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Abstract 23 

The nuclear folding of chromosomes relative to nuclear bodies is an integral part of gene function. Here, 24 

we demonstrate that population-based modeling—from ensemble Hi-C data—can provide a detailed 25 

description of the nuclear microenvironment of genes and its role on gene function. We define the 26 

microenvironment by the subnuclear positions of genomic regions with respect to nuclear bodies, local 27 

chromatin compaction, and preferences in chromatin compartmentalization. These structural descriptors 28 

are determined in single cell models on a genome-wide scale, thereby revealing the structural variability 29 

between cells. We demonstrate that the structural microenvironment of a genomic region is linked to its 30 

functional potential in gene transcription, replication and chromatin compartmentalization. Some 31 

chromatin regions are distinguished by their strong preferences to a single microenvironment, due to 32 

associations to specific nuclear bodies in most cells. Other chromatin shows high structural variability, 33 

which is a strong indicator of functional heterogeneity. Moreover, we identify specialized nuclear 34 

microenvironments, which distinguish chromatin in different functional states and reveal a key role of 35 

nuclear speckles in chromosome organization. We demonstrate that our method produces highly 36 

predictive 3-dimensional genome structures, which accurately reproduce data from TSA-seq, DamID, 37 

GPSeq and super-resolution imaging. Thus, our method considerably expands the range of Hi-C data 38 

analysis and is widely applicable.  39 
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Introduction 40 

The spatial organization of eukaryotic genomes is linked to regulation of gene transcription, DNA 41 

replication, cell differentiation and upon malfunction to cancer and other diseases1,2. Recent advances 42 

have led to a prolific development of improved technologies for probing chromosome interactions and 3D 43 

organization3,4. Live-cell and super-resolution microscopy5-11 as well as mapping technologies based on 44 

high-throughput sequencing12-27 shed light into the dynamic formation of chromatin loops and topological 45 

associating domains (TADs). These structural elements play a role in moderating promoter-enhancer 46 

interactions between remote DNA regions for regulating gene expression28-30. However, besides local 47 

promoter-enhancer interactions, gene expression and other functions are also influenced by their nuclear 48 

locations and chromatin compartmentalization, i.e., preferential associations of chromatin with similar 49 

functional profiles31,32. Chromosome conformation mapping and imaging8,10,11,33 show spatial segregation 50 

of chromatin into transcriptionally active and inactive A/B compartments21, subsequently refined, at high 51 

sequencing depth, into 5 primary Hi-C subcompartments34. Chromatin compartmentalization is also 52 

instigated by associations to nuclear bodies, such as nuclear speckles, PML bodies, Polycomb bodies or 53 

lamina associating domains, and other nuclear compartments32. Transcriptional permissive regions often 54 

locate at nuclear speckles, nuclear pore complexes and PML bodies, while regions of transcriptional 55 

repression are associated with the nuclear lamina and perinucleolar chromatin35. Thus, gene positions to 56 

nuclear bodies can play critical roles in permissiveness of gene expression and other functions35,36. 57 

However, mapping the three-dimensional (3D) organization of all genes in single cells remains a major 58 

challenge. Several experimental technologies probe the mean distances (TSA-seq14) or association 59 

frequencies (NAD-seq37, DamID17) of genes to nuclear speckles, lamina associated domains, and 60 

nucleoli. However, collecting this information simultaneously within the same cell, at the same time, is 61 

challenging, especially when considering cell-to-cell variability of a gene’s microenvironment within a 62 

population of cells. Several super-resolution microscopy techniques have recently provided such 63 

information7-9. For instance, DNA- and RNA- multiplexed error-robust fluorescence in situ hybridization 64 

(MERFISH) super-resolution imaging detected, within the same cells, the nuclear locations of 1,137 65 

genes, together with the positions of nuclear speckles, nucleoli, as well as the amount mRNA transcripts8. 66 

However, at this point, the amount of probed genomic DNA regions is still sparse, containing ~1% of 67 

entire genomes. 68 

Here, we introduce an approach for modeling a population of single cell 3D genome structures to describe 69 

the nuclear microenvironment of genomic regions on a genome-wide scale. Our aim is to evaluate the 70 
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roles of the nuclear architecture and its cell-to-cell variability in genome function and identify specialized 71 

nuclear microenvironments, which distinguish chromatin in different functional states.   72 

We achieve this goal by using a population-based genome structure modeling approach, which takes in 73 

situ Hi-C data to generate a population of diploid genome structures statistically consistent with it38,39. We 74 

demonstrate that our method produces—from Hi-C data alone—highly predictive genome structures, 75 

which accurately predict data from SON TSA-seq14, lamin B1 TSA-seq14, lamin B1 pA-DamID40, GPSeq41 76 

, 3D fluorescence in situ hybridization (FISH)19 and DNA-MERFISH8 experiments. We define the nuclear 77 

microenvironment of genomic regions by an array of structural descriptors, including radial positions, 78 

association frequencies and mean distances to nuclear speckles, lamin B1, and nucleoli, the local 79 

chromatin fiber compaction, and local compartmentalization in form of the trans A/B ratio8 (Fig. 1a,b). 80 

These structural descriptors are determined in single cell models, thereby revealing cell-to-cell variability 81 

of structures across the population of models.  82 

Our analysis provides several key findings. Firstly, genomic regions with stable structural properties, thus 83 

a strong preference in their nuclear microenvironment are most homogenous in their functional properties 84 

across cells in a population. For instance, genes with high cell-to-cell heterogeneity in expression42 often 85 

show increased structural variability, indicating a contribution of extrinsic noise to gene expression 86 

heterogeneity43. Chromatin with low structural variability are associated with either nuclear speckles or 87 

constitutive lamina associated domains (LADs) in the majority of cells. These regions provide structural 88 

anchor points for other chromatin and thus are a major factor in genome organization. We also observe 89 

nuclear zones around speckles to be hubs of inter-chromosomal interactions in the active compartment. 90 

Secondly, our analysis shows that the subnuclear microenvironment of a genomic region reflects its 91 

transcriptional potential. Genes with highest expression levels can be distinguished from those with 92 

lowest based on their structural microenvironment. Among all structural descriptors, the speckle 93 

association frequency and trans A/B ratio have the highest predictive value for its gene expression 94 

potential. Thirdly, the nuclear microenvironment of a genomic region is a good indicator of its replication 95 

timing. Moreover, our observations also confirm that Hi-C subcompartments34 define physically distinct 96 

chromatin environments, some of which (like A1) linked to associations with nuclear bodies. Interestingly, 97 

the A2 subcompartment stands out by its high structural variability between cells, a feature distinctly 98 

different from the A1 subcompartment. 99 

Although other computational approaches also modeled entire chromosomes or even diploid genomes 100 

from Hi-C data19,39,44-60 so far, none documented the predictive accuracy in reproducing multimodal 101 

experimental data as presented here. Our findings demonstrate that our approach, from Hi-C data alone, 102 

produces exceedingly predictive models, providing a detailed description of the subnuclear locations, 103 
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folding and compartmentalization of chromatin in diploid genomes. Therefore, our approach considerably 104 

expands the scope of information retrieved from Hi-C data and is widely applicable to any cell type for 105 

which Hi-C data is available. 106 

Results 107 

Assessment of 3D genome structures. 108 

Here, we study 3D structures of diploid lymphoblastoid genomes (GM12878) from in situ Hi-C data34 at 109 

200 kb (kilobase) resolution. Our method generates a population of 10,000 genome structures, in which 110 

all accumulated chromatin contacts are statistically consistent with contact probabilities from Hi-C 111 

experiments38,39,61. The structure optimization is achieved by solving a maximum likelihood estimation 112 

problem utilizing an iterative optimization algorithm with a series of optimization strategies for efficient 113 

and scalable model estimation38,39,52,60. The resulting genome structure population accurately reproduces 114 

Hi-C contact probabilities (Pearson’s r=0.98, genome-wide; 0.99 and 0.83 for cis and trans contacts, 115 

p=~0, average chromosome SCC62=0.87, Extended Data Fig. 1a,b, Supplementary Information). More 116 

than 99.91% of all contact constraints are fully satisfied and predicted contact frequencies show very 117 

small residuals (Extended Data Fig. 1c).  118 

Model accuracy is assessed by predicting experimental data not used as input in the modeling process. 119 

First, models generated from a sparse Hi-C data set, with 50% entries randomly removed, predict the 120 

missing Hi-C contact frequencies with high accuracy (Pearson’s r=0.93 (cis) and 0.69 (trans) of missing 121 

data, p=~0, Extended Data Fig. 1d,e, Methods). Thus, our method is robust against missing data. 122 

Second, our models predict with good accuracy a host of orthogonal data from lamin B1 pA-DamID40, 123 

lamin B1 TSA-seq14, SON-TSA-seq14, and GPSeq41 experiments (Pearson’s r=0.80, 0.78, 0.87, and 0.80, 124 

respectively, Table 1, Methods). We will discuss these data in greater detail throughout this paper. Our 125 

models also confirm interior radial preferences of chromatin replicated in the earliest G1b phase (p=2.39e-126 
77, Mann-Whitney-Wilcoxon test, two-sided) and predicted a gradual increase in average radial positions 127 

for chromatin replicated at progressively later times63 (Extended Data Fig. 1f). Our models also agree 128 

with 3D FISH experiments19, namely co-location frequencies of four inter-chromosomal pairs of loci 129 

(Pearson’s r= 0.99, p=0.014, Extended Data Fig. 1g), and distance distributions between three loci on 130 

chromosome 6 and relative differences in radial positions of these loci (Extended Data Fig. 1h). Finally, 131 

all our results are reproduced by technical replicates and converge even with smaller population sizes 132 

(Methods, Supplementary Information). 133 
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After establishing our models’ predictive value, we now determine the nuclear microenvironment of 134 

genomic regions by a variety of structural descriptors in each single cell model, such as their nuclear 135 

locations, distances to nuclear bodies and spatial compartmentalization (Fig. 1a,b). Our aim is to identify 136 

specialized nuclear microenvironments that distinguish chromatin in different functional states, and 137 

evaluate the roles of the nuclear architecture and its cell-to-cell variability in regulating transcription and 138 

replication.  139 

Subnuclear positions and cell-to-cell heterogeneity vary by genomic loci.  140 

The nuclear positions of genes are of functional relevance. FISH experiments revealed for a number of 141 

genes, upon transcriptional activation, a statistical shift of their locations towards the nuclear center64,65.  142 

Due to their stochastic nature, nuclear positions of a locus can vary between individual cells. For instance, 143 

in our models some loci can be observed in an interior position in one structure of the population and 144 

close to the periphery in another (Fig. 2a). However, when averaged over the population of models it is 145 

evident that radial positions of genomic regions show preferred averaged locations, which substantially 146 

vary by genomic loci. Most evidently this is seen when plotting average radial positions along a 147 

chromosome. Radial profiles reveal pronounced minima and extended maxima, flanked by regions 148 

undergoing large radial transitions over relatively short sequence distances (Fig. 2b, upper panel). These 149 

minima overlap with regions of lowest lamin B1 DamID signals66 (Extended Data Fig. 2a,b). Our 150 

observations reproduce similar positional preferences detected in GPSeq experiments41 (Pearson’s 151 

r=0.80, p=~0, Extended Data Fig. 2c,d). 152 

Interestingly, regions undergoing large radial transitions often overlap with borders between the 5 primary 153 

Hi-C subcompartments identified by Rao et al.34 (Fig. 2b, upper panel, Methods), two transcriptional 154 

active (A1,A2) and three inactive subcompartments (B1,B2,B3). 76% of regions with high radial gradient 155 

are located at subcompartment borders. A1 chromatin, gene dense with relatively high GC content, 156 

shows the lowest, most interior average radial positions (Fig. 2c), with the highest probability at the most 157 

interior radial shell, with sharply decreasing probabilities otherwise, confirming previous observations26,41 158 

(Extended Data Fig. 2e). B3 chromatin, mostly LADs34, show exterior average positions, with high 159 

probabilities at the outermost two shells and a relatively narrow distribution of average radial positions 160 

(Fig. 2c, Extended Data Fig. 2e). The B1 subcompartment, enriched in silencing H3K27me3, shares 161 

similar location preferences to A1¾with highest probabilities in the interior radial shells (Fig. 2c, 162 

Extended Data Fig. 2e). However, the A2 subcompartment shows more evenly distributed average 163 

location probabilities across all nuclear shells (Fig. 2c, Extended Data Fig. 2e). Thus, A2 genomic loci 164 

do not share a common preference in their average positions. A similar behavior, with a relatively wide 165 

average radial distribution, is seen for all B2 regions, enriched in pericentromeric and nucleoli associated 166 
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domains (NADs), with a slight increase in probabilities towards the outer half of nuclear shells (Fig. 2c, 167 

Extended Data Fig. 2e). 168 

However, average positions alone are inferior measures of the dynamic positions of genes. They cannot 169 

convey if a region preferentially locates at the average location in most cells or if the region is rarely found 170 

at the average location, for instance when locations follow a multimodal or a skewed radial distribution. 171 

Our approach reveals the cell-to-cell variability of radial positions. To quantify stochastic variations of 172 

radial positions in the population of cells, we calculated 𝛿!"#, the log-transformed fraction of observed 173 

and expected standard deviations of a genomic region’s radial position ( 𝛿$!"# =174 

𝑙𝑜𝑔%(𝜎$ 〈𝜎〉⁄ ),	Methods). 		𝛿!"#  differs distinctly between genomic loci (Fig. 2b, lower panel). High 175 

variability regions (𝛿!"# > 0 ) alternate, in sharp transition, with regions of low variability (𝛿!"# <176 

0)¾transitions between high and low variability regions occur over relatively small sequence distances 177 

