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Abstract 
Colorectal malignancies are a leading cause of cancer death. Despite large-scale genomic 
efforts, DNA mutations do not fully explain malignant evolution. Here we study the co-
evolution of the genome and epigenome of colorectal tumours at single-clone resolution 
using spatial multi-omic profiling of individual glands. We collected 1,373 samples from 30 
primary cancers and 9 concomitant adenomas and generated 1,212 chromatin 
accessibility profiles, 527 whole-genomes and 297 whole-transcriptomes. We found 
positive selection for DNA mutations in chromatin modifier genes and recurrent chromatin 
changes in regulatory regions of cancer drivers with otherwise no mutation. Genome-wide 
alterations in transcription factor binding accessibility involved CTCF, downregulation of 
interferon, and increased accessibility for SOX and HOX, indicating developmental genes 
reactivation. Epigenetic aberrations were heritable, distinguishing adenomas from cancers. 
Mutational signature analysis showed the epigenome influencing DNA mutation 
accumulation. This study provides a map of (epi)genetic tumour heterogeneity, with 
fundamental implications for understanding colorectal cancer biology.  

Introduction 
Clonal evolution, fuelled by intra-tumour heterogeneity, drives tumour initiation, 
progression and treatment resistance (Greaves and Maley, 2012; Turajlic et al., 2019). 
Much is known about the genetic evolution and intra-tumour heterogeneity of colorectal 
malignancies (Atlas, 2012; Cross et al., 2018; Sottoriva et al., 2015). Although genetic 
heterogeneity is widespread (McGranahan and Swanton, 2017), epigenetic changes are 
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also responsible for phenotypic variation between cancer cells (Black and McGranahan, 
2021; Mazor et al., 2016). Epigenetic profiling of chromatin accessibility in colon cancer 
has been performed in seminal studies in cell lines (Akhtar-Zaidi et al., 2012) and human 
samples (Johnstone et al., 2020). However, current investigations are limited to single bulk 
samples and some also lack normal controls (Corces et al., 2018). Moreover, how cancer 
genomes and epigenomes concomitantly evolve and shape intra-tumour genetic and 
epigenetic heterogeneity remains unexplored. Measuring this complex co-evolution in a 
quantitative manner requires multi-omics profiling at single clone resolution and accurate 
spatial sampling of human neoplasms, as well as matched normal tissue. 
 
Colorectal cancers are organised into glandular structures, reminiscent of the crypts of the 
normal intestinal epithelium (Humphries and Wright, 2008). Normal crypts are tube-like 
invaginations where cell proliferation is driven by a relatively small number of stem cells at 
the base (Baker et al., 2014; Barker et al., 2009; Lopez-Garcia et al., 2010; Snippert et al., 
2010) and cancer glands are thought to have the same architecture (Merlos-Suárez et al., 
2011). This implies that all cells within a gland share a recent common ancestor and are a 
few cell divisions apart: thus glands are largely clonal populations that, through cell 
proliferation, copy DNA with relatively high fidelity. Ultimately, the gland can be thought of 
as a natural “whole-genome amplification machine” that can be exploited to perform multi-
omics analysis at single clone resolution. Indeed, single crypt and gland genomic profiling 
has been long used to study clonal dynamics in both normal (Nicolas et al., 2007; Shibata, 
2009; Yatabe et al., 2001) and cancer cells (Cross et al., 2020; Humphries et al., 2013; 
Kang et al., 2015; Siegmund et al., 2009a; Sottoriva et al., 2015; Tsao et al., 1999, 2000). 
We have developed a new method to concomitantly profile single nucleotide variants 
(SNVs), copy number alterations (CNAs), chromatin accessibility with ATAC-seq 
(Buenrostro et al., 2001) and full transcriptomes with RNA-seq from the same individual 
gland or crypt (see associated Protocol manuscript).  
 
Here we present the results of multi-region single gland multi-omics profiling of 1,373 
samples from 39 lesions arising in 30 patients, with 23-57 tumour samples per patient 
(median=42.5). 
 

