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9 Tissue  niches  are  sources  of  cellular  variation  and  key  to  understanding  both  single-cell  and  tissue                

10 phenotypes.  The  interaction  of  a  cell  with  its  niche  can  be  described  through  cell  communication  events.                  
11 These  events  cannot  be  directly  observed  in  molecular  profiling  assays  of  single  cells  and  have  to  be                   
12 inferred.  However,  computational  models  of  cell  communication  and  variance  attribution  defined  on  data               
13 from  dissociated  tissues  suffer  from  multiple  limitations  with  respect  to  their  ability  to  define  and  to                  
14 identify  communication  events.  We  address  these  limitations  using  spatial  molecular  profiling  data  with               
15 node-centric  expression  modeling  (NCEM),  a  computational  method  based  on  graph  neural  networks              
16 which  reconciles  variance  attribution  and  communication  modeling  in  a  single  model  of  tissue  niches.                
17 We  use  these  models  in  varying  complexity  across  spatial  assays,  such  as  immunohistochemistry  and                
18 MERFISH,  and  biological  systems  to  demonstrate  that  the  statistical  cell–cell  dependencies  discovered              
19 by  NCEM  are  plausible  signatures  of  known  molecular  processes  underlying  cell  communication.  We               
20 identify  principles  of  tissue  organisation  as  cell  communication  events  across  multiple  datasets  using               
21 interpretation  mechanisms.  In  the  primary  motor  cortex,  we  found  gene  expression  variation  that  is  due                 
22 to  niche  composition  variation  across  cortical  depth.  Using  the  same  approach,  we  also  identified                
23 niche-dependent  cell  state  variation  in  CD8  T  cells  from  inflamed  colon  and  colorectal  cancer.  Finally,                 
24 we  show  that  NCEMs  can  be  extended  to  mixed  models  of  explicit  cell  communication  events  and  latent                   
25 intrinsic  sources  of  variation  in  conditional  variational  autoencoders  to  yield  holistic  models  of  cellular                
26 variation  in  spatial  molecular  profiling  data.  Altogether,  this  graphical  model  of  cellular  niches  is  a  step                  
27 towards   understanding   emergent   tissue   phenotypes.   

28   

29 Cells  interact  on  multiple  length-scales  through  direct  contact  of  surface-bound  receptors  and  ligands,               
30 tight-junctions  and  mechanical  effects,  as  well  through  indirect  mechanisms,  including  soluble  factors  and               
31 vesicles 1 .  These  communication  events  can  usually  not  be  directly  observed  but  are  critical  to  understand                 
32 emergent  phenomena  in  tissue  niches.  However,  the  sender  and  receiver  cell  of  a  communication  event  are  often                   
33 characterized  by  molecular  signatures,  both  facilitating  the  signalling,  such  as  ligand  and  receptor  expression 2–4 ,                
34 and  resulting  from  the  signalling  event,  such  as  intracellular  cascades  induced  by  receptor  activation.  These                 
35 molecular  signatures  are  used  in  computational  methods  to  infer  latent  cell  communication  events  in  a  tissue.                  
36 Core  assumptions  inherent  in  these  algorithms  can  be  summarized  in  two  groups:  First,  the  co-occurrence  of                  
37 ligand  and  receptor  expression  across  cell-types  is  used  in  multiple  computational  models  to  suggest  putative                 
38 axes  of  cell  communication 2,3 .  Second,  from  a  statistical  point  of  view,  cell  communication  is  a  source  of  cellular                    
39 variance.  The  gene  expression  of  a  receiving  cell  depends  on  the  sending  cells  in  the  local  tissue  niche,  thus                     
40 inducing  a  statistical  dependency  that  can  be  used  to  infer  communication  events 2,5 .  Here,  we  address  three  core                   
41 issues  inherent  in  cell  communication  inference  methods  founded  on  these  two  assumptions  using  spatial                
42 information.  First,  axes  of  cell  communication  cannot  be  necessarily  disentangled  based  on  data  from  dissociated                 
43 cells  because  of  the  large  number  of  potential  interactions  in  a  population  of  cells.  We  propose  to  use  spatial                     
44 information  from  image-structured  molecular  profiling  assays  to  constrain  the  inference  of  such  gene  expression                
45 dependencies  between  neighboring  cells.  For  this  purpose,  we  define  a  prior  distribution  on  the  possibility  of  a                   
46 communication  event  between  two  cells  as  a  function  of  their  distance,  using  space  to  prioritize  pairs  of  cells  for                     
47 which  communication  is  molecularly  plausible.  Second,  cell  pairs  with  matching  ligand  and  receptor  expression                
48 can  occur  in  a  tissue  even  in  the  absence  of  communication,  for  example  because  of  spatial  separation  in  the                     
49 tissue  architecture.  We  propose  to  use  the  receiver  cell  molecular  signature  as  conclusive  evidence  for  the                  
50 presence  of  a  communication  event.  Third,  molecular  signatures  of  receiver  cells  can  be  observed  independent                 
51 of  ligand–receptor  quantification.  Therefore,  cell  communication  inference  should  be  possible  both  in  the  absence                
52 of  a  reliable  quantification  of  ligand  or  receptor  genes,  which  occurs  in  targeted  molecular  profiling  assays,  or  in                    
53 cases  in  which  these  genes  are  expressed  at  low  levels,  and  in  receptor  protein-free  communication,  such  as  in                    
54 physical  interactions.  We  define  a  generalized  framework  to  detect  receiver  cell  signatures  detached  from                
55 ligand–receptor   definitions.   
56   
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57 We  reconcile  these  assumptions  in  a  statistical  model  for  cell  communication  events  in  spatial  molecular  profiling                  
58 data,  referred  to  as  a  node-centric  expression  model  (NCEM).  NCEMs  are  trained  on  segmented                
59 image-structured  molecular  data  from  assays  with  subcellular  resolution,  such  as  immunohistochemistry 6,7 ,             
60 imaging  mass  cytometry 8 ,  and  MERFISH 9  (Fig.  1a).  We  enforced  a  neighborhood  constraint  on  communication                
61 events  using  spatial  graphs  of  cells,  where  the  graph  serves  as  prior  for  cellular  communication.  The  resulting                   
62 model  is  a  graph  neural  network 10,11  and  constitutes  an  extension  of  models  of  dissociation-based  data,  in  which                   
63 cells  are  modeled  independently,  to  a  spatially-constrained  model  of  cell–cell  dependencies  (Fig.  1a).  This  model                 
64 relies  on  the  stratification  of  cells  into  clusters  that  can  then  be  treated  as  categorical  sender  and  receiver                    
65 cell-types  in  communication  events.  Importantly,  the  directionality  of  these  sender–receiver  signalling  is  defined               
66 on  the  level  of  pairs  of  single  cells  by  the  statistical  association  of  the  molecular  state  of  the  receiver  on  the                       
67 sender.  We  discovered  these  statistical  associations  in  a  model  of  the  molecular  state  of  cells  conditioned  on  the                    
68 putative  sender  cell-types  present  in  their  respective  spatial  neighborhoods.  The  complexity  of  the  spatial                
69 dependencies  observed  in  a  tissue  strongly  depends  on  the  tissue  architecture  and  the  ability  of  the  molecular                   
70 readout  to  capture  the  signatures  of  these  dependendencies.  Therefore,  the  cell  communication  model               
71 complexity  needs  to  be  adapted  to  the  scenario  at  hand.  We  studied  three  increasingly  complex  models  of                   
72 cell–cell  dependencies.  First,  we  propose  a  linear  graph  neural  network  that  can  be  framed  as  a  graph-aware                   
73 generalized  linear  model  (GLM)  to  model  linear  expression  effects  of  cell  communication.  Secondly,  we                
74 generalize  NCEMs  to  nonlinear  graph  neural  networks  that  can  account  for  higher-order  cell  interactions.  Third,                 
75 we  consider  generative  latent  variable  models  that  also  model  confounding  latent  sources  of  variation,  such  as                  
76 cell  intrinsic  effects.  We  interpret  NCEM  fits  in  terms  of  cell  communication  patterns.  We  demonstrate  cell                  
77 communication  inference  with  NCEMs  on  five  datasets  (Online  methods,  Supp.  Figure  2):  a  MERFISH  dataset  of                  
78 mouse  brain 12  (MERFISH  –  brain)  of  634  images  across  with  254  genes  observed  in  284,098  cells,  a  chip                    
79 cytometry  dataset  of  an  inflamed  colon  (Data  Availability)  (chip  cytometry  –  colon)  of  two  images  with  19  genes                    
80 observed  in  11,321  cells,  a  MIBI  TOF  dataset  of  colorectal  carcinoma 8  (MIBI  TOF  –  cancer)  of  58  images  with  36                      
81 genes  observed  in  63,747  cells,  a  MELC  dataset  of  tonsils 7  (MELC  –  tonsils)  of  one  image  with  51  genes                     
82 observed  in  6,991  cells  and  a  CODEX  dataset  of  colorectal  cancer 13  (CODEX  –  cancer)  of  140  images  with  57                     
83 genes  observed  in  272,266  cells.  We  discover  cell–cell  dependencies  at  molecularly  plausible  length  scales  and                 
84 attribute  molecular  variation  within  cell-types  to  niche  composition.  The  inferred  interactions  between  cells  serve                
85 as   a   powerful   mechanism   to   interpret   niche   composition   variation   and   its   effect   on   the   contained   cell.   

