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Abstract All but the simplest phenotypes are believed to result from interactions between two10

or more genes forming complex networks of gene regulation. Sleep is a complex trait known to11

depend on the system of feedback loops of the circadian clock, and on many other genes;12

however, the main components regulating the phenotype and how they interact remain an13

unsolved puzzle. Genomic and transcriptomic data may well provide part of the answer, but a full14

account requires a suitable quantitative framework. Here we conducted an artificial selection15

experiment for sleep duration with RNA-seq data acquired each generation. The phenotypic16

results are robust across replicates and previous experiments, and the transcription data17

provides a high-resolution, time-course data set for the evolution of sleep-related gene18

expression. In addition to a Hierarchical Generalized Linear Model analysis of differential19

expression that accounts for experimental replicates we develop a flexible Gaussian Process20

model that estimates interactions between genes. 145 gene pairs are found to have interactions21

that are different from controls. Our method not only is considerably more specific than22

standard correlation metrics but also more sensitive, finding correlations not significant by other23

methods. Statistical predictions were compared to experimental data from public databases on24

gene interactions.25

26

Introduction27

Despite the plethora of modern and increasingly refined molecular biology assays – from DNA to28

metabolites and beyond – systematically uncovering the molecular bases of phenotypes remains29

one of the thorniest challenges in biology. “Omics” approaches allow whole genome, transcrip-30

tome, proteome, and other “omes” to be generated and candidate genes to be fished out of these31

high dimensional data, but understanding how these biomolecules interact even in the simplest32

pathways requires painstaking follow-on experimentation, construction of databases, and an im-33

mense collective effort to make connections from disjointed assays into a coherent model. De-34

spite the large amount of studies and data generated for many systems, identifying underlying35

processes is still very rare; this is clear indication that better methods are needed to obtain un-36

derstanding of biological processes from data. For complex traits the task is even more difficult.37

Sleep is a complex phenotype the evolution of which remains a classicmystery in biology. Although38

sleep and sleep-like behavior is conserved among species, its main purpose is not completely un-39
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derstood, and hypotheses for its purpose span functions like conservation of resources (Berger40

and Phillips, 1995; Scharf et al., 2008; Schmidt, 2014), pruning of synapses andmemory formation41

(Krueger and Obál, 1993; Tononi and Cirelli, 2014; Joiner, 2016; Ly et al., 2018), and management42

of metabolite and waste products (Xie et al., 2013; Hill et al., 2020). It is plausible that sleep is a43

manifestation of multiple functions, and that it involves the activity of many genes to regulate a44

complex higher-level function; indeed many genes have been implicated in sleep (Harbison et al.,45

2017, 2013; Laing et al., 2019; Dashti et al., 2019; Jones et al., 2016; Jansen et al., 2019; Lane et al.,46

2019; Hammerschlag et al., 2017; Diessler et al., 2018; Joshi et al., 2019; Boyle et al., 2017). Assum-47

ing anything but the simplest possible model would therefore require a description that accounts48

for this complexity in the interactions of genes and gene products.49

Artificial selection plus sequencing/resequencing is a powerful approach for identifying herita-50

ble variation in phenotypes and their underlyingmolecular bases (Schlötterer et al., 2015), typically51

assaying DNA or RNA expression in the initial and evolved populations and comparing them to con-52

trols (Faria et al., 2015, 2016). Coupling selection with gene expression identified candidate genes53

for diurnal preference (Pegoraro et al., 2020), olfactory behavior (Brown et al., 2017, 2020), food54

consumption (Garlapow et al., 2017), mating behavior (Mackay et al., 2005), resistance to para-55

sitism (Wertheim et al., 2011), environmental stressors (Telonis-Scott et al., 2009; Sørensen et al.,56

2007), ethanol tolerance (Morozova et al., 2007), and aggressive behavior (Edwards et al., 2006).57

Caveats of that method include often not having molecular data on the intermediate generations,58

and relying on traditional statistical methods to assess the significance of polymorphic variants. In59

the case of gene expression, RNA levels are often modeled for each gene individually using linear60

models, without further consideration of the processes involved or interactions between genes.61

Inferring interaction between genes (as opposed to individual changes) requires observations of62

how the genes covary in time. Correlation or information theory-based methods (and others, re-63

viewed in Emmert-Streib et al. (2012); Villaverde and Banga (2014); Liu (2015)) could be applied to64

estimate the relationship between the genes when that information is present, but neither is time65

course data usually available, nor are these methods standard in artificial selection experiments.66

In this work we have artificially selected Drosophila melanogaster for increased or decreased67

night sleep duration and sequenced the mRNA of the flies from each generation of selection.68

The selection procedure produced both long- and short-sleeping fly populations significantly de-69

viant from unselected controls. The RNA sequence data, which consisted of expression levels as70

a function of time (measured in generations), was analyzed using a Multi-Channel Gaussian Pro-71

cess (Melkumyan and Ramos, 2011; Bonilla et al., 2008) where each gene is described by one of72

these “channels”, and their relationships are estimated by an underlying covariance structure in73

the model. We describe the expression of 85 genes that had significant changes in the artificial74

selection long or short schemes along generation common to both males and females. We used75

this model to infer the magnitude of all 3,570 possible pairwise interactions between all possible76

pairs of genes. Results from this analysis and comparison to unselected controls suggest that mul-77

tiple shifts in interactions underlie the increase and decrease of night sleep duration, with 14578

interactions not being observed in the controls.79

Methods and Materials80

Construction of outbred population81

We constructed an outbred population of flies – using ten lines from the Drosophila Genetic Refer-82

ence Panel (DGRP) (Mackay et al., 2012; Huang et al., 2014) with extreme night sleep phenotypes83

(Harbison et al., 2013). Five lines had the shortest average night sleep for both males and females84

combined in the population: DGRP_38, DGRP_310, DGRP_365, DGRP_808, DGRP_832. The other85

five lines had the longest average night sleep in the population: DGRP_235, DGRP_313, DGRP_335,86

DGRP_338, and DGRP_379. The ten lines were crossed in a full diallel design, resulting in 10087

crosses. Two virgin females and twomales from the F1 of each cross were randomly assigned into88
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20 bottles, with 10 males and 10 females placed in each bottle. At each subsequent generation, 2089

virgin females and 20 males from each bottle were randomly mixed across bottles to propagate90

the next generation. The census population size was 800 for each generation of random mating.91

This mating scheme was continued for 21 generations, resulting in the Sleep Advanced Intercross92

Population, or SAIP (Harbison et al., 2017; Serrano Negron et al., 2018). The SAIP was maintained93

by pooling the flies from each bottle together, then randomly assigning 20 males and 20 females94

to each bottle each generation.95

Artificial selection procedure for night sleep96

At generation 47 of the SAIP, we began the artificial selection procedure, whichwe defined as gener-97

ation 0. We seeded six bottles with 25 males and 25 females mixed from all bottles of the outbred98

population. Two replicate bottles were designated for the short-sleeping protocol (S1 and S2), two99

for the long-sleeping protocol (L1 and L2), and two for a control (unselected) protocol (C1 and C2).100

Each generation, 100 virgin males and 100 virgin females were collected from each of the six popu-101

lation bottles. Virgins were maintained at 20 individuals to a same-sex vial for four days to control102

for the potential effects of social exposure on sleep (Ganguly-Fitzgerald et al., 2006). Flies were103

placed into Trikinetics (Waltham, MA) sleep monitors, and sleep and activity were recorded contin-104

uously for four days. We used an in-house C# program (R. Sean Barnes, personal communication)105

to calculate sleep duration, bout number, and average bout length during the night and day, as106

well as waking activity. We also calculated sleep latency, defined as the number of minutes prior107

to the first sleep bout after the incubator lights turn off. In addition, we computed the coefficient108

of environmental variation (𝐶𝑉𝐸) for each sleep trait as the product of the standard deviation in109

each replicate population (𝜎) divided by the mean (𝜇) ×100 (Mackay and Lyman, 2005).110