Results 
Single gland multi-omics 

We collected fresh resection specimens from 30 stage I-III primary colorectal 
cancers and 9 concomitant adenomas belonging to 30 patients referred for surgery at the 
University College London Hospital (Figure 1A and Table S1 for clinical information). 
Single gland isolation was performed from normal and neoplastic tissue (Figure 1B), as 
done in previous work (Martinez et al., 2018) and similar to other methods pioneered by 
Shibata and colleagues (Siegmund et al., 2009b; Tsao et al., 2000; Yatabe et al., 2001). 
After gland isolation we also collected small bulk samples (a.k.a. ‘minibulks’), representing 
an agglomerate of a few dozen glands to verify that picked glands were representative of 
the sample (Figure 1B). Cell lysing and nuclei pelleting separated nuclei from cytosol 
(Figure 1C). We used nuclei to perform whole-genome sequencing and chromatin 
accessibility profiling with ATAC-seq. We use the cytosol to perform full transcriptome 
RNA-seq (Figure 1D). Full details of the methodology are available in an associated 
Protocol manuscript. 

 
We applied this method to a spatial sampling strategy designed to measure clonal 

evolution at multiple scales. We first sampled four spatially distant regions of a given 
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cancer (A,B,C,D) located close to the tumour edge, one distant normal epithelium region 
(E), and concomitant adenomas if present (F,G,H). A bulk sample was collected from each 
region and was spatially annotated in the original resection specimen (Figure 1E and S1). 
Each piece was cut into 4 subregions (e.g., A1-A4, B1-B4, …) as shown in Figure 1E 
(bottom-right). We then collected and profiled 12-40 (median=37) individual tumour glands 
and 3-18 (median=4) minibulks per patient, a few healthy crypts and a minibulk from the 
matched normal, and blood when available (Figure 1F and S2). We note that C542 sample 
F was originally labelled as adenoma but confirmed to be part of the cancer upon 
histopathology revaluation (see Figure S1). We performed multi-omics profiling using deep 
whole-genome sequencing (WGS, median depth 35x – see Table S2) in 3-15 samples per 
patient (median=8.5), low-pass whole genome sequencing (lpWGS, median depth 1x – 
see Table S2) in 1-22 samples per patient (median=8), and chromatin characterisation 
with ATAC-seq in 18-61 samples per patient (median=42), see Table S3. For a proportion 
of samples (n=382/1,373) both WGS and ATAC-seq data were available (Figure 1G). We 
also generated a total of 623 whole-transcriptomes, of which 297 were of high quality to be 
used for analysis (1-40 samples per patient, median=7) with many also overlapping the 
WGS dataset, the ATAC-seq dataset or both (Figure 1H). We identified somatic single 
nucleotide variants (SNVs) and indels, ATAC peaks and copy number alterations (CNAs) 
from all samples (Methods).  
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Figure 1. Spatial single gland collection and multi-omic data generation. (A) Fresh 
colectomy specimens from 30 stage I-III colorectal cancer patients were used to collect 
tissue from 30 cancers and 9 concomitant adenomas. (B) Single glands and small bulks 
were isolated from normal and neoplastic samples. (C) From each sample we performed 
cell lysis followed by nuclei pelleting. (D) Cytosolic fractions were used for RNA-seq 
whereas nuclei were used for whole-genome sequencing and ATAC-seq.  (E) From each 
colectomy specimen we identified separate regions of the cancer (A, B, C, D), a distant 
normal sample (E) and adenomas if present (F-H). Each sample was split into 4 blocks 
(inlet square). (F) From each block (A-E) we collected individual glands (marked as _G) as 
well as small bulks, agglomerates of a few dozen crypts (marked as _B). (G) We 
performed multi-omic profiling using whole-genome sequencing, ATAC-seq and RNA-seq 
on the same sample, achieving a good level of overlap between assays. (H) For each 
assay we had representative samples from normal, adenoma and cancer. 
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Genetic mutations affecting the epigenome 

Five cases in the cohort were characterised by microsatellite instability (MSI), as 
reported in Figure 2A, leading to significantly higher SNV and indel burdens (Figure 2B). 
Copy number alterations recapitulated previous datasets (Atlas, 2012; Cross et al., 2018), 
with microsatellite stable (MSS) cases displaying high aneuploidy and MSI cases instead 
showing a largely flat copy number profile (Figure S3). Recurrent loss of chromosomal 
copies was confirmed for canonical tumour suppressor genes, such as APC, PTEN, TP53 
and SMAD4. Focal amplifications were found in FGFR1 (2 cases) and MYC (1 case). 
Recurrent cancer driver events in colorectal cancers were recapitulated in this dataset, 
with stereotypical mutations in APC, KRAS and TP53 (Figure 2C and S4). With the 
exception of a single case (C539), mutations in these genes were invariably clonal.  
 

