
Predictions of biodiversity are improved by 
integrating trait-based competition with abiotic 
filtering

Loïc Chalmandrier1-3, Daniel B. Stouffer2, Adam S. T. Purcell 4, William G. Lee 5,6, Andrew J. 

Tanentzap 7, Daniel C. Laughlin1

1 Department of Botany, University of Wyoming, Laramie, Wyoming, USA

2 Centre for Integrative Ecology, School of Biological Sciences, Univ. of Canterbury, Christchurch, New Zealand

3 Theoretical Ecology, Faculty of Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, 
Germany

4 Tonkin + Taylor, Hamilton, New Zealand

5 Landcare Research, Private Bag 1930, Dunedin 9054, New Zealand

6 School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

7 Ecosystems and Global Change Group, University of Cambridge, Cambridge, UK CB2 3EA

All organisms must simultaneously tolerate the environment and access limiting resources if 

they are to persist. Otherwise they go extinct. Approaches to understanding environmental 

tolerance and resource competition have generally been developed independently. Consequently,

integrating the factors that determine abiotic tolerance with those that affect competitive 

interactions to model species abundances and community structure remains an unresolved 

challenge. This is likely the reason why current models of community assembly do not 

accurately predict species abundances and dynamics. Here, we introduce a new synthetic 

framework that models both abiotic tolerance and biotic competition by using functional traits, 

which are phenotypic attributes that influence organism fitness. First, our framework estimates 

species carrying capacities that vary along abiotic gradients based on whether the phenotype 

tolerates the local environment. Second, it estimates pairwise competitive interactions as a 

function of multidimensional trait differences between species and determines which trait 

combinations produce the most competitive phenotypes. We demonstrate that our combined 

approach more than doubles the explained variance of species covers in a wetland community 

compared to the model of abiotic tolerances alone. Trait-based integration of competitive 
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interactions and abiotic filtering improves our ability to predict species abundances across space,

bringing us closer to more accurate predictions of biodiversity structure in a changing world.

Introduction

Predicting species abundances is a major focus of community ecology (McGill et al. 2006). In 

recent decades, trait-based ecology has proposed that species morphological, physiological or 

phenological features determine how abiotic filtering and species interactions affect local 

community structure (Violle et al. 2007; Kraft et al. 2015b). However, trait-based analyses of 

communities often focus on functional diversity (Spasojevic et al. 2014; Chalmandrier et al. 

2017) and few explicitly model species abundances (Zakharova et al. 2019). 

Trait-based models of abiotic filtering that predict species abundances (Shipley 2010; Laughlin 

et al. 2012) assume that there are optimum trait values within a given environment, and species 

able to attain these trait values will be more likely occur in that environment (Kraft et al. 2015b).

The most significant limitation of these models is that they fail to incorporate biotic interactions.

In contrast, theoretical models of species interactions have a long and storied history in ecology 

(Lotka-Volterra 1925; Chesson 2000), and have been used to understand the foundational 

conditions for coexistence among competing species. For species to coexist stably, niche 

differences among species must be greater than differences in competitive ability (Chesson 

2000; Adler et al. 2007) and recent work suggests that those differences can be linked to 

functional traits (Kraft et al. 2015a). 

Three primary obstacles have prevented the mathematical integration of models of abiotic 

filtering and models of species interactions. First, they lack a common numerical currency 

through which they could be linked. Trait-based models of abiotic filtering yield probabilities 

that a species occurs in an environment given its traits, whereas models of species interactions 

describe dynamics of populations over time given growth rates, carrying capacities, and 

pairwise interaction coefficients (Lotka-Volterra 1925; Chesson 2000). Second, the complexity 

of estimating pairwise interactions increases exponentially with the number of species in the 

community, and there has been no obvious method for estimating interaction coefficients 

without implementing laborious competition experiments (Kraft et al. 2015a). Finally, there 

have been no adequate tools to model classical community ecology sampling schemes. For 

instance, plant abundance is often visually assessed through percent cover classes that do not 

necessarily fit well with existing statistical frameworks. Recently, authors have formalized the 
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use of beta distributions to adequately model these sampling schemes (Damgaard & Irvine 

2019), but they have yet to be implemented in biodiversity modeling. 

