
 

SurvBenchmark: comprehensive benchmarking study of sur-

vival analysis methods using both omics data and clinical data 
 
 
Yunwei Zhang1,2, Germaine Wong3,4,5, Graham Mann6, Samuel Muller1,7^, Jean Y.H. Yang1,2*^ 

1
 School of Mathematics and Statistics, The University of Sydney, Sydney, Australia 

2 
Charles Perkins Centre, The University of Sydney, Sydney, Australia 

3 

Sydney School of Public Health, The University of Sydney, NSW, Sydney, Australia. 
4 

Centre for Kidney Research, Kids Research Institute, The Children’s Hospital at Westmead, NSW, Sydney, Australia. 
5 

Centre for Transplant and Renal Research, Westmead Hospital, NSW, Sydney, Australia. 
6
 John Curtin School of Medical Research, Australian National University, Canberra, Australia 

7
 Department of Mathematics and Statistics, Macquarie University, Sydney, Australia 

 

^ Equal contribution 

*To whom correspondence should be addressed. 

 
 
Abstract 
Survival analysis is a branch of statistics that deals with both, the tracking of time and of the survival status simultaneously as the 
dependent response. Current comparisons of the performance of survival models mostly focus on classical clinical data with tradi-
tional statistical survival models, with prediction accuracy being often the only measurement of model performance. Moreover, 
survival analysis approaches for censored omics data have not been fully studied. The typical solution is to truncate survival time, to 
define a new status variable, and to then perform a binary classification analysis. 
 
Here, we develop a benchmarking framework that compares survival models for both clinical datasets and omics datasets, and that 
not only focuses on classical statistical survival models but also incorporates state-of-art machine learning survival models with mul-
tiple performance evaluation measurements including model predictability, stability, flexibility and computational issues. Our com-
prehensive comparison framework shows that optimality is dataset and analysis method dependent. The key result is that there is 
no one size fits all solution for any of the criteria and any of the methods. Some methods with a high C-index suffer from computa-
tional exhaustion and instability. The implications of our framework give researchers an insight on how different survival model 
implementations vary over real world datasets. We highlight that care is needed when selecting methods and recommend specifi-
cally not to consider the C-index as the only performance evaluation metric as alternative metrics measure other performance as-
pects.  
 
 

Code availability: https://github.com/SydneyBioX/SurvBenchmark  

Contact: jean.yang@sydney.edu.au 

 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2021. ; https://doi.org/10.1101/2021.07.11.451967doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.11.451967
http://creativecommons.org/licenses/by-nc-nd/4.0/


Y. Zhang et al. (2021) 

1. Introduction 
Survival models are statistical models designed for data that have censored observations, that is time-to-event data, which are commonly found in 
health, biological organisms and mechanical systems. We will follow the terminology in survival analysis and capture the event of interest through a 
‘status’ variable, which is typically a binary class outcome; we call the waiting time to this status event the ‘survival’ time. This class of models has 
wide applicability as it can be applied to study the duration of marriage in sociology, the duration of employment in labor economics and much more in 
addition to the survival type in the datasets considered in this article. Therefore, survival models target both outcomes, whereas neither regression anal-
ysis on time nor classification analysis on status explain both simultaneously (Schober and Vetter, 2018b). 
 
Multiple survival models have been developed over the last decades and there are many good reviews and comparisons of those models in the literature. 
However, there is a lack of comparison studies from a practical viewpoint, that is a lack of extensive real world datasets comparisons, particularly in the 
biomedical field. This motivates us to develop a benchmarking framework for that viewpoint to provide a better understanding of survival models and 
to inform on how to guide decision making. To better understand what has been done, we perform an exhaustive search for various types of available 
survival analysis methods together with performance evaluations for different types of datasets.  
 
For comparison studies that include real world datasets in health, we found that they typically have specific focus such as on a certain disease (e.g. 
colon or pancreatic cancer), or on a certain data platform (e.g. omics or clinical). For example, Schober and Vetter (Schober and Vetter, 2018a) and 
Ahmed et al. (Ahmed et al., 2007) conduct reviews on traditional survival models such as the Kaplan-Meier (KM) method and the Cox Proportional 
Hazards (CoxPH) model with a focus on clinical data with an induce anesthesia state and a specific colon cancer type, respectively. Lee and Lim (Lee 
and Lim, 2019) apply the penalized Cox model, survival support vector machine, random survival forest (RSF), and Cox boosting models on large 
genomic data. To date, no systematic review encompasses datasets obtained from multiple disease types and includes both, clinical categorical and 
clinical continuous data, as well as large omics data.  
 
We also conclude from these recent comparison studies that they are either within traditional models (KM method, CoxPH model) or within modern 
machine learning (ML) methods. With the emergence of different modelling approaches from various disciplines addressing challenges such as differ-
ent model assumptions, a recent comprehensive survey article by Wang et al. (Wang et al., 2019) summarizes three categories of statistical survival 
models and ML methods with a focus on theoretical mathematical detail. However, their study does not discuss practical implications of the various 
methods, in particular there is no comparison of performance using real world datasets. There is a need for better guidance on what data analysis strate-
gy to use.  
 