We also identified recurrent somatic mutations in chromatin modifier genes, 
particularly in the lysine demethylases (KDM), lysine acetyltransferases (KAT), lysine 
methyltransferases (KMT) and SWI/SNF (ARID1A) families. Missense mutations in 
chromatin modifier genes for MSS cancers are reported in Figure 2D whereas truncating 
and indel variants are illustrated in Figure 2E (see Figure S5 for all cases). Selection on 
chromatin modifier genes was assessed by dN/dS (Martincorena et al., 2017; Zapata et 
al., 2018): clonal (occurring in all cancer cells) truncating mutations in chromatin modifier 
genes in MSS cases showed clear signs of positive selection, with dN/dS significantly >1 
(Figure 2F, arrows). dN/dS was above 1 (positive selection) for missense mutations in 
chromatin modifiers but this was not significant, indicating that whereas a subset of 
missense mutations could be selected, a large proportion are likely neutral (Figure 2F, 
arrows). Subclonal chromatin modifier mutations were present but did not show signs of 
being positively selected, with dN/dS»1 (Figure 2F). No evidence of positive selection for 
chromatin modifier gene mutations was detected in MSI cancers, although their high 
mutational burden may limit the power of detection. 
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Figure 2. DNA alterations in canonical cancer drivers and chromatin modifier genes. 
(A) Microsatellite instability per case. (B) Mutational burden by type of mutation (InDel: 
small deletion or insertion, MNV: multiple nucleotide variant, SNV: single nucleotide 
variant). (C) Recurrently mutated colorectal cancer driver genes, with orange dot indicating 
whether the mutation is clonal or subclonal. (D) Missense mutations in chromatin modifier 
genes in MSS cases. (E) Truncating mutations and indels in MSS cases. (F) dN/dS 
analysis of clonal and subclonal chromatin modifier mutations in MSS and MSI cancers 
and adenomas. 
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Focal chromatin alterations are recurrent, hit known driver genes, and distinguish 
adenomas from cancers 
 
We identified peaks in the ATAC-seq data in each region of a cancer using MACS2 (Feng 
et al., 2012) and compared each peak Counts per Million (CPM) versus normals (see 
Figure S6) to identify significant somatic chromatin changes (Figure 3A, see Methods). We 
found highly recurrent somatic chromatin accessibility alterations (SCAAs) in both 
promoters (Figure 3B) and putative enhancers (Figure 3C). Amongst recurrent events, 
gain of a peak (opening of chromatin in tumour vs normal) was more common than loss 
(closing of chromatin in tumour vs normal) both in promoters (68 gained vs 5 lost in >10 
patients) and enhancers (6 gained vs 0 lost in >10 patients). This suggests an overall 
pattern of increased accessibility of chromatin in cancer versus normal tissue. We used 
matched RNA-seq (see associated TRANSCRIPTOME paper) to verify that SCAAs 
corresponded to changes in gene expression (Figure 3D). Indeed, 15.6% of promoters 
(92/586) and 11.9% of enhancers (29/244) with recurrent SCAAs (>5 patients) showed 
signs of altering the expression of associated genes (Figure S7, FDR<0.01 and Table S4). 
We note that our power to detect expression changes was limited by the recurrence of a 
given SCAA in the cohort and incomplete matched RNA data. Moreover, chromatin 
accessibility is necessary but not sufficient to induce changes in expression as it does not 
inform on whether the transcription factor is actually bound to the regulatory region. 
Therefore, more chromatin changes than those we report may actually cause a change in 
expression.  
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Figure 3. Somatic alterations in chromatin accessibility in cancers and adenomas. 
(A) SCAA detection of cancer C530 region B versus normal. Significantly altered peaks in 
red. (B) Recurrence of promoter SCAAs and (C) of enhancer SCAAs. (D) For a proportion 
of loci, we were able to confirm changes in gene expression, for this case of LAMA5 
promoter opening. (E) Summary of the 20 most recurrent openings (gain) and closures 
(loss) of promoter and (F) of putative enhancers. Clonal changes are marked in solid 
squares, subclonal changes in shaded squares. Stars indicate DNA mutation in reported 
colorectal cancer driver gene. (G) Clonal somatic peak gained at the JAK3 promoter in 
cancer C551 and (H) in case C561. (I) Recurrent promoter loss of accessibility of 
colorectal cancer driver CCDC6, example from C524. (J) Example of recurrent enhancer 
loss of ARID1A in case C539. (K) Example of somatic peak in NXPH1 enhancer gain and 
(L) TTYH3 promoter gain found in the cancer but not in the concomitant adenomas of 
C561. (M) HRH1 promoter gain of accessibility was found in region C of C544 but not in 
other regions. (N) FOXL1 enhancer gain of accessibility was found in regions C and D of 
C524 but not in other regions. All heterogeneous peaks were identified accounting for 
purity differences. 
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ATAC peaks called in our dataset showed strong overlap with peaks from the TCGA 
dataset lacking normals (Corces et al., 2018) and the ENCODE normal colon tissue 
dataset (Dunham et al., 2012), both reanalysed with our pipeline (Figure S8). Due to 
unmatched normal controls however, in these orthogonal single bulk sample datasets it is 
not possible to distinguish chromatin changes occurred in the cancer versus those already 
present in the normal colon (e.g., to determine somatically-changed status of the peak), 
and indeed most of the signal of chromatin accessibility comes from the tissue of origin of 
the sample (Corces et al., 2018). 
 