(Fig. 2b, lower panel). The smallest variabilities are observed for regions with the very lowest and highest 178 

average radial positions (Fig. 2d). Interestingly, intermediate average positions have almost exclusively 179 

high structural variability. Local peaks of high variability appear to coincide with local minima in the radial 180 

profiles at intermediate radial positions (dips with average radial positions ranging 0.55 – 0.70) (Fig. 2b, 181 

lower panel). This indicates that regions at local minima do not locate at intermediate radial positions in 182 

most cells, but greatly alternate between outer and inner locations between cells.  183 

Structural variability correlates with functional properties.  184 

Interestingly, structural variability of genomic regions is a strong indicator of their functional properties, 185 

for both chromatin in active A and inactive B compartments. We first divide chromatin of the active A 186 

compartment into a group with high (A-HV) (𝛿!"# > 0) and one group with low structural variability (A-187 

LV) (𝛿!"# < 0) (Fig. 2d). A-LV, with low structural variability, is strongly enriched in signals from SON 188 

TSA-seq experiments, which specify short mean distances to nuclear speckles (Fig. 2e, left panel). A-189 

LV regions are also strongly depleted in Lamin B1 pA-DamID signals and highly enriched for chromatin 190 

considered as constitutive inter LADs (ciLAD)—genomic regions never found to be associated with the 191 

lamina compartment across all studied cell types66 (Fig. 2e, middle panel). A-LV chromatin is dominantly 192 

replicated at the earliest G1b phase, which is distinctly different from A-HV regions, which are enriched 193 

for chromatin replicated at later S1 and S2 stages (Fig. 2e, right panel). A-LV chromatin show significantly 194 

higher transcriptional activity than A-HV regions (p=1.35e-40, Mann-Whitney-Wilcoxon test, two-sided, 195 

Fig. 2f). Overall, active genes with the lowest number of transcripts in single cell RNA-seq (scRNA-seq) 196 

experiment42 show significantly higher structural variability in their radial positions (𝛿!"#) (p=3.45e-18, 197 

Mann-Whitney-Wilcoxon test, two-sided, Fig. 2g,). 198 
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A-HV regions lack SON-TSA-seq enrichment and are enriched in facultative inter-LADS (fiLADs)—199 

genomic regions that in some cell types can also be found to be lamina associated (Fig. 2e).  200 

Interestingly, A-HV regions with the largest structural variability often show a bimodal distribution in radial 201 

positions, an indication of two distinct favored locations¾a nuclear interior and a peripheral location in a 202 

fraction of models (Fig. 2h). We hypothesize that these genes may exist in two functional states: active 203 

in the transcriptionally favorable interior, and silenced at the periphery. Indeed, A-HV regions are more 204 

enriched in H3K9me3 (related to heterochromatin) and depleted in H3K9ac (related to gene activation) 205 

than A-LV chromatin (Fig. 2i). This could point to a higher functional heterogeneity of these regions 206 

between cells (Fig. 2i). 207 

B compartment chromatin also show functional differences between highly variable (B-HV) (𝛿!"# > 0)  208 

and low variable (B-LV) (𝛿!"# < 0)  genomic regions. B-LV,  with low structural variability, show higher 209 

enrichment in lamina associated features (i.e. lamin B1 pA-DamID and lamin B1 TSA-seq) than B-HV 210 

regions (Fig. 2e). Moreover, B-LV regions show strong enrichment for chromatin in constitutive LADs 211 

(cLADs)—regions that are always found as lamina associated in all studied cell types (Fig. 2e). In 212 

contrast, B-HV show higher enrichment in facultative LADs (fLAD), genomic regions that are lamina 213 

associated in most but not all cell types (Fig. 2e). Differences are also seen in replication timing. B-LV 214 

chromatin is replicated mostly at the very latest G2 phase (Fig. 2e), while B-HV regions are enriched in 215 

chromatin replicated at intermediate time points S3 and S4.   216 

The structural variability of chromatin is also a distinguishing factor between Hi-C subcompartments. We 217 

found that A1 and A2 subcompartments, both active, can be distinguished by their structural variability 218 

alone (Extended Data Fig. 2f). A1 chromatin show overall the lowest, and A2 the highest 𝛿!"# values 219 

(Extended Data Fig. 2f). 93% of all highly variable regions (𝛿!"# > 0) in the active compartment are A2 220 

chromatin. Subsequently, A1 subcompartment chromatin are strongly enriched in A-LV genomic regions, 221 

while the A2 subcompartment are dominantly enriched in the A-HV regions (Fig. 2k). Both 222 

subcompartments separate in two clusters, when considering average radial positions and radial 223 

variability (Fig. 2j). 224 

B1, B2 and B3 subcompartments are also well distinguished by their structural variability and separate 225 

in three distinct clusters, when plotting average radial positions of chromatin against their radial variability 226 

(Fig. 2j). B2 chromatin is highly enriched in variable B-HV chromatin, while B3 chromatin is enriched in 227 

B-LV. B1 chromatin is structurally associated with A1 (Fig. 2k).  228 

Interestingly, continuous genomic regions with similar trends in 𝛿!"#  are often part of the same 229 

subcompartment. These blocks with similar high variability (𝛿!"# > 0 ) alternate with blocks of low 230 

variability (𝛿!"# < 0). Transitions between high and low variability regions align remarkably well with the 231 
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borders between subcompartments, most prominently between A2 and B3 subcompartments (Fig. 2b, 232 

lower panel).  233 

Subcompartments separate into spatial partitions.  234 

We now focus on the 3D compartmentalization of Hi-C subcompartments in single cell models. 235 

Chromosome folding permits functionally related chromatin to assemble into spatial compartments (Fig. 236 

3a). When we calculated the single cell interaction networks (CINs) for chromatin in the same 237 

subcompartment, we saw a heterogeneous network organization with clusters of highly connected 238 

subgraphs intersected by low connectivity regions  (Fig. 3b, Methods). Thus, subcompartment chromatin 239 

is divided spatially into a number of local partitions, which define nuclear territories with the highest 240 

concentration of chromatin in a given subcompartment. This organization is reminiscent to microphase 241 

fragmentation, instigated by the physical nature of the chromatin polymer preventing the segregation of 242 

each subcompartment into a single macrophase32. Spatial partitions are identified in single cells as highly 243 

connected subgraphs in the chromatin interaction network (Fig. 3b, Methods) and can be visualized in 244 

single genome structures by the occupied volume of the contained chromatin (Fig. 3b,c).  245 

Network structures differ between the subcompartments, and therefore, the size, number, and locations 246 

of spatial partitions also vary (Fig. 3c,d,e, Extended Data Table 1). For instance, A1 chromatin  is 247 

fragmented into the fewest number (~50) but largest sized partitions of all subcompartments (Fig. 3d,e, 248 

Extended Data Table 1). These partitions contain the highest fraction of inter-chromosomal interactions 249 

(42%) (Fig. 3f). A2 networks are fragmented into larger numbers of smaller partitions, dominantly formed 250 

by intra-chromosomal interactions (75%) (Extended Data Table 1, Fig. 3d,e,f). While B1 networks also 251 

show high fragmentation into small partitions (Fig. 3d,e), they are formed by a larger fraction of inter-252 

chromosomal interactions (35%) (Fig. 3f). B3 partitions are large and dominantly formed by intra-253 

chromosomal interactions (90%) (Fig. 3e,f).  254 

The larger partition sizes of A1, B2 and B3 chromatin lead to a more homogenous compartment 255 

organization—these chromatin are preferentially surrounded by their own kind (see high enrichment 256 

along the diagonal in Fig. 3g).  Due to their smaller partition sizes, A2 and B1 chromatin show relatively 257 

high neighborhood enrichment with other chromatin (see off diagonal enrichment in Fig. 3g). A2 partitions 258 

are often closely associated with those of B3 chromatin, while B1 partitions associate with those of the 259 

A1 subcompartment41 (Fig. 3g,h).  260 

We found that spatial partitions of active chromatin are regional territories of highest transcriptional 261 

activities. For instance, when we mapped nascent RNA expression from GRO-Seq experiments67 onto 262 

our genome structures, we found increasing transcriptional activities towards the centers of A1 partitions 263 
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(Fig. 4a). A2 partitions show similar trends, although substantially lower signals (Fig. 4a). We also 264 

observe that highly expressed genes reside preferably in larger partitions, and expression levels at the 265 

centers of large A1 and A2 partitions are significantly higher than those of smaller ones (Fig. 4b). These 266 

observations indicate a functional relevance of spatial partitions, which we explore further in the following 267 

section. 268 

Predicting locations of nuclear speckles and speckle associated structural features.  269 

We now infer locations of nuclear bodies in single cell models. When we mapped TSA-seq data to 270 

chromatin in our structures, we noticed that TSA-seq signals are strongest¾thus have smallest mean 271 

speckle distances¾for chromatin located towards the central regions of A1 partitions (Fig. 4c). A2 272 

partitions are devoid of TSA-seq signals (Fig. 4c). These observations suggest that A1 partition centers 273 

could represent locations of nuclear speckles in individual cell models.  274 

To test this assumption, we simulated the experimental TSA-seq process by using A1 partition centers 275 

as approximate speckle locations (Fig. 4d). SON TSA-seq relies on a gradient of diffusible tyramide free-276 

radicals, instigated at speckle locations, to measure distance-dependent labelling of DNA14. The steady 277 

state concentration of tyramide free-radicals at any given chromatin location can then be modeled in 278 

single cells with an exponential decay function using the spatial distances to all predicted speckle 279 

locations in a model14 (Fig. 4d, Methods). The simulated SON TSA-seq data, averaged over the 280 

population of cells, agrees remarkably well with experiment (Pearson’s r=0.87 p=~0), capturing both, 281 

peak sizes and signal distributions (Fig. 4e,f). For instance, the TSA-seq profile of chromosome 2 is 282 

reproduced with high correlation (Pearson’s r=0. 90, p=~0) across the entire chromosome profile, even 283 

though it contains only few A1 regions (6.4%) (Fig. 4e). Chromatin with different predicted TSA-seq 284 

signals show characteristic enrichment of histone modifications, identical to those observed in the 285 

experiment14. This confirms high prediction accuracy across all ranges of TSA-seq values (Extended 286 

Data Fig. 3a). Moreover, predicted speckle locations confirm the proposed correlation between mean 287 

speckle distances of chromatin and its experimental TSA-seq signal (Extended Data Fig. 3b).  288 

Interestingly, prediction accuracy is dramatically reduced when simulations are performed on isolated 289 

chromosomes (i.e., extracted from the genome model), even when identical chromosome conformations 290 

are used (e.g. Pearson’s r for chromosome 17 drops from 0.82 to 0.52) (genome-wide Pearson’s r=0.73, 291 

p=~0, Extended Data Fig. 3c, Extended Data Table 2). This points to a substantial contribution of trans 292 

interactions. When we assume A2 partition centers as speckle locations, simulations fail entirely 293 

(Pearson’s r=0.18, p=9.4x10-98 Extended Data Fig. 3d). Also, random chromosome territories 294 

(Pearson’s r=0.60, p=~0) or simulations based on A1 sequence positions, rather than 3D structures, do 295 
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not produce accurate TSA-seq profiles (Pearson’s r=0.35, respectively, p=~0) (Extended Data Fig. 3c, 296 

Extended Data Table 2). 297 

To generalize our approach to other cell types, we devised a prediction method that does not rely on 298 

subcompartment annotations. We found that spatial partitions of chromatin with the 10% lowest average 299 

radial positions predict speckle locations within 500nm to those derived from A1 partitions in 99% of 300 

structures (78% of chromatin with 10% lowest radial positions are part of A1.). Subsequently, the 301 

simulated SON TSA-seq data is almost identical, with excellent accuracy (Pearson’s r=0.86, p=~0) 302 

(Extended Data Fig. 3d, Extended Data Table 2). Thus, our approach predicts speckle locations and 303 

SON-TSA-seq signals using only Hi-C data. This is important, because subcompartment annotations are 304 

available only to a limited number of cell types. 305 

With predicted speckle locations as reference points, we now calculate speckle-associated features for 306 

genomic regions, namely the (i) mean distance to the closest speckle (SpD), (ii) cell-to-cell variability of 307 

the specke distances (𝛿&'#), and (iii) the speckle association frequency (SAF), as the fraction of models 308 

in which a genomic region is in close proximity with a speckle (Fig. 1, Methods). The predicted SAF 309 

agrees remarkably well with those in a recent DNA-MERFISH microscopy study8 (Pearson’s r=0.79, 310 

p=8.4x10-223, Fig. 4g, Methods).  311 

We also calculated for each genomic region the trans A/B density ratio, defined as the ratio of A and B 312 

compartment chromatin forming inter-chromosomal interactions with the target loci8. Trans A/B ratios 313 

calculated from our models show good agreement with DNA-MERFISH experiments (Pearson’s r=0.70, 314 

p=7.6x10-109, Fig. 4h).  Our models also confirm the correlation between a gene’s SAF and its trans A/B 315 

ratio from experiment (Pearson’s r=0.98, p=~0, Fig. 4i)8. 316 

Defining lamina associated structure features. The lamin compartment at the nuclear periphery is an 317 

important component of the nuclear architecture. Lamin B1 associated chromatin features are calculated 318 

with the nuclear envelope as reference point (Methods). Simulated lamin B1 TSA-seq data (Pearson’s 319 

r=0.78 , p=~0, Extended Data Fig. 4a, Table 1) and lamin B1 DamID data (Pearson’s r=0.80, p=~0, 320 