To this end, we develop a benchmarking framework: SurvBenchmark that considers multiple aspects with several evaluation metrics on a large collec-
tion of real world health datasets to guide method selection and new method development. 

2. Survival models and their evaluation 
Survival models can deal with data that explain censored observations with a bivariate outcome variable, consisting of ‘time’ (the minimum of ‘time-to-
event’ and ‘censoring time’) and ‘event’ (often categorized as “class 1” meaning survival event did occur, and “class 0” otherwise). There are two key 
features of such censored survival objects. One, the class label “0” (referring to a “no-event”) does not mean “class 0”; instead, it represents that the 
event-outcome is “unknown”, or, using the technical term, “censored”. Two, an additional tracking time measurement is included as part of the re-
sponse. In this section, we briefly introduce survival models together with their evaluation metrics.  
 
There are two main branches of survival models: classical statistical survival models, which include parametric models, nonparametric models and 
semi-parametric models; and modern ML survival models, which include ensemble based methods and state-of-the art deep learning based approaches. 
Both sets of models are briefly reviewed in the following two sections.  

2.1 Classical survival models 
The Cox Proportional Hazards (CoxPH) model (Cox, 1972) is the most widely used classical survival model. CoxPH works on the hazard function 
which is the multiplication of a baseline hazard function and the exponential of a linear combination of covariates in the data and the estimated parame-
ters.  
The hazard function is given by 

���, ��  � �����	�∑ ����
�

���
�,      (1) 

where � � ���, ��, . . . , �	� is the covariate vector and ����� is the baseline hazard function. 
 
This is a semi-parametric model as the baseline hazard function is canceled out when taking the ratio of two hazard functions.  
 
The penalized Cox model is another extension of the CoxPH model that helps to prevent overfitting. The L1 regularized CoxPH model adds a scaled 
sum of absolute values of the magnitude of model coefficients, that is �� ∑ �
 	


�� as the regularization term to the partial log-likelihood. Other 

regularizers can be used such as L2 regularization, that is �� ∑ ��
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�� , or other scaled sums of non-negative penalties of the ���, such as in the follow-
ing general penalized partial log-likelihood: 
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where ���� is the partial likelihood as for example given in Tibshirani ((Tibshirani, 1997), Equation 2) and then optimization takes place (Van 
Houwelingen, 2004; Do et al., 2013; Huang and Liang, 2018). Using the L1 penalty in Equation (2) gives the Lasso Cox estimation and using the L2 
penalty gives the Ridge Cox solution, respectively. If instead of a single regularization term we consider a weighted average of the L1 and L2 penalty, 
we obtain the ElasticNet Cox model. One remarkable characteristic of the Lasso Cox model and the Elastic Net Cox model is that they can simultane-
ously perform feature selection and prediction, because some of the beta parameters can be penalized all the way to 0 when maximizing Equation (2). 

2.2 Modern machine learning models 
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Recent years have seen a strong surge in the use of modern ML methods as a result of their exceptional performance, in health and in many other areas, 
such as in finance (Gogas and Papadimitriou, 2021), the environment (Chen et al., 2017) and internet of things (Lakshmanaprabu et al., 2019). Notable 
examples in health include the application of Random Survival Forest (RSF) on complex metabolomics data (Dietrich et al., 2016) and the application 
of SurvivalSVM to the survival of prostate cancer patients (Van et al., 2008). Both approaches are survival analysis extensions to two widely used ML 
algorithms (Random Forest and Support Vector Machine) for binary classification.  
 
SurvivalSVM was developed by Van Belle and colleagues (Van Belle et al., 2011) for time-to-event data. It is a variant of the regularized partial log-
likelihood function (2) above but has a different penalty term. In contrast to using � ∑ ���
�	


�� , SurvivalSVM uses penalized splines and then applies 
both, ranking constraints and regression constraints to the corresponding partial log-likelihood function. SVM with those constraints enables models for 
high-dimensional omics data to have more flexible structure, e.g. additive (non)-linear models. One distinct feature of SurvivalSVM is that it treats the 
prognostic problem as a ranking problem and therefore, the estimation of the hazards is not directly incorporated in the model. 
 
RSF was first proposed by Ishwaran (Ishwaran et al., 2008) as an extension of Random Forest to censored survival data. Random Forest (Breiman, L., 
2001) is a non-parametric bagging based ensemble learning method that adds variation in the training datasets by bootstrapping the data. Multiple mod-
els are generated based on various bootstrapped datasets, and the ensemble prediction result is an average of these multiple models or the result of a 
majority vote. The key components in our application of RSF are that we use Harrell’s C-index to evaluate the survival tree instead of the mean square 
error for regression problems or confusion matrix for classification problems, and that we use the log-rank score in each node as the stopping rule. 
 