Here we present a new synthetic framework that overcomes these three obstacles. This 

framework, which we call Banquo, integrates Traitspace, a trait-based model of abiotic filtering 

(Laughlin et al. 2012), with a Lotka-Volterra competition model. First, we assume that the 

probability that a species occurs in an environment given its traits is proportional to its local 

carrying capacity, i.e., the maximum population size that a species can reach given local 

resources and abiotic conditions in the absence of competition (MacArthur & Levins 1967). 

Second, we assume pairwise interaction coefficients are a function of observed trait differences 

between species, thereby substantially reducing the number of parameters needed to estimate 

pairwise interaction coefficients (Chalmandrier et al. 2021). Drawing inspiration from 

coexistence theory (Chesson 2000; Adler et al. 2007), the parameterization of this function 

allows for competitive outcomes to be affected to differing degrees by both niche partitioning 

(i.e., strong competitive interference among functionally similar species) and competitive 

hierarchies (i.e., species have strong competitive impacts on species with inferior trait values). 

Third, we use the recent methodological developments of Irvine et al. (2019) to link the output 

of our framework to observed plant species abundances that were estimated through cover 

classes.

We illustrate our framework by modeling plant species abundances along a flooding gradient in 

an ephemeral wetland (Purcell et al. 2019). After presenting our framework, we calibrated 

sixteen assembly models that include abiotic filtering and/or biotic filtering tested on different 

sets of functional traits. Then, we compared the statistical performance of these sixteen 

assembly models. Finally, we analyzed how the parameterization and output of the calibrated 

models inform our knowledge about the assembly of wetland plant communities.
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Methods

The framework

Step 1 – Estimating species carrying capacities along environmental gradients
We started with the Traitspace framework to model species’ probabilities of occurrence along 

the flooding gradient (Laughlin et al. 2012). Traitspace characterizes the size and shape of the 

environmental filter based on a multivariate linear model with a vector of individual plant traits 

(T) as the response and a vector of environmental gradients (E) as the predictors, i.e. the 

function T = f(Ek). Traitspace uses this linear model to estimate the conditional distributions of 

traits T given the environmental conditions in site k (P(T|Ek)). Second, it uses the intraspecific 

trait distribution of each species across sites, i.e. the conditional distributions of traits given 

species identity (P(T|Si∙)). The posterior distribution of species presence Sik of species i in site k 

is conditioned on both the trait state T and the environmental conditions Ek. P(Sik|T,Ek) is 

computed using Bayes theorem:

(1)

The desired posterior is computed by integrating with respect to traits to obtain the probability 

of occurrence of a species given the environmental conditions:

(2)

In practice, we use Monte Carlo integration to estimate the average probability of presence of 

each species in each site by randomly sampling 500 trait values per site based on the estimated 

trait-environment relationship (T = f(E)) and then averaging the probability distribution for each 

site and each species. In the end, we obtained a site-by-species probability table. 

We then assumed that the carrying capacity (in percent cover) Kik of species i in a site k can be 

estimated from its probability of presence in that site using a increasing log-log function:

(3)

with , .
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We standardized the probability value P(Sij|Ej) by the maximum value across all species i and all

sites j to ensure that carrying capacities Kij are all set between 0 and 1 (as a percent cover 

variable).

Step 2 – Modeling the biotic filter: estimation of trait-mediated plant competitive interactions
Formulation of the interaction matrix – Here we assume that the interaction coefficient αik 

that measures the competitive impact of species j on species i can be estimated as a function of 

difference in traits. We test a formulation of αij as a function of the empirical trait of value ti of 

species i and tj of species j:

 (4) 

with , , .