Extended Data Fig. 4b, Table 1) are in good agreement with experiment14, thus validating correct mean 321 

distances and contact frequencies of genomic regions with lamin B1 at the nuclear periphery. Simulated 322 

lamina association frequencies (LAF) show also high correlation with those from DNA-MERFISH 323 

imaging8 (Pearson’s r=0.64, p=~3.6x10-119, Extended Data Fig. 4c), although the correlation is lower 324 

than for SAF predictions, likely due to shape differences between flat IMR-90 and spherical GM12878 325 

cell nuclei. Predicted LAF values are inversely correlated with a gene’s trans A/B ratios and SAF, 326 

confirming previous observations from DNA-MERFISH imaging8 (Extended Data Fig. 4d). 327 
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Defining nucleolus associated structure features. Nucleoli are major organizing factors in genome 328 

structure. To calculate nucleoli related features, we identify approximate nucleoli locations from spatial 329 

partitions formed by chromatin known to be nucleolus organizing regions (NOR) (short arms of 330 

chromosomes 13,14,15, 21 and 22), and nucleolus associated domains (NADs)68 (Methods). The centers 331 

of these chromatin partitions in single cell models then serve as reference points to calculate for each 332 

genomic region the mean nucleoli distance (NuD), the cell-to-cell variability of the NuD (𝛿()#), nucleoli 333 

association frequencies (NAF) and nucleoli-TSA-seq data (Fig. 1). The NAF calculated in our models 334 

shows good agreement with NAF extracted from DNA-MERFISH imaging (Pearson’s r=0.71, p=1.2x10-335 
152, Extended Data Fig. 4e, Methods).  336 

Defining structural features of the local chromatin fiber. Finally, we also calculate features of the 337 

local chromatin fiber structure. The volume occupied by a chromatin region relates to its local compaction 338 

and is estimated, for each chromatin region, by the radius of gyration (RG) of a continuous 1Mb window 339 

centered at the target locus (Extended Data Fig. 5a, upper panel, Fig. 1, Methods). Average RG profiles 340 

show pronounced maxima at locations of TAD boundaries, while minima show domain-like compaction 341 

(Extended Data Fig. 5a,b,c). RG profiles in single cells show distinct maxima and minima, which can 342 

vary between cells (Extended Data Fig. 5a, lower panel). The probability for observing a peak is at 343 

maximum at TAD border locations, while randomly selected regions show a flat probability distribution 344 

(Extended Data Fig. 4d). About 20% of structures show a RG peak (i.e., domain border) at the exact 345 

TAD border location (50% show a RG peak within the immediate vicinity). These TAD border frequencies 346 

in single cell structures agree with recent observations in oligoSTORM superresolution imaging5.  347 

The spatial microenvironment of a gene mirrors its functional state.  348 

Overall, we calculated a total of 17 structural features from single cell genome models (Fig. 1). Together, 349 

these features define the nuclear microenvironment of each genomic region. The advantage of our 350 

approach is that we can determine these features simultaneously in each single cell model, which allows 351 

us to analyze correlations between them and assess the role of the nuclear microenvironment to explain 352 

functional differences between chromatin, in particular for gene transcription, DNA replication and 353 

chromatin compartmentalization. 354 

Gene transcription. We now investigate the role of the nuclear microenvironment in gene transcription. 355 

We first compare the stochastic variability of gene-speckle distances across single cell models with the 356 

variability of single cell gene expression from scRNA-seq experiments42.  For each chromosome, we plot 357 

a heatmap representing all gene-speckle distances in the cell population (Fig. 5a top panel). Each column 358 

contains the cumulatively ranked distances between a genomic region and the nearest predicted speckle 359 

in all models of the population (Fig. 5a top panel). Likewise, we plot a heatmap representing the number 360 
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of gene transcripts found in all single cells of a population. Each column contains the cumulatively ranked 361 

transcript numbers of genes from scRNA-seq data42 for each genomic region in all cells of the population 362 

(Fig. 5b, top panel). The two heatmaps show striking similarities. We then compared the gene 363 

transcription frequency (TRF), defined as the fraction of cells a transcript is detected in scRNA-seq 364 

experiments42 with the SAF predicted from the models (Fig. 5a,b, lower panels). The TRF and SAF 365 

profiles are remarkably similar and show highly significant correlation (Fig. 5c, left panel, Spearman’s 366 

r=0.51, p=~0). Genes with transcripts in a large fraction of cells are located close to speckles in a large 367 

fraction of models. This is an interesting finding. It links the nascent transcript frequency of a gene to its 368 

local nuclear environment. Thus it is possible that the local nuclear environment of a gene defines its 369 

transcription potential if gene expression is initiated. We also validated our finding with transcription 370 

frequencies measured in a recent RNA-MERFISH microscopy study for 1,137 genes8 (Fig. 5c, right 371 

panel). Here as well, we observe the identical highly significant correlation between TRF and SAF 372 

(Spearman’s r=0.51, p=1.6x10-64). Interestingly, a gene’s interior location frequency (ILF) (i.e., the fraction 373 

of cells a genomic region is located in the interior of the nucleus) shows substantially smaller correlation 374 

with the TRF than the SAF, for both from scRNA-e and RNA-MERFISH experiments (Spearman’s r=0.42, 375 

p=~0 (scRNA-seq) and 0.45, p=4.1x10-50 (RNA-MERFISH)) (Fig. 5c).  376 

Next, we study if genes with the 10% largest number of RNA transcripts (T10) are distinguished in their 377 

nuclear environment from genes with the 10% lowest number of transcripts (B10). T10 genes show strong 378 

enrichment for several structural features, particularly those related to nuclear speckles and trans A/B 379 

ratio (Fig. 5d). T10 genes are also depleted in structural variability relative to nuclear bodies (𝛿!"#, 𝛿&'# 380 

and 𝛿()#). Therefore T10 genes show a strong preference for a specific microenvironment and show 381 

relatively high homogeneity between cells (Fig. 5d). Lowly expressed B10 genes do not show any 382 

preferential positioning relative to nuclear bodies, and show more variable nuclear locations than T10 383 

genes (Fig. 5d). They also show, significant depletion in SAF and trans A/B ratio, and thus, are overall 384 

clearly distinguished in their microenvironment from T10 genes.  385 

We further assess, which single feature (among SpD, ILF, SAF, RAD, and trans A/B) is most 386 

discriminative in separating the two gene sets. Distributions of feature values are quite different between 387 

the two gene sets (Fig. 5e). However, SAF and the highly correlated trans A/B ratio outperform all other 388 

features in distinguishing T10 from B10 genes, as shown by the receiver operating characteristics (ROC) 389 

curves (Fig. 5f). Thus, speckle associated features, and SAF in particular, are more predictive of gene 390 

expression than the average radial position (RAD) (area under ROC curve: SAF: 0.85, RAD: 0.65) or 391 

other features derived from radial positions. This finding could indicate that the general preference of 392 
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highly expressed genes at the nuclear interior may be an indirect consequence of favored associations 393 

with nuclear speckles, which themselves show stochastic preferences towards the nuclear interior14,69.  394 

Next, we divide all genes into two groups: those dominanty controlled by enhancers (EN)  and those 395 

controlled by superenhancers (SEN) (Methods). Overall, genomic regions with EN and SEN show similar 396 

enrichment patterns to those of T10 genes (Fig. 5g). However, genomic regions with SEN show 397 

substantially higher fold enrichments and depletions than EN genes, revealing stronger preferences in 398 

their nuclear microenvironment, particularly for higher SAF, interior positions, trans A/B ratio, ICP and 399 

depletion of LAF values (Fig. 5g). Notably, for both EN and SEN features related to cell-to-cell variability 400 

are depleted, revealing a higher homogeneity of their structural features in the cell population.  401 

The organizing role of nuclear speckles. Our approach also allows a detailed analysis of experimental 402 

SON-TSA-seq data14. For instance, chromatin divided by their experimental SON-TSA-seq signals14 into 403 

ten groups show distinct structural enrichment patterns, which gradually change with increasing SON 404 

TSA-seq values (Fig. 6a). Chromatin in the first (d1,d2) and last (d9, d10) deciles show the highest fold 405 

enrichments and thus, the most stable microenvironment. These regions show the lowest structural 406 

variability in radial positions (𝛿!"#) and have the smallest (d1-d3) and largest (d8-d10) mean speckle 407 

distances (SpD), respectively (Fig. 6b). Thus these regions show high levels of structural homogeneity 408 

between cells in the population. In contrast, chromatin in deciles d4-d7 are structurally less defined (Fig. 409 

6a), are highly variable in their nuclear positions (	𝛿!"#) (Fig. 6b), and particularly chromatin in decile 6, 410 

show no preferred associations towards nuclear bodies (Fig. 6a). 411 

We also observe a high correlation between the inter-chromosomal contact probability (ICP) (i.e. the 412 

fraction of a region’s trans vs. all interactions) and the experimental SON TSA-seq signals, and thus 413 

mean speckle distances (Pearson’s r=0.76 p=~0, Fig. 6c, left). Notably, the trans A/B ratio of a genomic 414 

region is also positively correlated with its SON-TSA-seq value (Fig. 6c, right). These observations imply 415 

that nuclear speckles act as major hubs to facilitate inter-chromosomal interactions of transcriptionally 416 

active genomic regions, confirming similar findings reported earlier14,24. 417 

Our models also allow a structural interpretation of reported TSA-seq trajectories, steep transitions in 418 

TSA-seq profiles between low and high peaks (Fig. 6d, top panel)14. In our models, TSA-seq trajectories 419 

coincide with steep transitions in the average speckle distances and average radial positions (Fig 6d, 420 

middle panel). In a fraction of models, these chromosome regions fold from anchor regions at the outer 421 

nuclear periphery towards the nuclear interior, where the TSA-seq peak region often associates with a 422 

nuclear speckle and forms the apex of a chromosomal loop, which then traces back to the nuclear 423 

periphery (Fig. 6e). These anchor regions at the periphery and the loop apex show low structural 424 
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variability (𝛿!"#), while loop regions in between show higher variability (Fig. 6d, lower panel). These 425 

findings are in agreement with similar observations in FISH experiments by the Belmont laboratory14.   426 

SON TSA-seq experiments identified two types of transcription “hot zones”: Type I and Type II regions 427 

with high and intermediate SON TSA-seq signal peaks, respectively14. Our models confirm the 428 

expectation that Type I regions have significantly smaller mean speckle distances than Type II (Mann-429 

Whitney-Wilcoxon two-sided test, p=1.3x10-51, Fig. 6f,  left panel). However, TSA-seq data is inconclusive 430 

as to whether Type II regions persistently reside at intermediate speckle distances or localize at speckles 431 

in a small fraction of cells and far from them in others14,70. Our models uncover the latter case. The vast 432 

majority of Type II regions show a significantly higher variability in radial positions (Fig. 6g) and speckle 433 

distances (p=1.94e-43, Mann-Whitney-Wilcoxon test, two-sided, Fig. 6f, middle panel), and associate with 434 

speckles in a smaller fraction of cells (average SAF < ~17% ) (Fig. 6f, right panel). Thus most Type II 435 

regions do not reside stably at intermediate speckle distances and show a wide and, in many cases, 436 

bimodal speckle distance distribution (Fig. 6h). In contrast, Type I regions show stable radial positions at 437 

close speckle distances (Fig. 6h), resulting in high SAF of about 50% (p=2.82e-53, Mann-Whitney-438 

Wilcoxon test, two-sided, Fig. 6f, right panel).  439 

The role of microenvironment in replication timing. Replication timing of chromatin63 is echoed in 440 

distinct structural features (Fig. 6i). Chromatin replicated at early time points (G1b, S1) are most enriched 441 

in SAF, trans A/B, and have lowest structural variability (Fig. 6i,j). Chromatin replicating in the 442 

intermediate S2 and S3 phases show the highest cell-to-cell variability in nuclear positions and show no 443 

preferential association with speckles, nucleoli or the lamin compartment (Fig. 6i,j). Late replicating 444 

chromatin (S4 and G2 phase) are depleted in interior locations and speckle associated features and 445 

strongly enriched in lamina associated features (Fig. 6i). Overall, SAF and trans A/B ratio are more 446 

discriminative with higher fold changes than features related to the radial positions, RAD and ILF (Fig. 447 

6i). For instance, trans A/B ratio and mean speckle distances clearly separate early from late replicating 448 

chromatin (Fig. 6k). 449 

Chromatin compartmentalization. Hi-C subcompartments also show distinct enrichment patterns, thus 450 

represent distinct physical microenvironments (Fig. 6l, Extended Data Fig. 6, Methods). Chromatin in 451 

the A1 subcompartment is well separated from A2 chromatin across all studied structural features (Fig. 452 

6l). A1 chromatin show strong enrichement patterns, with strong preferences in their microenvironment 453 

and small structure variations, thus a high level of uniformity. It is particularly enriched in speckle 454 

associated features and trans A/B. A2 chromatin has relatively weak enrichment patterns and high cell-455 

to-cell variability in radial locations, speckle distances and overall wide distributions of feature values 456 

within their class (Fig. 6l, Extended Data Fig. 6). Thus, A2 chromatin shows no clear location 457 
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preferences with respect to any studied nuclear bodies. B3 chromatin shows strong anti-correlated 458 

enrichment patterns with A1 across all structural features. B2 chromatin is well separated in its 459 

enrichment patterns from B3 chromatin, mainly due to enriched nucleoli and depleted lamin-based 460 

features and its high variability in nuclear locations, possibly due to prevalent locations of nucleoli at both 461 

central and peripheral regions (Fig. 6l, Extended Data Fig. 6). B1 chromatin shares similar enrichment 462 

patterns with A1 chromatin, although with smaller fold enrichment (Fig. 6l). Thus, B1 genes containing 463 

polycomb silenced chromatin would be in a position of highest transcriptional potency, if activated.  464 

The structural differences between subcompartments are so pronounced that we are able to predict Hi-465 