All sleep traits including night sleep duration were averaged over the four-day period. For the111

short (long)-sleeping populations, we chose the 25 males and 25 females in each replicate popula-112

tion having the lowest (highest) average night sleep as parents for the next generation. Any flies113

found dead were discarded, and the next shortest (longest)-sleeping fly was used in order to en-114

sure that 25 females and 25males were used as parents. For the control populations, we chose 25115

males and 25 females at random to start the next generation. Flies were notmixed across replicate116

populations. We repeated this procedure for 13 generations.117

Quantitative genetic analyses of selected and correlated phenotypic responses118

We analyzed the differences in night sleep among selection populations as well as other potentially
correlated sleep traits using a mixed analysis of variance (ANOVA) model:

𝑌 = 𝜇 + 𝑆𝑒𝑙 + 𝑅𝑒𝑝(𝑆𝑒𝑙) + 𝑆𝑒𝑥 + 𝐺𝑒𝑛
+ 𝑆𝑒𝑙 × 𝑆𝑒𝑥 + 𝑆𝑒𝑙 × 𝐺𝑒𝑛 + 𝑅𝑒𝑝(𝑆𝑒𝑙) × 𝑆𝑒𝑥 + 𝑅𝑒𝑝(𝑆𝑒𝑙) × 𝐺𝑒𝑛 + 𝑆𝑒𝑥 × 𝐺𝑒𝑛
+ 𝑆𝑒𝑙 × 𝑆𝑒𝑥 × 𝐺𝑒𝑛 + 𝑅𝑒𝑝(𝑆𝑒𝑙) × 𝑆𝑒𝑥 × 𝐺𝑒𝑛 + 𝜀

where 𝑌 is the phenotype; 𝜇 is the overall phenotypic mean; 𝑆𝑒𝑙, 𝑆𝑒𝑥, and 𝐺𝑒𝑛 are the fixed effects
of selection scheme (short- or long-sleeper), sex, and generation, respectively;𝑅𝑒𝑝 is randomeffect
of replicate population; and 𝜀 is the error term. The 𝐶𝑉𝐸 traits were assessed using the same
model with the replicate terms removed. A statistically significant 𝑆𝑒𝑙 term indicates a response of
the trait to selection for night sleep; a significant 𝑆𝑒𝑙 × 𝑆𝑒𝑥 term indicates a sex-specific response
to selection. We repeated the analysis for sexes separately using the reduced model

𝑌 = 𝜇 + 𝑆𝑒𝑙 + 𝑅𝑒𝑝(𝑆𝑒𝑙) + 𝐺𝑒𝑛 + 𝑆𝑒𝑙 × 𝐺𝑒𝑛 + 𝑅𝑒𝑝(𝑆𝑒𝑙) × 𝐺𝑒𝑛 + 𝜀

where the terms are as defined above. We also analyzed the response to selection in each gener-
ation separately using the reduced model

𝑌 = 𝜇 + 𝑆𝑒𝑙 + 𝑅𝑒𝑝(𝑆𝑒𝑙) + 𝑆𝑒𝑥 + 𝑆𝑒𝑙 × 𝑆𝑒𝑥 + 𝑅𝑒𝑝(𝑆𝑒𝑙) × 𝑆𝑒𝑥 + 𝜀
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and the reduced model
𝑌 = 𝜇 + 𝑆𝑒𝑙 + 𝑅𝑒𝑝(𝑆𝑒𝑙) + 𝜀

for each sex separately per generation.119

Finally, we analyzed the change in sleep parameters over generations in the control populations
using the model

𝑌 = 𝜇 + 𝑅𝑒𝑝 + 𝑆𝑒𝑥 + 𝐺𝑒𝑛 + 𝑅𝑒𝑝 × 𝑆𝑒𝑥 + 𝑅𝑒𝑝 × 𝐺𝑒𝑛 + 𝑆𝑒𝑥 × 𝐺𝑒𝑛 + 𝑅𝑒𝑝 × 𝑆𝑒𝑥 × 𝐺𝑒𝑛 + 𝜀

where each factor is as defined above.120

RNA extraction and sequencing121

As described above, sleep was monitored in 100 virgin males and 100 virgin females each genera-122

tion. Twenty-five flies of either sex were used as parents for the next generation, leaving 75 flies of123

each sex in each selection and control population. Four pools of 10 flies of each sex were chosen124

at random from these 75 flies and frozen for RNA extraction at 12:00 pm. RNA was extracted from125

two of these pools; the remaining two pools were kept as back-up samples and used if needed.126

Samples were collected for the initial generation (0), and all subsequent generations. RNA was127

extracted using Qiazol (Qiagen, Hilden, Germany), followed by phenol-chloroform extraction, iso-128

propanol precipitation, and DNase digestion (Qiagen, Hilden, Germany). Qiagen RNeasy MinElute129

Cleanup kits (Qiagen, Hilden, Germany) were used to purify RNA according to the manufacturer’s130

instructions. With the exception of generation 1, which had RNA that was degraded, RNA from all131

other generations was sequenced. This produced 312 RNA samples (6 populations × 13 genera-132

tions × 2 sexes × 2 replicate RNA samples).133

Poly-A selected stranded mRNA libraries were constructed from 1 𝜇𝑔 total RNA using the Illu-134

mina TruSeq Stranded mRNA Sample Prep Kits (Illumina, San Diego, CA) according to manufac-135

turer’s instructions with the following exception: PCR amplification was performed for 10 cycles136

rather than 15 in order to minimize the risk of over-amplification. Unique barcode adapters were137

applied to each library. Librarieswere pooled for sequencing. The pooled librarieswere sequenced138

on multiple lanes of an Illumina HiSeq2500 using version 4 chemistry to achieve a minimum of 38139

million 126 base read pairs. The sequences were processed using RTA version 1.18.64 and CASAVA140

1.8.2.141

RNA alignment of reads142

Sequences were assessed for standard quality parameters using fastqc (0.11.4) (Babraham Insti-143

tute, Cambridge, UK). Reads were aligned to the FB2015_04 Release 6.07 reference annotation of144

the Drosophila melanogaster genome using STAR (Dobin et al., 2013). Default parameters were145

used except that the minimum intron size was specified as 2, and the maximum intron size was146

specified as 268,107, consistent with the largest intron size in the D. melanogaster genome. STAR147

outputs aligned sequence to a SAM file format, which contains the code ‘𝑁𝐻 ’ (Dobin et al., 2013).148

An 𝑁𝐻 of 1 indicates a uniquely mapped read, while 𝑁𝐻 > 1 indicates that the read did not map149

uniquely. HTSeq was used to count only the uniquely mapped reads (𝑁𝐻 = 1) (Anders et al., 2015).150

Principal Component Analysis (PCA)151

It was expected from previous studies of gene expression that there would be large differences in152

gene expression due to sex (Lin et al., 2016; Jin et al., 2001; Arbeitman et al., 2002; Parisi et al.,153

2003; ?; Harbison et al., 2005;Wayne et al., 2007; Zhang et al., 2007; Ayroles et al., 2009; Huylmans154

and Parsch, 2014; Huang et al., 2015). We performed Principal Component Analysis to assess155

those differences (Supplementary Figure S1). The principal components of the normalized RNA-156

seq count normalized matrix were computed, with each gene being treated as a different variable,157

and each sample a different observation. Samples were projected in the planes of the three first158

components, and clustering according to the experimental labels was inspected visually.159
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Gene normalization and filtering160

The combined genic and intergenic countswere normalizedby the expressionof a pseudo-reference161

sample computed from the geometric mean of all samples, using the method described by Love162

et al. (2014). Filtering was performed by computing the 95th percentile of the distribution of nor-163

malized, base 2 logarithm, levels in the intergenic regions for males and females and using those164

values as cut-off level for the genic regions – i.e. any genes that did not have expression above this165

level for at least one sample were removed from further analyses (Zhang et al., 2010). The (linear166

scale) cutoff expression value for males was 48.6, and for females 102.167

Generalized Linear Model analysis of expression data168

Analysis of differential expression between selection schemes was initially performed for each169

gene independently. Given the separation of the expression levels by sex seen in the PCA anal-170

ysis, analyses were conducted separately for the subsets of male or female flies.171