Interspecific coefficients followed a modified Gaussian function of trait differences where μ is 

the peak position of the Gaussian, σ is its width, and C controls the amplitude of interspecific 

coefficients relative to intraspecific coefficients. Species intraspecific coefficients were fixed to 

1. For a small values of  the ratio , the matrix of interaction coefficients can be 

approximated by the identity matrix (α = I) and estimated species covers simplify to the vector 

of carrying capacities. For large values of σ (σ→∞), interspecific coefficients are all equal to

 and represent a situation where interspecific interactions among species are 

constant and do not depend on species traits.

The formulation of equation 4 is that it can be directly related to either competitive hierarchies 

or niche partitioning (Chesson 2000; Adler et al. 2007). The value of the parameter μ defines if 

the studied trait relates more to niche partitioning among species, hierarchical competition, or a 

mixture of the two. Specifically, for μ close to 0, pairwise interaction coefficients are high for 

small trait differences and low for large trait differences, indicating a predominance of niche 

partitioning among species (Supplementary figure 1-A). For a low value of μ, the left hand part 

of the bell-shaped curve falls outside of the range of observed trait differences. Thus the curve 

approaches a monotonically decreasing function that indicates a predominance of competitive 

hierarchy: species with a large trait value are competitively superior over species with small trait

values (Supplementary figure 1-B). Conversely, a high value of μ returns a monotonically 

increasing function that indicates a predominance of hierarchical competition with species with 
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a small trait value being competitively superior over species with large trait values. Intermediate

situations (moderately large or moderately small values of μ) indicate a mixture of niche 

partitioning and hierarchical competition (Supplementary figure 1-C): niche partitioning is 

predominant among species with large trait differences, but among species with small trait 

differences, competition is not symmetric (as in a case of “pure” niche partitioning”) and 

hierarchical competition is the predominant coexistence process.

Finally, our formulation of interaction coefficients can be extended to multiple trait dimensions 

using a modified multivariate Gaussian function. In this study, we used a maximum of two trait 

dimensions in which case interaction coefficients were formulated as follows:

with , , , , . (5)

This equation describes a two-dimensional symmetric Gaussian function of trait differences of 

peak position (μ1, μ2) and of widths σ1 and σ2
 across the first and second dimensions. Properties 

and interpretations of the parameters are similar to their uni-dimensional counterparts. The two-

trait formulation includes an additional coefficient ρ between the two trait difference dimensions

that determine if trait differences independently contribute to the pairwise interaction 

coefficients (ρ = 0) or if they interact (0 < |ρ| < 1).

Step 3 - Integrating the abiotic and biotic filter with Lotka-Volterra models
We assumed that species’ dynamics could be modeled though a Lotka-Volterra competition 

model:

(6)

where Nik and rik are, respectively, the percent cover and the intrinsic growth rate of species i in 

site k.

Within this model, the vector of all strictly positive species covers at equilibrium Nk* satisfies 

the equation:
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where Kk = {Kik} is the vector of species carrying capacities, and α = {αij} is the matrix of per-

capita effects estimated as described above.

For a given set of parameters, the interaction matrix α was estimated, the Moore-Penrose inverse

of α was computed, and multiplied to each site’s vector of species carrying capacities estimated 

from the Traitspace model. Species local cover estimated in this way can be negative, reflecting 

that this equilibrium state is not feasible. To find a feasible equilibrium, for each vector of 

equilibrium species covers, we sequentially set to 0 the species with the most negative cover and

re-estimated the equilibrium state. This procedure was repeated until finding an equilibrium 

state where all remaining species covers were positive. 

A test of the framework
We tested our framework on a dataset of an ephemeral wetland in New Zealand (latitude 

44.374143°S, longitude 169.890052°E). In that ecosystem, plant community structure vary 

along a continuous flooding gradient. In this test, we assumed that plant community assembly is 

determined by the filtering of three functional traits by flooding duration that filters three 

functional traits (root porosity, height and SLA) and above-ground competition determined by 

height and SLA. 

Analyses of the dataset are available in previous studies (Tanentzap et al. 2014; Tanentzap & 

Lee 2017; Purcell et al. 2019). Detailed methods about data collection are available in the 

supplementary materials. We analyzed the vegetation structure with a subset of the complete 

dataset (see Supplementary materials): 67 quadrats 25 × 25 cm in size set along four transects 

that run from the lowest point of the basin and advancing upslope to the kettlehole margin. 