We then leveraged our spatial multi-region profiling strategy to assess intra-tumour 
epigenetic heterogeneity at the level of chromatin accessibility and identify clonal versus 
subclonal SCAAs. The signal from ATAC peaks is notoriously difficult to compare between 
samples because it is confounded by variability in purity and transcription start site 
enrichment (TSSe). We used our matched WGS to identify clonal (truncal) DNA mutations 
present in all cancer samples and assessed the frequency of these variants in the reads 
from ATAC-seq to obtain an accurate estimate of sample purity (see Methods). To 
statistically test the clonality of ATAC peaks we used samples from each region as 
pseudo-“biological replicates”, and compared the signal between different cancer regions 
and the corresponding normal while accounting for sample purity (see Methods). This 
analysis was possible in 24/30 cancers and 9/9 adenomas due to the limited number of 
samples with sufficient purity in some cases. 
 
Given the large number of SCAAs identified, we focused on the 20 most recurrently 
altered loci per category (promoter/enhancer, gained/lost), as well as those associated to 
colorectal cancer driver genes from the IntoGen list (Martínez-Jiménez et al., 2020). We 
found that a significant proportion of these events (782/854, 91.5%) were found altered in 
all distant regions of the same cancer and they were therefore ‘clonal’ epigenetic changes 
in the malignancy. A summary of clonal and subclonal SCAAs for the list of alteration 
described above, with assessment of clonality and comparison with adenomas, is reported 
in Figure 3E for promoters and Figure 3F for enhancers. 
 
Amongst the recurrently altered and almost invariably clonal epigenetic changes, we report 
highly recurrent JAK3 promoter gain of accessibility in 16/24 cancers (Figure 3G,H). We 
also found recurrent accessibility loss of the CRC driver gene CCDC6 in 11/24 cancers 
(Figure 3I). Notably, this tumour suppressor gene appears rare in colorectal cancer based 
on DNA mutations alone (e.g., 3/30 cases in our cohort, annotated as purple star in Figure 
3E,F). We also report ARID1A enhancer closure in 7 cancers and 1 adenoma, with only 2 
of these cases reporting also a mutation in this gene (Figure 3J). Alterations in multiple 
other putative CRC drivers were also found, such as SMAD3 and SMAD4 promoter loss 
(Figure 3E), NCOR2 enhancer gain, and SMAD3, MAP3K1 and CCDC6 enhancer loss 
(Figure 3F). NFATC2 and LIFR cancer driver genes that were not reported in colorectal 
cancer were found epigenetically altered in our cohort again in the absence of DNA 
mutations. Of interest, we found typically-clonal promoter opening of FOXQ1 (Figure 3E), 
a known oncogene reported to be involved in colorectal cancer tumourigenicity (Kaneda et 
al., 2010), angiogenesis and macrophage recruitment during progression (Tang et al., 
2020). We also note that 11/24 cancers showed gain of LAMA5 promoter (Figure 3A and 
D), a gene reported to be involved in colorectal cancer progression (Bartolini et al., 2016; 
Galatenko et al., 2018; Gordon-Weeks et al., 2019). We also found MMP9, a gene 
involved in EMT (Chae et al., 2018), promoter opening in 6 cases. This finding further 
highlights how cancer driver lists based on DNA mutations provide an incomplete picture 
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of carcinogenesis, tumour progression and clonal evolution. We confirmed that the signal 
was not driven by copy number alterations, with 95.4% of loci in Figure 3E and F showing 
no difference in copy number alterations between altered and non-altered region 
accessibility (Figure S9). In supplementary figures we report all the results for each patient 
for promoter gains (Figure S10), promoter loss (Figure S11), enhancer gain (Figure S12) 
and enhancer loss (Figure S13).  
 
