the num-
ber of multilocus iterations. The reference table (obtained by combining ABCstat.txt
and ABCjsfs.txt, if run_ ABC _polyploid_v2.py from our pipeline is used) is composed
in columns by the same summary statistics than the statistics used to describe the
observed dataset (vector of summary statistics), one row per simulated iteration.
There are no magic numbers concerning the summary statistics or the number of
iterations per scenario to be tested. In practice, it is usual to see in the literature
between 10,000 and 50,000 iterations per scenario if a random forest algorithm is
used downstream (e.g. R library abcrf [68], and around 1 million iterations if a
rejection/regression algorithm is preferred (e.g. R library abc [69]. It is up to the ex-
perimenter to explore around these orders of magnitude to test whether the number
of iterations has an effect on the accuracy of M, (Model with autopolyploidization)
versus M| (Model with allopolyploidization) comparison. Regarding the number of
summary statistics, typically less than 50 are used, but this number can be greatly
increased by including each SFS bin in the list of statistics to be used, which is a
function of the sampling size. In the case of a model comparison, the third required
object is a vector containing the model indicator variable. This vector, of the same
length as the number of rows in the reference table (containing the statistics simu-
lated under all models compared, such as M, and M), is intended to label each row
in the reference table with the actual model (e.g., either My or M) used to produce
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the row in the table. Using the abcrf package in R, once these three objects are
produced, the comparison of My versus M| models is done in two simple and rapid
steps, corresponding to two short R functions to execute. The first step is a training
step of the random forest (using the abcrf{) R function, from the eponymous pack-
age), involving the reference table and the vector with the model indicator variable.
The returned object is a random forest of ntree decision trees, trained to predict the
model that best explains a given vector of summary statistics. The effect of the ntree
value on the accuracy of the My versus M, comparison can be empirically explored.
To provide an indication, a value of ntree = 1,000 appears in the literature as stan-
dard but may vary depending on the number of models compared and the number of
summary statistics. The second step is a prediction step (using the predict() R base
function) that uses the random forest trained in the previous step and the vector of
observations. This step returns three values of interest:

1. The selected model (M, or M| in the case of a comparison between two models;
but M and M; can also be categories of models).

2. The number of trees in the forest that voted for each of the models compared.

3. The posterior probability of the best model (or the best category of models),
approximated by 1 — €, where € is the error rate of the inference.

Once the best scenario among those proposed has been identified using the
abcrf() and predict() functions, the next step is to estimate the parameter values that
best explains the observed data (of the selected model). Again, using the abcrf{) R
library, this can be achieved in two short steps. The major difference with the previ-
ous step of model comparisons is that the objective here is to predict a continuous
variable (the model parameter to be estimated) and not a categorical variable (the
model M, or M, to be inferred). To do this, a random forest must first be trained us-
ing the same reference table as previously for the model comparison, but replacing
the model indicator vector with a vector containing the value of the parameter X that
one is attempting to infer. The function regAbcrf{) from the R package abcrf will
build a regression random forest from the simulated statistics and the used param-
eters. For the second step, the predict() function will, taking as objects the trained
regression forest and the vector of observed statistics, predict the expected value
of the parameter, the variance of the posterior and its quantiles. To provide an idea
about the computation time required, we have here estimated the time of whole
genome duplication (Twgp) for the four combinations “autopolyploidization or al-
lopolyploidization” x “disomic or tetrasomic”. For each of these four combinations,
we simulated 10,000 datasets to train the regression forest, and 30,000 datasets to
test the trained forest (Fig. 10). On a 2017 laptop, with 6 dedicated threads, learn-
ing the four forests and estimating 7wgp for the 4x30,000 pseudo-observed datasets
[70] took 13 minutes. This execution time is not impacted by the sample size in
terms of number of individuals and loci. Such a re-analysis of simulated data sets
(not used this time to train the forest) is necessary to assess the quality of inference
along the range of explored values. In this way, we show that the age of polyploidiza-
tion Twgp can be accurately estimated for recent, intermediate and ancient events,
and for each of the four explored models (Fig. 10).
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Fig. 10 Test of accuracy in estimating Twgp for four models.

It is assumed here that the observed dataset consists of 5,000 loci of 1 kb, sequenced from 20
diploid individuals and 10 individuals from another tetraploid species. The age of polyploidisa-
tion, (expressed in Ne generations), as well as all the parameters of the model, is randomly drawn
between 0 and 10. The objective of the accuracy test is to use a first set of 10,000 simulations to
train the regression forest, and a second set of 30,000 simulations to empirically establish a re-
lationship between the real value of Twgp (x-axis) and the value predicted by the trained forest
(y-axis). Points represent the 120,000 estimated values for Twgp. Lines represent the loess regres-
sion between real and estimated values. Black line has a slope of 1 and an intercept at (0, 0). Colors
represent the four explored models.

3 Conclusion

While turnkey pipelines are nowadays available in order to efficiently infer the speci-
ation history of tetraploids from genomic data (https://github.com/popgenomics/
ABC_WGD), it is still important to highlight that the strength of ABC-like approaches
is their flexibility. Thus, pre-existing pipelines can be immediately useful for analysing
newly acquired data, but more importantly, they can be useful as a basis for cus-
tomisation. A first layer of customisation may involve the demographic models to
explore, either by adding genomic introgression, or by changing the population
growth function of the neo-polyploid, or by increasing the ploidy level, etc ... A
second layer of customisation can be applied to the genomic models, notably by
implementing more relevant inheritance patterns, different natural selection models.
A third layer of customisation may concern the set of summary statistics, notably by
implementing those that can be brought to light in future. And finally, the prediction
algorithm itself can be modified, notably by taking advantage of the promise of con-
volutional neural networks in population genomics [71]. As with every inferential
method, it is always important that the experimenter is not content with the results


https://doi.org/10.1101/2021.07.10.451876
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.10.451876; this version posted July 12, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Inferring the demographic history of tetraploid species from genomic data 19

of the inferences on the observed data only, but also explores the space delimited by
the choice of the models to compare, as well as by the choice of the parameter range
(Fig. 10). Compared to a decade ago, nowadays the execution time of an inference
pipeline (model comparisons, parameter estimation) has become almost negligible
compared to the preliminary steps: identification of the populations to be sampled,
sampling campaign, nucleic acid extraction, sequencing, raw data processing. This
time saving should benefit the reflection on the scenarios to be explored and com-
pared and on exploring the limits of the inferential approach adopted, notably by
relying on the analysis of custom-made simulated data.
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