We implemented a generalized linear model (GLM) with a hierarchical structure to account172

for non-independent, replicate-specific parameters. The description is similar to a generalized173

linear mixed model (GLMM), but uses a Bayesian formulation to specify the hyper-priors and is174

fully described below. Normalization factors for the RNA levels was performed using the scheme175

described by Love et al. (2014). A negative binomial likelihood was used and parameterized with176

the mean (given by the prediction of the linear model) and dispersion parameters; the number of177

samples (156 for each sex) allowed estimation of the latter together with model coefficients, dis-178

pensing with the need of other schemes applied when the number of samples is small, commonly179

implemented in some packages.180

Bayesian inference was used and parameter priors were exploited to treat replicate effects
in a hierarchical formulation (Gelman et al., 2013). Specifically, for each replicate-dependent pa-
rameter (say 𝛽𝑠ℎ𝑜𝑟𝑡,𝑟𝑒𝑝), two parameters were specified at the top-level (𝜇𝑠ℎ𝑜𝑟𝑡 and 𝜎𝑠ℎ𝑜𝑟𝑡), given
(hyper-)priors, and estimated from the data together with all other parameters. Below that, both
replicate-specific model parameters (𝛽𝑠ℎ𝑜𝑟𝑡,1 and 𝛽𝑠ℎ𝑜𝑟𝑡,2) are given the same gaussian prior us-
ing top-level parameters (e.g. 𝛽𝑠ℎ𝑜𝑟𝑡,1 ∼ 𝒩(𝜇𝑠ℎ𝑜𝑟𝑡, 𝜎𝑠ℎ𝑜𝑟𝑡) for that coefficient in replicate 1 as well
as replicate 2). Under this formulation the full model for the expression of a gene 𝑗 is given by
𝑙𝑜𝑔𝜇𝑗 ∝ 𝑠𝑒𝑙𝑟𝑒𝑝 + 𝑔𝑒𝑛 + 𝑠𝑒𝑙 × 𝑔𝑒𝑛𝑟𝑒𝑝, where a relationship between each set of replicate-dependent
parameters is enforced hierarchically through their higher level common parameters and hyper-
priors. Explicitly, we have:

𝜂𝑗 = 𝑙𝑜𝑔𝜇𝑗

= [𝛽1, 𝛽2, 𝛽𝑠ℎ𝑜𝑟𝑡,1, 𝛽𝑠ℎ𝑜𝑟𝑡,2, 𝛽𝑙𝑜𝑛𝑔,1, 𝛽𝑙𝑜𝑛𝑔,2, 𝛽𝑔𝑒𝑛, 𝛽𝑠ℎ𝑜𝑟𝑡×𝑔𝑒𝑛,1, 𝛽𝑠ℎ𝑜𝑟𝑡×𝑔𝑒𝑛,2, 𝛽𝑙𝑜𝑛𝑔×𝑔𝑒𝑛,1, 𝛽𝑙𝑜𝑛𝑔×𝑔𝑒𝑛,2]𝑋

where 𝑋 is the design matrix, with binary 0/1 variables indicating parameters that apply to specific181

treatments (e.g. the entries multiplying 𝛽1,𝛽2, are present for all, that 𝛽𝑠ℎ𝑜𝑟𝑡,1, is present for short182

sleepers from replicate 1, etc.) except for parameters dependent on the 𝑔𝑒𝑛 variable which takes183

the value of the generation (e.g. 0 through 13 for the entries multiplying the 𝛽𝑔𝑒𝑛 parameter in all184

treatments, and for those multiplying 𝛽𝑠ℎ𝑜𝑟𝑡×𝑔𝑒𝑛,1 for short sleepers from replicate 1, etc.). Table 1185

lists all parameters, their descriptions, design matrix values associated to them, and priors.186

Maximum a posteriori probability (MAP) estimates and confidence intervals were obtained us-187

ing the Stan package (Carpenter et al., 2017). Significance was calculated using a likelihood ratio188

test comparing the point estimates from the full model to a reduced model not including the inter-189

action terms (i.e. 𝑙𝑜𝑔𝜇𝑗,𝑟𝑒𝑝 = 𝑠𝑒𝑙𝑟𝑒𝑝 + 𝑔𝑒𝑛). Model 𝑝-values were corrected for multiple testing using190

the Benjamini-Hochberg method (Benjamini and Hochberg, 1995), with significance defined at the191

0.001 level.192

Calculation of non-parametric correlations between genes193

The correlation coefficients (𝜌) between any two pairs of genes can be computed directly from194

the data. Pearson correlation assumes the relationship between the two variables is linear, while195
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Table 1. Parameter names, description, design values, and priors for Bayesian inference ( ̄𝑦0 denotes the
mean expression of all samples at generation zero).

Parameter Description Design Prior
values

𝜇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 Hyperprior on mean of 𝛽𝑟𝑒𝑝 n/a 𝒩( ̄𝑦0, 1)
𝜎𝑐𝑜𝑛𝑡𝑟𝑜𝑙 Hyperprior on (square root of) variance of 𝛽𝑟𝑒𝑝 n/a 𝐶𝑎𝑢𝑐ℎ𝑦(0, 1)
𝜇𝑠ℎ𝑜𝑟𝑡 Hyperprior on mean of 𝛽𝑠ℎ𝑜𝑟𝑡,𝑟𝑒𝑝 n/a 𝒩(0, 1)
𝜎𝑠ℎ𝑜𝑟𝑡 Hyperprior on variance of 𝛽𝑠ℎ𝑜𝑟𝑡,𝑟𝑒𝑝 n/a 𝐶𝑎𝑢𝑐ℎ𝑦(0, 1)
𝜇𝑙𝑜𝑛𝑔 Hyperprior on mean of 𝛽𝑙𝑜𝑛𝑔,𝑟𝑒𝑝 n/a 𝒩(0, 1)
𝜎𝑙𝑜𝑛𝑔 Hyperprior on variance of 𝛽𝑙𝑜𝑛𝑔,𝑟𝑒𝑝 n/a 𝐶𝑎𝑢𝑐ℎ𝑦(0, 1)
𝜇𝑠ℎ𝑜𝑟𝑡×𝑔𝑒𝑛 Hyperprior on mean of 𝛽𝑠ℎ𝑜𝑟𝑡×𝑔𝑒𝑛,𝑟𝑒𝑝 n/a 𝒩(0, 1)
𝜎𝑠ℎ𝑜𝑟𝑡×𝑔𝑒𝑛 Hyperprior on variance short of 𝛽𝑠ℎ𝑜𝑟𝑡×𝑔𝑒𝑛,𝑟𝑒𝑝 n/a 𝐶𝑎𝑢𝑐ℎ𝑦(0, 1)
𝜇𝑙𝑜𝑛𝑔×𝑔𝑒𝑛 Hyperprior on mean of 𝛽𝑙𝑜𝑛𝑔×𝑔𝑒𝑛,𝑟𝑒𝑝 n/a 𝒩(0, 1)
𝜎𝑙𝑜𝑛𝑔×𝑔𝑒𝑛 Hyperprior on variance of 𝛽𝑙𝑜𝑛𝑔×𝑔𝑒𝑛,𝑟𝑒𝑝 n/a 𝐶𝑎𝑢𝑐ℎ𝑦(0, 1)
𝛽1 Intercept for replicate 1 0, 1 𝒩(𝜇𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝜎𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
𝛽2 Intercept for replicate 2 0, 1 𝒩(𝜇𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝜎𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
𝛽𝑠ℎ𝑜𝑟𝑡,1 Effect from short sleeper, replicate 1 treatment 0, 1 𝒩(𝜇𝑠ℎ𝑜𝑟𝑡, 𝜎𝑠ℎ𝑜𝑟𝑡)
𝛽𝑠ℎ𝑜𝑟𝑡,2 Effect from short sleeper, replicate 2 treatment 0, 1 𝒩(𝜇𝑠ℎ𝑜𝑟𝑡, 𝜎𝑠ℎ𝑜𝑟𝑡)
𝛽𝑙𝑜𝑛𝑔,1 Effect from long sleeper, replicate 1 treatment 0, 1 𝒩(𝜇𝑙𝑜𝑛𝑔, 𝜎𝑙𝑜𝑛𝑔)
𝛽𝑙𝑜𝑛𝑔,2 Effect from long sleeper, replicate 2 treatment 0, 1 𝒩(𝜇𝑙𝑜𝑛𝑔, 𝜎𝑙𝑜𝑛𝑔)
𝛽𝑔𝑒𝑛 Treatment-independent generation effect 0 − 13 𝒩(0, 2)
𝛽𝑠ℎ𝑜𝑟𝑡×𝑔𝑒𝑛,1 Interaction short by generation, rep 1 effect 0 − 13 𝒩(𝜇𝑠ℎ𝑜𝑟𝑡×𝑔𝑒𝑛, 𝜎𝑠ℎ𝑜𝑟𝑡×𝑔𝑒𝑛)
𝛽𝑠ℎ𝑜𝑟𝑡×𝑔𝑒𝑛,2 Interaction short by generation, rep 2 effect 0 − 13 𝒩(𝜇𝑠ℎ𝑜𝑟𝑡×𝑔𝑒𝑛, 𝜎𝑠ℎ𝑜𝑟𝑡×𝑔𝑒𝑛)
𝛽𝑙𝑜𝑛𝑔×𝑔𝑒𝑛,1 Interaction long by generation, rep 1 effect 0 − 13 𝒩(𝜇𝑙𝑜𝑛𝑔×𝑔𝑒𝑛, 𝜎𝑙𝑜𝑛𝑔×𝑔𝑒𝑛)
𝛽𝑙𝑜𝑛𝑔×𝑔𝑒𝑛,2 Interaction long by generation, rep 2 effect 0 − 13 𝒩(𝜇𝑙𝑜𝑛𝑔×𝑔𝑒𝑛, 𝜎𝑙𝑜𝑛𝑔×𝑔𝑒𝑛)
𝛼 Negative binomial dispersion n/a 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 109)