Foliar cover was estimated for each species using the following cover estimates: 0.5%, 1%, 2%, 

3%, 4%, 5%, 10%, 15%, 20%, 30%, 40%, …, 100%. We restricted the analysis to the 15 most 

abundant species in the study area for which we sampled traits on at least 20 individuals. These 

species collectively represent at least 80% of the total of plant cover in each quadrat (Pakeman 

& Quested 2007).

Root porosity, as a percentage variable, was logit-transformed. Height and SLA trait values were

log-transformed prior to the analysis to approach a normal distribution. We modeled the 

relationship between root porosity, SLA, height and the flooding gradient and weighted trait 

observations by species cover. 
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The intraspecific trait distribution of each species was modeled using a multivariate normal 

distribution (R-function mclust::dens Scrucca et al. 2016). We then modeled the probability of 

occurrence of each species in each site given the local duration of flooding using the Traitspace 

framework described earlier. 

To calibrate the interaction matrices, we used species maximum height along the gradient 

(calculated as the 95% quantile of each species height values) and species average SLA. 

Maximum height and SLA were moderately correlated (r = -0.42, t = -1.65, df = 13, p = 0.12). 

To avoid using correlated functional traits to estimate the two-traits interaction matrices, we first

computed a PCA on the species by trait matrix containing species maximum height and average 

SLA. We then used species scores along these two PCA trait axes to calibrate the pairwise 

interaction matrix. As we used all the PCA dimensions, this step does not compromise the 

amount of trait variation used to estimate the two-trait interaction matrix. Practice showed us 

that, compared to using correlated (but tangible) functional traits, this extra step facilitates and 

speeds the convergence of the model calibration algorithm described below. However, we 

related pairwise interaction coefficients to the observed species functional traits values, rather 

than to the PCA trait axes, to facilitate the ecological interpretation of our results. 

Using the Banquo framework, we tested a total of sixteen assembly models. All sixteen 

assembly models aim to solve the following equation to estimate the matrix of species cover N* 

at equilibrium:

(7)

(Model 1) One null model without any assembly processes: species probability of presence 

given local abiotic conditions were assumed to be equally abundant in every site (b = 0) and 

there is no interspecific competition (the interaction matrix α is equal to the identity matrix I).

(Model 2) One abiotic filtering model: species probability of presence are estimated by the 

Traitspace framework (b > 0) and there is no interspecific competition (α = I).

(Models 3-7) Five biotic filtering models that include no abiotic filtering: species probability of 

presence were assumed to be equal across species and in every site (b = 0) but species cover is 

determined by interspecific competitive interactions (α ≠ I) that could depend on 3) no traits 

(σ→∞), 4) plant height, 5) SLA, 6) both height and SLA without the interaction parameter ρ, or 

7) both height and SLA with the interaction parameter ρ.
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(Models 8-12) Five abiotic and biotic filtering models: species probability of presence are 

estimated by the Traitspace framework (b > 0) and species cover is also impacted by 

interspecific competitive interactions (α ≠ I) that could depend on 8) no traits (σ→∞), 9) plant 

height, 10) SLA, 11) both height and SLA without the interaction parameter ρ, or 12) both 

height and SLA with the interaction parameter ρ.

We summarize the characteristics of each assembly model and their parameters in Table 1.

Calibration and comparison
We used the likelihood function proposed by Irvine et al. (2019) given that observed species 

covers were recorded as percent cover classes. Briefly, the likelihood function links the ordinal 

observations of plant cover to a latent beta distribution of mean Nij (in our case estimated by the 

assembly models) and uncertainty parameter φ, that can be interpreted as a measure of plant 

spatial aggregation (Damgaard & Irvine 2019). One drawback of using the beta distribution is 

that it cannot model zero percent covers. To circumvent that issue, we added a small offset (0.05

%) to zero percent cover values, as suggested by Irvine et al. (2019). Note that this corresponds 

to moving unobserved species up to the next highest cover class, that only included a single 

cover values (0.1% of the total number of cover values).