86 Results   

87 Node-centric   expression   models   describe   cell–cell   dependencies   on   spatial   graphs   

88 We  infer  cell  communication  from  a  cell-type-specific  gene  expression  signature  that  can  be  predicted  from                 
89 cell-types  in  the  spatial  neighborhood.  The  data  type  discussed  here  consists  of  image-structured  data  from                 
90 molecular  profiling  assays  of  RNA  or  proteins,  where  pixels  correspond  to  tissue  slice  positions.  Each  channel                  
91 contains  a  molecular  abundance  readout  of  a  specific  gene.  To  prepare  this  analysis,  we  first  used  segmentation                   
92 masks  to  assign  pixels  in  image-structured  data  to  cells  (Fig.  1a,c).  We  then  extracted  the  mean  gene  expression                    
93 from  these  segments  to  build  cell-wise  gene  expression  vectors  and  clustered  these  molecular  vectors  to  assign                  
94 cells  to  discrete  cell-types  (Fig.  1a,c).  Based  on  the  cell  segmentation,  we  defined  the  niche  of  a  cell  as  the  set  of                        
95 cells  within  a  circle  centred  on  the  cell’s  center.  The  radius  of  this  circle,  the  “resolution”,  is  a  model                     
96 hyperparameter  (Online  Methods,  Fig.  1a).  We  define  a  node-centric  expression  model  (NCEM)  as  a  function                 
97 that  maps  a  cell’s  type  and  its  spatial  context  to  the  cell’s  observed  gene  expression  vector  (Fig.  1b).  This                     
98 function  is  a  graph  neural  network  in  which  the  node  labels  are  the  cell-wise  gene  expression  vectors 10 .  Below,                    
99 we  discuss  both  multilayer  graph  neural  networks  and  a  single-layer  model  with  an  indicator  graph  aggregator                  

100 function  which  is  equivalent  to  a  linear  model  (Fig.  1b,  Online  Methods):  The  indicator  function  aggregator                  
101 summarises  a  set  of  one-hot  encoded  cell-types  in  a  niche  to  a  vector  with  binary  elements  that  indicate  the                     
102 presence  of  each  cell-type  in  the  niche.  This  binary  embedding  is  parameter-free  and  a  transformed  covariate                  
103 space  with  fixed  dimensions  and  thus  suitable  for  a  linear  model.  In  addition  to  this  indicator  embedding,  we  also                     
104 use  parametric  neighborhood-embeddings  for  nonlinear  NCEMs  (Online  Methods).  The  model  of  a  gene               
105 expression  vector  conditioned  on  a  cell-type  reflects  the  assumption  that  niches  modify  gene  expression  states  of                  
106 cell-types,  but  do  not  cause  cell-type  conversions  themselves.  This  conditional  model  also  reflects  the                
107 assumption  that  much  spatial  information  is  contained  in  the  gene  expression  profile  of  a  single  cell 14  and  that                    
108 spatial  covariates  are  primarily  useful  to  supervise  variance  decomposition  of  gene  expression  vectors.  In                
109 summary,  the  input  data  to  NCEMs  consists  of  three  groups:  the  set  of  input  cell-type  labels,  the  output  gene                     
110 expression   features   and   the   spatial   proximity   graph.   
111   
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112 The  input  cell-type  labels  group  cells  to  both  sender  and  receiver  cell-types,  this  annotation  can  be  more  or  less                     
113 coarse  according  to  the  cell-type  clustering  resolution.  Cell-types  from  one  sender  class  emit  a  common  signal,                  
114 and  cell-types  of  one  receiver  class  share  a  common  response  gene  expression  signature  for  a  given  signal.  The                    
115 coarseness  of  the  sender  and  receiver  cell-type  classes  serves  as  an  inductive  prior  which  regularizes  the  model                   
116 by  reducing  the  number  of  parameters  that  model  cell  communication.  For  example,  an  overly  fine-grained  set  of                   
117 receiver  cell-types  could  attribute  niche-dependent  cellular  variation  within  a  cell-type  to  between-cluster              
118 variation,   thus   failing   to   attribute   this   axis   of   variation   to   niche   composition.   
119   
120 The  identity  and  number  of  molecular  species  measured  in  a  spatial  molecular  profiling  assay  vary  strongly                  
121 across  protocols  and  studies.  Accordingly,  the  observable  neighborhood-induced  gene  expression  effects  vary              
122 equally  strong.  One  could  include  further  cell-features  related  to  morphology  and  molecule  distribution  in  the  cell                  
123 state 15    to   improve   the   description   of   the   molecular   state   of   a   cell   to   subcellular   gene   expression   variation.     
124   
125 In  a  spatial  proximity  graph,  cells  are  connected  by  edges  if  their  segment  centers  are  not  further  apart  than  the                      
126 resolution  of  the  model 16  (Fig.  1a).  The  choice  of  this  resolution  depends  on  the  modeled  molecular  mechanisms                   
127 of  communication,  which  vary  strongly  between  contact-based  and  paracrine  communication,  for  example.  In  this                
128 study,  we  chose  multiple  resolutions  for  each  dataset  in  separate  analyses.  Each  resolution  is  associated  with  a                   
129 separate  graph  that  has  a  specific  node  degree  distribution  which  depends  on  the  overall  tissue  architecture.  We                   
130 defined  the  distances  for  each  dataset  such  that  they  cover  the  range  of  average  node  degrees  of  the  given                     
131 dataset  (Supp.  Fig.  1b).  This  screening  of  resolutions  is  useful  for  discovery  of  statistical  dependencies.  On  the                   
132 other  hand,  a  fixed,  single  resolution  can  be  used  to  test  specific  hypotheses  of  cell  communication  events  on  a                     
133 length   scale   defined   by   prior   knowledge   based   on   molecular   mechanisms.   

134 Linear   NCEM   identify   cell   communication   on   consistent   spatial   length   scales   

135 We  model  neighborhood-induced  cell  state  changes  with  a  linear  graph  neural  network  that  predicts  the  state  of  a                    
136 receiver  cell  conditioned  on  the  presence  of  putative  sender  cell-types  present  in  its  neighborhood.  This  model  is                   
137 equivalent  in  architecture  to  a  graph-aware  GLM  (Online  Methods)  and,  therefore,  represents  a  convex                
138 optimization  problem.  While  limited  in  their  ability  to  model  higher-order  cell  interactions,  such  linear  models  can                  
139 be  readily  interpreted  in  terms  of  effect  sizes,  can  be  used  by  non-specialists  because  of  their  favourable                   
140 optimization   characteristics   and   allow   for   correction   for   confounding   factors   such   as   biological   conditions.   
141   
142 First,  we  established  the  presence  of  intra-cell-type  variance  in  a  variance  decomposition  on  all  five  datasets                  
143 (average  intra-cell-type  variance  40.6%),  even  in  those  datasets  with  very  few  genes  assayed  (Supp.  Fig.  2,                  
144 Online  Methods).  We  fit  Gaussian  GLMs  on  transformed  single-cell  expression  measurements  across  multiple               
145 neighborhood  sizes  with  four  term  groups:  image  covariates,  the  cell-type,  the  presence  of  putative  sender                 
146 cell-types  in  the  neighborhood  (the  niche),  and  an  interaction  term  between  the  cell-type  and  the  niche  (Online                   
147 Methods).  As  a  null  model,  we  included  empty  neighborhoods  and  neighborhoods  larger  than  the  considered                 
148 images.  We  found  that  these  GLMs  were  most  predictive  on  an  intermediate-length  scale  of  around  69  µm  in  all                     
149 five  datasets  (Fig.  1d),  showing  that  cell–cell  dependencies  indeed  only  appear  on  length  scales  characteristic  of                  
150 direct  and  short-range  molecular  mechanisms  of  cell  communication.  With  further  increasing  neighborhood  sizes,               
151 the  prediction  performance  drops  again  to  the  level  of  nonspatial  models,  indicating  that  the  spatial  effect  is  not                    
152 simply  due  to  overfitting  to  images.  The  NCEMs  outperformed  non-spatial  baseline  models  by  an  average  R 2                 Δ  

153 of  0.0175.  This  difference  was  significant  in  paired  t-test  between  baseline  model  and  best  spatial  model  of  (p  <                     
154 0.05)  across  five  datasets  (Fig.  1d).  The  R 2  is  small  compared  to  the  baseline  model R 2  that  characterizes         Δ              

155 between-cell-type  variance  (0.39  -  0.79)  because  the  cell-type  information  accounts  for  a  large  fraction  of  the                  
156 transcriptomic  variance  in  these  samples.  Between-cell-type  variance  often  dominates  variance  in  single-cell              
157 transcriptomics  which  is  a  phenomenon  that  allows  for  cell-type  assignment  through  clustering  algorithms,  for                
158 example 17–19 .  The  remaining  within-cell-type  variance  decomposes  into  technical  noise  and  within-cell-type             
159 biological  variance.  The  biological  within-cell-type  variance  can  be  decomposed  into  spatial  and  non-spatial               
160 effects.  Here,  we  only  model  the  spatial  component,  thus  explaining  the  low  magnitude  of  explained                 
161 within-cell-type  variance  compared  to  the  total  within-cell-type  variance.  The  increased  R 2  achieved  by  NCEM                
162 can  be  attributed  to  the  niche  composition  information  inherent  in  the  model,  thus  providing  an  algorithmic  handle                   
163 on   niche   biology.     
164   
165 In  addition,  we  also  fit  GLMs  with  fewer  parameters,  without  cell-type  to  niche  interaction  terms,  keeping  only                   
166 non-receiver-specific  sender  effects,  which  are  less  susceptible  to  overfitting,  and  also  found  dependencies  on                
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167 similar  length  scales  (Supp.  Fig.  3,  Online  Methods).  We  hypothesized  that  different  molecular  mediators  of                 
168 cell–cell  dependency  on  different  length-scales  apply  to  different  cell-types.  Indeed,  the  model  performance  as  a                 
169 function   of   length   scale   by   target   cell-type   varies   between   cell-types   (Supp.   Fig.   4).   
170