Another ensemble based approach is the boosting method, which contains multiple learners and sequentially gives more weight to weak learners to 
enhance predictability. For example, the Cox boosting model (Bin and De Bin, 2016; Binder et al., 2013, 2009; Binder and Schumacher, 2009) is de-
veloped based on Cox models with boosting being applied to the estimation of the regression beta parameters in Equation (1). There are two popular 
approaches to update �: the first is the model-based approach that leads to the mboost method, the second is the likelihood based approach that leads to 
the CoxBoost method (benchmarked in this study).   
 
These models so far only focus on optimizing a single objective. Because survival data is time dependent, it is natural to have multiple tasks related to 
one or more time points of interest. This naturally leads to multi-task learning, a method that deals with the need to predict for more than a single re-
sponse variable, based on joint optimization of multiple likelihood functions corresponding to each task. The multi-task logistic regression model 
(MTLR) by Yu et al. (Yu et al., 2011) is a survival model for multiple time points, where for each, the task is to predict survival using a logistic regres-
sion model and the parameters from each model are estimated simultaneously in the maximization of the joint likelihood function. 
 
More recently, the ML and artificial intelligence (AI) communities refer to the methods above as classical ML methods due to the emergence of deep 
learning (DL), a conceptual advancement based on neural networks (NN). In survival analysis, recently a number of DL survival models were devel-
oped such as Cox-nnet (Ching et al., 2018a), DeepSurv (Katzman et al., 2018) and DeepHit (Ryu et al., 2020). The key concept in DL survival models 
is having different loss functions that particularly target either the hazard or the survival probability for those neurons in hidden layers when building 
the DL architecture. High dimensional complex biological information can be better represented with the application of those hidden layers (Ching et 
al., 2018b) and through relaxing the proportional hazard assumption.  

2.3 Feature selection methods applied to survival models  
Fundamental to any ML model is feature selection. A critical component for the models is the input features. In parallel to having a good prediction 
model, it is important to understand the drivers (features) that are behind the good model performance. Wrapper and filter (Bagherzadeh-Khiabani et al., 
2016) are two types of widely used feature selection methods applied together in different types of survival models. We briefly review traditional and 
advanced methods used in this benchmark work here.  
 
Traditional statistical sequential feature selection methods such as stepwise selection methods, including backward or forward selection with different 
criteria such as AIC or BIC, are wrapper methods used with the Cox model. With the emergence of omics data in the 1990s, the statistics community 
embraced the development of differential expression (DE) analysis that is a filter type feature selection method to select promising genes. Expression 
levels are usually measured by log-fold-change that can vary for omics data and due to the large p small n framework, “parallel univariate strategies'' 
have been used (such as Wilcoxon-Mann-Whitney or t-test) to identify DE genes when comparing two groups.  
 
Further, there are some advanced modern filter feature selection methods for omics data. The genetic algorithm (GA) is one filtering method that is 
inspired by Charles Darwin’s natural evolution theory; the selection of features here is actually an optimization problem which is a binary classification 
problem that uses linear discrimination analysis in the design (Saeys et al., 2007; Coombes, Kevin R, 2017). GA was developed by John Holland (Hol-
land et al., 1992) and two major steps are crossover, which exchanges the genes of parents and mutation, which adds diversity in the next generation.  

2.4 Classical performance evaluation metric for survival data  
 
Classically, survival analysis is evaluated in three broad settings: the concordance index, the Brier score and the time-dependent AUC. Similar to evalu-
ating classification and regression models, metrics for calibration and discrimination frameworks are developed with incorporating censoring by apply-
ing rank based methods or error based methods together with a weighting scheme.  

2.4.1 C-index and its extension in survival analysis  

C-indices in survival analysis are concordance based methods where ‘concordance’ measures how close a prediction is to the truth. The first C-index for 
survival analysis was introduced by Frank. E. Harrell (Harrell, 1982), as a performance measure that does not depend on time. A C-index can range 
from 0 to 1, where 1 means perfect performance and 0 means worst possible performance. If a model would not take into account any information from 
the data, that is a random prediction is made, then the corresponding C-index would be around 0.5. For most clinical datasets, a C-index around or larg-
er than 0.6 is considered an acceptable prediction. Harrell’s C-index (Newson, 2006) defines concordance by looking at ranks of pairs of subjects in the 
data (there are n choose 2 pairs for data with n subjects). Harrell’s C index further depends on the censoring distribution of the data, is motivated by 
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Kendall’s tau statistic and is closely related to Somers’ D. When ranking the subjects, censored subjects are excluded; and pairs included in the formula 
are only those comparable, non-censored pairs. There are different versions of the C-index, where the differences come from the different ways that 
censored subjects are ranked.  
 
We will use the following three C-indices. First, Begg’s C-index (Marchevsky and Wick, 2011) uses KM estimators to incorporate both censored and 
uncensored subjects by assigning different weights to them. When we have a high percentage of censoring, there might be a high bias for this evaluation 
metric. Second, Uno et al (Uno et al., 2011; Harrell et al., 1984) develop a new way to calculate the rank with the help of inverse probability of censor-
ing weight (IPCW). Third, the GH C-index (Gönen and Heller, 2005) changes the concordance function into a probability function based on the Cox 
model estimation and then approximates its distribution which is robust to censoring.  