Depending on the assembly models, there were two (null model) to nine parameters (abiotic + 

biotic model with height and SLA with the interaction parameter ρ) to estimate. We set 

regularizing priors on all parameters (Banner et al. 2020): we avoid making a priori assumptions

about the nature of the relationship between traits, carrying capacities, pairwise interactions and 

species cover but we limited the extent of the parameter space that was uninformative. Details 

about the prior functions and their hyper-parameterization are available in the supplementary 

materials.

We used a Differential-Evolution Markov-Chain Monte Carlo algorithm (DEzs MCMC in the R-

package BayesianTools (Hartig et al. 2017) to estimate the posterior distributions of the 

parameters. For each model, we ran four chains for 6 x 105 steps. Convergence was assessed 

through Gelman’s multivariate convergence criterion (MPSRF, Gelman et al. 2014). 

Assembly model comparison – We compared the fits of the calibrated models using two metrics:

the Deviance Information Criterion (DIC, Gelman et al. 2014) and Nagelkerke’s pseudo R2 

metric (Nagelkerke 1991) which lends itself well to models that use a beta distribution and gives

an indication of the variance they explain (Nakagawa & Schielzeth 2013). Nagelkerke’s pseudo 
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R2 was calculated from the ratio of a model’s posterior likelihood and the likelihood of the null 

model (see above). Furthermore, we evaluate the ability of the models to predict species 

presence/absence by evaluating receiver operating characteristic curve (ROC) and the area under

the curve (AUC) scores of each assembly model of the predicted species-site matrix using the R-

package pROC (Robin et al. 2011).

Code availability. The R-scripts and data to run the analysis are available at 

https://github.com/LoicChr/Banquo

Results

Relationship between flooding and functional traits
Root porosity increased significantly with flooding duration (t = 7.714, df = 224, P < 0.0001. 

Adjusted R2 = 0.206, Figure 1). Plant height decreased (t = -3.91; df = 224, P = 0.0001) and 

specific leaf area increased with flooding duration (t = -3.10; df = 224, P = 0.002) but these 

relationships explained only a negligible portion of trait variation along the flooding duration 

gradient (Height adjusted R2: 0.036; SLA adjusted R2: 0.060).

Model comparison
All assembly models but one converged (Gelman’s multivariate convergence criterion inferior to

1.1). Regardless of the performance statistic, there was a clear hierarchy across the assembly 

models (Table 1).  The biotic models without abiotic filtering performed the worst (DIC: 

[2415.2, 2491.8], median pseudo R2: [0.001, 0.088], AUC: [0.44, 0.68]). The biotic model 

calibrated with both height and SLA (with interaction term) had a convergence criterion of 1.81;

we thus could not calculate its DIC and AUC. The associated pseudo R2 was however low 

across its posterior distribution: [0.056, 0.088]. The abiotic model without biotic interactions 

performed better (DIC: 2413, median pseudo R2: [0.075, 0.085], AUC: 0.67). 

The models that included both abiotic filtering and biotic interactions performed the best both in

explained plant cover variance (pseudo R2: [0.082, 0.196]; DIC: [2291.0, 2412.0]) and species 

presence/absence (AUC: [0.67, 0.77]). The model that assumed fixed pairwise interaction 

coefficients among competitive species was the worst performing of all (pseudo R2: 0.081; DIC: 

2412.0, AUC = 0.67), while the SLA-based interaction models were the best performing. 

Among the latter, the model that calibrated biotic interactions using specific leaf area was the 

best fitting (DIC: 2291.0, pseudo R2: 0.196, AUC: 0.77). 
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Calibrated pairwise interaction matrices
Among the assembly models that included both abiotic filtering and a pairwise interaction 

matrix calibrated with functional traits, the pairwise interaction matrix calibrated with SLA was 

the best supported by the data. It indicated a predominance of niche partitioning. There was a 

slight but non-significant hierarchical competition effect (μ: 95% IQ [-0.43, 0.08], Figure 2C). 