Niche   composition   explains   cellular   variation   

171 Next,  we  interpreted  the  effects  learned  by  the  linear  NCEMs.  To  identify  neighborhood-induced  molecular  states                 
172 in  the  primary  motor  cortex,  we  selected  L2/3  IT  cells  from  the  MERFISH  –  brain  dataset 12  based  on  their  strong                      
173 spatial  effects  on  cell  state  (Supp.  Fig.  4)  and  their  large  abundance,  with  41,996  cells  across  the  dataset  (Supp.                     
174 Fig.  1a).  To  identify  neighborhood-induced  effects  on  the  molecular  states  without  confounding  the  analysis  by                 
175 between-image  batch  and  condition  effects,  we  clustered  and  embedded  L2/3  IT  cells  from  a  single  image  based                   
176 on  the  molecular  information  alone  (Fig.  2a,  Online  methods).  Indeed,  the  relative  prediction  performance  of  the                  
177 graph-aware  GLM  at  the  optimal  resolution  compared  to  nonspatial  GLM  varies  across  these  clusters  (Fig.  2b),                  
178 as  measured  by  the  difference  of  their  respective  R 2  on  individual  cells.  Using  the  presence  of  different  cell-types                    
179 in  the  neighborhood  as  a  binary  labels  vector,  we  performed  a  cluster  enrichment  analysis  with  Fisher’s  exact  test                    
180 on  this  clustering  (Fig.  2c,d,  Online  Methods)  to  annotate  clusters  with  enriched  neighborhoods:  sub  cluster  0  is                   
181 associated  with  Scng  and  VLMC,  and  cluster  4  with  L4/5  IT  cells,  for  example  (Fig.  2d).  We  ordered  cell-types  as                      
182 putative  sender  types  of  L2/3  IT  cells  by  their  maximal  cluster-wise  enrichment  p-value.  This  ordering  of                  
183 cell-types  is  very  different  from  the  ordering  obtained  from  contact  frequencies  and  CellphoneDB 3  analysis  on  this                  
184 image  (Kendall  rank  correlation  of  -0.04  and  -0.12,  p-value  of  0.79  and  0.45,  respectively,  Supp.  Fig.  6a,  7b,                    
185 Online  methods),  highlighting  the  novel  quality  of  information  captured  by  this  approach.  Depending  on  the                 
186 analysis  setting,  either  L4/5  IT  cells  and  Scng  or  L4/5  IT  cells  and  VLMC  are  also  discovered  as  putative  partners                      
187 of  L2/3  IT  cells  by  CellphoneDB  (Supp.  Fig.  7a,b),  showing  that  core  associations  are  reproduced.  Next,  we                   
188 established  that  the  L2/3  IT  cell  sub  clusters  are  spatially  localised  in  distinct  areas  of  the  primary  motor  cortex 12 :                     
189 Sub  cluster  0  is  closer  to  the  layer  of  Scng  and  VLMC,  whereas  sub  cluster  4  is  closer  to  the  layer  of  L4/5  IT  cells                           
190 (Fig.  2c,d).  This  spatial  patterning  becomes  apparent  when  the  sub-cluster-wise  relative  performance  spatial  and                
191 non-spatial  model  (Fig.  2b)  are  broken  down  to  cell-wise  comparisons  and  assigned  to  cells  in  their  spatial                   
192 context:  The  spatial  model  outperforms  the  non-spatial  model  strongly  on  margins  of  the  L2/3  IT  layer  in  the                    
193 motor  cortex,  such  as  in  sub  cluster  4  of  the  L2/3  IT  cells  (Fig.  2e).  We  repeated  this  analysis  by  applying  the                        
194 same  models,  which  were  trained  on  all  images,  to  a  second  image  and  found  similar  associations  to                   
195 neighborhoods,  such  as  significant  associations  to  Scng,  VLMC,  and  L4/5  IT  cells  (Supp.  Fig.  5b-f).  In  summary,                   
196 this  analysis  attributes  molecular  variation  of  single  cells  to  their  niche  and  identifies  putative  sender  cell-types                  
197 which   are   in   line   with   the   overall   tissue   architecture.   
198   
199 In  an  equivalent  analysis  on  the  chip  cytometry  –  colon  data,  we  discovered  a  dependency  of  CD8  T  cells  on                      
200 multiple  other  cell-types,  such  as  CD8  T  cells  and  lamina  propria  cells  (sub  cluster  3)  (Supp.  Fig.  8a-e),                    
201 highlighting  a  dense  compartment  of  T  cells  in  the  inflamed  colon  centred  on  lamina  propria  cells  (Supp.  Fig.  8f).                     
202 In  colorectal  cancer,  linear  NCEM  learned  a  previously  established  dependency  of  CD8  T  cell  states  on  proximity                   
203 to  the  tumor–immune  boundary 8  (Supp.  Fig.  9a-e),  where  sub  cluster  1  represents  cells  close  to  malignant                  
204 epithelial   cells   (Supp.   Fig.   9c,f).   
205   
206 Next,  we  considered  parameter  significance  in  GLMs  as  a  mechanism  to  attribute  cellular  variation  to                 
207 communication  events  with  specific  sender  cell-types.  We  used  a  differential  expression  test,  a  Wald  test,  to  test                   
208 gene-wise  cell  communication  coefficients  in  the  linear  model.  In  the  linear  model  as  defined  above,  the  Wald  test                    
209 yields  a  p-value  for  the  effect  of  the  interaction  between  each  pair  of  cell-types  on  each  assayed  gene  in  the                      
210 receiver  cell-type.  The  inference  of  cell  communication  with  this  gene-centric  model  improves  with  the  number  of                  
211 assayed  genes,  as  only  a  subset  of  all  genes  will  display  differential  expression  in  response  to  the                   
212 communication  event.  We  found  receiver  cell-type-gene  pairs  that  significantly  depend  on  the  neighborhood  in                
213 the  chip  cytometry  –  colon  data  (Supp.  Fig.  10c):  Here,  one  would  expect  communication  events  with  immune                   
214 cells  because  of  the  inflamed  state  of  the  colon.  The  communication  between  sender  PD1L+  cells  and  receiver                   
215 CD8+  T  cells  was  the  strongest  in  terms  of  the  number  of  differentially  expressed  genes,  suggesting  that                   
216 PD1-mediated  T  cell  exhaustion 20  plays  a  role  in  this  tissue.  Importantly,  this  communication  is  not  identifiable                  
217 from  cell  contact  frequencies  (Supp.  Fig.  6b)  or  CellphoneDB  analysis  (Fig.  7c),  as  expected  for  a                  
218 sender–receiver-specific  signature  that  occurs  in  a  particular  tissue  niche.  Indeed,  we  found  PD1  in  the  set  of                   
219 genes  whose  expression  is  significantly  associated  with  this  receiver-sender  pair  (p=0.02  for  an  absolute  change                 
220 in   log-transformed   data   of   -1.92,   Supp.   Fig.   10).     
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221 Nonlinear   NCEM   capture   complex   cell   communication   motifs   

222 Linear  models  for  cell  communication  cannot  easily  account  for  higher  order  interactions  between  more  than  two                  
223 cell-types.  Such  complex  interactions  are,  however,  models  of  relevant  patterns  of  communication  in  niches:  The                 
224 communication  between  two  cells  A  and  B  may  depend  on  a  communication  event  between  B  and  a  cell  C  which                      
225 induces  ligand  expression  in  B.  Moreover,  edge  properties,  such  as  weights  derived  from  physical  distances                 
226 between  cells,  or  molecular  characteristics  of  communication  axes,  are  difficult  to  account  for  in  linear  models.                  
227 Here,  we  discuss  multilayer  NCEMs  which  can  model  both  higher  order  cell  communication  and  edge  properties.                  
228 These  graph  neural  networks  can  be  understood  as  encoder–decoder  models.  The  encoder  is  a  function  of  the                   
229 local  context  in  the  graph  and  yields  a  latent  state  that  is  transformed  by  a  stack  of  densely-connected  layers  in                      
230 the  decoder  to  the  predicted  expression  state  of  the  cell  (Fig.  3a).  In  contrast  to  autoencoding  encoder–decoder                   
231 models  often  used  to  model  heterogeneity  in  single  cells  from  dissociated  tissues 21,22 ,  this  encoder–decoder                
232 NCEM   is   a   nonlinear   regression   model   that   does   not   receive   the   expression   state   in   the   input   (Online   Methods).   
233   
234 First,  we  established  the  presence  of  resolution-dependent  prediction  performance  profiles  in  encoder–decoder              
235 NCEMs  in  both  models  with  indicator  aggregators  and  graph-convolutional  filters,  again  controlled  by  empty  and                 
236 large  neighborhoods  (Fig.  3b).  The  top-performing  length  scales  were  comparable  to  those  obtained  on  linear                 
237 models  (Fig.  3b).  We  could  identify  cell-type-specific  communication  length  scales  again  (Supp.  Fig.  11).  Notably,                 
238 the  encoder–decoder  models  did  not  outperform  linear  models  on  any  dataset  in  terms  of  reconstruction  metrics                  
239 on  test  data,  which  suggests  that  niche  communication  is  described  well  by  additive  pairwise  communication                 
240 events   of   cells   in   these   tissues   at   the   given   sample   complexity,   rather   than   higher-order   interactions.     
241   
242 As  any  neural  network,  encoder–decoder  NCEMs  can  be  interpreted  in  terms  of  cell  communication  events                 
243 through  gradient  analysis.  The  gradients  of  output  expression  values  with  respect  to  input  receiver  cell-type  and                  
244 input  sender  cell-types  approximate  the  effect  that  a  change  in  neighborhood  composition  of  a  given  cell  would                   
245 have  on  its  molecular  state  (Online  Methods).  Using  this  interpretation  method,  we  identified  L4/5  IT  as  a  putative                    
246 sender  cell-type  for  L2/3  IT  cells  in  the  MERFISH  –  brain  dataset 12  (Fig.  3c),  which  agrees  with  the  strong                    
247 association  between  these  two  cell-types  identified  in  the  cluster  enrichment  (Fig.  2c).  Using  a  similar  approach,                  
248 we  identified  lamina  propria  cells  as  predictors  of  CD8  T  cell  state  in  the  chip  cytometry  –  colon  dataset  (Fig.  3d),                       
249 reproducing   this   same   association   identified   with   linear   NCEM   (Supp.   Fig.   8c,e).   