Spearman correlation is rank-based and therefore accommodates non-linear relationships, although196

it still assumes the relationship is monotonically increasing or decreasing. We therefore computed197

Spearman correlations between genes that were found to be significant for both males and fe-198

males in the GLM analysis –- one correlation coefficient was obtained for the data subset from199

each sex-selection combination. The significance of each correlation coefficient is tested using the200

null hypothesis that 𝜌 = 0. Because the main interest is the interaction between genes in the se-201

lected populations that are different from controls we compare the coefficients by computing and202

comparing the confidence intervals for 𝜌𝑠𝑒𝑙 (where 𝑠𝑒𝑙 can be “short” or “long”) and 𝜌𝑐𝑜𝑛𝑡𝑟𝑜𝑙 using203

the normal approximation to 𝑎𝑟𝑐𝑡𝑎𝑛ℎ(𝜌) (Ruscio, 2008). We note that this is not exactly equivalent204

to the significance testing of the null hypothesis that 𝜌𝑠𝑒𝑙 = 𝜌𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (Austin and Hux, 2002) (which205

relies on computing the confidence interval for 𝜌𝑠𝑒𝑙 −𝜌𝑐𝑜𝑛𝑡𝑟𝑜𝑙 using the samemethod), since it over-206

estimates the total variance (i.e., one would find fewer significant instances). Nevertheless, the207

approach is valid and is more broadly applicable, in that it can be computed when a joint distribu-208

tion with the two variables cannot be obtained – we use the term “significant” for either kind of209

difference, but explicitly state which one is used.210

Gaussian Process regression211

Gaussian Processes (GP) are an alternative function-space formulation to the well-known weight-212

space linear models of the form 𝑦 = 𝑓(𝑥) + 𝜀; their use dates back to the 19th century and they213

have been covered extensively in the statistical and information theory literature (MacKay, 2003),214

becoming popular in machine learning applications (Bishop, 2006; Rasmussen andWilliams, 2006),215

and more recently implemented in less technical contexts like the life sciences (Schulz et al., 2018).216
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We give a brief overview of their usefulness, motivate their use in this work, and point to the refer-217

ences above for formal description of the method.218

Theweight-space linearmodel expresses the observations in terms of explicit linear coefficients219

(or weights) of the independent variable, 𝑥, possibly with further basis function expansions (e.g.220

square, 𝑥2, or higher order polynomials, 𝑥𝑛), for instance 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝜀, (where 𝜀 is nor-221

mally distributed noise). Gaussian Processes describe the basis functions implicitly instead, with222

𝑦 ∼ 𝒩(𝜇, 𝐾); that is, a set 𝑦 of 𝑁 observations is distributed according to a multivariate normal223

distribution with mean given by the vector 𝜇 (of size 𝑁 ) and covariance between the values of 𝑥224

given by the matrix 𝐾 (with dimension 𝑁 × 𝑁 ). The entries of this matrix in row 𝑖, column 𝑗 are225

defined by some covariance function such that 𝑘𝑖𝑗 = 𝑐𝑜𝑣(𝑥𝑖, 𝑥𝑗) – if the covariance function is linear226

in the values of 𝑥, for instance, the prediction for 𝑦 is a straight line similar to 𝑦 = 𝛽0 + 𝛽1𝑥. Formu-227

lating the model in terms of function-space enables the use of flexible sets of basis functions; this228

approach of only implicitly describing a basis function, thus avoiding specification of a potentially229

large basis is called the “kernel trick”. Function like the commonly used squared exponential kernel230

can be shown to be equivalent to an infinite number of basis functions (Rasmussen and Williams,231

2006), and therefore cannot be incorporated in the explicit terms of the weight-space formulation.232

While Gaussian Processes are a classic formulation in statistics, the recent surge in machine233

learning applications has popularized its use in the natural sciences. They have been used to ana-234

lyze gene expression by using their flexible output in combination with ordinary differential equa-235

tions put (Honkela et al., 2010; Äijö et al., 2013; Aalto et al., 2020) , with clustering approaches236

(McDowell et al., 2018), within other regression models (Kontio and Sillanpää, 2019), or modeling237

spatial covariance (Arnol et al., 2019). In the context of our experimental design Gaussian Process238

Regression could be used as a flexible alternative to GLMs, with each selection scheme having a239

different mean function 𝜇𝑠𝑒𝑙 and a squared exponential covariance function 𝑘(𝑥, 𝑥′) = 𝜎2
𝑓𝑐(𝑥, 𝑥′) =240

𝜎2
𝑓𝑒𝑥𝑝 ( |𝑥−𝑥′|2

2𝑙2 )where 𝑥 takes the values of the generations in our experiment. The exponentiated241

term gives the correlation 𝑐(𝑥, 𝑥′) between a pair of time points, with parameter ℓ modulating the242

correlation level given a distance 𝑟 = 𝑥−𝑥′, and 𝜎2
𝑓 being the signal variance of the data. Under this243

model, unlike with the GLM analysis, the change in RNA-seq counts is a function not of slope coef-244

ficients but of the signal variance 𝜎2
𝑓 . It is worth noting that the signal variance is a scalar constant245

for all terms in the covariance matrix, so it can also be written as 𝐾 = 𝜎2
𝑓𝐶, where 𝐶 is analogous246

to 𝐾 but with correlations instead of covariances, a notation that will be useful shortly.247

Multi-channel Gaussian Processes248

Despite the extensive use of Gaussian Processes, most applications in the life sciences have been249

restricted to single-channel GPs; that is, models that only describe one set of observations at a time250

(here the expression time series for a single gene). These models – in this aspect not unlike GLMs251

– describe expression of genes independently, i.e. they implicitly assume genes do not interact252

in any way. Gaussian Processes can however be extended to include covariance between two or253

more sets of observations, a formulation that seems to be underexploited in the biological litera-254

ture (but see Velten et al. (2020) and Bahg et al. (2020)). The different dependent variables 𝑦𝑖 are255

sometimes called channels or tasks, and the resulting model is called a multi-task or multi-channel256

Gaussian Process. The details of the specification of this model can be found in Bonilla et al. (2008)257

andMelkumyan and Ramos (2011), which we summarize below. For an array of two genes only, for258

instance, instead of describing each vector 𝑦1 and 𝑦2 separately asmultivariate gaussians of dimen-259

sion𝑁1 and𝑁2, respectively, the concatenated vector [𝑦1 𝑦2]𝑇 with𝑁1+𝑁2 observations canbemod-260

eled as a singlemultivariate gaussianwith a covariancematrix of𝐾 dimensions (𝑁1+𝑁2)×(𝑁1+𝑁2),261

or [𝑦1 𝑦2]𝑇 ∼ 𝒩(𝜇, 𝐾). The diagonal blocks of the covariance matrix with dimensions 𝑁1 × 𝑁1 and262

𝑁2 × 𝑁2 are the same as above, and the off-diagonal blocks of dimensions 𝑁2 × 𝑁1 and 𝑁1 × 𝑁2263

specify the correlations 𝑐12𝑖𝑗(𝑥1𝑖, 𝑥2𝑗) = 𝑒𝑥𝑝 ( |𝑥1𝑖−𝑥2𝑗|2
ℓ2

1+ℓ2
2

) between the two points 𝑖𝑗 from channels 1264

and 2 (Melkumyan and Ramos, 2011). Finally, the signal variance for each of those blocks need to265
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Table 2. Parameter names, description, and priors for Gaussian Processes Bayesian inference.