C subcompartments from structural features alone without explicit considerations of chromatin 466 

interactions. Unsupervised K-means clustering based on structural feature vectors of compartment A 467 

chromatin predicts A1 and A2 subcompartment annotations with 94% accuracy, while chromatin in 468 

inactive subcompartments were predicted with an accuracy of 84%. These results are comparable in 469 

accuracy to supervised methods using Hi-C contact frequencies71 (Fig. 6m, Methods). This is an 470 

important finding, because subcompartment predictions by the Rao et al.34 approach for cell types other 471 

than GM12878 cells have failed so far. Our approach provides an alternative way of detecting 472 

subcompartment annotations, while also providing underlying structural interpretations. 473 

Discussion 474 

We introduced an approach to determine a population of single cell 3D genome structures from ensemble 475 

Hi-C data. Our method is unique as it predicts a host of structural features in single cell models, and 476 

provides information about the structural microenvironment of genomic regions in single cells. This 477 

information is not available from Hi-C data without structural modeling. Therefore, our method 478 

considerably expands the scope of Hi-C data analysis and is widely applicable to other cell types and 479 

tissues for which Hi-C data is available.  480 

The models and the derived structural features are a powerful resource to unravel the relationship 481 

between genome structure and function. We found that cell-to-cell heterogeneity of structures vary by 482 

genomic loci and is a strong indicator of functional properties. Structurally stable chromatin in the A 483 

compartment are dominantly associated to nuclear speckles, and show relatively high speckle 484 

association frequencies, high trans A/B ratio and overall lowest average radial positions. These regions 485 

contain highly transcribed genes, are enriched in superenhancers, SON TSA-seq signals and are 486 

replicated at the earliest time points. Moreover, these genomic regions compartmentalize in relatively 487 

large spatial partitions, formed by a high fraction of inter-chromosomal interactions. Chromatin of the A1 488 

subcompartment is enriched in this category.  489 
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In contrast, active chromatin with high structural variability are characterized by the lack of preferences 490 

in nuclear locations. In a fraction of cells, these regions can be located in a silencing environment at the 491 

nuclear periphery, while in others, can be located towards the transcriptionally favorable interior. These 492 

genes show relatively low transcript frequencies, low inter-chromosomal contact probabilities with low 493 

trans A/B ratios and intermediate replication timing (phases S2, S3). In TSA-seq experiments, most of 494 

these regions were identified as Type II peaks, with intermediate TSA-seq values. We also noticed that 495 

these regions compartmentalize into relatively small spatial partitions (i.e., microphases), dominated by 496 

intra-chromosomal interactions. Chromatin of the A2 subcompartment is enriched in this category. 497 

It is possible that the high structural variability of these regions could be linked to  functional heterogeneity 498 

between cells. Several observations point to this conclusion. For instance, although being 499 

transcriptionally active, these regions are enriched in silencing H3K9me3 and depleted in activating 500 

H3K9ac histone modifications in comparison to active regions with low structural variability. Moreover, 501 

gene transcripts for these genomic regions are found in a substantially smaller fraction of cells and show 502 

overall lower transcriptional activity. 503 

Interestingly, structural heterogeneity is also an indicator to distinguish nucleoli and lamina associated 504 

chromatin in the B compartment. Genomic regions with low structural variability are dominantly 505 

associated to the lamina compartment and constitutive LADs and enriched in the B3 subcompartment. 506 

Genomic regions with high structural variability are associated with nucleoli and pericentromeric 507 

heterochromatin and are enriched in the B2 subcompartment.  508 

Our results suggest that nuclear speckles, together with the lamina compartment, are a major organizing 509 

factor in genome structure. Chromatin with low structural variability are associated with either nuclear 510 

speckles or constitutive LADs. Speckle locations are not randomly distributed in the nucleus, but are 511 

more likely to be excluded from the nuclear periphery14,69. Therefore, LADs, at the periphery, and 512 

speckles, towards the interior, provide structural anchor points. We hypothesize that A-LV and B-LV 513 

regions associated with these anchors act in a similar way to recently reported fixed points in the nuclear 514 

organization of mouse embryonic stem cells9. For instance, genomic regions with high SAF or LAF have 515 

low structural variability and act as anchor points for radial trajectories detected in SON TSA-seq 516 

experiments. 517 

Moreover, the inter-chromosomal contact probability (ICP) and trans A/B ratio are highly correlated with 518 

mean speckle distances. Therefore, nuclear speckles appear to be the sole hub of inter-chromosomal 519 

interactions of active chromatin regions. These findings agree with similar observations from SPRITE 520 

experiments24. The relatively high fraction of trans interactions for speckle associated chromatin could 521 

provide an explanation for the preferential locations of speckles toward the nucler interior. We find that 522 
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the probability of inter-chromosomal interactions increases towards the central regions of the nucleus 523 

(Fig. 7a). If some speckles will associate with regions from at least two chromosomes, they are more 524 

likely located at the interior. Over time, dynamic interactions with multiple chromosomes may restrain 525 

their locations towards the interior (Fig. 7b). These cooperative effects could bias the global speckle 526 

distributions towards the nuclear interior. 527 

We demonstrate that the structural microenvironment of a genomic region is directly linked to its 528 

functional potential in gene transcription and replication. Chromatin with highest and lowest 529 

transcriptional activity are distinguished by their structural features. In particular, the frequency of close 530 

speckle associations (SAF) shows the highest correlation with the gene transcription frequency9,72-74.  The 531 

known interior preference of highly activated genes could therefore be a consequence of preferential 532 

positions to nuclear speckles, which in turn have a stochastic preference towards the nuclear interior, 533 

confirming previous observations from TSA-seq experiments14. Chromatin replicated at the earliest time 534 

are also distinguished in their structural features from those replicating at the latest stages. Moreover, 535 

our observations confirm that Hi-C subcompartments define physically distinct chromatin environments, 536 

some of which (such as A1) linked to associations with nuclear bodies.  537 

In summary, our method produces a large number of structural descriptors highly relevant for a better 538 

understanding of genome structure function relationships. These features can be calculated from Hi-C 539 

data alone, and thus are applicable to many different cell types for a comparative analysis of genome 540 

structures. In the future, we plan to incorporate nuclear shapes from imaging into the modeling process 541 

to include a more realistic representation of the shape and size of nuclear bodies and the nucleus. 542 
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Figures 546 

547 
Fig. 1. Microenvironment and structural features of genomic regions. a, Schematic depiction of our 548 
approach. A population of 10,000 genome structures is generated that is statistically consistent with the 549 
ensemble Hi-C data. Genome structures predict the locations of nuclear speckles, nucleoli and the lamina 550 
associated compartment, which serve as reference points to describe the global genome organization 551 
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and define structural features. b, 17 structural features are calculated from the models that describe the 552 
nuclear microenvironment of each genomic region. Structure feature profiles for chromosome 1 are 553 
shown. Profiles for other chromosomes are shown in Supplementary Information (Fig. S5 – S25).554 
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 555 

Fig. 2. Radial chromatin positions and cell-to-cell variability. a, Radial position profiles for a 30 Mb 556 
region in chromosome 2. Black line shows the average radial position over the population of structures, 557 
and dark and light green lines show the radial positions in two different single structures. Arrows depict 558 
regions with high cell-to-cell variability. b, (upper panel) Average radial positions (RAD) of chromatin 559 
regions in chromosome 2. Background colors indicate subcompartment assignments, (lower panel) Cell-560 
to-cell variability of radial positions (𝛿!"#) for each chromatin region in chromosome 2. Color-code for 561 
subcompartment annotations as in upper panel. c, Violin plots for the distributions of average radial 562 
positions for all chromatin regions in a subcompartment. White circles and black bars show the median 563 
value and the interquartile range (IQR: Q1 – Q3), respectively. d, Scatter density plots of 𝛿!"# vs RAD 564 
for chromatin regions in A (left) and B (right) compartments. Dashed lines separate low (A-LV and B-LV) 565 
and high (A-HV and B-HV) levels of variability. e, Fold-change enrichment of SON TSA-seq14, Lamin B1 566 
TSA-seq14 and pA-DamID40 signals (left), constitutive (cLAD) and facultative (fLAD) lamina associated 567 
regions (LAD) and constitutive and facultative inter-LADs41,66 (ciLAD and fiLAD, respectively) (middle), 568 
and replication phases63 (right) for chromatin regions with low and high cell-to-cell variability (𝛿!"#)  in A 569 
and B compartment. f, Box plots of the nascent RNA expression levels (from GRO-seq experiments67) 570 
for chromatin regions in A compartment with low (A-LV) and high (A-HV) radial cell-to-cell variability 571 
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(𝛿!"# ) (Mann-Whitney-Wilcoxon test, two-sided). g, Box plots of radial cell-to-cell variability (𝛿!"# ) 572 
distributions for chromatin regions with top 10% highest and bottom 10% lowest transcript numbers of 573 
actively transcribed genes according to scRNA-seq data42 (Mann-Whitney-Wilcoxon test, two-sided). h, 574 
Probability density distributions for the radial positions of A chromatin with low (𝛿!"#	< Q1) and high 575 
(𝛿!"#	> Q3) cell-to-cell variability (two left panels), and radial distributions of three representative A 576 
regions with high-cell to cell variability (three right panels). Black lines in the two left panels indicate the 577 
average distribution, and gray areas show the standard deviation from all regions within each group. i, 578 
Fold-change enrichment of histone marks in A-LV and A-HV groups. j, Scatter density plots of 𝛿!"# vs 579 
RAD for chromatin regions in A1, A2 (left) and B1, B2, B3 (right) subcompartments. Top and right panels 580 
in each plot show the probability density distributions of RAD and 𝛿!"# values for each subcompartment, 581 
respectively. k, Fold-change enrichment of subcompartments in A-LV, A-HV, B-LV, and B-HV groups.  582 
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 583 

Fig. 3. Spatial partitions of subcompartments. a, A representative genome structure showing 584 
chromosome folding patterns. Both images show the same structure with different numbers of 585 
chromosomes. Zoomed inset delineates regions that are primarily occupied by chromatin of the same 586 
subcompartment. Color-code indicates subcompartment annotations for each chromatin region (A1: pink, 587 
A2: yellow, B1: dark blue, B2: green, B3: light blue). b, Procedure to identify spatial partitions of 588 
subcompartments: A chromatin interaction network (CIN) is generated from all chromatin regions in a 589 
given subcompartment for each structure in the population. Each node in the CIN represents a single 590 
chromatin region connected by edges if the two regions are in physical contact in the 3D structure. Nodes 591 
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are colored by their neighborhood connectivity (i.e. average contacts formed by their neighbor nodes) 592 
ranging from low (blue) to high (red). Highly connected subgraphs are then identified by Markov 593 
Clustering of CINs (Methods) and visualized in the 3D structure (some examples are shown in green 594 
dashed circles in 2D plot). The rightmost image illustrates the volume occupied by a spatial partition in a 595 
single genome structure. c, Spatial partitions of subcompartments, shown by their occupied volume in 596 
the 3D structures. For clarity only the 50 largest partitions (i.e. subgraphs with the largest numbers of 597 
nodes) are shown per subcompartment. d,  Distributions of the number of subcompartment partitions per 598 
genome structure. e, Distributions of the average size (i.e. number of nodes) of subcompartment 599 
partitions. In d and e, white circles and black bars show the median value and the interquartile range 600 
(IQR: Q1 – Q3), respectively. f, Average fraction of inter-chromosomal edges in spatial partitions for each 601 
subcompartment. Error bars indicate standard deviations, and the gray dashed line is the average fraction 602 
of all partitions. g, Neighborhood enrichment of chromatin in each subcompartment, defined as the ratio 603 
of (observed/expected) subcompartment chromatin in the immediate neighborhood (within 500 nm) of 604 
each chromatin region (Methods). The strong diagonal shows that chromatin is preferentially surrounded 605 
by their own kind. h, A representative structure showing examples of colocalizations of A1-B1 and A2-606 
B3 partitions in the 3D space. 607 
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 608 