250 NCEMs   extended   to   latent   cell-intrinsic   states   explain   more   variance   

251 Above,  we  discussed  NCEMs  as  mechanistic  models  designed  to  attribute  intra-cell-type  variance  to  predictors  in                 
252 the  niche.  These  NCEMs  cannot  model  latent  cell  states  that  confound  the  measured  expression  data,                 
253 representing  important  intrinsic  cellular  phenomena,  such  as  cell  cycle  states  or  differentiation  progression.  A                
254 holistic  model  of  cellular  variance  needs  to  account  both  for  these  intrinsic  and  extrinsic  effects  to  disentangle                   
255 confounded  sources  of  variation 5 .  Therefore,  we  propose  an  NCEM  that  accounts  for  both  cell  intrinsic  latent                  
256 states  and  the  dependencies  of  molecular  states  on  the  niche.  The  proposed  model  is  a  conditional  variational                   
257 autoencoder  (CVAE)  in  which  the  condition  represents  the  neighborhood  and  the  cell-type  of  the  cell  itself  (Fig.                   
258 4a).  In  contrast  to  the  node-supervised  models  discussed  above,  this  CVAE  is  a  node-generative  model.  This                  
259 node-generation  tasks  of  learning  a  distribution  over  gene  expression  states  conditioned  on  the  cell-type,  a  local                  
260 context  in  the  graph,  and  other  covariates,  such  as  chemical  perturbation,  extends  generative  models  for                 
261 single-cell   gene   expression   data 21,23    to   spatial   cell–cell   dependencies.   
262   
263 Conditional  generative  models  have  previously  been  used  to  model  perturbations  of  molecular  states  by  small                 
264 molecules 23  in  the  context  of  data  from  dissociated  tissues.  Latent  variable  models  attain  much  higher  predictive                  
265 performance  in  reconstruction  tasks  (Fig.  4b,  Supp.  Fig.  13a)  because  they  can  fit  cell-wise  states  if  the  model                    
266 does  not  suffer  from  posterior  collapse 24 .  However,  conditional  variational  models  suffer  from  a  non-identifiability                
267 between  the  variation  attributed  to  the  condition  and  to  the  latent  states  because  the  loss  function  only  constrains                    
268 the  model’s  marginal  likelihood.  A  CVAE  that  is  ideally  suited  for  style  transfer  is  converged  such  that  the                    
269 condition-wise  marginal  posteriors  on  the  latent  variables  are  equal,  so  that  one  can  sample  the  full  conditional                   
270 distribution  by  decoding  the  latent  states  observed  in  a  source  condition  into  the  target  condition.  However,  there                   
271 are  optima  of  equal  loss  values  in  which  the  condition  information  bleeds  into  the  latent  variables,  resulting  in                    
272 condition-specific  latent  states  that  cannot  meaningfully  be  transferred  to  a  target  condition.  We  attempted  to                 
273 address  this  non-identifiability  with  aggressive  encoder  training,  an  optimization  approach  capable  of  favoring               
274 convergence  to  a  model  that  attributes  maximal  variation  in  the  marginal  distribution  to  the  conditional 25  (Online                  
275 Methods).  We  evaluated  the  ability  of  a  CVAE–NCEM  to  extrapolate  to  unseen  neighborhoods,  a  style-transfer                 
276 setting  we  call  “neighborhood  transfer”  (Online  Methods)  using  the  example  of  muscular  and  Lamina  Propria  cells                  
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277 from  the  chip  cytometry  –  colon  data  (Fig.  4c)  and  L2/3  IT  neurons  from  the  MERFISH  –  brain  dataset 12  (Supp.                      
278 Fig.  13b).  We  did  not  find  consistent  neighborhood-transfer  performance  differences  between  CVAE-NCEM              
279 compared  and  plain  CVAEs,  even  though  peak  performance  was  attained  by  CVAE-NCEM  optimized  with               
280 aggressive  encoder  training  (Online  Methods).  This  performance  analysis  suggests  that  niche  states  are               
281 represented  in  latent  variables,  thus  confounding  resampling  in  the  neighborhood  transfer  task.  Indeed,  we  could                 
282 identify  multiple  significantly  enriched  neighborhoods  in  a  latent  space  clustering  of  the  CVAE–NCEM  for  both                 
283 examples  (Fig.  4d-f,  Supp.  Fig.  13c-e).  This  latent  variable  interpretation  shows  that  the  CVAE  indeed  converges                  
284 to  an  optimum  that  is  not  desirable  in  terms  of  the  style  transfer  task,  which  can  occur  because  these  optimums                      
285 are   not   penalized   by   the   CVAE’s   cost   function.   
286   
287 NCEMs  can  attribute  molecular  variation  of  single-cells  to  niche  composition  and  thus  carry  the  promise  of                  
288 explaining  variance  previously  not  interpretable  in  dissociation  data.  Still,  even  with  niche  variance  attributed,                
289 further  sources  of  cellular  heterogeneity  are  latent  in  spatial  assays  (Fig.  4b).  CVAE–NCEMs  are  a  model  class                   
290 that  can  close  this  gap  between  niche  variation  and  latent  variables.  Further  algorithmic  work  and  targeted  data                   
291 acquisition   are   required   to   resolve   the   non-identifiability   encountered   in   the   examples   discussed   here.   

292 Discussion   

293 We  presented  NCEMs,  a  graph  neural  network  framework  for  modeling  of  cell  communication  events  in  spatial                  
294 omics  assays  with  subcellular  resolution,  in  which  cells  can  be  separated   in  silico  through  segmentation.  The                  
295 NCEMs  presented  in  this  paper  are  structured  in  three  groups:  a  linear  graph  neural  network  that  can  be  mapped                     
296 to  a  GLM,  nonlinear  graph  neural  network  and  CVAEs.  We  defined  the  extrapolation  to  unseen  neighborhoods,                  
297 the  prediction  of  the  molecular  state  of  a  cell  of  a  given  type  in  a  given  niche,  as  a  supervision  task  and  proposed                         
298 an  adaptation  of  this  task  to  generative  style  transfer  models  (“neighborhood  transfer”).  We  used  NCEMs  to                  
299 discover  statistical  dependencies  between  cells  on  physiologically  relevant  length  scales  at  a  mean  of  69  µm  with                   
300 a  standard  error  of  14  µm  across  five  datasets.  We  demonstrated  that  NCEMs  could  be  interpreted  based  on                    
301 model  parameters  in  linear  models  and  saliencies  in  nonlinear  models  to  infer  communication  events  between                 
302 pairs  of  cell-types  and  to  disentangle  molecular  variation  in  standard  cell-centric  unsupervised  workflows.  Using                
303 these  interpretation  mechanisms,  we  disentangled  niche  effects  in  the  mouse  motor  cortex,  in  the  inflamed  colon                  
304 and   in   colorectal   cancer.   
305   
306 The  datasets  discussed  here  are  based  on  technologies  with  high  throughput  in  the  number  of  cells  but  relatively                    
307 few  genes  measured.  For  example,  imaging-mass  cytometry 26  and  CODEX 6  both  profile  on  the  order  of  tens  of                   
308 genes.  Typically,  these  genes  are  selected  to  separate  cells  from  different  cell-types,  maximizing  between-type                
309 variance  in  the  data.  However,  these  setups  are  not  designed  to  profile  within-type  variance.  The  more  subtle  cell                    
310 states  within  a  cell-type  are  typically  recovered  in  protocols  with  large  feature  spaces,  such  as  spatial  single-cell                   
311 RNA-seq,  but  also  FISH-based  protocols,  such  as  seq-FISH 27  and  MERFISH 9 .  Although  gene  expression-based               
312 inference  of  cell  communication  will  probably  be  improved  by  techniques  that  yield  larger  feature  spaces,  we                  
313 could  already  show  in  this  study  that  spatial  dependencies  can  be  estimated  across  cross-validation  splits  of  the                   
314 larger  MERFISH  dataset  with  254  genes  measured.  We  anticipate  that  such  high-dimensional  RNA-seq               
315 characterizations  of  single  cells  in  tissues  will  soon  be  widely  available  because  of  the  improvements  of  seq-FISH                   
316 and  MERFISH  protocols  and  the  reduction  of  spot  sizes  in  spot-based  transcriptomics.  Datasets  with  more                 
317 comprehensive  quantification  of  ligand  and  receptor  expression  per  cell  may  allow  for  further  constraints  on                 
318 edges  based  on  the  expression  of  specific  ligand  and  receptor  pairs  in  the  participating  nodes.  Such  constraints                   
319 may  further  increase  interpretability  and  improve  discovery  of  cell  communication  events  through  linear  model                
320 interpretation  and  saliency-based  analyses.  Such  constraints  may  further  be  derived  through  imputation  of               
321 relevant  ligand  and  receptor  genes  in  spatial  assays  using  reference  single-cell  atlasses 14 .  All  models  proposed                 
322 here  are  node-centric  and  embed  a  cell  locally  in  the  graph,  instead  of  requiring  the  full  graph.  Therefore,  NCEMs                     
323 can  be  used  equally  well  and  efficiently  on  a  few  large  images  or  on  many  small  images,  thereby  increasing  their                      
324 relevance   for   a   wider   range   of   scenarios.     
325   
326 The  datasets  modeled  here  are  2D  and  do  not  contain  information  about  cells  that  are  also  part  of  a  receiver                      
327 cell's  3D  neighborhood  but  are  located  in  a  different  z-section;  this  limits  the  capacity  of  the  models  shown  here                     
328 to  find  communication  events.  One  would  expect  NCEMs  to  be  considerably  stronger  given  3D  data,  and  we                   
329 expect   such   data   to   become   available   from   serial   slicing   of   tissues,   for   example.   
330   
331 Here,  we  considered  graph  convolutional  networks  with  linear  and  indicator  graph  aggregator  functions.  Other                
332 aggregators  are  used  commonly  to  compute  graph  embeddings 28  and  could  also  be  used  here.  The  complexity  of                   
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333 the  graph  neural  network  used  in  the  NCEM  defines  the  complexity  of  the  motifs  of  cell  communication  that  can                     
334 be  discovered.  Linear  NCEMs  discover  directional  effects  between  pairs  of  cells.  Higher  order  effects,  that  can  be                   
335 captured  by  deeper  graph  neural  networks,  include  interactions  between  different  communication  events  on  a                
336 target  cell  and  conditional  dependencies  between  communication  events,  such  as  in  loops.  NCEMs  do  not                 
337 require  complex  tissue  phenotype  labels,  which  are  often  unavailable.  Effectively,  the  molecular  vectors  represent                
338 a  label  on  a  mid-range  length  scale  of  the  graph.  One  can  also  imagine  extending  the  tissue  representation  with                     
339 more  global  phenotype  labels  through  additional  supervision  tasks.  The  coarseness  of  the  input  feature  space  is                  
340 an  important  hyperparameter  for  these  graph  models.  Future  work  may  address  the  choice  of  this                 
341 hyperparameter  algorithmically.  However,  in  many  cases,  there  is  strong  prior  knowledge  on  the  assignment  of                 
342 cell   states   to   discrete   cell-types.     
343   
344 The  cell–cell  dependencies  modeled  based  on  spatial  graphs  are  examples  for  observational  dependencies  that                
345 violate  the  common  assumption  of  statistical  learning,  namely,  that  single  cells  are  independent  and  identically                 
346 distributed.  We  showed  that  this  assumption  could  be  sacrificed  given  strong  inductive  priors,  here  induced  by                  
347 the  spatial  graphs,  which  constrains  the  modeled  communication  events  from  the  set  of  all  pairs  of  cells  in  a                     
348 sample  to  the  molecularly  plausible  ones.  Future  work  could  consider  further  inductive  priors  which  are  not                  
349 necessarily   spatial.     
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350 Figures  