Parameter Description Prior

𝑠 Standard deviations of data (one for each channel) n/a
�̂�2

𝑖 , (𝑉𝜎,𝑖) Signal variance expectation (variance) from single-channel 𝑖 model n/a
̂ℓ𝑖, (𝑉ℓ,𝑖) Bandwidth expectation (variance) from single-channel 𝑖 model n/a

𝜎2
𝑖𝑖 Signal variance for channels 𝑖 𝒩( ̂𝜎𝑖, √𝑉𝜎,𝑖)

𝜎2
𝑖𝑗 Signal covariance between channels 𝑖 and 𝑗 𝒩(0,𝑚𝑎𝑥(𝑠))

ℓ Bandwidth parameters 𝒩( ̂ℓ𝑖, √𝑉ℓ,𝑖)
̃𝑓 Gaussian Process latent normal variates 𝒩(0, 1)

𝜙 inverse of square of dispersion parameter (𝜙 = 1/𝛼2) 𝒩(0, 1)

be specified, and the final matrix is given by 𝐾 = [𝐾11 𝐾12
𝐾21 𝐾22

] = [ 𝜎2
1𝐶11 𝜎2

12𝐶12
𝜎2

12𝐶12 𝜎2
2𝐶22

] (Bonilla et al.,266

2008), and themean of themultivariate gaussian is specified by a concatenated vector 𝜇 = [𝜇1 𝜇2]𝑇 .267

The number of parameters is reduced by recognizing that the covariance matrix is symmetric so in268

this example 𝜎2
21 = 𝜎2

12, where we also dropped the subscript 𝑓 . For this model, the variation in the269

RNA levels of say gene 1 is a function not only of 𝜎2
1 , but also of 𝜎2

21 = 𝜎2
12. Therefore, fitting the data270

with this model infers interaction between genes from scratch without any external information271

not contained in the array of RNA-seq counts.272

Themodel can be extended to any number of genes, although computational requirements for273

performing the necessary matrix operations on 𝐾 also grow with its size and may be limiting – the274

computational and mathematical limitations of this approach are discussed in the appendix.275

Bayesian MCMC inference of Gaussian Processes276

Analogously to GLM models, we maintain the negative binomial likelihood for the Gaussian Pro-277

cess inference, but unlike the transition between linear models and their generalized versions, the278

incorporation of non-gaussian likelihoods is not as straightforward, and requires methods to ap-279

proximate the underlying latent Gaussian Process model, leading to what is sometimes referred280

to as Gaussian Process Classification (Rasmussen and Williams, 2006). Because of the Bayesian in-281

ference implemented for this model we chose to infer the latent function via Markov Chain Monte282

Carlo sampling as these variables can be estimated jointly with the other parameters and have283

priors that by design are standard gaussian, and therefore are straightforward to specify. Table284

2 gives the description of all parameters in the Multi-Channel Gaussian Process model and their285

priors.286

The number of covariance parameters in amulti-channel Gaussian Processmodel with𝑀 chan-287

nels is (𝑀2 − 𝑀)/2, and the total number of parameters scales roughly as 𝒪(𝑀2) as the number288

of channels becomes large. For 100 genes, for instance, that would result in about 5,000 covari-289

ances. Due to the statistical challenge of exploring a parameter space with a dimension of several290

thousand, as well the computational demand of factorizing a large matrix at each MCMC step, the291

estimation of the signal covariance parameters between genes was not performed jointly. Instead,292

each pair of genes was fitted separately, with a single-channel Gaussian Process being first used293

to estimate the signal variance and bandwidth parameters for each gene and this estimate being294

used as a prior for the (pairwise) joint inference. This procedure effectively breaks down a Gaus-295

sian Process inference of any size into several smaller inference problems requiring factorization296

of a matrix of size 2𝑁 , with a total number of parameters of the order of 𝑁 , which are computa-297

tionally much more manageable and can be run in parallel. Because the covariance parameters298

depend only on the relationship between two variables (here, genes), separate estimation does299

not affect inference of the parameters; in fact, it removes the constraint of positive-definiteness300

on the matrix of covariances of all genes (which instead applies to the matrix of two genes only,301
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see Appendix I).302

Eight parallel chains were run for each estimation with 40 thousand samples each; half were303

excluded as warm-up and 1 out of every 40 was kept for further calculations. Convergence was304

assessed using the �̂� metric and observing the number of effective samples (ESS) (Gelman et al.,305

2013). The annotated model implemented in the Stan probabilistic language is made available in306

the supplementary material. Because inference was done separately for each selection scheme,307

differences between them were assessed by comparing the posterior distribution of the parame-308

ters of interest.309

Results310

Phenotypic response to artificial selection311

The selection procedure for night sleep was very effective. Long-sleeper and short-sleeper popu-312

lations had significant differences in night sleep across all generations (𝑃𝑆𝑒𝑙 = 0.0003); in fact, night313

sleep was different for the two selection schemes for each generation considered separately ex-314

cept for generations 0 and 1 (Supplementary Tables S1 and S2). Bothmales and females responded315

equally to the selection procedure. Figure 1A shows the phenotypic response to 13 generations of316

selection for night sleep. At generation 13, the long-sleeper populations averaged 642.2 ± 3.83 and317

667.8 ± 2.97 minutes of night sleep for Replicate 1 and Replicate 2, respectively. The short-sleeper318

populations averaged 104.3 ± 6.71 and 156.2 ± 8.76 minutes of night sleep for Replicate 1 and Repli-319

cate 2, respectively. The average difference between the long- and short-sleeper lines was 537.9320

minutes for Replicate 1, and 511.6 minutes for Replicate 2. In contrast, the two control populations321

did not have differences in their night sleep after 13 generations of randommating (𝑃𝐺𝑒𝑛 = 0.7083;322

Supplementary Table S3). In the initial generation, night sleepwas 519.6±10.57minutes in the Repli-323

cate 1 control and 567.9±7.63 minutes in the Replicate 2 control. At generation 13, night sleep was324

563.4 ± 7.62 and 542.3 ± 7.91 in Replicates 1 and 2, respectively, a difference of only 43.8 and 25.6325

minutes. These negligible changes in night sleep in the control population suggest that there is326

little inbreeding depression occurred over the course of the experiment (Falconer and Mackay,327

1996). Selection was asymmetric, with a greater phenotypic response in the direction of reduced328

night sleep. Note also that night sleep is bounded from 0 to 720 minutes, and the initial generation329

had 515.39 minutes of night sleep on average across all populations, a fairly long night sleep phe-330

notype. This high initial sleep may explain why the response to selection for short night sleep was331

more effective. Night sleep is sexually dimorphic (Harbison and Sehgal, 2008;Harbison et al., 2009,332

2013); yet both males and females responded to the selection protocol equally (𝑃𝑆𝑒𝑙×𝑆𝑒𝑥 = 0.9492;333

Supplementary Table S1). Thus, we constructed a set of selection populations with nearly 9 hours334

difference in night sleep.335

In an artificial selection experiment, some amount of inbreeding will necessarily take place.336