2.4.2 Brier score  

The Brier score (Gerds and Schumacher, 2006) (Schmid et al., 2011) uses IPCW to handle censored subjects when measuring discrepancy between the 
estimated values and the actual values. This score can be considered as a similar measure to the mean squared error (MSE) in regression models to 
some extent. Like the MSE, the Brier score takes a value greater than 0 that depends on the data and the smaller the Brier score the better. However, to 
have better interpretability, the integrated Brier score (IBS) is introduced which also takes values between 0 and 1 - it averages the loss over time in 
situations where there is no interest in a particular time point but performance is with regards to all time points as a whole.  

2.4.3 Time-dependent AUC  

The time-dependent AUC is also inspired from binary classification model evaluations. The receiver operating characteristic (ROC) curve is the curve 
that plots the sensitivity versus the false positive rate. The area under the ROC curve is called AUC (area under the curve). In survival analysis, as we 
have multiple time points, the traditional AUC cannot be applied directly. Chambless and Diao (Chambless and Diao, 2006) were the first to propose a 
time-dependent AUC for survival analysis. They define the AUC(t) as the probability that a person with disease onset by time t has a higher score than 
the person with no event by time t. By specifying different time points, AUC values can be visualized through the time-dependent AUC plot.  

3. Material and Methods 

3.1 Datasets: six clinical and ten omics data sets 
Clinical data - Six clinical datasets with different sample sizes and disease types are selected. Of these, three datasets are publicly available and the 
other three (ANZDATA, UNOS_Kidney data and Melanoma data as described below) can be requested (see references in Table 1).  

• Veteran data (Kalbfleisch and Prentice, 2002) is a survival dataset from the randomised trial of two treatment regimens for lung cancer and the da-
ta is obtained from the R “survival” package via the function “data(veteran)”. There are 6 measured features in this data. 

• PBC data (Fleming and Harrington, 2005) from the Mayo Clinic trial in primary biliary cirrhosis (Pbc) of the liver conducted between 1974 and 
1984; it can be obtained from the R “RandomForestSRC” package via function “data(pbc)”. This data has 5 clinical features with a total of 312 
patients.  

• Lung data (Loprinzi et al., 1994) contains patient survival information with advanced lung cancer from the North Central Cancer Treatment 
Group and is available from the R “survival” package via the function “data(lung)”. This data has 7 features with a total of 228 patients.  

• ANZ data (ANZDATA), this is the Australia & New Zealand Dialysis and Transplant Registry data containing graft survival information and 
electronic clinical records for kidney transplantation recipients in Australia and New Zealand from 30th June 2006 to 13th November 2017. This 
data contains records for both living and deceased donors and also multi-organs transplants. We processed the raw data, restricting the transplant 
date to be after 2008-09-18 and retained deceased donor kidney transplants only. Missing records are excluded and this leaves us with 3323 pa-
tients and 38 features containing patient, donor and donor-recipient human leukocyte antigen (HLA) compatibility.  

• UNOS_Kidney data is the organ transplant data based on the Organ Procurement and Transplantation Network (OPTN)-United Network for Or-
gan Sharing (UNOS) in the US (based on OPTN data as of March, 2020). We selected a random sample of 3000 records (setting the seed function 
in R to 202001) associated with deceased donor kidney transplantation only with 99 features containing recipients, donors and donor-recipient 
HLA compatibility. Missing values are imputed using the R package “MICE”. 

• Melanoma_clinical data, extracted from melanoma data (Mactier et al., 2014; Mann et al., 2013) which is a melanoma disease in-house dataset 
collected as part of multi-omics study (Wang et al., 2020), is the part that contains clinical information for patients. After deleting all missing val-
ues, we have 88 patients with stage three melanoma disease measured by 14 clinical features.  
 

Omics data - We consider eight published data and two in-house melanoma cancer omics datasets.  
• Two ovarian cancer gene expression datasets are downloaded from the R package “curatedOvarianData” (Ganzfried et al., 2013). The curation of 

this data collection closely follows from Waldron et al. (2014) and the analysis pipeline from Yoshihara et al. (2012). Ovarian1 is obtained using 
the R function “data("GSE49997_eset")” with 194 patients and 16047 genes and Ovarian2 is the “GSE30161_eset” data with 58 patients and 
19816 genes.  

• Another six gene expression datasets are available online from Li and colleagues' paper. (Li et al., 2016; Sorlie et al., 2003; Beer et al., 2002; 
Bullinger et al., 2004; van de Vijver et al., 2002; van ’t Veer et al., 2002; van Houwelingen et al., 2006). We named these data as GE_1, GE_2, 
GE_3, GE_4, GE_5 and GE_6. For GE_3, log2 transformation is applied, followed by a KNN imputation with 10 nearest points. For GE_6, me-
dian normalisation is applied. For others, no further pre-processing is performed by us.  