This showed that the modest hierarchical competition among pairs of species conferred an 

advantage to species with the largest SLA. 

All three pairwise interaction matrices calibrated with SLA were similar regardless of the 

inclusion of height or the interaction parameter ρ. At the median of their respective posterior 

distribution, the pairwise interspecific competition coefficients were strongly correlated (r = 

0.82 between the SLA-calibrated matrix and the Height + SLA calibrated matrix without 

interaction; r = 0.98 between the SLA-calibrated matrix and the Height + SLA calibrated matrix 

with interaction).

Comparison between the abiotic model and the abiotic and biotic 
assembly models
We compared the abiotic model to the best assembly model (i.e. abiotic and biotic with pairwise 

interactions calibrated with Height and SLA without interaction). The abiotic model tends not to 

predict species absences well. The distribution of cover values was thus approximately normal 

around a median value of 3.30% (Supplementary Figure 5). Consequently, species presence 

along the flooding gradient was often overestimated with numerous species being predicted to 

be present in sites where they were not observed (e.g. see Epilobium angustum, Figure 3). In 

contrast, when biotic interactions are included, the assembly model tends to predict more 

absences and less even percent cover values among species (Figure 3, Supplementary Figure 5). 

Discussion

Predictive models of community assembly have focused on incorporating abiotic filters and 

have generally ignored biotic interactions. Here we show that trait-based assembly rules can be 

used to directly model species abundances in communities by simultaneously accounting for 

both abiotic filtering and competitive interactions (Keddy 1992, 2001). There are two major 

implications of this study. First, we introduced a trait-based formulation of pairwise competitive 

interactions that allowed us to calibrate 210 interaction coefficients from observational data with

no more than eight parameters. This new approach substantially improves our ability to infer 

interaction matrices with little additional complexity (Cabral et al. 2017; Chalmandrier et al. 
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2021). Second, the inclusion of competitive interactions among species improved predictions of 

local plant cover, which bolsters the argument that the modeling of species distribution must 

include both abiotic tolerances and species interactions (Alexander et al. 2015; Evans et al. 

2016). 

The core feature of the Banquo model is the formulation and calibration of pairwise competition

coefficients among species. We proposed a new flexible formulation of competitive pairwise 

interactions as a function of trait differences. Compared to estimating pairwise interaction 

coefficients individually, this considerably reduces the number of parameters to estimate 

(Zakharova et al. 2019; Chalmandrier et al. 2021). That formulation was directly inspired by, 

and thus constrained by, the principles of coexistence theory and how it has informed the study 

of functional diversity patterns (Chesson 2000; HilleRisLambers et al. 2012). 

Traditionally, functional diversity pattern studies have assumed that niche partitioning was the 

main competition mechanism behind community assembly (MacArthur & Levins 1967). In that 

framework, niche partitioning would promote the coexistence of functionally dissimilar species 

and oppose itself to environmental filtering that promotes the coexistence of functionally similar

species. In recent years, this framework has been criticized (Kraft et al. 2015b; Münkemüller et 

al. 2020) as coexistence theory posits that competition can also promote the coexistence of 

functionally similar species through hierarchical competition. Our framework has the benefit of 

not assuming niche partitioning or hierarchical competition as the main trait-based competitive 

mechanism among species, but rather permits the fit of a mixture of the two processes. Our 

empirical example illustrates that the pairwise interaction matrices of the assembly models were 

consistent with strong niche partitioning among species but with a small yet significant degree 

of hierarchical competition among species with small trait differences. Our modeling of pairwise

interactions aims to provide a general and flexible relationship between competition strength 

among plants and trait differences rooted in coexistence theory. However, it is essentially 

phenomenological and does not explicitly model the mechanisms behind plant-plant 

competition. Future developments may aim at formulating competition as an explicit function of

species’ ability to consume local soil resources Letten et al. (2017) or intercept light (Falster et 

al. 2017). Beyond competition, a more complex modeling of plant biotic interactions could 

include facilitative interactions or acknowledge that the nature of species interactions can shift 

along environmental gradients (Maestre et al. 2009; Bimler et al. 2018). 
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Our trait-based modeling approach explicitly specifies classical assembly mechanisms 