Fig. 4. SON TSA-seq predictions using 3D structures. a, Average GRO-seq signal67 (RPM) of 609 
chromatin with respect to their 3D distances to subcompartment partition centers (Methods). b, 610 
Comparison of average GRO-seq signals67 for chromatin in large (size>Q3, dark colors) and small 611 
(size<Q1, light colors) spatial partitions for different subcompartments. Error bars are standard deviation. 612 
c, Average SON TSA-seq signals14 of chromatin with respect to their 3D distances to subcompartment 613 
partition centers (Methods). d, The procedure for SON TSA-seq signal prediction from 3D models: The 614 
geometric centers of identified A1 partitions in each single structure are used as point sources for the 615 
simulation of SON-TSA-produced tyramide free-radical diffusion14. SON TSA-seq signals are averaged 616 
over all structures (Methods). The rightmost image shows a cross section of the predicted TSA-seq signal 617 
density distribution in a genome structure. e, Comparison of the experimental and predicted SON TSA-618 
seq profiles for chromosome 2 (Pearson’s r= 0.90, p=~0). f, Scatter density plot of the experimental vs 619 
predicted SON TSA-seq signals genome-wide (Pearson’s r=0.87, p=~0). g, Scatter density plot of the 620 
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predicted speckle association frequencies (SAF) vs SAF determined with DNA-MERFISH experiments8 621 
for 1,041 imaged loci (Pearson’s r= 0.87, p=~0).  h, Scatter density plot of the median trans A/B ratios 622 
predicted in our models (Methods) vs from DNA-MERFISH experiment8 for 724 imaged loci that share 623 
the same compartment in GM12878 and IMR-90 cells (Pearson’s r=0.70, p=~0). i,  Scatter plot of the 624 
predicted median trans A/B ratios vs SAF for each chromatin region in our models (Pearson’s r=0.98, 625 
p=~0).  626 
  627 
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 628 
Fig. 5. Relationship between 3D chromatin structure and transcriptional activity. a, (Top panel) 629 
Heatmap of gene speckle distances in chromosome 13 in 10,000 structures. The column shows for a 630 
given gene the gene-speckle distances in all 10,000 structures of the population. In each column, gene-631 
speckle distances are sorted in ascending order from top-to-bottom, with short distances (dark red) to 632 
large distances (dark blue). (Bottom panel) Speckle association frequencies (SAF) for each chromatin 633 
region in chromosome 13. b, (Top panel) Heatmap of single cell mRNA counts of genes in chromosome 634 
13 in all 4,633 G1 cells measured by single cell RNA-seq (scRNA-seq) experiment42. For a given gene, 635 
each column shows the observed mRNA transcript count in each cell of the population of cells. In each 636 
column, mRNA transcript counts are sorted in descending order from top-to-bottom, with high counts 637 
(dark red) to zero counts (dark blue). (Bottom panel) Transcription frequency (TRF) for each gene in 638 
chromosome 13 from scRNA-seq data42 (Methods). c, Interior localization frequency (ILF) and SAF 639 
values for genes with different TRF ranges from scRNA-seq42 (left) and nascent RNA-MERFISH imaging8 640 
(right). Error bars show standard deviations of ILF and SAF values in each TRF range. d, Fold-change 641 
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enrichment for each of the 17 structural features for chromatin with top 10% highest (T10) and bottom 642 
10% lowest (B10) transcript numbers of actively transcribed genes according to scRNA-seq data42 643 
(Methods). e, Distributions of several structural features for T10 and B10 regions. f, Receiver Operator 644 
Characteristic (ROC) curves for radial positions, speckle distances, ILF, SAF, and trans A/B ratios to 645 
distinguish T10 and B10 regions (Area under the curve values are 0.65, 0,72, 0.81, 0.85, 0.84, 646 
respectively). g, Fold-change enrichment for each of the 17 structural features for enhancer (EN) and 647 
superenhancer (SEN) chromatin regions.   648 
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 649 

Fig. 6. Structural features of microenvironments. a, Fold-change enrichment of 17 structural features 650 
for chromatin regions in experimental SON-TSA-seq decile groups14. b, Scatter plot of the radial cell-to-651 
cell variabilities (𝛿!"#) vs mean speckle distances (SpD) of chromatin in experimental SON-TSA-seq 652 
decile groups14 (d1 – d3: blue, d4 – d7: yellow, d8 – d10: red). c, Distributions of inter-chromosomal 653 
contact probabilities (ICP, left)  and trans A/B ratios (right) for chromatin in each experimental SON-TSA-654 
seq decile group14. d, Experimental SON TSA-seq signals (top), SpD (middle) and 𝛿!"# (bottom) profiles 655 
for a ~11 Mb region of chromosome 2 showing a so-called TSA-seq trajectory transition in the TSA-seq 656 
profile. Stars in the lower panel indicate anchor regions with low structural variability, while regions 657 
marked with d indicate high variability regions. (Valley-to-peak: red region, peak-to-valley: yellow region). 658 
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e, Two representative structures showing folding patterns of the chromatin fiber for the ~11 Mb TSA-seq 659 
trajectory as in d, together with the nuclear envelope, the closest predicted speckle location (green), and 660 
the rest of chromosome 2 (gray). The chromatin fiber is color coded in red and yellow to represent 661 
corresponding regions shown in d. f, Distributions of SpD (left), speckle distance variabilities (𝛿&'# , 662 
middle), and SAF (right) for regions where Type I and Type II TSA-seq peaks14 are located (Mann-663 
Whitney-Wilcoxon test, two-sided). g, Scatter plot of 𝛿!"#   vs RAD for Type I (dark green) and Type II 664 
(light green) chromatin regions. h, Distributions of gene-speckle distances for randomly selected 50 665 
individual Type I loci (left) and Type II loci (right) in the population. Gray dashed line indicates the 0.5 µm 666 
distance level. i, Fold-change enrichment of 17 structural features for regions at different replication 667 
phases63. j, Distributions of 𝛿!"#	values for chromatin in each replication phase63. k, Scatter density plot 668 
of trans A/B ratios vs SpD for chromatin in G1b (red) and G2 (blue) replication phase63. l, Fold-change 669 
enrichment of 17 structural features for chromatin regions in each subcompartment. m, Confusion 670 
matrices for the prediction of A1 and A2 (left) and B1, B2 and B3 (right) subcompartments using K-means 671 
clustering based on structural features (Methods).  672 
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 673 

Fig. 7. Inter-chromosomal interactions and speckle locations. a, Distributions of radial positions 674 
where cis and trans interactions occur in the models b, Scheme for the proposed effect of inter-675 
chromosomal interactions on speckle (red) locations in the nucleus.   676 
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Table 1. Genome-wide correlations between experimental and predicted omics and imaging data. 677 
All p-values are ~0. Chromosome X is discarded from genome-wide correlation calculations in TSA-seq, 678 
DamID, and GPSeq comparisons. 679 
 680 

 Pearson’s r Spearman’s r 

SON TSA-seq14  0.87 0.89 

Lamin B1 TSA-seq14  0.78 0.81 

Lamin B1 pA-DamID40 0.80 0.79 

GPSeq41 0.80 0.79 

SAF8  0.77 0.73 

LAF8 0.64 0.58 

NAF8 0.71 0.63 

Median trans A/B ratio8 0.70 0.67 
  681 
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Extended Data Figures and Tables 682 

 683 
 684 
Extended Data Fig. 1. 3D chromatin structure modeling and assessment. a, The Hi-C contact 685 
probability matrix (left) and the contact probability matrix calculated from the structure population (right) 686 
for chromosome 2. Zoomed-in heatmaps show the matrix between sequence position 40 – 80 Mb. b, 687 
Density scatter plot comparing the contact probabilities from Hi-C data and structure population 688 
(Pearson’s r=0.98, p=~0). c, Histograms of restraint-violation ratio from the structure population 689 
(Methods). A violation ratio less than 1.05 is considered satisfied and is not displayed in the histograms 690 
(99.9% of restraints fall in this category). d, The contact probability matrix for chromosome 2 showing the 691 
50% randomly chosen dataset used as input (lower triangle) vs. the matrix generated from the structure 692 
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population (upper triangle). e,  Density plot comparing the contact probabilities that are generated from 693 
Hi-C data and missing in the input and their predicted contact probabilities calculated from the structure 694 
population (Pearson’s r=0.93, p=~0). f, Average radial positions of chromatin in different replication 695 
phases63. g, Comparison of the inter-chromosomal loci co-localization frequencies between the observed 696 
occurrence in FISH experiments19 and in the structure population (left), and scatter plot showing the co-697 
localization frequencies from FISH experiments and the structure population (right). h, A FISH image with 698 
three different probes at far-separating loci on chromosome 6 (left), the comparison of pair-wise distances 699 
of these loci in experiment and models (middle), and the comparison of their relative radial positions in 700 
experiment and models (right).  701 
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 702 
Extended Data Fig. 2. Assessment of radial positions. a, Average radial position profiles in 703 
chromosomes 3 (left), 5 (middle), and 11 (right). Also shown in blue are lamina CF from single cell lamin 704 
DamID experiments66. Valleys in the average radial position plots match well with low lamina CF regions 705 
(red dashed lines). b, Density scatter plot of average radial positions of chromatin regions from the 706 
structure population against the lamina contact frequencies from single cell lamin DamID experiments in 707 
haploid KBM7 cell type (CF; DamID data from66). 93% of chromatin regions with the 25% lowest average 708 
radial positions show either no detectable or only occasional contact with lamina (CF < 20%). Vertical 709 
and horizontal black dashed lines show the 25th percentile average radial position and the 20% CF values, 710 
respectively. c, Scatter plot showing the comparison between experimental and predicted GPSeq 711 
scores41 (Pearson’s r=0.80, p=~0) d, Comparison of experimental and predicted GPSeq41 profiles for the 712 
0 – 80 Mb region in chromosome 2. e, Probabilities for chromatin region of a given subcompartment to 713 
be located in any of five concentric shells, each containing the same total amount of chromatin (Methods). 714 
Shell 1 is the most interior shell. Error bars show standard deviation. f, Violin plots for distributions of cell-715 
to-cell variabilities of radial positions (𝛿!"#) for chromatin regions in different subcompartments. Dashed 716 
line separates low and high levels of variability.   717 
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 718 
Extended Data Fig. 3. SON TSA-seq predictions using 3D models. a, Fraction of mapped histone 719 
modifications peaks from ChIP-seq experiments as well as number of A1/A2 chromatin regions in 720 
chromatin divided into decile groups based on their experimental14 (top) and predicted SON TSA-seq 721 
signals (Methods). b,  Distributions of predicted mean distances to closest speckles (A1 partition centers) 722 
for chromatin regions in each experimental SON TSA-seq decile14. c,  Spearman correlations between 723 
the experimental14 and predicted SON TSA-seq signals  for each chromosome using different prediction 724 
methods (left, Methods); predictions using sequence distances to A1 clusters in sequence (red), 3D 725 
distances to A1 partitions in random chain chromosome territories (blue), 3D distances to A1 regions in 726 
the same chromosome only (green), and 3D distances to A1 partition centers using both intra-and inter-727 
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chromosomal relationships (black). Corresponding TSA-seq profiles of chromosome 17 for predicted and 728 
experimental data (Spearman correlations: 0.37, 0.30, 0.38, 0.78, respectively, right).d, Spearman 729 
correlations between experimental14 and predicted SON TSA-seq signals for each chromosome using 730 
different partitions as predicted speckle locations (left, Methods); predictions using A1 spatial partition 731 
centers (black), A2 spatial partition centers (red), and spatial partitions from chromatin with 10% lowest 732 
average radial positions in the population (blue). Corresponding TSA-seq profiles of chromosome 3 for 733 
predicted and experimental data (Spearman correlations: 0.88, 0.89, 0.58 , respectively, right).   734 
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 735 

Extended Data Fig. 4. Predictions of lamin and nucleolus associated features. a, Scatter plot 736 
showing the comparison between experimental and predicted Lamin B1 TSA-seq signals14 (left, 737 
Pearson’s r=0.78, p=~0), and chromosome 7 profiles of experimental and predicted Lamin B1 TSA-seq 738 
signals14 (right). b, Scatter plot showing the comparison between experimental and predicted Lamin B1 739 
pA-DamID signals40 (left, Pearson’s r=0.80, p=~0) and chromosome 7 profiles of experimental and 740 
predicted Lamin B1 pA-DamID signals40 (right). c, Comparison of predicted lamina association 741 
frequencies (LAF) in our models (Methods) with LAF determined from DNA-MERFISH experiments8 for 742 
1,041 imaged loci (Pearson’s r=0.64, p=~0). d, Scatter plot of predicted median trans A/B ratios as 743 
functions of predicted LAF for each chromatin region in our models (Pearson’s r=-0.90, p=~0). e, 744 
Comparison of predicted nucleoli association frequencies (NAF) in our models (Methods) with NAF 745 
determined from DNA-MERFISH experiments8 for 1,041 imaged loci (Pearson’s r=0.71, p=~0).  746 
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 747 

Extended Data Fig. 5. Chromatin compaction and TAD borders. a, Average radius of gyration (RG, 748 
i.e. local decompaction) profile for chromatin in the 40 – 90 Mb region of chromosome 4. The background 749 
is color coded by the subcompartment annotations of chromatin (top). Cell-to-cell variability of RG values 750 
(𝛿!+) in the structure population for the same chromatin regions. Negative values indicate regions with 751 
low RG variability (bottom). Bars are color coded by the subcompartment annotations of the 752 
corresponding chromatin regions. b, RG peak frequencies (i.e., the fraction of models showing a RG 753 
maximum at a given position) for a 6-Mb region in chromosome 4 (80–86Mb) (top), and Hi-C contact 754 
frequency heat map for the same region showing TAD borders identified by TopDom75 (bottom). Regions 755 
with RG peak frequency maxima are shown with gray dashed lines, and either overlap or are very close 756 
to TAD borders identified by TopDom (red dashed lines). c, Two representative structures showing 757 
chromatin folding patterns for chromatin regions in b. TAD identities are shown by color code. d, 758 
Averaged RG peak frequencies for loci at TopDom TAD borders (green) compared to randomly selected 759 
loci (gray). In around 50% of structures, there is a RG peak in the immediate neighboring region of a TAD 760 
border (±200kb). In ~70% of structures there is a RG peak within a ±400kb range of a TAD border. 761 
Standard errors calculated from all TAD borders are shown with error bars.  762 
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 763 
Extended Data Fig. 6. Structural features of chromatin in different subcompartments. Violin plots 764 
for the distributions of 17 structural features calculated from the structure population for chromatin in 765 
different subcompartments. White circles and black bars in the violins show the median value and the 766 
interquartile range (IQR: Q1 – Q3), respectively.  767 
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Extended Data Table 1. Properties of subcompartment interaction networks and spatial partitions. 768 
Population averages of features for chromatin interaction networks (CIN) and spatial partitions  of 769 
chromatin in different subcompartments (Methods). 770 
 771 

 Subcompartments Compartments 
CIN/Partition Features A1 A2 B1 B2 B3 A-LV A-HV 
Average neighborhood  

connectivity in CINs 
25.92 12.15 12.88 13.58 15.63 20.48 8.46 

Maximal cliques  

enrichment in CINs 
5.99 1.64 2.22 2.16 1.70 4.29 1.39 

Average radial position  

of partitions 
0.57 0.70 0.60 0.71 0.77 0.56 0.69 

Average size of partitions 

(number of 200 kb regions) 
71.00 32.90 33.28 37.73 59.01 54.60 17.68 

Average number of partitions 

in each structure 
53.86 159.23 91.63 109.79 141.85 52.73 155.94 

Average fraction of trans 

edges in partitions (%) 
41.52 25.49 35.26 14.29 9.57 34.14 15.58 

  772 
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Extended Data Table 2. Genome-wide correlations between experimental and predicted SON TSA-773 
seq data using different approaches. All p-values are ~0. Chromosome X is discarded from genome-774 
wide correlation calculations. 775 
 776 