• Melamona_itraq and Melanoma_nano are two melanoma omics datasets, the first is a protein expression dataset from the iTRAQplatform and the 
second is a Nanostring dataset from the above melanoma study and pre-processing steps are described in the respective papers. The itraq protein 
expression data has 41 patients with 640 proteins. The nanostring data has 45 patients with 204 nanostrings. 
 

A summary of the size and censoring rate of all datasets can be found in Table 1.  

3.2 Benchmarking framework/procedure 
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Benchmarking methods: All methods evaluated are described in detail in the Supplementary Excel file. 
 
Evaluation metrics: We examine model performance metrics that can be broadly grouped into 4 categories and assessing performance in terms of eac
methods’ flexibility, predictability, stability and computational efficiency (detailed in Table 2). 
 
We measure model flexibility by looking at whether a given method can handle different data modality, different level of sparsity, represents multipl
ways including the type of data required (clinical, omics), type of input required (categorical, numerical), sparsity of the data allowed (yes, no) an
prediction ability evaluation metrics allowed.  
 
We measure model predictability using three different metrics: C-index, time-dependent AUC and Brier score. We apply 4 different modified version
of C-index: Harrell’s C-index, Begg’s C-index, Uno’s C-index and GH C-index. For identification of different time points, we equally divided the su
vival time ranging from the 1st quartile to the 3rd quartile into 15 time points for each dataset, and therefore, we obtained 15 AUC values corresponding
to each time point. As for the Brier score, we calculated the raw Brier score and the IBS.  
 
We measure model computational efficiency using both computational time and memory. Computational time is calculated using the “Sys.time” func
tion in R. Memory is calculated using the “Rprof” function in R and the total memory used is summarized for each experiment.  
 
We measure model stability using model reproducibility and the standard deviation (SD) of model predictability metrics. Model reproducibility is de
fined as the proportion of successful runs among all the runs attempted. For each model predictability metric, we calculated its SD. We then ranked th
values for all the methods for each dataset from the most stable (smallest SD) to the least stable (largest SD).  
 
All compared methods (Supp Table 1) and evaluation metrics (Table 2) are applied and evaluated on those listed real world datasets (Section 3.1). W
apply 20 times (runs) repeated 5-fold cross validation using RStudio server (based on R software) with 15 cores in parallel. For each run, the whole dat
is split into a training dataset (80%) and a testing dataset (20%) with each method trained using the training dataset and values of evaluation metric
calculated using the testing dataset. Detail about the packages and parameters can be found in (Supp Table 1) and functions used to evaluate the meth
ods are shown in (Table 2).   

4. Results 

4.1 SurvBenchmark framework for comprehensive benchmarking 
To comprehensively evaluate the strength and weaknesses of the various survival analysis approaches, we select 20 methods from the extensive litera-
ture and examine their performance when applied to 16 datasets, including both clinical and omics data. The performance of each method is measured 
against 11 metrics representing multiple aspects including model feasibility, model predictability, model stability and computational efficiency. There 
are three key aspects of our comparison framework SurvBenchmark as depicted in Figure 1: (i) Practical oriented framework which is applied to a 
broad range of datasets and which includes a taxonomic methods system to evaluate multiple aspects; (ii) Extensive comparison of methods from clas-
sical to state of the art machine learning (ML) approaches (terminologies used in this study includes classical Cox-based methods: 
Cox, Cox_bw_AIC, Cox_bw_BIC, Cox_bw_p, Lasso_Cox, Ridge_Cox, EN_Cox; Cox-based modern ML methods: CoxBoost, CoxBoost (GA), Cox-
Boost(DE); Cox-based methods: both classical Cox-based and modern Cox-based; and MTLR-based methods: MTLR, MTLR(GA), MTLR(DE)); (iii) 
Comprehensive evaluation of the model performance with the utilisation of a customizable weighting framework.  

 
 

Figure 1: SurvBenchmark--Schematic view of our benchmark framework. 
(a) An overview of survival models.  We broadly classify current models into two categories; traditional statistical models (top group) and modern machine learning models (bottom 
group). Each of these categories can be further subdivided as presented in the hierarchical chart. All models in blue and red colored boxes are implemented in this current benchmark 
study. 
(b) A graphical representation of the SurvBenchmark framework. The methods and evaluation metrics are summarized in a matrix with a flexible user defined weights vector. 

4.2 Practical consideration in assessing model performance  
Many comparison studies define method performance solely in terms of method predictability, with only a few studies taking into account computation
al time. Often the feasibility of the method is not properly considered or discussed. Practically, it is paramount that a method can be applied to the dat
at hand, based on both the flexibility (data modality, sparsity) and computational requirement.   
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Given the diverse collection of data characteristics that is now available in the biomedical field, not all survival approaches are feasible to be applied to
all data types. For example, some classical Cox models (Figure 2a, top left from column 1 to 10, row 1 to 4; a blue box indicates ‘not feasibility’ of the
method) cannot handle large p (features) small n (samples) datasets (such as GE-1) which is a distinct feature of any molecular (omics) study. Ad-
vanced feature selection methods together with ML survival models such as CoxBoost(DE) can only take numerical data as the input (purple box for 
input type, where model characteristics are coded using 0, 1 and 2 with questions defined as below. Is input type numeric only? Yes: numerical only. 
No: both numerical and categorical are ok. Is output type survival risk? Yes: survival risk. No: survival probability. Can the model handle n<p situa-
tion? Yes: it can. No: it cannot. The other case: output is the rank of survival risk.).  
 