(HilleRisLambers et al. 2012) and evaluates their ability to predict species local abundance 

using common modeling statistics. Our case study showed that including both abiotic filtering 

and biotic interactions led to a net improvement of the modeling of species local abundances and

of community structure. One of the limitations of established trait-based models is that they tend

to overestimate species occurrences (e.g. Merow et al. 2011). This drawback also affects other 

types of biodiversity models such as stacked species distribution models (Pottier et al. 2013) 

leading to inaccurate predictions of community structure at small spatial scales (Thuiller et al. 

2015). This has long been interpreted as a consequence of not properly accounting for biotic 

interactions. Our study supports for this conjecture: including competitive interactions improves 

the modeling of species occurrences and further decreases the predicted diversity (α-diversity) 

and increases the predicted turnover (β-diversity) bringing them closer to the observed diversity 

values (Supplementary Figure 4). Our results follow the classical expectation that the realized 

niche of species is smaller than the fundamental niche because species interactions limit where 

species actually occur (MacArthur & Levins 1967). In more details, the assembly model that 

include only abiotic filtering predicts remarkably even species abundances (Figure 3, 

Supplementary figure 5), in contrast with the usual strong heterogeneity that characterizes 

species abundance distributions (McGill et al. 2007). The inclusion of biotic interactions 

predicts a more realistic distribution of species abundances within communities and produces 

more sparse species-by-site community matrices that exhibited a stronger hierarchy among 

species (Figure 3, Supplementary figure 5). 

By applying our framework to the strong flooding gradient in a wetland ecosystem, we were 

able to get insights into the ecological mechanisms that determine wetland community structure 

and also identify our framework limitations. First, we found that a trait-based model of abiotic 

filtering (root porosity, SLA, and height) led to a modest improvement in model fit compared to 

the null model (Table 1, pseudo R2 95% IQ [0.075, 0.085]). This suggested flooding filtered the 

species pool primarily by porous root tissue that enhances the ability of species to tolerate 

flooded and anoxic soil (Moor et al. 2017; Tanentzap & Lee 2017). When we added trait-based 

competitive interactions to this assembly model, we significantly improved the modeling of 

species covers and, consequently, of community structure. Using traits to estimate the 

interaction matrix further proved useful as the assembly model with a fixed pairwise interaction 

matrix was not well supported by the data. The “best” model was the model that calibrated 

biotic interactions with SLA (Table 1, pseudo R2 95% IQ [0.182, 0.196]). This suggests that 
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competitive interactions among plants in that ecosystem could be mediated through leaf 

economics (Violle et al. 2009; Tanentzap & Lee 2017). In contrast, the interaction matrix 

calibrated only with height was less supported by the data. This indicated that there was little 

competitive interference among pairs with dissimilar SLA values, likely because they partition 

resources and are thus able to coexist (Moor et al. 2017). 

However, even the best assembly model explained a relatively modest portion of species 

abundances. This points both to the limitations of the available data and of our framework. Only

root porosity was found to vary, and only moderately, along the flooding gradient (adjusted R2 = 

0.21). Thus the modeled carrying capacities of species along the flooding did not vary as 

strongly as could be a priori expected (see Figure 3). The intraspecific variability of root 

porosity was important (32% of total root porosity variance was intraspecific) and may dampen 

our ability to use this trait to model species’ abiotic niche (Read et al. 2017). It is also possible 

that other unmeasured functional traits may be involved in the filtering of species along the 

flooding gradient (Moor et al. 2017). 