Only a subset of the animals are selected each generation as parents; thus phenotypic variance is337

expected to decrease as selection proceeds (Falconer and Mackay, 1996).338

However, this is not the case for all artificial selection experiments (Falconer andMackay, 1996).339

We calculated the coefficient of environmental variation (𝐶𝑉𝐸) (Mackay and Lyman, 2005) and eval-340

uated its trajectory across time in order to determine whether the populations were becoming341

more or less variable over time. As Figure 1B shows, night sleep 𝐶𝑉𝐸 increased over time in the342

short sleepers, and decreased over time in the long sleepers (𝑃 < 0.0001; Table S4). The increase343

in 𝐶𝑉𝐸 in short sleepers was largely due to a decrease in the population mean as the standard344

deviation also decreased over time, indicating that the phenotypic variance decreased (Figure S2).345

Likewise, the standard deviation decreased in the long sleepers over time, even as the mean night346

sleep increased, indicating decreased variability in these populations aswell. These changes in𝐶𝑉𝐸347

mimic previous observations in populations artificially selected for sleep (Harbison et al., 2017). Re-348

gressions of the cumulated response on the cumulated selection differential were used to estimate349

heritability (ℎ2). Long-sleeper population ℎ2 (±𝑆𝐸 of the coefficient of regression) were estimated350
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Figure 1. (A) Mean and (B) coefficient of environmental variation of night sleep. Plot and regression lines of
cumulated selection differential (Σ𝑆) against cumulated selection response (Σ𝑅) for (C) long- and (D)
short-sleeping populations, and against cumulated differential Σ𝐷 for (E) controls. Light green, Replicate 1
long-sleeper population; Dark green, Replicate 2 long-sleeper population; Orange, Replicate 1 short-sleeper
population; Red, Replicate 2 short-sleeper population; Gray, Replicate 1 control population; Black, Replicate 2
control population.

as 0.145 ± 0.021 and 0.141 ± 0.014 (all 𝑃 < 0.0001) for Replicates 1 and 2, respectively (Figure 1C);351

short-sleeper population ℎ2 were 0.0169 ± 0.013 and 0.183 ± 0.019 (all 𝑃 < 0.0001) for Replicates 1352

and 2 (Figure 1D). In contrast, estimated regression coefficients for the control population were353

non-significant and with high standard errors associated to the regression estimates: 0.405±0.695354

(𝑃 = 0.57) and −0.078 ± 0.487 (𝑃 = 0.88) for Replicates 1 and 2, respectively (Figure 1E).355

Correlated response of other sleep traits to selection for night sleep356

Traits that are genetically correlated with night sleep might also respond to selection for long or357

short night sleep (Falconer and Mackay, 1996). Indeed, some sleep and activity traits have been358

previously shown to be phenotypically and genetically correlated (Harbison and Sehgal, 2008; Har-359

bison et al., 2009, 2013). We examined the other sleep and activity traits for evidence of a correlated360

response to selection. Night and day average bout length (𝑃 = 0.0008 and 𝑃 = 0.0391, respectively)361

and sleep latency (𝑃 = 0.0023) exhibited a correlated response to selection for night sleep across362

generations 0−13, while night and day bout number, day sleep, and waking activity did not (Figure363

S2; Supplementary Table S1). In the case of day average bout length, the correlated response was364

sex-specific to males (𝑃 = 0.0140) (Supplementary Table S1). Significant correlated responses for365

night and day average bout length and sleep latency did not occur in all generations (Supplemen-366

tary Table S2).367
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Night average bout length responded to selection for night sleep inmost generations, while day368

average bout length responded in only four of the last six generations. Sleep latency responded to369

selection after the second generation. In addition, we observed significant differences between the370

long-sleeping and short-sleeping populations for the 𝐶𝑉𝐸 of all sleep traits except waking activity371

𝐶𝑉𝐸 (Figure S2; Table S4). However, the pattern of the 𝐶𝑉𝐸 for each trait appeared to be more372

random across time.373

Phenotypes in flies used for RNA-Seq374

Every generation, we harvested RNA from flies chosen at random from the 200measured for sleep375

in each selection population, with the exception of the flies chosen as parents for the next genera-376

tion. We extracted RNA from two replicates of 10 flies each per sex and selection population. Since377

these flies amount to only 20% of the flies measured for sleep each generation, their sleep may or378

may not be representative of the group as a whole. We therefore correlated the mean night sleep379

for each generation in the flies harvested for RNA with the mean night sleep of all flies measured380

to determine how similar night sleep was to the total in the group (Figure S3). The correlations381

were very high for the selected populations: long-sleeper flies harvested for RNA were very well382

correlated with the total measured in each population [𝑟2 = 0.99 and 0.96 (all 𝑃 < 0.0001) for Repli-383

cate 1 and 2 respectively], as were short-sleepers [𝑟2 = 0.99 for Replicate 1 and 0.97 for Replicate384

2 (all 𝑃 < 0.0001)]. The control populations, which did not undergo selection, were somewhat less385

well correlated. Replicate 1 of the control population had an 𝑟2 of 0.75 (𝑃 = 0.0001) and Replicate386

2 had an 𝑟2 of 0.85 (𝑃 < 0.0001). Thus, the flies harvested for RNA are very good representatives of387

each population as a whole.388

Hierarchical Generalized LinearModel analysis reveals that selection fornight sleep389

impacts gene expression390

For each gene, the linear model analysis produced posterior distributions for the parameters as391

well as log-likelihood values for the full and reduced models. Point estimates (MAP) are shown in392

Table S5 and S6 (for females and males, respectively). For the male flies 11,778 genes passed the393

filtering for low expression, of which 405 were found to have a significant selection scheme effect394

over the generations of artificial selection (i.e., significant likelihood ratio test for the 𝑠𝑒𝑙×𝑔𝑒𝑛 term).395

Thus, the expression level shift given by the slope of the generalized linear model is different from396

controls and attributable to selection for long and/or short sleep. For the females 820 genes out397

of 9,370 with detectable expression were found to be significant. Genes with opposite trends in398

the short and long selection schemes were compared using the group-level parameter 𝜇𝑠ℎ𝑜𝑟𝑡×𝑔𝑒𝑛399

and 𝜇𝑙𝑜𝑛𝑔×𝑔𝑒𝑛 (i.e. the effect that best explains both replicates): 204 genes in the males and 384 in400

females showed opposite trends by that criterion. Table S7 and S8 list those genes for females and401

males, respectively. Between males and females, 85 genes were common to both sexes. Known402

functions of these 85 genes from the DAVID gene ontology database are presented in Table S9. We403

used these 85 genes in subsequent analyses; see below. Figure 2 shows the fit for one gene.404

Pairwise Spearman correlation is non-specific and significant for a large fraction405

of genes406

We computed Spearman correlations for all pairwise combinations of the 85 genes common be-407

tween sexes (Supplementary Table S10 ). Correlations computed using the Spearman method408

were found to be significant at 95% confidence for 2,999 of the 3,570 possible pairs. The confi-409

dence intervals for the correlations coefficients showed no overlap with controls for either short410

sleepers, long sleepers, or both populations in 1,348 of 3,570 pairs. Thus, a simple correlational411

analysis identifies a minimum of 38% of the possible interactions among genes as relevant.412
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Figure 2. Fit of Hierarchical Generalized Linear Model to gene CG1304 for flies selected for short sleep,
unselected controls, and selected for long sleep. The solid lines show the expected value of full model,
dashed lines for reduced model, and shaded regions show the 95% credibility interval. Replicate 1 data points
are shown in dark gray, Replicate 2 in light gray.