 Pearson’s r Spearman’s r 

SON TSA-seq14 predictions with A1 partitions 0.87 0.89 

SON TSA-seq14 predictions with interior partitions 0.86 0.88 

SON TSA-seq14 predictions with A2 partitions 0.18 0.38 

SON TSA-seq14 predictions with A1 sequence distances 0.35 0.64 

SON TSA-seq14 predictions from random configurations (only-intra) 0.60 0.58 

SON TSA-seq14 predictions from folded chromosomes 

(only-intra) 
0.73 0.79 

  777 
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Methods 778 

Population Based 3D Structural Modeling  779 

§ General description 780 

Our goal is to generate a population of 10,000 diploid genome structures, so that the accumulated 781 

chromatin contacts across the entire population are statistically consistent with the contact probability 782 

matrix 𝐀 = 2𝐴$,4(×( derived from Hi-C experiments19,39. To achieve this goal, we utilize population-based 783 

modeling, our previously described probabilistic framework to de-multiplex the ensemble Hi-C data into 784 

a large population of individual genome structures of diploid genomes statistically consistent with all 785 

contact frequencies in the ensemble Hi-C data38,39,61. 786 

The structure optimization is formulated as a maximum likelihood estimation problem solved by an 787 

iterative optimization algorithm with a series of optimization strategies for efficient and scalable model 788 

estimation38,39,52. Briefly, given a contact probability matrix 𝐀 = 2𝐴$,4(×(, we aim to reconstruct all 3D 789 

structures 𝐗 = {𝑿𝟏, 𝑿𝟐…	𝑿𝑴} in the population of 𝑀 models, each containing 2N genomic regions for the 790 

diploid genome (at 200 kb base-pair resolution), and 𝑋$1 ∈ ℜ2, 𝑖 = 1. .2𝑁 as coordinates of all diploid 791 

genomic regions in model 𝑀 . We introduce a latent indicator variable 𝐖 = (𝒘𝒊𝒋𝒎)𝟐𝑵×𝟐𝑵×𝑴  for 792 

complementing missing information (i.e. missing phasing and ambiguity due to genome diploidy).  𝐖 is 793 

a binary-valued 3rd-order tensor specifying the contacts of homologous genomic regions in each 794 

individual structure of the population, such that 	∑ 𝑾1
7
189 𝑀⁄ = 𝑨 . We can jointly approximate the 795 

structure population 𝐗 and the contact tensor 𝐖 by maximizing the log-likelihood of the probability: 796 

log 𝑃(𝐗|𝐀,𝐖) = log𝑃(𝐀,𝐖|𝐗) 797 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	 T
𝑛𝑢𝑐𝑙𝑒𝑎𝑟	𝑣𝑜𝑙𝑢𝑚𝑒	𝑐𝑜𝑛𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡

𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑	𝑣𝑜𝑙𝑢𝑚𝑒
𝑐ℎ𝑎𝑖𝑛	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝑟𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑡

 798 

where 799 

i. Nuclear volume constraint: All chromatin spheres are constrained to the nuclear volume with 800 

radius 𝑅:); ; ‖𝑥⃗$1‖% ≤ 𝑅:); , where ‖𝑥⃗$1‖%  is the distance of the region 𝑖  from the nuclear 801 

center in structure 𝑚.  802 

ii. Excluded volume constraint: This constraint prevents overlap between two regions 803 

represented by spheres, defined by their excluded volume radii (𝑅<=) ; c𝑥⃗$1 − 𝑥,1c% ≥804 

2 × 𝑅<=.  805 
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iii. Polymer chain constraint: Distances between two consecutive 200-kb spheres within the 806 

same chromosomes are constrained to their contact distance to ensure chromosomal chain 807 

integrity; c𝑥⃗($?9)1 − 𝑥⃗$1c% ≤ 2 × 𝑅ABCD, where 𝑅ABCD = 	2 × 𝑅<=. 808 

Our modeling pipeline uses a step-wise iterative process, in which the optimization hardness is 809 

gradually increased by adding contacts with decreasing contact probabilities in the input matrix. The 810 

iterative optimization procedure involves two steps, each optimizing local approximations of the likelihood 811 

function: (1) Assignment step (A-step): Given the estimated structures 𝐗 at step k, estimate 𝐖; and (2) 812 

Modeling step (M-step): Given the estimated 𝐖, generate model population 𝐗	at step k+1 that maximizes 813 

likelihood to observe 𝐖. Structures in the M-step are calculated using a combination of optimization 814 

approaches, including simulated annealing molecular dynamics simulations. 815 

Moreover, during each optimization cycle we also use iterative refinement steps, a methodological 816 

innovation for effective reassignment of restraints during the optimization process, which allows genome 817 

structure generation at higher resolution and improved accuracy in comparison to our previous 818 

approach38,39 (see Iterative refinement method in Supplementary Information).  819 

After 11 iterations, our method converges and the genome-wide contact probabilities from the 820 

structure population agree remarkably well with those from the Hi-C experiment. 821 

 822 

§ Genome representation 823 

The nucleus is modeled as a sphere with 5 µm radius (𝑅:);)39. Chromosomes are represented by a 824 

chromatin chain model at 200-kb base-pair resolution. Each 200-kb chromatin region, in the diploid 825 

genome, is modeled as a sphere, defined by an excluded volume radius (𝑅<= = 118 nm). 𝑅<=	is estimated 826 

from the sequence length, the nuclear volume and the genome occupancy (40%), as described in ref.39. 827 

The full diploid genome is represented with a total of 30,332 spheres.  828 

Random starting configurations. 829 

Optimizations are initiated with random chromosome configurations. Chromatin regions are randomly 830 

placed in a bounding sphere proportional to its chromosome territory size and randomly placed within the 831 

nucleus. 832 

§ Comparison between contact frequency maps from Hi-C experiment and model 833 

population. 834 

To quantify the agreement between Hi-C experiment and model population, we perform the following 835 

analyses:  836 
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1) Comparison between input and output Hi-C maps are evaluated by Pearson and stratum adjusted 837 

(SCC)62 correlation coefficients (Table S1). 838 

2) Restraint violation ratios. On average about 175,304 contact restraints are imposed in each of the 839 

10,000 structures. The restraint score of each contact restraint 𝑖 is calculated as: 𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑖𝑜$ =
E!F#
#

 840 

, where 𝑑$ is the distance between the contact loci in the model, and 𝐷 is the target contact distance 841 

(2 × 𝑅ABCD).  842 

3) Residual ratio. The residual ratio Δ𝑟 is defined as:  843 

Δ𝑟GH =	2𝑓GH
$:')D −	𝑓GH1BE<H4/𝑓GH

$:')D 844 

with 𝑓GH
$:')D and  𝑓GH1BE<H as the contact probabilities between regions k and l from experiment and 845 

models, respectively. Residual ratios are very small, and centered at a median of 0.03 (mean= -0.05) for 846 

intra-chromosomal and 0.001 (mean 	= -0.002) for inter-chromosomal contacts (Fig. S1), showing 847 

excellent agreement between experiment and model. 848 

4) Prediction of missing Hi-C data from sparse data model. A sparse Hi-C input data set is generated by 849 

randomly removing 50% of the non-zero data entries from the Hi-C contact frequency matrix.  850 

 851 

§ Robustness and Converge Analysis 852 

Replicates 853 

Technical replicates are calculated from different random starting configurations. Resulting contact 854 

frequency maps and the average radial positions of all chromatin regions between replica populations 855 

are nearly identical (Fig. S2). All observed structural features discussed in this paper are reproduced in 856 

the technical replicate population. 857 

Population size 858 

To test convergence with respect to population size, we generate 5 different populations with 50, 100, 859 

1,000, 5,000 and 10,000 structures. Chromatin contact frequencies and structural features for each 860 

structure populations are compared against results with a population size of 10,000 structures. At a 861 

population of 1,000 structures, a size much smaller than our target population, contact frequency values 862 

and average radial positions are already converged to a very high correlation with those from a 10,000 863 

structure population (Fig. S3).  864 

 865 
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Chromatin interaction networks and identification of spatial partitions  866 

§ Building chromatin interaction networks 867 

A chromatin interaction network (CIN) is calculated for each model and for chromatin in each 868 

subcompartment separately as follows: Each vertex represents a 200-kb chromatin region. An edge 869 

between two vertices i, j is drawn if the corresponding chromatin regions are in physical contact in the 870 

model, if the spatial distance 𝑑$, ≤ 2 × (𝑅ABCD).  871 

Network properties 872 

Maximal Clique Enrichment:  A clique is a subset of nodes in a network where all nodes are adjacent to 873 

each other and fully connected. The maximal clique refers to the clique that cannot be further enlarged. 874 

The number of maximal cliques, 𝑐, is calculated using the graph_number_of_cliques function in the 875 

NetworkX python package76. The maximal clique enrichment (MCE) of the subcompartment s in the 876 

structure m is calculated as:  877 

𝑀𝐶𝐸A,1 =	
𝑐A,1

1
10∑ 𝑐J,19K

J89

 878 

Where 𝑐A,1 is number of maximal cliques for subcompartment 𝑠 in structure 𝑚;  𝑐J,1 is the number of 879 

maximal cliques of a CIN constructed from randomly shuffled subcompartment regions in the same 880 

structure 𝑚. High MCE values shows formation of a structural subcompartment with high connectivity 881 

between 200-kb regions of the same state. 882 

Neighborhood Connectivity: To calculate the neighborhood connectivity (NC) of a subcompartment CIN, 883 

we first calculate the average neighbor degree for each node using the average_neighbor_degree 884 

function in the NetworkX python package76. The overall neighborhood connectivity of the 885 

subcompartment 𝑠 in the structure 𝑚 is then calculated as: 886 

𝑁𝐶A,1 =
1

𝑁A,1
m𝑑𝑒𝑔,

(",$

,89

	 887 

where 𝑁A,1 is the number of nodes in the CIN of the subcompartments	𝑠 in the structure 𝑚 , and 𝑑𝑒𝑔, is 888 

the average neighbor degree of node j.  889 

§ Identifying spatial partitions via Markov clustering 890 

Spatial partitions of subcompartments as well as regions in A compartment with low and high structural 891 

variability (A regions in the first and last quartile based on their radial position variability, see Cell-to-cell 892 

variability of features section below) are identified by applying Markov Clustering Algorithm (MCL)77, a 893 
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graph clustering algorithm, which identifies highly connected subgraphs within a network. MCL clustering 894 

is performed for each subcompartment CIN in each structure by using the mcl tool in the MCL-edge 895 

software77. Unless otherwise noted, the 25% smallest subgraphs (with less than 7 nodes, many of those 896 

singletons) are discarded from further analysis to focus on highly connected subgraphs. The highly 897 

connected subgraphs are referred to as “spatial partitions” throughout the text.  898 

In addition to subcompartment/compartment partitions, we also predict speckle, and nucleoli partitions 899 

as follows: 900 

i. Speckle partitions: 901 

Case 1: Predictions of speckle locations with knowledge of A1 subcompartment annotations 902 

Speckle locations are identified as the geometric center of A1 spatial partitions identified by Markov 903 

clustering of A1 CINs. In each structure, A1 spatial partitions are considered with sizes larger than 3 904 

nodes (chromatin regions). 905 

Case 2: Predictions of speckle locations without knowledge of subcompartments 906 

We first identify chromatin expected to have high speckle association. These regions are identified as 907 

those with unusually low and stable interior radial positions. We select 10% chromatin regions with the 908 

lowest average radial positions. (78.4% of these regions are part of the A1 subcompartment). We then 909 

generate CINs for the selected group of chromatin regions in each structure of the population. 910 

Approximate speckle locations are then identified as the geometric center of the resulting spatial 911 

partitions identified by Markov clustering of the CINs. Spatial partitions are considered with sizes larger 912 

than 3 chromatin regions.  913 

Case 3: Predictions using locations of A2 partition centers 914 

For comparison, we also identify speckle locations as the geometric center of A2 spatial partitions 915 

identified by Markov clustering of A2 CINs similar to Case 1. In each structure, A2 spatial partitions are 916 

considered with sizes larger than 3 chromatin regions. 917 

ii. Nucleoli partitions: 918 

Following the same protocol as in Case 2 for speckle partitions, we first identify chromatin expected to 919 

have high nucleoli association. These regions are identified as those previously reported nucleoli 920 

associated domain (NAD)68 regions and nucleolus organizing regions (NOR, on short arms of 921 

chromosomes 13, 14, 15, 21, and 22). Using these regions, we generate CINs in each structure of the 922 

population. Approximate nucleoli locations are then identified as the center of mass of the resulting spatial 923 

partitions identified by Markov clustering of the CINs. Only top 25% largest spatial partitions are used as 924 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2021.07.11.451976doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.11.451976


 48 

predicted nucleoli. For NOR regions, we use the first 25 restrained 200-kb regions that are closest in 925 

sequence to NOR regions in these five chromosomes, as NOR regions do not have Hi-C data and they 926 

are not restrained during the modeling protocol.  927 

Properties of partitions 928 

Size of partitions: The size of a spatial partition is calculated as 0.2	𝑥	𝑁	Mb where N is the number of 929 

nodes in the partition that represents a 0.2 Mb region.  930 

Fraction of inter-chromosomal edges (contacts): For each spatial partition, the inter-chromosomal edge 931 

fraction (ICEF) is calculated as: 932 

𝐼𝐶𝐸𝐹 = 	
𝐸$:D<J

𝐸$:DJL + 𝐸$:D<J
 933 

where 𝐸$:DJL and 𝐸$:D<J are number of intra- and inter- edges in the partition, respectively. 934 