Next, we look at the computational aspect, and we notice that deep learning based methods are computationally inefficient. The star icon, which reflect
that the method takes a long time and requires a lot of memory, indicates this (Figure 2a). From the many stars, we observe that RSF(default) (5 stars
and MTLR (4 stars) are not as computationally efficient as Cox-based approaches such as Lasso_Cox (1 star) and CoxBoost (no stars).  
 
Lastly, a summary tabulating the feasibility associated with each of the evaluation metrics for prediction is provided in Figure 2b. The results highligh
that Begg’s C-index and GH C-index are applicable only for Cox methods (red boxes indicate feasible), that the integrated Brier score can be calculated
for Cox model and RSF (red), and that the Brier score cannot be calculated for SurvivalSVM (blue).  

 
Figure 2: Summary heatmaps 
(a) Summary for method flexibility and computational efficiency. (row: methods, column: datasets, feasible: red, not feasible: blue, feasible, star: memory and time consuming, model 
characteristics: yes, 1, no, 0, the other case, 2) (b) Prediction ability evaluation metric flexibility. (row: methods, column: prediction ability evaluation metrics, feasible: red, not feasible: 
blue) (c) Rank heatmap for method overall performance (row: methods, column: performance metrics, red to blue: top to bottom rank) (d) Harrell’s C-index heatmap (row: datasets, 
column: methods)  

4.3 Performance evaluation from multiple perspectives: no ‘one size fits all’  
To achieve a comprehensive overview of different survival approaches, we assess method performance from multiple perspectives across a large collec
tion of datasets. Here, we color the methods according to their performances for all three broad categories: model predictability, model stability and
computational efficiency (Figure 2c shows ranks of those methods where red means the best and blue the worst; similarly, Figure 2d shows Harrell's C
index values with red referring to high values and blue to small values). We find that no method performs optimally across all three categories and ther
are various trade-offs among the categories. 
 
For model predictability, we use seven different measures based on C-index, Brier score and time-dependent AUC. Here, MTLR-based approache
perform significantly better than others, which is most apparent by looking at the performance results using C-index and time-dependent AUC. In orde
to further examine whether MTLR-based approaches have similar performance across all datasets, we show our examination on one specific criteri
(the most popular Harrell’s C-index; Mean_hc). In Figure 2d we demonstrate that MTLR has optimal performance for all but one of the six clinica
datasets with PBC having optimal performance for one of the clinical datasets. Variants of MTLR (MTLR(GA) and MTLR(DE)) outperformed MTLR
when applied to any of the ten omics datasets suggesting the performance of the approaches depend on the type of dataset. 
 
For computational efficiency as measured by computational time and memory usage, the best performing methods are classical Cox-based models an
CoxBoost. In particular, Cox, Cox_bw_AIC and Cox_bw_BIC are the top three performing methods for computational time (Figure 2c). For mode
stability, we have seven criteria and they are based on calculating the standard deviation (SD) of predictability metrics described above. Similar to th
the computational efficiency performance, when using SD-criteria, Cox, Cox_bw_AIC and Cox_bw_BIC are also the top 3 performing methods in al
but one criteria, the exception is the standard deviation of Brier score (SD_bs), where DNNSurv ranks first suggesting its ability to discriminate surviva
probabilities for different observations. 
 
Despite having the best performance in both computational efficiency and stability for Cox-based methods, their predictability falls behind MTLR
based methods. On the other hand, MTLR-based methods clearly have the best predictability but they are not efficient and stable enough (He and Sun
2015). 
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In conclusion, these observations demonstrate that no method performs optimally for all those categories.  

4.4 Cox-based modern ML methods have similar prediction performance compared to classical Cox-based methods 
To understand the gain in model predictability from Cox-based modern ML methods (CoxBoost, Coxboost (GA)), we compare those models with trad
tional Cox-based methods (Lasso_Cox, EN_Cox) which are used as a gold standard method in many studies. Our results indicate that they have simila
performance (Figure 3) across a large collection of datasets. For example, in the ANZ data, which is a representative clinical dataset, we observe simila
model predictability measured by both Harrell’s C-index and Brier score. For GE_5, a representative dataset of omics with large p small n data charac
teristics, the same conclusion is drawn. This suggests the performance of modern ML methods in complex health and clinical data is not as clear cut a
in some other domains.  

 
Figure 3: Prediction ability for cox-based methods.  
Top left: Harrell’s C-index on ANZ data. Top right: Brier score on ANZ data. Bottom left: Harrell’s C-index on GE_5. Bottom right: Brier score on GE_5. 