Conclusion

It has been argued that complex ecological processes can be modeled with limited data input by 

leveraging the generality of functional traits (McGill et al. 2006). In community ecology, 

functional traits are mainly used in diversity pattern analyses codified by assembly theory 

(Keddy 1992). Those analyses have numerous pitfalls: non-random functional diversity patterns 

can be interpreted in multiple ways thus rendering difficult a confident inference of community 

assembly rules (Kraft et al. 2015b; Cadotte & Tucker 2017; Münkemüller et al. 2020). In 

contrast, our approach specifies explicit assembly rules and model directly local species 

abundances. Ultimately, our framework provides a process-based approach to predict 

community structure and quantify its support. Such trait-based modelling opens a new general 

way to model natural communities and will improve our ability to understand and predict 

biodiversity structure and dynamics under global change.
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Table 1. Comparison of the assembly models. Each model posterior is described by the 

Deviance Information criterion (DIC), Nagelkerke’s pseudo R2, the area under the curve (AUC) 

and Gelman’s multivariate convergence criterion (MPSRF). The assembly models are ranked by

decreasing median pseudo R2. 

Assembly model category Traits used to calibrate 
interactions (αik)

Fixed 
parameters

Parameters to 
estimate

MPSRF DIC Pseudo R2 AUC

Abiotic & Biotic model SLA / a, b, C, μ, σ, φ 1.002 2291 [0.182, 0.196] 0,773

Abiotic & Biotic model Height + SLA (with int.) / a, b, C, μ1, μ2, 
σ1, σ2, ρ, φ

1.004 2295 [0.177, 0.194] 0,773

Abiotic & Biotic model Height + SLA (no int.) / a, b, C, μ1, μ2, 
σ1, σ2, φ

1.018 2308,8 [0.171, 0.188] 0,764

Abiotic & Biotic model Height / a, b, C, μ, σ, φ 1.000 2371,8 [0.115, 0.13] 0,689

Abiotic model No interactions α = I a, b, φ 1.000 2413,8 [0.075, 0.085] 0,671

Abiotic & Biotic model No traits σ→∞ a, b, C’, φ 1.001 2412 [0.071, 0.082] 0,669

Biotic model Height + SLA (with int.) b = 0 a, C, μ1, μ2, σ1, 
σ2, ρ, φ

1.811 / [0.056, 0.088] /

Biotic model Height + SLA (no int.) b = 0 a, C, μ1, μ2, σ1, 
σ2, φ

1.021 2415,2 [0.038, 0.067] 0,657

Biotic model SLA b = 0 a, C, μ, σ, φ 1.006 2420,7 [0.03, 0.043] 0,631

Biotic model Height b = 0 a, C, μ, σ, φ 1.025 2456 [0.027, 0.042] 0,574

Biotic model No traits b = 0,  σ→∞ a, C’, φ 1.000 2491,8 [0, 0.001] 0,448

Null model No interactions α = I, b = 0 a, φ 1.000 2491,8 [0, 0.001] 0,5
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Figure 1. Relationship between the duration of flooding and plant traits: root porosity (a), 

specific leaf area (b) and vegetative height (c). Data point size is proportional to plant cover. The

line indicates the modeled relationship used in the Traitspace framework. The three linear 

models were all statistically significant (Root porosity, adjusted R2 = 0.206, p < 1 x 10-5 ; 

Specific leaf area, adjusted R2 = 0.037, p = 0.0021; Vegetative height, adjusted R2 = 0.060, p 

=0.0001).

Figure 2. Calibrated pairwise interaction coefficients of the abiotic and biotic assembly 

models. The graphic represents interspecific αij (competitive impact of species j on species i) as 

a function of the height-only (a), SLA-only (b), or both (c,d) differences of species i and species

j. The blue scale represents the absolute value of the pairwise coefficient. To facilitate the 

interpretation of the two-traits plots (c-d), we indicated the position of the largest pairwise 

interaction coefficient value with an orange diamond.

Figure 3. Comparison of observed and modeled species cover along the flooding gradient. 

Red response curves are fitted on the species cover as predicted by the abiotic model. Green 

response curves are fitted on the species cover as predicted by the best abiotic and biotic model 

(see Table 1). Black nonlinear response curves are fitted directly to the observed cover for each 

species. All curves are fitted using a loess function. 
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