 935 

Structural features 936 

Unless otherwise noted, mean values of structural features for each genomic region are calculated from 937 

2 copies and 10,000 structures (total 20,000 configurations) in the following structural feature 938 

calculations. 939 

  940 

§ Mean radial position (RAD, #1) 941 

Radial position of a chromatin region 𝑖 in structure 𝑚 is calculated as: 942 

𝑟$,1 =	
𝑑$,1
𝑅:);

 943 

where 𝑑$,A is the distance of i to the nuclear center, and 𝑅:); is the nucleus radius which is 5 µm. 𝑟$,A = 	0  944 

means the region i is at the nuclear center while 𝑟$,A = 	1 means it is located at the nuclear surface.  945 

Other radial position related analyses 946 

i. Overlap of subcompartment borders and large radial position transitions: To identify regions 947 

coinciding with large transitions in radial positions, we first calculate each region’s gradient in radial 948 

position from their average radial position profiles. Peaks and valleys in the gradient profile coincide 949 

with the regions of large radial transitions in the chromosome and are identified with the detect_peaks 950 

python package78. We obtain 1408 regions with large radial transitions with minimum peak height 951 

(mph) set to 0.01 (the gradient values range between -0.06 – 0.05.) to filter out regions with minimal 952 
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radial transitions. We then check if these identified regions coincide with the subcompartment 953 

borders, i.e. where two neighboring chromatin regions are in different subcompartments. We 954 

determine an overlap if there is a subcompartment border within a 1-Mb window of a given identified 955 

region with a large radial transition.  956 

ii. Shell analysis: To map the preferred positions of 200-kb regions in the nucleus, we divide the nuclear 957 

volume of each model into 5 concentric shells 𝐿 = {𝐿9, 𝐿%, 𝐿2, 𝐿M, 𝐿N} so that each shell contains the 958 

same amount of chromatin in each single structure. We then calculate the probability of a 959 

subcompartment 𝑠 to be in any shell from 𝐿: 960 

𝑃A,O% =
1
𝑀
m

𝑁A,O%,1
𝑁A

7

189

 961 

where 𝑁A,O%,1 is the number of regions from subcompartment 𝑠 in shell 𝐿G in structure 𝑚, 𝑁A is the 962 

total number of regions in subcompartment 𝑠, and 𝑀 is the total number of structures. 963 

iii. Comparison with GPSeq: GPSeq scores41 are rescaled to have values between 0 – 1, where scores 964 

0 and 1 correspond to a chromatin region being at the nuclear lamina and nuclear center, 965 

respectively41. Average radial positions extracted from our structures vary between 0.48 – 0.94 with 966 

higher values corresponding to proximity to nuclear lamina. For comparison with GPSeq, we subtract 967 

the average radial positions from 1 and then rescale the values to be between 0 – 1. 968 

iv. Average radial positions of regions from different replication phases: Genomic regions are divided 969 

into 6 groups (G1b, S1, S2, S3, S4, G2) based on their mapped replication phases63. For each group, 970 

the distribution of the average radial positions is then determined from the structure population. 971 

  972 

§ Local chromatin fiber decompaction (RG, #2) 973 

Radius of gyration of chromatin fiber 974 

The local compaction of the chromatin fiber at the location of a given locus is estimated by the radius of 975 

gyration (RG) for a 1 Mb region centered at the locus (i.e. comprising +500kb up- and 500 kb downstream 976 

of the given locus). To estimate the RG values along an entire chromosome we use a sliding window 977 

approach over all chromatin regions in a chromosome. 978 

The RG for a 1 Mb region centered at locus i in structure m, is calculated as: 979 

𝑅𝐺$,1 =	m𝑑,
%

(

,89

 980 
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where 𝑁 is the number of chromatin regions in the 1-Mb window, and 𝑑, is the distance between the 981 

chromatin region 𝑗 to the center of mass of the 1-Mb region. 982 

Other RG related analysis 983 

i. TAD border detection: To investigate if chromatin regions with maxima in RG profiles coincide with 984 

TAD borders, we first identify peak regions in the average RG profiles with the detect_peaks python 985 

package78. 2068 peak regions are detected genome-wide with minimum peak distance (mpd) set to 986 

3 (peaks must be at least 3 data points/600-kb apart from each other). We then check if these 987 

identified regions coincide with TAD borders detected by TopDom75, HiCseg79, InsulationScore80, and 988 

TADbit56. We determine an overlap if there is a TAD border within ±200-kb window of a peak region.  989 

ii. RG peak frequency: Peak regions in the RG profiles are detected in each individual structure using 990 

detect_peaks python package78 with same parameters as in the previous section. The RG peak 991 

frequency (PF) of a region 𝑖 is then calculated as: 992 

𝑃𝐹P =	
𝑛$ + 𝑛$&
2𝑀

 993 

where 𝑛$ and 𝑛$& are the number of structures in which region 𝑖 and its homologus copy has an RG 994 

peak, and 𝑀 is the number of genome structures in the population. 995 

  996 

§ Mean gene-speckle and gene-nucleolus distances (SpD, NuD, #3,4)  997 

For each 200-kb region, the closest speckle partition (or nucleolus partition) in each single structure is 998 

identified and the center-to-center distance is calculated (from the center of the region to the geometric 999 

center of the partition). The distances across the population are then averaged for each region to 1000 

calculate mean speckle (or nucleolus) distances.  1001 

Other related analysis 1002 

Speckle distance heatmaps: A speckle distance heatmap for a chromosome visualizes, for a given 1003 

chromatin region, the speckle distance variability across the population of models. For each copy of a 1004 

chromatin region, the distance to the nearest predicted speckle is calculated in each structure of the 1005 

population. These distances (20,000 distances total due to 2 copies and 10,000 structures) are ranked 1006 

from lowest to highest values and plotted along a column of the speckle distance heatmap and color 1007 

coded according to the distance. Colors range from low distance (red) to large distances (blue).  1008 

 1009 

 1010 

 1011 
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§ Cell-to-cell variability of features (dRAD, dRG, dSpD, dNuD, #5-8) 1012 

Cell-to-cell variability of any structural feature (𝛿P!"#	for radial positions, 𝛿P
&'#	speckle distances, 𝛿P()# 1013 

nucleoli distances, and 𝛿P!+ 	local decompaction) for a chromatin region 𝐼 is calculated as: 1014 

𝛿PQ = 𝑙𝑜𝑔% 	
𝜎PQ

𝜎Qssss
 1015 

where 𝜎PQ is the standard deviation of the values for structure feature 𝐹 calculated from both homologous 1016 

copies of the region across all 10,000 genome structures in the population; 𝜎Qssss is the mean standard 1017 

deviation of the feature value calculated from all regions within the same chromosome of region 𝐼 . 1018 

Positive 𝛿PQ  values (𝛿$Q > 0) result from high cell-to-cell variability of the feature (e.g. radial position); 1019 

whereas negative values (𝛿$Q < 	0) indicate low variability.  1020 

Regions in A compartment with positive and negative 𝛿P!"# are called A-HV (high variability) and A-1021 

LV (low variability), respectively. Likewise, regions in B compartment with positive and negative 𝛿P!"# are 1022 

called B-HV and B-LV, respectively. The number of 200-kb regions in each group are 3164, 2731, 3839, 1023 

and 3918 for A-LV, A-HV, B-LV, and B-HV, respectively.  1024 

 1025 

§ Interior localization frequency (ILF, #9) 1026 

For a given 200-kb region, the interior localization frequency (ILF) is calculated as: 1027 

𝐼𝐿𝐹P =	
𝑛JRK.N
𝑀

 1028 

where 𝑛JRK.N is the number of structures where either copy of the region 𝐼 has a radial position lower than 1029 

0.5, and 𝑀 is the total number of structures which is 10,000 in our population. 1030 

  1031 

§ Nuclear-body association frequencies (SAF, LAF, NAF, #10-12) 1032 

For a given 200-kb region, the association frequency to nuclear bodies (SAF, LAF, and NAF for speckle, 1033 

lamina, and nucleoli association frequencies, respectively) are calculated as: 1034 

𝑆𝐴𝐹(𝑜𝑟	𝐿𝐴𝐹	𝑜𝑟	𝑁𝐴𝐹)P =	
𝑛E!RE' + 𝑛E!&RE'

2𝑀
 1035 

where 𝑀 is the number of structures in the population (2 homologous copies of each chromosome are 1036 

present per structure); 𝑛E!RE'  and 𝑛E!&RE'   are the number of structures, in which region 𝑖  and its 1037 

homologous copy 𝑖′ have a distance to the nuclear body of interest (NB) smaller than the association 1038 
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threshold, 𝑑D. The 𝑑Ds are set to 500 nm, 0.35𝑥𝑅:);, and 1000 nm for SAF, LAF, and NAF, respectively. 1039 

We try different distance thresholds, and the select thresholds resulted in the best correlations with 1040 

experimental data. For SAF and NAF calculations, we use the predicted speckle and nucleolus partitions 1041 

to calculate distances (see Identifying spatial partitions via Markov clustering). For LAF, we use the direct 1042 

distances of regions to the nuclear envelope. For all association frequency calculations, we calculate 1043 

distances from the surface of the region to the center-of-mass of the partition or to the surface of the 1044 

nuclear envelope.  1045 

Other related analyses 1046 

i. Predicting lamin B1 DamID signals using LAF: The predicted laminaDamID signal of region 𝐼  is 1047 

calculated as: 1048 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑙𝑎𝑚𝑖𝑛𝑎𝐷𝑎𝑚𝐼𝐷	𝑠𝑖𝑔𝑛𝑎𝑙P = 𝑙𝑜𝑔% y
𝐿𝐴𝐹P
𝐿𝐴𝐹ssssssz 1049 

where 𝐿𝐴𝐹ssssss is the mean lamina association frequency calculated from all regions in the genome.   1050 

ii. Comparison with imaging data: We compare our SAF, LAF and NAF values with imaging data8. To 1051 

calculate association frequencies from imaging and models, we use different distance thresholds 1052 

(250, 500, 750, 1000 nm distance thresholds for SAF and LAF when calculated from imaging or 1053 

models, and additional thresholds of 1250, 1500, 1750, 2000 nm for LAF when calculated from 1054 

models) to define an association to the nuclear body of interest. We find that the best correlations are 1055 

obtained when the following distance thresholds are used: 1056 

- SAF: 500 nm for imaging, 750 nm for models 1057 

- NAF: 1000 nm for imaging, 1000 nm for models 1058 

- LAF: 1000 nm for imaging, 2000 nm for models 1059 

For SAF comparisons, we use the predicted speckle partitions from interior regions (Case 2 for 1060 

speckle partitions in Identifying spatial partitions via Markov clustering). 1061 

 1062 

§ TSA-seq (S-TSA, L-TSA, N-TSA, #13-15) 1063 

To predict TSA-seq signals for speckle, nucleoli, and lamina from our models, we use the following 1064 

equation: 1065 

𝑠𝑖𝑔$ =	
1
𝑀
mm𝑒F!(‖E!)‖

O

H89

7

189

 1066 
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where 𝑀 is the number of models, 𝐿 is the number of predicted speckle locations in structure 𝑚, 𝑑$H is 1067 

the distance between the region 𝑖 and the predicted nuclear body location 𝑙, and 𝑅K is the estimated 1068 

decay constant in the TSA-seq experiment14 which is set to 4 in our calculations. The normalized TSA-1069 

seq signal for region 𝑖 then becomes:  1070 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑇𝑆𝐴𝑠𝑒𝑞	𝑠𝑖𝑔𝑛𝑎𝑙$ = 𝑙𝑜𝑔 y
𝑠𝑖𝑔$
𝑠𝚤𝑔ssssz

 1071 

where 𝑠𝚤𝑔ssss is the mean signal calculated from all regions in the genome. The predicted signal is then 1072 

averaged over two copies for each region. The predicted speckle, and nucleoli partitions are used for 1073 

distance calculations (see Identifying spatial partitions via Markov clustering).  For lamina TSA-seq, we 1074 

use direct distances of each 200-kb chromatin region to the nuclear surface in each structure, which is 1075 

calculated as (1 − 𝑟1) × 𝑅:);  where 𝑟1  is the radial position of the 200-kb region in structure 𝑚 and 1076 

𝑅:); 	is the nucleus radius which is set to 5 µm. 1077 

Other related analysis: 1078 

i. Predicting SON TSA-seq signals using only cis relationships in folded chromosomes: 1079 

To identify contributions of cis interactions in SON TSA-seq signals, speckle locations are defined by the 1080 

geometric center of consecutive A1 sequence blocks formed by more than 1 A1 chromatin region (instead 1081 

of the geometric center of A1 spatial partitions, which can be formed by both cis and trans chromosomal 1082 

interactions). For single A1 regions, the bead center location is used instead. For each chromatin region, 1083 

we then calculate its spatial distances to these predicted speckle locations in the folded chromosome, 1084 

which are used to predict the resulting TSA-seq signals from cis interactions only.  1085 

ii. Predicting SON TSA-seq signals using only cis relationships in random conformations:   1086 

We also repeat the same calculations as defined in the previous section, but instead of the folded 1087 

chromosomes, use models with random chain configurations, generated without Hi-C data (i.e. only chain 1088 

connectivity and excluded volume). TSA-seq data is calculated accordingly from the corresponding 1089 

distances based on the random polymer chain configurations. 1090 

iii. Predicting SON TSA-seq signals using speckle distances based on A1 sequence locations:  1091 