351

  
352   
353 Figure  1:  Modeling  cell  communication  as  spatial  cell  state  dependencies.   (a)  Spatial  graphs  of  cells  can  be                   
354 computed  from  spatial  molecular  profiling  data.  After  segmentation  of  cells  or  nuclei,  each  cell  is  characterized  by                   
355 a  vector  of  gene  expression  measurements  which  are  coarse-grained  in  a  clustering  to  categorical  cell-types.  A                  
356 graph  can  be  assembled  based  on  proximity  of  segments.   resolution :  radius  of  circle  used  to  define  niche.   (b)                    
357 Node-centric  expression  models  (NCEMs)  describe  the  gene  expression  of  a  cell  (color  of  the  node)  as  a  function                    
358 of  its  spatial  neighborhood  (niche).  This  function  is  a  graph  neural  network  and  can  be  reduced  to  a  linear  model                      
359 in  the  simplest  case.  This  linear  model  contains  directional  effects  from  sender  to  receiver  cell-types  which  can                   
360 be  summarised  in  an  effect  matrix  between  cell-types.   Y :  gene  expression  vector  of  a  cell.   (c)  Proximity  graphs  in                     
361 spatial  transcriptomics  data.  Shown  are  a  UMAP  of  molecular  embedding  of  all  cells  in  slide  153  (n  =   7439  cells)                      
362 with  cell-type  superimposed,  followed  by  Slice  153  of  mouse  brain  in  the  MERFISH  –  brain  dataset  with  the                    
363 spatial  allocation  of  all  cell-types  superimposed,  field  of  view  number  486  of  the  same  slice  with  poly(A)  RNA                    
364 channel  superimposed  at  central  z-plane  (z  =  4.5  µm),  and  the  spatial  proximity  graph  of  the  same  field  of  view                      
365 with  a  resolution  of  100  µm.   (d)  Linear  models  capture  neighborhood  dependencies  in  spatially-resolved                
366 single-cell  data.  Shown  are  the  R 2  values  between  predicted  expression  vectors  and  observed  expression                
367 vectors  for  held-out  test  cells  of  linear  models  by  resolution  in  μm  with  cross  validation  indicated  as  point  shape                     
368 and  line  style  with  relative  outperformance  of  NCEM  model  versus  baseline  model  in  the  MERFISH  –  brain                   
369 dataset  of  1.77%,  in  the  chip  cytometry  –  colon  dataset  1.17%,  in  the  MIBI-TOF  –  cancer  dataset  1.04  %,  in  the                       
370 MELC  –  tonsils  dataset  4.48%  and  in  the  CODEX  –  cancer  dataset  0.28%.   Example  cell  radius  (green  line) :                    
371 Example  length  scale  of  a  cell,  here  chosen  as  10  µm;   baseline  (blue  dot) :  a  nonspatial  linear  model  of  gene                      
372 expression  per  cell-type;   NCEM :  linear  model  with  interaction  effects;   bracket  (*) :  significant  difference  in  paired                 
373 t-test  between  baseline  model  and  best  spatial  model  (MERFISH  –  brain  dataset  p  =  0.030,  chip  cytometry  –                    
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374 colon  dataset  p  =  0.019,  MIBI-TOF  –  cancer  dataset  p  =  0.018,  MELC  –  tonsils  dataset  p  =  0.029,  CODEX  –                       
375 cancer   dataset   p   =   0.026).     

376   

377

  
378 Figure  2:  Cell  heterogeneity  can  be  attributed  to  niche  composition.   (a)  UMAPs  of  molecular  embedding  of                  
379 L2/3  IT  cells  with  molecular  sub-clustering  superimposed  (colors  as  in  b) .  (b)  Distribution  of  cell-wise  difference  of                   
380 R 2   between  NCEM  and  non-spatial  baseline  model  by  molecular  sub-cluster  (L2/3  IT  0:  n  =  316,  L2/3  IT  1:  n  =                       
381 314,  L2/3  IT  2:  n  =  313,  L2/3  IT  3:  n  =  133,  L2/3  IT  4:  n  =  128).  The  centerline  of  the  boxplots  defines  the  mean                             
382 over  all  relative  R 2  values,  the  height  of  the  box  is  given  by  the  interquartile  range  (IQR),  the  whiskers  are  given                       
383 by  1.5  *  IQR  and  outliers  are  given  as  points  beyond  the  minimum  or  maximum  whisker.   (c)  UMAPs  of  molecular                      
384 embedding  of  all  L2/3  IT  cells  in  an  example  image  (n  =  1204  cells)  showing  if  a  given  cell-type  is  present  in  the                         
385 neighborhood.  The  underlying  neighborhoods  were  defined  at  the  optimal  resolution  defined  in  Fig.  1d  (100  µm).                  
386 (d)  Heatmap  of  fold  change  versus  false-discovery  rate  corrected  p-values  of  cluster  enrichment  of  binary                 
387 neighborhood  labels,  where  fold  changes  are  the  ratio  between  the  relative  neighboring  source  cell-type                
388 frequencies  per  subtype  cluster  and  the  overall  source  cell-type  frequency  in  the  image.   (e)  Spatial  allocation  of                   
389 slice  153  of  mouse  brain  in  the  MERFISH  –  brain  dataset  with  L2/3  IT  sub-states  superimposed,  L2/3  IT,  L4/5  IT,                      
390 Sncg,  and  VLMC  superimposed  and  superimposed  the  difference  of  R 2   between  the  NCEM  at  resolution  of  100                   
391 µm   and   the   best   nonspatial   baseline   model.   
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392

  
393 Figure  3:  Nonlinear  models  of  spatial  dependencies  of  expression  states.   (a)  A  node-supervised  model  in                 
394 which  the  supervision  label  is  the  expression  vector  of  a  cell  and  the  input  consists  of  categorical  cell-type                    
395 assignments  and  a  spatial  neighborhood  graph.  This  model  can  also  be  viewed  as  an  encoder–decoder  model.                  
396 The  encoder  performs  a  graph-based  embedding  of  a  single  cell  and  the  decoder  translates  a  bottleneck                  
397 activation  vector  into  an  expression  state.   (b)  Nonlinear  spatial  dependencies  in  single-cell  datasets.  Shown  are                 
398 the  R 2  values  for  held-out  test  data  of  encoder–decoder  models  by  resolution  in  µm  with  cross  validation                   
399 indicated  as  point  shape  and  line  style  and  comparatively  mean  performance  of  linear  model  in  Fig.  1d.   Linear                    
400 (interaction)  (gray  line) :  linear  model  with  interaction  effects;   ED :  encoder–decoder  model;   IND :  the  graph                
401 convolution  is  an  indicator  function  across  cell-types  in  the  neighborhood  (yellow  lines);   GCN :  the  graph                 
402 convolution  is  a  linear  embedding  (filter)  of  the  cell-types  in  the  neighborhood  (teal  lines);   split  (point  shapes) :                   
403 cross-validation  split.   (c)  Heatmap  of  cumulative  gradients  (saliency)  of  gene  expression  prediction  of  L2/3  IT                 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 12, 2021. ; https://doi.org/10.1101/2021.07.11.451750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.11.451750
http://creativecommons.org/licenses/by/4.0/


404 with  respect  to  the  input  cells,  aggregated  by  the  sender  cell-type  clusters,  on  test  data.  Shown  is  a  cumulative                     
405 gradient  matrix  of  L2/3  IT  predictions  by  source  cell-type  and  image.   (d)   Heatmap  of  cumulative  gradients                  
406 (saliency)  of  gene  expression  prediction  of  CD8  T  cells  with  respect  to  the  input  cells,  aggregated  by  the  sender                     
407 cell-type  cluster,  on  the  test  data.  Shown  is  a  cumulative  gradient  matrix  of  CD8  T  cell  predictions  by  source                     
408 cell-type  and  image.  The  cumulative  absolute  gradients  in   (c,  d)  are  derived  from  the  absolute  gradients  tensor                   
409 across  each  cell’s  molecular  vector  prediction  with  respect  to  the  cells  in  the  neighborhood  (source  cells)  per                   
410 image  (tensor  shape:  ),  by  taking  a  sum  across  the  molecular  output  features  and  by     enes  ells  mages  g × c × i             

411 taking  a  sum  across  source  cells  of  the  same  type  (tensor  shape: ).  For  each  box  in   (c,  d) ,             ell ypes  mages  c  t × i        

412 the  centerline  defines  the  mean  over  all  image-wise  saliencies,  the  width  of  the  box  is  given  by  the  interquartile                     
413 range  (IQR),  the  whiskers  are  given  by  1.5  *  IQR  and  outliers  are  given  as  points  beyond  the  minimum  or                      
414 maximum   whisker.   
415   