Gaussian Process model analysis uncovers nonlinear trends and specifically iden-413

tifies covariance in expression between genes414

As noted above, a simple correlational analysis suggested that large numbers of genes are poten-415

tially interacting to alter sleep. Because direct computation of linearmodel-based correlations can-416

not account for non-linear effects or spurious confounding trends we fit Gaussian Process models417

that can account for temporal variation inmultiple genes even in the absence of actual interactions418

between them. The 85 significant genes overlapping between males and females potentially have419

3,570 pairwise interactions. To that end, the parameter of interest in the Gaussian Process model420

is the signal covariance between each pair of genes. This covariance is a measure of the degree421

of their interaction. We applied the Gaussian Process model for each of the 3,570 pairs for each422

selection scheme (long, short, and control). As an example, themodel fit for one pair of genes from423

the female gene expression data is shown in Figure 3.424

Convergence for all three runs was on the order of |�̂� − 1| ≈ 10−4, and close to the 4,000425

samples expected for each run; therefore, the wide confidence intervals are likely a product of426

the large dispersion in the data itself. Correlation between gene expression patterns of the two427

genes is computed by dividing the signal covariance by the square root of the signal variance of428

each gene – e.g. 𝜌𝑙 = 𝜎2
𝑙(𝑖𝑗)/𝜎𝑙(𝑖)𝜎𝑙(𝑗) = 𝜎2

𝑙𝑜𝑛𝑔(𝐿𝑦𝑠𝐶,𝐶𝐺1304)/𝜎𝑙𝑜𝑛𝑔(𝐿𝑦𝑠𝐶)𝜎𝑙𝑜𝑛𝑔(𝐶𝐺1304) – that is, similar to429

computing a correlation coefficient from variances and covariances, but taken as the expectation430

over the posterior distribution obtained from MCMC.431

Figure 3 illustrates the nonlinear trajectories of gene expression that cannot be detected by the432

GLM model. The two trajectories exhibited high signal covariance between the expression of the433

two genes in the long sleepers (𝜌𝑙 = 0.89) that was significantly different from controls; however,434

intermediate covariance in the short sleepers (𝜌𝑠 = 0.53) did overlap with that of controls, and435

therefore was not significantly different.436

Figure 3 - supplement 1 shows apairwhere interactions in both short and long selection schemes437

are different from controls, Figure 3 - supplement 2 shows another pair of genes where neither438

scheme is different from controls. This illustrates a range of possibilities, including a case where439

Spearman correlations are significant but GP correlations are not (the opposite also occurs). Fig-440

ure 3 - supplements 3 and 4 fit each gene individually, and the fit does not change substantially441

between single to multiple channel models.442

The 85 single-channel fits were good despite varying levels of dispersion and occasional outliers,443

indicating no issues with the Gaussian Processes ability to fit the temporal patterns of any one444

gene. For the two-channel inference, upwards of 90% of the chains initially converged under the445
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Figure 3. Fit of Gaussian Process model to pair of genes LysC and CG1304, for flies selected for short sleep,
unselected controls, and selected for long sleep. The solid lines show the expected value, while the shaded
regions show the 95% credibility interval. Replicate 1 data points are shown in dark gray, Replicate 2 in light
gray). The expectation for correlations (𝜌𝑠𝑒𝑙) is shown for each selection scheme. An asterisk indicates
significant difference from controls in selection scheme, as opposed to non-significance (n.s.).
Figure 3–Figure supplement 1. Fit of Gaussian Process model to pair of genes haf and CG1304.
Figure 3–Figure supplement 2. Fit of Gaussian Process model to pair of genes CR43242 and CG1304.
Figure 3–Figure supplement 3. Fit of single-channel Gaussian Process model to CG1304 gene.
Figure 3–Figure supplement 4. Fit of single-channel Gaussian Process model to LysC gene.

criterion that 0.95 < �̂� < 1.05; because the inference method is stochastic it is expected that by446

chance some chains may not converge and/or mix well with their replicates. Chains that initially447

failed were rerun up to two times. After three runs over 99% of the chains converged; the reasons448

for lack of convergence of the remaining were not investigated further. Figure 4 shows six heat449

maps (one for each sex and selection scheme combination) with the correlations for all pairs of450

genes calculated as described in the previous figure, summarizing the inferred interactions. Of451

the 3,570 correlations, 1,612 were greater than 0.5 and 98 greater than 0.9.452

In addition to computing expected values, the posterior distributions were used to compare453

the signal covariances between selection schemes and set a cutoff. Distributions of the parameter454

for each sex-selection scheme were assembled from the parallel MCMC runs; 145 gene pairs in455

the selected populations are found to be different from controls (i.e. do not overlap with them at456

95% credibility for either short, long or both populations). Out of the 145, twelve gene pairs were457

common to between males and females selected for long night sleep and one pair to males and458

females selected for short sleep; one gene pair was common to females in both selection schemes,459

and three pairs were common tomales. Table S10 shows the expected values of signal covariances460

normalized by the variances for all two-way interactions side by side with the Spearman correla-461

tions. Table S11 shows the subset of significant Gaussian Processes correlations.462

We constructed a network for each sex/selection scheme combination based on themagnitude463

of the correlation between genes. The network for males selected for long sleep having significant464
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Figure 4. Signal variances and covariances normalized to range [-1,1] for females and males in each of the
selection schemes: short, control, and long. Each off-diagonal square is the expected value of the interaction
between two of 85 genes, for a total of 3,570 pairs.

gene interactions is shown in Figure 5 (supplements 1-3 show the networks for the remaining three465

sex-selection scheme combinations).466

For comparison, looking at significant ( 𝜌𝑠𝑒𝑙 ≠ 0 ) Spearman correlations keeps almost three467

thousand interactions (i.e. excludes just a bit more than a tenth of the genes), and comparing468

the distributions 𝜌𝑠𝑒𝑙 versus 𝜌𝑐𝑜𝑛𝑡𝑟𝑜𝑙 – similar to how the Gaussian Processes are compared – still469

has over thirteen hundred. Therefore, computing correlations between genes using covariance470

estimates from the Gaussian Processes greatly increases specificity over direct correlations. Fur-471

thermore, the Gaussian Processes are not only more specific but more sensitive in finding 68 gene472

pairs that are not found to be significant by the first Spearman approach and 18 not found by the473

second.474

Finally, we examined known interactions between the 85 genes and any other genes using the475

Drosophila Interaction Database, DroID (Murali et al., 2011). We found 2,830 interactions; 8 of476

these were one of the 3,570 between the 85 genes, but none of them overlapped with the 145477

gene pairs found to be different from controls. The gene interactions we observed may therefore478

be unique to extreme sleep.479

Discussion480

We have shown that robust, reproducible phenotypic changes in Drosophila melanogaster sleep481

are associated with hundreds (405 in males, 820 in females) of individual shifts in gene expression482

– and as a consequence hundreds of thousands of potential combinations [ (405
2 ) > 8 ⋅ 104 and483

(820
2 ) > 3 ⋅ 105 ]. Nevertheless, unique interactions important to the phenotypes are a compar-484

atively small number (145 out of (85
2 ) = 3570 possible combinations of the 85 genes common to485

males and females). We have also shown that these interactions cannot be foundwith linearmodel486

analyses or conventional correlation calculations only, but are specifically identified using a combi-487

nation of an informative experimental designwith densely-sampled time points to generate a large488

scale data set, and a nonparametric, nonlinear model-based approach that explicitly accounts for489

covariance in gene expression. That complex traits can be mostly explained by additive effects490
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Figure 5. Gene interaction network in males selected for long sleep. Edges represent signal covariances
whose posterior distributions do not overlap with that of controls at 95% credibility. Colors and line thickness
indicate indicate the strength and the direction of the correlation. Thin gray lines show all 145 interactions
significant for at least one of the four sex-selection scheme combinations.
Figure 5–Figure supplement 1. Male, short sleepers
Figure 5–Figure supplement 2. Female, long sleepers
Figure 5–Figure supplement 3. Female, short sleepers

of individual genes (and their expression) is a common and sometimes useful assumption. While491

it underpins preliminary analyses that allow whole-transcriptome data to be understood, it elimi-492

nates the ability to infer interactions between them from the data and stops short from identifying493

relevant processes. Complex traits involvemultiple genes, and the actual interactions giving rise to494

phenotypes are likely to be highly nonlinear (Mackay, 2014). These nonlinearities are not a math-495

ematical construct, but a biological reality arising from chemical kinetics. Favoring approaches496

that account for these features will not only increase statistical power, but understanding of actual497

biological mechanisms beyond simple network representations of gene expression (DiFrisco and498