4.5 Data dependent model performance related to short and long time prediction 
To discover the model performance over time, we visualize the model performance using the time-dependent AUC curves for all methods. Here w
observe among two representative clinical datasets (PBC, UNOS_Kidney) and two omics datasets (GE_2, GE_4) in Figure 4, not all curves are paralle
to each other, indicating that the behaviour of model predictability for different time points is data dependent (see supplementary plot 1 for further re
sults). For UNOS_Kidney data and GE_2 data, there is consistency of short-time, medium-time and long-time prediction as the curves are approximate
ly horizontal. In contrast, for PBC data and GE_4 data, methods such as RSF, CoxBoost(GA) possess different predictability along those time points. 

 
 
Figure 4: Time-dependent AUC curves.  
Top left: PBC data Top right: UNOS_US data Bottom left: GE_4 data. Bottom right: GE_2 data.  

5. Discussion 
This benchmark study comprehensively evaluated the relevance and usefulness of survival models in practice, where emphasis was placed on the pe
formance in diverse real life datasets. In our review we assessed a broad variety of survival methods from classical Cox-PH models to modern ML
models including DNNSurv. The findings of our systematic assessment will provide specific guidance for translational scientists and clinicians, as wel
as define areas of potential study in both survival methodology and benchmarking strategies. 

5.1 Shift from hazard function to survival function  
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In recent years, there is a clear shift in how survival data is analysed, from modelling directly the hazard function to building models directly on surviv-
al functions. Conceptually, modelling hazard functions is a good way to identify key risk factors related to various patients’ risk levels. On the other 
hand, if our key criterion is to produce an accurate survival probability prediction (predictability), modelling survival probability instead of hazard 
function shows the improvement in predictability. Methods including MTLR, DNNSurv and SurvivalSVM which directly model the survival function 
showed better performance in terms of model predictability, this is consistent with what Li and colleagues (Yu et al., 2011) have commented on when 
discussing the performance of their proposed MTLR method. 

5.2 Discussion of MTLR 
It is striking that MTLR shows remarkable model predictability in our benchmark study and we now highlight technical advantages, disadvantages as 
well as its applications. Numerous reasons could contribute to the better model prediction performance observed in our study with MTLR-based ap-
proaches. These include the three main reasons as discussed by Li and colleagues (Yu et al., 2011): the direct modeling of the survival function, simul-
taneous building of multiple logistic regression models and the dynamic modeling. Interestingly, the majority of extended MTLR models since 2011 are 
based on neural networks as researchers extend the concept to account for nonlinearity in datasets (Fotso, 2018). To date, only a limited number of 
studies have applied MTLR in health using clinical data in HIV patients (Bisaso et al., 2018) or on large omics datasets to predict patient survival in 
Breast Invasive Carcinoma and Kidney Renal Clear Cell cancers (Wang et al., IEEE 2017). Given its outstanding model predictability observed for 
most of the datasets in our study, we believe there may be an opportunity to use MTLR more widely for survival risk modelling in Health contexts. 

5.3 Suggestion to look at multiple indices 
Model predictability is one of the key metrics to assess survival studies with Harrell’s C-index being currently the most popular model assessment met-
ric. As this kind of ranking based concordance measurement is suitable to evaluate predicted outcomes with censored data, various concordance indices 
are developed using different methods to handle censoring such as Uno’s C-index using IPCW. Besides concordance indices, other predictability met-
rics such as the time-dependent AUC, which applies a similar idea as the AUC in binary classification problem but needs to divide the whole time in-
terval into multiple time points, are also adopted in some survival studies (Li et al., 2020). Given that the model predictability could actually be meas-
ured by multiple types of indices, we suggest that hybrid evaluation metrics should be applied in practice to provide relatively comprehensive assess-
ments for the fitted model. 

5.4 Models targeting clinical data vs omics data 
Though many survival approaches are applicable to both clinical and omics data, there are a number of recently developed approaches that are specifi-
cally tailored for high dimensional omics data, such as CoxBoost. The rationale behind developing data-specific methods is to better capture the distinct 
data characteristics in either the clinical or omics studies. Clinical data such as electronic health records (EHR) usually include mixed modality vari-
ables, large sample sizes but has a relatively small number of features (i.e. large n and small p). In contrast, omics data naturally comes with large p 
(large collection of molecular features) and small sample size (small n) but their data type is homogenous. When it comes to various real life datasets, 
performances are also affected by many other aspects besides data type (clinical, omics) such as data modality and therefore, it is challenging to directly 
examine whether those tailored methods indeed improve the performance. 