416

  
417 Figure  4:  Modelling  intrinsic  and  extrinsic  variation  in  deep  latent  variable  models.   (a)  A  node  generative                  
418 network  (CVAE–NCEM)  is  a  conditional  variational  autoencoder  in  which  the  condition  is  not  a  constant  but  a                   
419 graph  embedding,  which  is  also  learned.   (b)  Latent  variable  models  improve  reconstructive  performance.  Shown                
420 are  the  R 2  values  of  held-out  test  data  based  on  the  forward  pass  model  evaluation  from  chip  cytometry  –  colon                      
421 data  for  linear  models,  encoder–decoder  models,  and  variational  autoencoders  for  both  NCEM  and  nonspatial                
422 models.   baseline :  a  nonspatial  linear  model  of  gene  expression  per  cell-type;   NCEM  interactions :  linear  model                 
423 with  interaction  effects;   ED :  encoder–decoder  model;   IND :  the  graph  convolution  is  an  indicator  function  across                 
424 cell-types  in  the  neighborhood;   GCN :  the  graph  convolution  is  a  linear  embedding  (filter)  of  the  cell-types  in  the                    
425 neighborhood.   (c)  Neighborhood  transfer  performance  of  NCEM  and  nonspatial  models.  Shown  is  the  R 2  over                 
426 cells  in  the  test  set  for  models  trained  on  predicting  muscular  cells  and  Lamina  propria  cells  for  both  CVAE  and                      
427 CVAE–NCEMs  trained  on  neighborhoods  with  different  radii  with  optimization  algorithm  as  color.   Plain :  normal                
428 CVAE  training;   aggressive :  aggressive  encoder  training.  For  each  box  in   (b,  c) ,  the  centerline  defines  the  mean                   
429 over  all  three  cross-validations,  the  height  of  the  box  is  given  by  the  interquartile  range  (IQR),  the  whiskers  are                     
430 given  by  1.5  *  IQR  and  outliers  are  given  as  points  beyond  the  minimum  or  maximum  whisker.   (d–f)  Latent                     
431 variables  of  CVAE–NCEM  are  confounded  with  neighborhood  conditions.   (d)  UMAP  of  molecular  embedding  in                
432 the  CVAE–NCEM  IND  latent  space  of  muscular  cells  in  an  example  image  (n  =  1,149  cells)  with  molecular                    
433 sub-clustering  superimposed  (muscle  0:  n  =  315,  muscle  1:  n  =  287,  muscle  2:  n  =  238,  muscle  3:  n  =  183,                        
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434 muscle  4:  n  =  126) .   (e)  UMAPs  of  molecular  embedding  in  the  CVAE–NCEM  IND  latent  space  of  all  muscle  cells                      
435 in  the  same  image  with  superimposed  binary  label  of  presence  of  a  given  cell-type,  as  defined  in  the  title,  in  the                       
436 neighborhood.  The  underlying  neighborhoods  were  defined  at  a  resolution  of  100  µm.   (f)  Heatmap  of  fold  change                   
437 versus  false-discovery  corrected  p-values  of  cluster  enrichment  of  binary  neighborhood  labels  where  fold               
438 changes  are  the  ratio  between  the  relative  neighboring  source  cell-type  frequencies  per  subtype  cluster  and  the                  
439 overall   source   cell-type   frequency   in   the   image.     
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440 Online   Methods   

441 Data   

442 MERFISH   –   brain:     

443 Zhang  et  al. 12  measured  mouse  primary  motor  cortex  with  multiplexed  error-robust  fluorescence  in  situ                
444 hybridization  (MERFISH)  in  634  images  across  two  mice  with  254  genes  observed  in  284,098  cells.  The                  
445 cell-types  originally  annotated  by  Zhang  et  al.,  that  are  also  used  here,  are  astrocytes,  endothelial,  L2/3                  
446 intra-telencephalic  (IT)  neurons,  L4/5  IT,  L5/6  near-projecting  (NP)  neurons,  L5  IT,  L5  pyramidal  tract  (PT)                 
447 neurons,  L6  cortico-thalamic  (CT)  projection  neurons,  L6  IT,  L6  IT  Car3,  L6b,  Lamp5,  microglia,  oligodendrocyte                 
448 precursor  cells  (OPC),  oligodendrocytes,  perivascular  macrophages  (PVM),  pericytes,  Parvalbumin  (Pvalb),            
449 smooth  muscle  cells  (SMC),  Sncg,  somatostatin  (Sst),  Sst  Chodl,  vascular  leptomeningeal  cells  (VLMC),               
450 Vasoactive  intestinal  polypeptide  (Vip),  and  other  cells  are  annotated,  where  L  identifies  the  layer  (L1–L6)  of  the                   
451 distinctive  laminar  structure  based  on  cytoarchitectural  features  (Supp.  Fig.  1a).  Pvalb,  Sst,  Vip,  Sncg  and  Lamp5                  
452 define  five  subclasses  of  GABAergic  cells.  We  removed  cells  labeled  as  “ other”  from  the  dataset.  The  gene-wise                   
453 mean-variance  relationship  does  not  indicate  count  noise  (Supp.  Fig.  13a).  As  domain  information,  we  used  an                  
454 identifier  for  the  respective  mouse.  The  dataset  has  a  lateral  resolution  of  109  nm  per  pixel.  Zhang  et  al.  used  a                       
455 seeded  watershed  algorithm  to  identify  cell  segmentation  boundaries  in  each  image.  They  performed               
456 graph-based  Louvain  community  detection 19  with  the  first  35  principal  components  using  Scanpy 17  for  k  =  10                  
457 neighbors   for   cell-type   clustering.   

458 chip   cytometry   –   colon:     
459 Jarosch  et  al.  measured  an  inflamed  colon  with  chip  cytometry  in  two  images  across  one  patient  with  19  genes                     
460 observed  in  11,321  cells.  The  cell-types  originally  annotated  by  Jarosch  et  al.,  which  are  modeled  here,  are  B                    
461 cells,  CD4  T  cells,  CD8  T  cells,  GATA3+  epithelial,  Ki67  high  epithelial,  Ki67  low  epithelial,  lamina  propria  cells,                    
462 macrophages,  monocytes,  PD-L1+  cells,  intraepithelial  lymphocytes,  muscular  cells  and  other  lymphocytes  are              
463 annotated  (Supp.  Fig.  1a).  We  coarsened  the  cell-type  annotation  by  combining  Ki67  high  epithelial  and  Ki67  low                   
464 epithelial  to  a  joined  annotation  of  Ki67  epithelial.  The  gene-wise  mean-variance  relationship  indicates  count                
465 noise  (Supp.  Fig.  13b).  Therefore,  we  log-transformed  gene  expression  values.  Jarosch  et  al.  performed                
466 thresholding,  watershed  algorithm  and  additionally  implemented  a  cell-type-specific  segmentation  method  to             
467 segment  individual  cells.  Intensity  values  were  corrected  for  spatial  spillover  prior  to  quantification.  Cell-types                
468 were   clustered   using   the   Leiden   clustering 18    of   the   neighborhood-graph.   

469 MIBI   TOF   –   cancer:     

470 Hartmann  et  al. 8  measured  colorectal  carcinoma  and  healthy  adjacent  tissue  with  multiplexed  ion  beam  imaging                 
471 by  time-of-flight  (MIBI-TOF)  in  58  images  across  four  individuals  with  36  genes  observed  in  63,747  cells.  The                   
472 cell-types  originally  annotated  by  Hartmann  et  al.,  which  are  modeled  here,  are  endothelial,  epithelial,  fibroblast,                 
473 CD11c  myeloid,  CD68  myeloid,  CD4  T  cells,  CD8  T  cells  and  other  immune  cells  are  annotated  (Supp.  Fig.  1a).                     
474 A  coarser  cell-type  labeling  was  not  applied  to  this  dataset.   The  cohort  in  this  dataset  includes  two  patients  with                     
475 colorectal  carcinoma  and  two  healthy  controls.  The  images  have  a  size  of   400  µm 2  and   1,024  ×  1,024  pixels .  The                      
476 gene-wise  mean-variance  relationship  does  not  indicate  count  noise  (Supp.  Fig.  13b).  We  scaled  the  model                 
477 outputs  by  cell-wise  size  factors.  Hartmann  et  al.  trained  a  convolutional  neural  network.  They  fed  the  output  into                    
478 the  watershed  algorithm  to  segment  individual  cells  and  cell-types  were  clustered  using  the  FlowSOM  R  package                  
479 and   manually   annotated   based   on   their   lineage   marker   profiles.   

480 MELC   –   tonsils:     

481 Pascual-Reguant  et  al. 7  measured  tonsils  from  patients  undergoing  tonsillectomy  with  multi-epitope  ligand              
482 cartography  (MELC),  an  immunohistochemistry  approach,  in  one  image  across  one  patient,  with  51  genes                
483 observed  in  9,512  cells.  The  cell-types  originally  annotated  by  Pascual-Reguan  et  al.,  which  are  modeled  here,                  
484 are  B  cells,  endothelial  cells,  ILC,  monocytes/macrophages/DC,  NK  cells,  plasma  cells,  T  cytotoxic  cells,  T  helper                  
485 cells  and  other  cells  are  annotated  (Supp.  Fig.  1a).  We  removed  cells  labeled  as  “ other”  from  the  dataset.  The                     
486 gene-wise  mean-variance  relationship  does  not  indicate  count  noise  (Supp.  Fig.  13d).  Pascual-Reguant  et  al.                
487 performed  segmentation  by  applying  a  signal-classification  step  using  Ilastik  1.3.2  and  an  object-recognition  step                
488 using   CellProfiler   3.1.8,   which   were   analyzed   and   clustered   in   Orange   3.26.0.   
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489 CODEX   –   cancer:     

490 Schürch  et  al. 13  measured  advanced-stage  colorectal  cancer  with  co-detection  by  indexing  (CODEX)  in  140                
491 images  across  35  patients  with  57  genes  observed  in  272,266  cells.  The  cell-types  originally  annotated  by  Zhang                   
492 et  al.,  which  are  modeled  here,  are  B  cells,  CD11b+  monocytes,  CD11c+  dendritic  cells,  CD11b+CD68+                 
493 macrophages,  CD163+  macrophages,  CD68+  macrophages,  CD68+  macrophages  GzmB+,  CD68+CD163+           
494 macrophages,  CD3+  T  cells,  CD4+  T  cells,  CD4+  T  cells  CD45RO+,  CD4+  T  cells  GATA3+,  CD8+  T  cells,  NK                     
495 cells,  T  regs,  adipocytes,  dirt,  granulocytes,  immune  cells,  immune  cells  /  vasculature,  lymphatics,  nerves,                
496 plasma  cells,  smooth  muscle,  stroma,  tumor  cells,  tumor  cells  /  immune  cells  and  vasculature  are  annotated                  
497 (Supp.  Fig.  1a).  Cells  with  an  annotation  of  dirt  or  an  undefined  label  were  removed  from  the  dataset.  A  coarser                      
498 cell-type  grouping  was  applied  to  the  macrophage  groups  CD11b+CD68+  macrophages,  CD163+  macrophages,              
499 CD68+  macrophages,  CD68+  macrophages  GzmB+  and  CD68+CD163+  macrophages.  Additionally,  CD4+  T             
500 cells,  CD4+  T  cells  CD45RO+  and  CD4+  T  cells  GATA3+  were  grouped  into  CD4+  T  cells.  The  gene-wise                    
501 mean-variance  relationship  indicates  count  noise  (Supp.  Fig.  13e).  Therefore,  we  scaled  model  outputs  by  the                 
502 node  size  in  the  respective  output  layer  of  each  model  class.  Schürch  et  al.  performed  segmentation  using  the                    
503 CODEX   toolkit   segmenter   and   unsupervised   cell-type   clustering   using   X-shift.   
504   

505   
506 Table  1:  Overview  of  datasets  analyzed  in  this  study.  Shown  are  the  spatial  molecular  profiling  chemistry,  the                   
507 domain  effect  accounted  for  via  batch  covariates,  the  data  transform  used  on  the  expression  vectors,  the                  
508 inclusion  of  cell  size  factors,  the  number  of  images  given  to  the  models  during  each  update  (batch  size)  and  the                      
509 number   of   nodes   evaluated   per   image   per   batch   (n).     