Jaeger, 2020).499

In most correlation and information-theory based methods the dimension (e.g. time or space)500

across which samples covary is only implicit (Emmert-Streib et al., 2012); the only possible conclu-501

sion from a significant correlation between two sets of observations is that onemay have an effect502

on the other – i.e. the data alone does not allow the distinction between actual interactions and503
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spurious correlation. Bioinformatic pipelines that have correlation as their starting point – in ad-504

dition to carrying over its limitations – are not straightforwardly comparable to our approach (see505

Appendix 1). In the context of Gaussian Processes, correlation between all pairs of data points –506

including within the same time series, i.e. autocorrelation – is explicit in time (or other dimension),507

so similar trends do not necessarily imply covariance between the sets of observations. Therefore,508

on the one hand GPs are a nonparametric method that requires no more biological knowledge509

than that for computing a linear correlation; on the other hand, while not an explicit description510

of dynamic biological processes, it is also a model-based approach that can be used within more511

mechanistic formalisms like differential equations (Äijö et al., 2013), or potentially be used to for-512

mulate specific hypotheses and build mechanistic models.513

Although somewhat self-evident, it is important to highlight the fact that to describe correla-514

tions along time, multiple time points are needed – put another way, the use of a nonlinear model515

requires enough resolution in the data that the trajectory can be identified. To that end, a single516

high-resolution, large data set with a specific design, like the one generated in this work, will be517

more useful than several small data sets, for instance with only initial and final time points and518

allowing only two-sample linear comparison. Gene expression measured at the terminal genera-519

tion of selection and compared among selected and control groups does identify candidate genes520

(Pegoraro et al., 2020; Brown et al., 2017; Mackay et al., 2005; Wertheim et al., 2011; Sørensen521

et al., 2007; Morozova et al., 2007; Edwards et al., 2006), but the relationship between pairs of522

genes is lost. Some studies evaluated gene expression during the last 2-3 generations of selection523

(Telonis-Scott et al., 2009; Garlapow et al., 2017); however, the additional sampling was used to524

confirm consistency rather than change across time. Our approach of sampling over time enabled525

us to derive interactions between genes and demonstrated that unique gene expression network526

profiles develop in long sleepers as compared to short sleepers.527

When employing methods of increasing complexity or sophistication there is always the ques-528

tion of how relevant the inference is or, in other words, how “real” are the parameters or processes529

in the model. This pursuit of simplicity may favor the use of methods based on linear models as530

more palpable approaches and less prone to arbitrary assumptions about how the parameters531

are put together; however, it is important to realize that linear coefficients are no more real than532

those of any other model. On the contrary, biological processes are not restricted by our ability533

to comprehend them. Therefore, what may seem as an Occam’s Razor-like simplicity will probably534

hinder accurate description of nature. Systems-level understanding of complex biology requires535

not only more and more detailed data, but better descriptions of the processes and methodology536

that captures higher-order phenomena. Equivalently, experimental validation of these phenom-537

ena will be more technically challenging to accomplish. Despite the additional difficulties, it must538

be recognized that methods that cannot possibly match the complexity of nature are doomed to539

scratch all over the surface without realizing a deeper understanding.540
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Supplemental Information763

Figure S1. Principal Component Analysis on matrix of normalized expression data shows complete
separation of sexes along the first component, which explains 65% of the variance in the data.
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Table S1. Quantitative genetics of the response to selection for long or short night sleep and related sleep
parameters. For each trait, the ANOVA analysis results are presented. Source indicates each factor in the
model. 𝑔𝑒𝑛, generation; 𝑟𝑒𝑝, replicate; 𝑠𝑒𝑙, selection; 𝑑.𝑓., degrees of freedom; M.S., Type III mean squares; 𝐹 ,
𝐹 ratio statistic; 𝑃 , 𝑃−value.

Table S2. Quantitative genetics of the response to selection for long or short night sleep per generation. For
each sleep trait, the ANOVA analysis results are presented for each generation. Source indicates each factor
in the model. 𝑟𝑒𝑝, replicate; 𝑠𝑒𝑙, selection; 𝑑.𝑓., degrees of freedom; M.S., Type III mean squares; 𝐹 , 𝐹 ratio
statistic; 𝑃 , 𝑃 -value.

Table S3. Quantitative genetics of control populations. For each sleep trait, the ANOVA analysis results are
presented. gen, generation; rep, replicate; sel, selection; 𝑑.𝑓., degrees of freedom; MS, Type III mean squares;
𝐹 , 𝐹 ratio statistic; 𝑃 , 𝑃 -value.

Table S4. Correlated response of sleep trait coefficient of environmental variance (𝐶𝑉𝐸) to selection for long
or short night sleep duration. For each sleep trait listed, the ANOVA results are presented. 𝑑.𝑓., degrees of
freedom; M.S., Type III mean squares; 𝐹 , 𝐹 ratio statistic; 𝑃 , 𝑃 -value.

Table S5. GLM analysis results for each gene in females are shown as a row; the Maximum a Posteriori (MAP)
parameter estimates and log-likelihoods are shown as well as 𝑝-values computed from the likelihood ratio
test. Significance statistics corrected for multiple testing are also included, as well as the normalized counts
for all samples.

Table S6. GLM analysis results for each gene in males are shown as a row; the Maximum a Posteriori (MAP)
parameter estimates and log-likelihoods are shown as well as 𝑝-values computed from the likelihood ratio
test. Significance statistics corrected for multiple testing are also included, as well as the normalized counts
for all samples.

Table S7. Genes with opposite slopes for the short and long interaction terms of generation in females

Table S8. Genes with opposite slopes for the short and long interaction terms of generation in males

Table S9. Gene Ontology analysis results for 85 significant genes common to males and females.

Table S10. Correlations obtained from normalizing Gaussian Process signal covariances (GP correlation) and
from Spearman Correlation for each of the six sex, selection scheme combinations

Table S11. Expected values for the correlations obtained from normalizing Gaussian Process signal
covariances (GP correlation) not overlapping with controls for each of the six sex, selection scheme
combinations (value missing if overlapping in that condition)
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Figure S2. Correlated response to selection for long/short night sleep and associated coefficient of
environmental variation. A, day average bout length; B, day average bout length coefficient of environmental
variation (𝐶𝑉𝐸); C, day sleep; D, day sleep 𝐶𝑉𝐸 ; E, night bout number; F, night bout number 𝐶𝑉𝐸 ; G, night
sleep; H, night sleep 𝐶𝑉𝐸 ; I, waking activity; J, waking activity 𝐶𝑉𝐸 ; K, sleep latency; L, sleep latency 𝐶𝑉𝐸 ; M,
day average bout length; N, day average bout length 𝐶𝑉𝐸 ; O, night average bout length; P, night average bout
length 𝐶𝑉𝐸 . Light green, Replicate 1 long-sleeper population; Dark green, Replicate 2 long-sleeper population;
Orange, Replicate 1 short-sleeper population; Red, Replicate 2 short-sleeper population; Gray, Replicate 1
control population; Black, Replicate 2 control population. 𝐶𝑉𝐸 , phenotypic variation.
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Figure S2. (Continued).
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Figure S3. Correlation of night sleep between flies harvested for RNA and all flies in the population. A,
long-sleeping Replicate 1; B, long-sleeping Replicate 2; C, short-sleeping Replicate 1; D, short-sleeping
Replicate 2; E, control Replicate 1; F, control Replicate 2
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Figure 3–Figure supplement 1. Fit of Gaussian Process model to pair of genes haf and CG1304.

764

Figure 3–Figure supplement 2. Fit of Gaussian Process model to pair of genes CR43242 and
CG1304.
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Figure 3–Figure supplement 3. Fit of single-channel Gaussian Process model to CG1304 gene.
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Figure 3–Figure supplement 4. Fit of single-channel Gaussian Process model to LysC gene.
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Figure 5–Figure supplement 1. Male, short sleepers

768

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted July 12, 2021. ; https://doi.org/10.1101/2021.07.11.451943doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.11.451943


Figure 5–Figure supplement 2. Female, long sleepers
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Figure 5–Figure supplement 3. Female, short sleepers
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