5.5 DNNSurv reproducibility 
Unlike all other approaches, there is some concern over reproducibility of the results for the method DNNSurv in our empirical work. We found that the 
DNNSurv failed to run for some samples of the data under our repeated cross-validation setting. More specifically, among all 100 runs, we observe that 
DNNSurv has a 100% completion rate for 5 out of the 12 applicable datasets (supplementary plot 2) only. For the remaining 7 datasets, the completion 
rate is around 80% and completion rate was as low as 63% for the Melanoma_itraq data. The reason behind such instability is likely due to parameter 
tuning requirements for most of the DNN based methods for data with small sample sizes (Shaikhina and Khovanova, 2017). 
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Table1. Data table showing the names of datasets used in this paper in the first column. Datasets are ordered by the number of observations (second 
column, from smallest to largest). Censoring rate is rounded to 4 decimal places. 

 

 

 

 

 

Datasets summary 

Dataset (name used in this 
paper)  

No. of observations (ordered, 
smallest to largest)  

No. of vari-
ables 

Type of 
data 

Censoring rate (rounded to 4 
decimal places)  

Reference 

Melanoma_itraq 41 642 Omics 0.4146 (Wang et al.)  

Melanoma_nano 45 206 Omics 0.4222 (Wang et al.)  

Ovarian_2 58 19818 Omics 0.3793 (Ganzfried et al., 2013) 

GE_5 78 4753 Omics 0.5641 (van ’t Veer et al., 
2002) 

GE_3 86 6288 Omics 0.7209 (Bullinger et al., 2004) 

Melanoma_clinical 88 16 Clinical 0.3939 (Wang et al.)  

GE_1 115 551 Omics 0.6670 (Sorlie et al., 2003) 

GE-_4 116 4753 Omics 0.5641 (van de Vijver et al., 
2002) 

Veteran 137 8 Clinical 0.0657 (Kalbfleisch and Pren-
tice, 2002)) 

Ovarian_1 194 16050 Omics 0.7062 (Ganzfried et al., 2013) 

Lung 228 9 Clinical 0.2763 (Loprinzi et al., 1994) 

GE_6 240 7401 Omics 0.4250 (van Houwelingen et 
al., 2006) 

GE_2 295 4921 Omics 0.7322 (Beer et al., 2002) 

PBC 312 7 Clinical 0.5994 (Fleming and Harring-
ton, 2005)  

UNOS_Kidney 3000 101 Clinical 0.7350 (OPTN data) 

ANZ 3323 40 Clinical 0.8739 (ANZDATA) 
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Table 2. Model performance evaluation criteria 

Evaluation criteria 

Class Name Description 

Model flexibility Type of data required  Describes the source of the data obtained, either clinical data or omics data.  

Data input Describes the different types of data modality such as categorical, numerical or mixture.  

Data sparsity  Binary yes or no measure whether the model can handle a high level of sparsity in the data.   

Prediction ability 
evaluation metrics 
allowed  

A certain evaluation metric can only be applied to a specific type of survival model. This is a 2-dim 
model cross predictability evaluation metric summary and whether a model can be assessed by a metric 
is recorded with yes or no values.  

Model predicta-
bility  

Harrell’s C-index Harrell’s method to calculate the C-index. This is applied to all methods using the R function 
“rcorr.cens” in package “Hmisc”. This value ranges from 0 to 1 with 0.5 representing random guesses 
and the higher the value the better the concordance, i.e. model predictability.  

Begg’s C-index Begg’s method to calculate the C-index. This is applied to applicable methods using the R function 
“BeggC” in package “survAUC”. 

Uno’s C-index Uno’s method to calculate the C-index. This is applied to all methods using the R function “UnoC” in 
package “survAUC”. 

GH C-index Gonen and Heller’s method to calculate the C-index. This is applied to applicable methods using the R 
function “GHCI” in package “survAUC”. 

Time-dependent AUC 
for time t 

This is the Chambless and Diao estimator of cumulative/dynamic AUC for right-censored time-to-
event data for time t. This is applied to all methods using the R function “AUC.cd” in package “sur-
vAUC”. The interpretation of this AUC value for a specific time t is the same as AUC in classification 
models.  

Brier score This calculates the Brier score for all methods using the R function “pec” in package “pec”. The 
smaller the value, the better the prediction. 

Integrated Brier score This gives the scaled version of the Brier score. This value is between 0 and 1 (the smaller the value, 
the better the prediction) and for the constant prediction probability 0.5, the value is 0.25. This is ap-
plied to feasible methods using the R function”crps” in package “pec”.  

Computational 
efficiency  

Computational time Represents how long it takes the method to run for each dataset. This is calculated using the “Sys.time” 
function in R.  

Total Memory  Represents how much memory is required to run the method for each dataset. This is calculated using 
the “Rprof” function in R which returns the memory consumed for each sub function and then we 
calculate the total memory which is the sum of all of those.  

Model stability Reproducibility Measures the proportions of successful runs among all those 100 runs attempted. Some methods are not 
fully successful for all datasets, such as DNNSurv, Cox_bw_AIC and the corresponding successful 
proportions are plotted. (supplementary plot 3)  

SD of model predict-
ability metrics 

Measures the standard deviation (SD) of each model predictability metric. Values are ranked from 1 
(smallest SD) to 20 (largest SD) for all those 20 methods within each dataset.  
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