510 Models  

511 The  inputs  to  NCEMs  are  a  gene  expression  matrix  where   is  the  number  of  cells  and   is  the           ,  Y ∈ RN×J    N        J    

512 number  of  genes  with  being  the  gene  expression  vector  for  gene  ,  a  matrix  of  observed  cell-types      yi        , ..,i = 1 . J       

513  where   is  the  number  of  distinct  cell-type  labels  and  is  a  matrix  specifying  the  batch     X l ∈ R
N×L   L             Xc ∈ RN×C       

514 assignments,  with   being  the  number  of  distinct  batches  or  domains,  such  as  images  or  patients,  in  the    C                 

515 dataset.  We  denote  the  adjacency  matrix  of  connected  cells  as  which  is  calculated  based  on  the  spatial             A ∈ RN×N        

516 proximity  of  cells  per  image.  For  linear  models  and  models  with  an  indicator  aggregator,  a  binary  adjacency                   
517 matrix  is  used  with  if  where   describes  the  euclidean  distance  between  nodes       aij = 1  (x , x )   d i   j ≤ δmax  (·,·)  d        ,  i j ∈ N  

518 and  the  maximal  distance  between  interacting  nodes  (neighborhood  size),  and   otherwise.  For    is δmax          0aij =      

519 models  using  a  GCN  as  graph  layer,  we  normalize   such  that  all  rows  sum  to  one,  so  where  is  the           A          A  D1  D   

520 diagonal  node  degree  matrix.  The  output  of  NCEMs  is  ,  a  reconstruction  of  the  input  count  matrix  ,            Y
︿
∈ RN×J         Y  

521 with  being  the  reconstructed  expression  for  gene  .  For  MIBI-TOF  -  cancer,  MELC  -  tonsils  and   y︿i       , ..,i = 1 . J          

522 CODEX  -  cancer,  we  applied  size  factor  scaling  to  the  network  output  .  Let  be  the  global  mean  per              Y
︿

  μ = 1
N ∑

N

i
∑
J

j
yij      

523 node,   then   size   factors   are   given   by   The   network   output   scaling   is   then   given   by    μ    .sf k =   / ∑
J

j
yj,k ∈ R

N
f .  Y

︿
= Y
︿
· s   

524   
525 Loss  functions:   According  to  the  noise  structure  of  the  datasets  explored  in  this  paper  (Supp.  Fig.  13)  we  use  a                      
526 Gaussian  log-likelihood  loss  as  an  optimization  objective  for  GLM  and  ED  models  with               

527 ,  where   is  the  predicted  standard  deviation  for  a  gene  .  The  loss  (log( )  )llN = 1
N ∑

N

i=1
√2π · σi +  

σ i
2

(y y )i
︿

i   σi          , ..,i = 1 . N    

528 function  of  CVAE  models  is  the  negative  log-likelihood  regularized  by  the  Kullback-Leibler  divergence  between                

  

dataset   /     
first   author   technology   domain   transform   node   size   

scaling   batch   size   n   

Zhang   MERFISH   patient  -   False   64   10   

Jarosch   Chip   Cytometry   patient  log(x+1)   False   2   100   

Hartmann   MIBI-TOF   image   -   True   58   10   

Pascual-Reguant  MELC   patient  -   True   1   200   

Schürch   CODEX   patient  log(x+1)   True   140   10   
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529 the  encoder  distribution   and  the  distribution  of  the  latent  space  ,  so     (z|Y )qϕ         (z)p   

530  For  chip  cytometry  –  colon  and  CODEX  –  cancer  we  therefore    ll   KL[q (z|Y ) || p(z)].  lCV AE =      N +   ϕ             og(Y )l + 1

531 transformed   the   gene   expression   data.     
532   
533 Optimization:   For  each  dataset,  we  ran  grid  searches  to  find  the  optimal  set  of  hyperparameters.  As  batch  size                    
534 we  choose  the  number  of  images  per  dataset.  The  number  of  nodes  evaluated  per  image  per  batch  was  selected                     
535 to  ensure  convergence  and  stabilize  training.  All  models  were  trained  with  the  Adam  optimizer  algorithm                 
536 implemented  in  tensorflow.  Linear  models  were  trained  with  a  ,  the  remaining  models  were  trained  for  a           r .5l = 0         

537 varying  learning  rate  of  .  Additionally,  we  used  a  learning  scheduler  on  the  validation  loss      rl = {0.5, 0.05, 0.005}               

538 with  a  patience  of  20  epochs  which  reduces  the  learning  rate  by  a  factor  of  0.5,  so   and  early                   r  0.5  lrnew = l *      

539 stopping  with  a  patience  of  100  epochs.  The  exact  description  of  all  grid  searches  in  code  are  supplied  in  the                      
540 benchmarking   repository   (Code   Availability).     
541   
542 Linear  NCEM:   The  NCEM  includes  two  linear  regression  models.  The  nonspatial  baseline  linear  model  infers  a                  

543 reconstruction  from  a  nodes  cell-type  and  respective  domain  information  via  ,  where  is  the  design   Y
︿

         X βY
︿
=   D   XD    

544 matrix  and  are  the  parameters  learned  by  the  model.  The  design  matrix  for  nonspatial  baseline       β ∈ R(L+C)×N              

545 models  is  given  by The  spatial  counterpart  model,  the  NCEM,  has  access  to  an      X , X )  .  XD = ( l   c ∈ RN×(L+C)           

546 interaction  matrix.  First,  we  compute  discrete  target  cell  interactions  with  ,  where             XT = 1(A·X  > 0)l
∈ [0, ]1 N×L   1(·)

547 represents  an  indicator  function.  To  generate  a  matrix  representation  of  target-source  cell  interactions,  we                
548 compute  the  interaction  between  each  column  of   and  each  column  via  the  point-wise  product.The         X l     XT     

549 resulting  interaction  matrix  is  then  denoted  as   and  the  design  matrix  for  the  linear  model  with          XTS ∈ {0, }1 N×L2           

550 interaction  terms  is  given  by  .  Equivalently,  the  model  infers   where       X , X , X )   XD = ( l   TS   c ∈ R
N×(L+L +C)2

     X βY
︿
=   D   

551 and  additionally  the  gene  variance  per  node  which  is  inferred  in  the  last  layer  of  the  linear  model.   β ∈ R(L+L +C)×N2
                  

552 We  also  considered  an  NCEM  without  interaction  terms  which  does  not  have  receiver-specific  sender  effects,  but                  
553 only  global  sender  effects  which  account  for  the  presence  of  senders  in  the  niche  via  :                  XS ∈ {0, }1 N×L   

554 .  Coefficient  significance  is  computed  with  Wald  hypothesis  testing  with  a  X , X , X )   XD = ( l   S   c ∈ R
N×(L+L +C) 

           

555 significance   threshold   of     on   the   parameters   learned   by   the   model   for   the   interaction   matrix   .   .01τ = 0 XTS   

556   
557 Nonlinear  encoder–decoder  NCEM  (ED-NCEM):  The  NCEM  includes  nonlinear  encoder–decoder  models  that             
558 encode  the  neighborhood  through  a  graph  neural  network  (ED-NCEM)  and  decode  expression  vectors.  The                
559 nonspatial  null  model  is  a  nonlinear  model  (ED)  that  predicts  expression  from  cell-type  and  graph-level                 
560 predictors,  alone.  An  encoder   is  given  by  ),  which  encodes  the  cell-type  labels  ,         q (z | X , g(A, ), Xf enc :   ϕ l   X l   c       X l  

561 some  graph-level  predictors   and  the  local  graph  embedding  ,  based  on  the  adjacency  matrix  ,  into  a     Xc       (A, )g X l       A    

562 latent  state  .  The  latent  state  is  input  to  the  decoder  and  given  by  .  If   is    z             p (Y  | z, X , g(A, ), X )f dec :   θ

︿
  l   X l   c   (A, )g X l   

563 and  indicator  embedding  function  as  described  in  the  section  “Linear  NCEM”,  then   and  the  input  to              (A, )g X l = XTS      

564 the  linear  model  and  the  encoder  are  the  same.  If  then  also  all  hidden  layers  are  removed  from  the  ED-NCEM,  a                       
565 single  linear  transformation  of  the  input  remains  which  is  equivalent  to  the  linear  NCEM.  Alternatively,                  (A, X )g   l  
566 can  be  a  graph  embedding  learned  by  a  graph-convolutional  network  (GCN) 10,11 .  A  one-layer  GCN  is  given  by                   
567  where  is  an  input-to-graph-embedding  weight  matrix  with  being  (A, X )  sof tmax(ReLU (AX W ))g   l =   l    W ∈ RL×H       H  

568 the  dimension  of  the  learned  graph  representation  and  being  the  normalized  adjacency  matrix.  In  this  case,          A         W

569 can   be   learned   using   gradient   descent.   
570   
571 Conditional  variational  autoencoder  NCEM  (CVAE–NCEM):   A  variational  autoencoder 29  learns  a  distribution  over              
572 node  states   through  a  variational  posterior  over  a  latent  space  representation   which  yields  a  reconstruction   Y           z      

573  of   via  a  likelihood  function  (the  decoder).  The  nonspatial  CVAE  null  model  contains  the  cell-type  and  Y
︿

  Y                 

574 graph-level  predictors  as  a  condition  in  the  variational  posterior  and  the  likelihood.  In  CVAE–NCEM,  the                 
575 conditions  are  the  cell-type  labels  ,  some  graph-level  predictors   and  the  local  graph  embedding  ,       X l     Xc       (A, )g X l  
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576 based  on  the  adjacency  matrix  .  The  encoder  is  then  given  by   and  the       A        (z | Y , , g(A, ), X )f   qenc
NGCV AE :   ϕ  X l   X l   c    

577 decoder  is  defined  by  .  A  CVAE–NCEM  for  a  full  dataset  depends  on  both      (Y  | z, X , g(A, ), X )  f   pdec
NGCV AE :   θ

︿
  l   X l   c           

578 the  spatial  context  and  the  type  of  the  cell  itself.  This  setting  presents  the  challenge  of  encountering  a                    
579 non-identifiability  between  variance  attributed  to  latent  variables,  cell-type  conditions,  and  neighborhood  context.              
580 In  this  study,  we  consider  the  CVAE–NCEM  trained  on  the  molecular  vectors  of  a  single  target  cell-type  as  a                     
581 function  of  the  full  neighborhood  context  to  remove  the  non-identifiability  with  respect  to  cell-type  variation  and                  
582 focus   on   the   non-identifiability   between   latent   variables   and   neighborhoods.     

