ABSTRACT
Pseudotime analysis with single-cell RNA-sequencing (scRNA-seq) data has been widely used to study dynamic gene regulatory programs along continuous biological processes. While many computational methods have been developed to infer the pseudo-temporal trajectories of cells within a biological sample, methods that compare pseudo-temporal patterns with multiple samples (or replicates) across different experimental conditions are lacking. Lamian is a comprehensive and statistically-rigorous computational framework for differential multi-sample pseudotime analysis. It can be used to identify changes in a biological process associated with sample covariates, such as different biological conditions, and also to detect changes in gene expression, cell density, and topology of a pseudotemporal trajectory. Unlike existing methods that ignore sample variability, Lamian draws statistical inference after accounting for cross-sample variability and hence substantially reduces sample-specific false discoveries that are not generalizable to new samples. Using both simulations and real scRNA-seq data, including an analysis of differential immune response programs between COVID-19 patients with different disease severity levels, we demonstrate the advantages of Lamian in decoding cellular gene expression programs in continuous biological processes.
Competing Interest Statement
E.J.W. has consulting agreements with and/or is on the scientific advisory board for Merck, Roche, Pieris, Elstar, and Surface Oncology. E.J.W. is a founder of Surface Oncology and Arsenal Biosciences. E.J.W. has a patent licensing agreement on the PD-1 pathway with Roche/Genentech. Other authors declare no competing interests.