Speckle locations are approximated by the sequence positions of A1 regions, either as median 1092 

sequence position for a block of consecutive A1 chromatin regions or the sequence positions of 1093 

individual A1 regions, if their neighboring regions are not part of the A1 subcompartment. The 1094 

distance 𝑑$,
A<U 	between a chromatin region i and speckle position j, separated in sequence by n 1095 

chromatin regions, is then defined as 𝑑$,
A<U = 2𝑛 × 𝑅<=  , where  𝑅<= = 118	𝑛𝑚 is the excluded 1096 
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volume radius of a chromatin region in the models (see Genome representation). These distances 1097 

are then used to predict SON TSA-seq signals as defined above.  1098 

iv. Histone modification histograms based on predicted SON TSA-seq deciles:  1099 

Following the procedure described in ref14, we divide the 200-kb chromatin regions in our models into 10 1100 

decile groups based on their predicted SON TSA-seq signals; deciles 1 and 10 contain regions with the 1101 

lowest and highest 10% predicted TSA-seq signals, respectively. We then count the number of mapped 1102 

peaks of H3K27me3, H3K4me3, and H3K9ac as well as the number of A1, A2, A1+A2 regions in each 1103 

decile, and calculate the fraction of histone modification peaks or A1/A2 regions accrued in each decile. 1104 

For mapping histone modification peaks to 200-kb bins to match our models’ resolution, see Mapping 1105 

experimental data to models in Supplementary Information. Same histograms using experimental TSA-1106 

seq deciles are re-generated from Fig. 8 in ref14 using WebPlotDigitizer81. 1107 

  1108 

§ Mean inter-chromosomal neighborhood probability (ICP, #16) 1109 

For each target chromatin region 𝑖, we define the neighborhood {𝑗} if the center-to-center distances of 1110 

other regions {𝑗} to the target region are smaller than 500 nm, which can be expressed as a set; 𝑁𝑒$ =1111 

{𝑗:	𝑗 ≠ 𝑖, 𝑑$, < 500	𝑛𝑚}. Inter-chromosomal neighborhood probability (ICP) is then calculated as: 1112 

𝐼𝐶𝑃P =
1
2𝑀	

mm
𝑛$:D<J(𝑚, 𝑖)

𝑛$:D<J(𝑚, 𝑖) + 𝑛$:DJL(𝑚, 𝑖)

%

$89

7

189

 1113 

 1114 

where 𝑀 is the number of structures, 𝑛$:DJL(𝑚, 𝑖) and 𝑛$:D<J(𝑚, 𝑖) are the number of intra- and inter-1115 

chromosomal regions in the set 𝑁𝑒$ in structure	𝑚 for haploid region 𝑖. 1116 

 1117 

§ Median trans A/B ratio (#17) 1118 

For each chromatin region 𝑖, we define the trans neighborhood {𝑗} if the center-to-center distances of 1119 

other regions from other chromosomes to itself are smaller than 500 nm, which can be expressed as a 1120 

set; 𝑁𝑒$D = {𝑗:	𝑐ℎ𝑟𝑜𝑚$ ≠	𝑐ℎ𝑟𝑜𝑚, , 𝑑$, < 500	𝑛𝑚}. Trans A/B ratio is then calculated as: 1121 

𝑡𝑟𝑎𝑛𝑠	𝐴𝐵	𝑟𝑎𝑡𝑖𝑜$ =
𝑛"D

𝑛VD
 1122 

where  𝑛"D  and 𝑛VD 	are the number of trans A and B regions in the set 𝑁𝑒$D for haploid region 𝑖. The median 1123 

of the trans A/B ratios for a region is then calculated from all the trans A/B ratios of the homologous 1124 
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copies of the region observed in all the structures of the population. The values are then rescaled to have 1125 

values between 0 – 1. 1126 

 1127 

Comparison of gene expression with structural features 1128 

§ Transcription frequency 1129 

Transcription frequency (TRF) of each gene in the single cell RNA-seq (scRNA-seq) data is defined as 1130 

the fraction of cells in the population of cells, where the gene has non-zero mRNA transcription counts in 1131 

the scRNA-seq data42. TRF is also calculated from the recently published nascent RNA-MERFISH 1132 

imaging data as the fraction of cells where the gene is transcribed (transcription: on) in the population of 1133 

imaged cells8. 1134 

  1135 

§ Gene expression heatmaps  1136 

Gene expression heatmaps for each chromosome visualize the variability of mRNA counts (the 1137 

expression levels) for each gene in a population of cells42. For each chromatin region, the observed 1138 

mRNA count in each cell of the population of models is ranked from highest to lowest values and plotted 1139 

along a column. Colors ranged from high mRNA counts (red) to 0 (dark blue). 1140 

  1141 

§ ROC curve for assessing performance to classify lowly or highly expressed genes 1142 

We first identify the top 10% (T10) and the bottom 10% (B10) genes with the highest and the lowest total 1143 

non-zero mRNA counts (i.e. gene expression values) in the scRNA-seq data42. Several structural features 1144 

(mean radial positions, ILF, mean speckle distances, SAF, variability of radial positions and speckle 1145 

distances) are then calculated for all chromatin regions mapped to T10 genes and B10 genes.  1146 

To determine the most informative structural features for distinguishing T10 genes from B10 genes, we 1147 

perform receiver operator characteristic (ROC) analysis. Specifically, for each structural feature, we 1148 

define 10 threshold levels, equally separating the range of values for each structural feature.  Then we 1149 

determine how well the gene in the T10 and B10 groups are separated by each threshold value by 1150 

calculating the corresponding number of true positives/negatives (TP, TN) and false positive/negatives 1151 

(FP, FN).  1152 

For each structural featue 𝑓	and for each threshold level, 𝑡, the true positive rate (TPR) and false 1153 

positive rates (FPR) are then calculated as  1154 

𝑇𝑃𝑅D,C =	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 1155 

𝐹𝑃𝑅D,C = 1 −
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 1156 
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The ROC curves are then plotted for each feature using TPR/FPR values.  1157 

Other structural analyses 1158 

§ Experimental GRO-seq and TSA-seq data analysis 1159 

Averaging TSA-seq and GRO-seq signals in concentric shells around subcompartment partitions:  1160 

To quantify average TSA-seq14 and GRO-seq67 signals for chromatin with respect to the distance to 1161 

spatial partition centers of each subcompartment, the nuclear volume around a spatial partition center is 1162 

divided into concentric shells, with each consecutive shell radius increasing by 200 nm. The signals are 1163 

then averaged over concentric shells around partition centers as follows: In each individual genome 1164 

structure, the signals of chromatin located in the same shell volume is averaged, irrespective of the 1165 

chromatin’s subcompartment assignment. The average signal per shell are further averaged over all 1166 

partition centers in the same subcompartment and over all structures of the population. Note that this 1167 

measure only relies on the geometric position of a partition center and the folded genome (i.e. calculates 1168 

average gene expression from all chromatin in a shell, independent of subcompartment annotations). 1169 

 1170 

§ Neighborhood composition  1171 

The neighborhood composition (NeC) shows how frequent chromatin regions in different 1172 

subcompartments are in spatial proximity to regions of a specific subcompartment. The average 1173 

percentage of subcompartment 𝑄  in the neighborhood composition of subcompartment 𝑆  in the 1174 

population is calculated as: 1175 

𝑁𝑒𝐶&W =	
1

𝑀𝑁&
mm

𝑛W,1,,
|𝑁1,$|

(*

,89

7

189

𝑥100 1176 

where 𝑀 is the number of structures in the population, 𝑁& is the number of 200-kb regions belonging to 1177 

subcompartment 𝑆, {𝑁1,$} is the set of 200-kb chromatin regions in the neighborhood of the region 𝑖 in 1178 

structure 𝑚, and 𝑛W,1,$ is the number of chromatin regions from subcompartment 𝑄 in the set {𝑁1,$}. We 1179 

define the neighborhood of 𝑖 in structure 𝑚 as 𝑁1,$ = {𝑗:	𝑗 ≠ 𝑖, 𝑑$, < 500	𝑛𝑚}, which contains the list of all 1180 

chromatin regions with less than 500 nm center-to-center distance (𝑑$,) to chromatin region 𝑖. 1181 

The neighborhood composition enrichment (NeCE) of subcompartment 𝑄  in the neighborhood of 1182 

subcompartment 𝑆 is calculated as: 1183 

𝑁𝑒𝐶𝐸&W =
𝑁𝑒𝐶&W

1
5∑ 𝑁𝑒𝐶XWX∈{"9,"%,V9,V%,V2}

	 1184 
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where 𝑁𝑒𝐶&W  is the neighborhood composition percentage calculated for subcompartment 𝑄  in the 1185 

neighborhood of subcompartment 𝑆 and the denominator is the average percentage of subcompartment 1186 

𝑄 observed in the neighborhood of all subcompartments. Values greater than 1 (𝑁𝑒𝐶𝐸&W > 1) indicate 1187 

that subcompartment 𝑄 is enriched in the neighborhood of subcompartment 𝑆, whereas values lower 1188 

than 1(𝑁𝑒𝐶𝐸&W < 1) show depletion of 𝑄 around 𝑆. 1189 

§ Enrichment heatmaps for various features 1190 

Enrichment of structural features, experimental TSA-seq, DamID, and GRO-seq signals, and histone 1191 

modifications in various groups: 1192 

To identify structural feature or experimental signal enrichments for chromatin in different groups 1193 

(subcompartments, TSA-seq deciles, superenhancers, enhancers, replication phases, A/B-LV/HV 1194 

groups, and T10/B10 genes), we first normalize each feature value to range between 0 and 1. We then 1195 

calculate the enrichment of a structural feature 𝑓, for group 𝑔 as:  1196 

𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡\,C =	 𝑙𝑜𝑔%

1
𝑁\
∑ 𝑓;
(+
;89

𝑓J�
 1197 

where 𝑁\  is the number of 200-kb chromatin regions in group 𝑔, 𝑓;  is the structure feature value for 1198 

chromatin region 𝑐. For 𝑓J̅, we first randomly select the same number (𝑁\) of regions in the genome and 1199 

calculate the average feature value, and repeat this step 1000 times. For the enrichment of histone 1200 

modifications in A-LV and A-HV groups, we randomly select the same number of regions only from 1201 

regions in compartment A. We then take the average of 1000 different average feature values calculated 1202 

from randomly selected regions.  1203 

For visualization purposes, we reverse the ranges of radial positions, mean-speckle, and mean-nucleoli 1204 

distances in the structural feature enrichment heatmaps, so lower values would be indicated with red.  1205 

Enrichment of replication phases, LADs, and subcompartments in A-LV, A-HV, B-LV, and B-HV groups: 1206 

We calculate the enrichment of various tags 𝑡 (based on replication phases, LADs, or subcompartments), 1207 

in group 𝑔 as:  1208 

𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡\,D =	 𝑙𝑜𝑔%
𝑓𝑟\,D
𝑓𝑟J,Dssssss 1209 

where 𝑓𝑟\,D is the fraction of regions with tag t in group g. For 𝑓𝑟J,Dssssss, we first randomly select the same 1210 

number of genomic regions (as in group g)  and calculate the fraction of regions with tag t among those 1211 

regions, and repeat this step 1000 times. We then take the average of 1000 different fraction values.  1212 

 1213 

 1214 

 1215 
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§ K-means clustering of A and B compartments  1216 

For clustering, we first normalize all 17 structural features using log2-transformation. We then perform K-1217 

means clustering using all transformed features for A and B subcompartments separately. We use scikit-1218 

learn python package to perform K-means clustering82 and set the n_clusters parameter to 2 for A and 3 1219 

for B compartments. Clusters are then compared with actual subcompartment assignments to compute 1220 

clustering accuracy. The highest prediction accuracies are obtained when clustering is performed with a 1221 

subset of structural features for both A and B subcompartments. The used features in the clustering are 1222 

cell-to-cell variability of radial positions, SAF, NAF, median trans A/B ratios for A, and cell-to-cell variability 1223 

of radial positions and nucleoli distances, nucleoli TSA-seq, ICP, median trans A/B ratios for B 1224 

subcompartment predictions, respectively. 1225 

§ Comparison with 3D in situ hybridization (3D-FISH) data 1226 

FISH probes are mapped to 200-kb chromatin regions in our models according to the highest overlap. 1227 

Radial positions and pairwise distances for each mapped probe are determined in each structure in the 1228 

population and compared to the radial positions and pair distances in FISH experiments. FISH and model 1229 

radial positions are normalized by their maximum values. Intra-chromosomal distances in models are 1230 

defined by their surface-to-surface distances of the corresponding probe regions (in both copies of the 1231 

chromosome). Colocalization fraction of inter-chromosomal pairs are calculated as following: first the 1232 

center-to-center distances of all possible probe pairs (𝑖 − 𝑗,  𝑖 − 𝑗], 𝑖] − 𝑗, 	𝑖] − 𝑗] where	𝑖] and 𝑗] are the 1233 

homologous copies of each 200-kb chromatin regions, 𝑖 and 𝑗) are calculated in each structure. The 1234 

minimum distance from all possible pairs in each structure is then used to calculate the fraction of models 1235 

in which both regions are colocalized. We assume a loci pair is colocalized in a structure if the calculated 1236 

minimum distance in that structure is lower than 1 µm (𝑑1$: < 1	𝜇𝑚). 1237 

§ Radial positions of trans and cis interactions 1238 

We select 1,000 random structures from the population and identify all the trans and cis chromatin 1239 

interactions. Then we calculate the average radial position of the location where the trans or cis 1240 

interaction occurs by taking the mean of the radial positions of the two loci forming the interaction in that 1241 

structure.  1242 

Data visualization 1243 

CINs are visualized by Cytoscape83. 3D models and spatial partitions are visualized by using Chimera84.  1244 
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