583 Normalized   saliency   maps   

584 Saliency  maps  are  used  to  differentiate  the  importance  of  features  in  the  network  input  to  analyze  their                   
585 importance  for  the  network  output  for  nonlinear  models.  In  our  case,  saliency  maps  are  aggregated  at  the                   
586 cell-type  level  to  extract  communication  events  learned  by  the  model,  so   with   being  the  number             ALS   S ∈ RL x L   L     

587 of  distinct  cell-types  in  the  model.  Non-normalized  saliencies  will  show  a  pattern  similar  to  the  contact  frequency                   
588 matrix   as  cell-types  with  frequent  connections  will  skew  the  learned  importance  of  cell  connections.    M ∈ RL x L                

589 We  therefore  normalize  the  saliencies  by  the  absolute  frequency  of  cell–cell  connections,  that  is                
590 for   with   .  SALS  SALSnorm = 1

xij *
  ij ∈ R

L x L   xij ∈ M , j  , ..., Li   = 1      

591 Model   evaluation   

592 Overall  model  performance  evaluation  is  based  on  the  coefficient  of  determination  with             1R2 =   
(y y)∑

N

i=1
i

2

∑
N

i=1
(y y )i i

︿ 2

∈ 0,[ 1]  

593 being  the  mean  over  gene  expression  values.  Best  performing  models  are  selected  based  on  highest  for   y                R2  

594 the  validation  dataset.  These  metrics  are  based  on  model  predictions,  which  derive  from  a  forward  pass  through                   
595 the  model.  The  performance  of  CVAEs  is  additionally  assessed  in  style  transfer  tasks.  In  style  transfer,  the  gene                    
596 expression  state  and  neighborhood  of  a  reference  node  from  the  source  domain  is  encoded  to  estimate  the  latent                    
597 states  of  this  node.  This  latent  representation  is  then  decoded  to  the  target  domain,  which  implies  conditioning                   
598 the   decoding   on   the   target   neighborhood:   
599  (z | Y , , g(A, ), ) (1)zi  ~ qϕ

i
  X

i
l   X  

l X i
c  

600      p (z , X , g(A, ), X ) (2)Y
 
j
︿

=   θ
i
    l

j   X l   j
c   

601 where i ,   j  are  cell  indices,  is  the  variational  posterior  and  is  the  decoder  network.  See  also  “ Conditional         qϕ       pθ        
602 variational   autoencoder   NCEM   (CVAE–NCEM) ”   for   details   on   the   notation.   

603 Ligand–receptor   association   analysis   

604 For  ligand–receptor  permutation  tests  we  used  the  CellphoneDB 3  implementation  in  Squidpy 15 .  For  the  chip                
605 cytometry  –  colon,  MIBI  TOF  –  cancer 8 ,  MELC  –  tonsils 7 ,  and  CODEX  –  cancer 13  datasets,  node  feature  names                    
606 are  mapped  to  HGNC  gene  names.  After  the  mapping,  we  used  the  ligand–receptor  interaction  pairs  of  the                   
607 Omnipath  database 30  in  Squidpy 21  and  ran  the  permutation  test  for  n  =  1,000  permutations.  For  three  datasets,                   
608 we  used  a  random  subsample  of  all  cells  (MERFISH  –  brain 12  10%  with  n  =  27,655,  MIBI  TOF  –  cancer 8  40%                       
609 with  n  =  25,498  and  CODEX  –  cancer 13  10%  with  n  =  25,186).  Results  are  visualized  with  Squidpy 21  with  only                      
610 p-values   below   a   threshold   of   0.3   shown.   

611 Variance   attribution   analysis   

612 We  used  Uniform  Manifold  Approximation  and  Projection 31  (UMAP)  to  embed  the  cells  in  two  dimensions  for                  
613 visualization  of  high-dimensional  data.  For  the  UMAPs  of  the  MERFISH  –  brain  data 12  matrix  (Fig.  1c  and  Supp.                    
614 Fig.  5b)  we  performed  dimensionality  reduction  using  PCA  with  the  first  35  principal  components  (PCs)  and  the                   
615 nearest  neighborhood  size  of  k  =  10.  A  similar  approach  was  described  by  Zhang  et  al.  to  identify  stable  clusters                      
616 for  subsequent  cell-type  annotation.  For  the  UMAPs  of  L2/3  IT  neurons  in  slice  153  (Fig.  2)  and  slice  162  (Supp.                      
617 Fig  5b)  of  the  MERFISH  -  brain  dataset,  we  used  the  first  40  PCs  with  k  =  40  and  performed  graph-based                      
618 Louvain  community  detection 19  using  Scanpy 17  to  define  stable  L2/3  IT  substates.  For  the  UMAPs  of  CD8  T  cells                    
619 in  area  1  in  the  chip  cytometry  dataset  (Supp.  Fig.  8),  we  used  the  input  matrix  directly  and  k  =  22.  For  the                         
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620 UMAPs  of  CD8  T  cells  in  image  1,  5,  8  and  16  of  the  MIBI-TOF  -  cancer  dataset  (Supp.  Fig.  9),  we  used  the  input                           
621 matrix  directly  and  k=60.  Clustering  of  the  latent  space  in  CVAE  and  CVAE–NCEM  IND  models  (Fig.  4d,  Supp.                    
622 Fig.  11c)  was  performed  using  the  latent  space  matrix  directly  and  k  =  80  for  the  MERFISH  -  brain  dataset  and  k                        
623 =   250   for   the   chip   cytometry   -   colon   dataset.   
624   
625 For  cluster  enrichment  analysis,  we  performed  Fisher’s  exact  test.  Each  contingency  table  is  composed  of  two                  
626 categorical  variables.  The  first  variable  is  the  number  of  cells  in  one  specific  L2/3  IT  substate  versus  the                    
627 remaining  L2/3  IT  substates.  The  second  variable  is  the  number  of  cells  with  a  respective  source  type  in  their                     
628 neighborhood  and  those  cells  where  this  source  type  is  not  present  in  the  neighborhood.  We  performed                  
629 Benjamini  and  Hochberg  false  discovery  rate  correction  (FDR)  of  cluster  enrichment  p-values.  A  similar  approach                 
630 was  used  for  the  cluster  enrichment  analysis  of  CD8  T  cells  in  the  chip  cytometry  -  colon  and  the  MIBI-TOF  -                       
631 cancer   datasets.   
632   
633 For  comparison  of  the  source  cell-type  rankings  of  contact  frequencies,  ligand–receptor  analysis  and  cluster                
634 enrichment  analysis  of  L2/3  IT  cells,  we  performed  Kendall’s  tau  correlation  analysis  and  computed  the  tau                  
635 statistic  and  the  two-sided  p-value.  Contact  frequencies  are  ranked  by  source  type  frequencies  (row  L2/3  IT  of                   
636 Supp.  Fig.  6).  For  ligand–receptor  analyses,  source  cell-types  are  ranked  based  on  the  number  of  significant                  
637 p-values  below  a  threshold  of  0.05  for  this  L2/3  IT  interaction.  For  the  cluster  enrichment  analysis  we  used  the                     
638 ranking   shown   in   Fig.   2d.   

639 Variance   decomposition   into   inter-   and   intra-cell-type   variance   

640 The  variance  of  a  single-cell  resolved  dataset  can  be  decomposed  into  inter-cell-type  variance,  intra-cell-type                
641 variance,  and  gene  variance.  The  gene  variance  is  independent  of  cell-type  definitions  and  can  therefore  be                  
642 considered   separately   from   relative   intra-   and   inter-cell-type   variance.   

643

  

644 where  x i  is  the  expression  vector  of  cell   i ,   is  the  vector  of  gene-wise  means  of  the  dataset,   is  the  vector  of           xg           xgk
       

645 gene-wise  means  of  the  cells  in  cell-type   k ,   k(i)  is  the  cell-type  of  cell   i ,  and   is  the  scalar  gene-  and  cell-wise                  x        

646 mean   of   the   dataset.   

647 Data   Availability   

648 The  MERFISH  –  brain 12 ,  MIBI  TOF  –  cancer 8 ,  MELC  –  tonsils 7  and  CODEX  –  cancer 13  datasets  are  publicly                    
649 available  (Online  Methods).  The  chip  cytometry  –  colon  dataset  has  been  generated  by  the  Busch  lab  and  is                    
650 currently   under   review,   and   has   kindly   been   provided   to   us.   

651 Code   Availability   

652 All  models  described  here  are  implemented  in  a  Python  package  available  at   https://github.com/theislab/ncem .               
653 All  benchmarking  and  analysis  codes  are  provided  at   https://github.com/theislab/ncem_benchmarks .  Tutorials  for             
654 model   usage   are   available   from    https://github.com/theislab/ncem_tutorials .   
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