When we compared cancers with adenomas, we found that out of the 235 SCAAs found 
recurrent in the cancers in Figure 3E and F, only 32 (13.6%) were also found in the 
matched adenoma, indicating that they likely occurred at the onset of malignant 
transformation rather than the initiation of neoplastic growth (Figure S14). This was 
exemplified by the opening of NXPH1 enhancer and TTYH3 promoter, which were present 
in each region of the cancer but not in the concomitant three adenomas (Figure 3K,L). It 
was previously noted that there were limited differences between adenomas and 
carcinomas in colorectal cancer at the level of point mutations in driver genes, and instead 
major differences at the level of chromosomal instability (Cross et al., 2018). Similarly, 
here we find major differences in epigenetic rewiring between adenomas and CRCs. 
 
Although the majority of recurrent SCAAs were clonal in the cancer, a proportion of SCAAs 
were found to be subclonal and confined to one or more regions. This is exemplified by 
HRH1 promoter gain in Figure 3M occurring only in region C of cancer C544, and FOXL1 
enhancer gain in Figure 3N occurring only in regions C and D of C524. All the per-region 
data for subclonal promoters and enhancers SCAAs is reported in Figures S15-S18.  
 
Transcription factor accessibility analysis reveals global epigenetic reprogramming 
 
We then analysed the accessibility to transcription factor (TF) binding sites for 870 
transcription factors (Dunham et al., 2012) using publicly available TF motif and ChIP-seq 
data (see Methods). To measure this, we piled the ATAC reads for all the TF sites of 
interest in the genome (Methods). When the number of reads (in CPM) is plotted versus 
the distance from the centre of the TF motif and the length of each read, this analysis 
produces a characteristic signature of TF accessibility for a given sample, which can also 
encode the footprint of the TF complex itself in the cancer (Figure 4A and S19) compared 
to the normal (Figure 4B). We divide the genomic loci analysed for each TF into three 
major subsets depending on their distance d from the closest Transcription Starting Site 
(TSS): proximal to TSS (pTSS, d £ 2,000 bp), close to TSS (cTSS, 2,000 < d £ 10,000 bp) 
and distal to TSS (dTSS, d > 10,000 bp). Each of these sets was further divided into those 
overlapping a called ATAC peak (oPeak) with non-overlapping a called ATAC peak 
(nPeak). Following normalisation and subtraction of the signal from the normal samples 
(Figure 4C), we use linear regression to account for confounding factors such as 
transcription start site enrichment (TSSe) per sample and identify signal differences driven 
by cancer cell purity (see Methods). We considered significant changes in TF chromatin 
accessibility if the signal difference of cancer-normal correlated with the purity of a sample, 
hence the more the amount of cancer cells in the sample, the stronger the signal 
difference. This allowed controlling for contamination from normal colon and stromal cells. 
As many transcription factors bind to similar loci in the genome, we considered only largely 
non-overlapping TF annotations to ensure the signal was not driven by the same loci in the 
genome for multiple TFs (Figure S20 and Methods). The signal was consistent when we 
looked at regions unique to each annotation (Figure S21), demonstrating it was not a small 
subset of common regions of the genome driving the signal. 
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The results are illustrated in Figure 4D where the colour scale indicates the regression 
coefficient of the model, and stars indicate significance. In red the signal from TF 
accessibility correlates positively with the purity, indicating increased accessibility in 
tumour. In blue we have loci that have decreased accessibility in tumour. The results 
support pervasive rewiring of TF chromatin accessibility in cancer, with three large clusters 
of altered TF binding sites. A first cluster (green in the left dendrogram) revealed 
downregulation of interferon signalling through closing of chromatin loci normally bound by 
transcription factors such of the IRF (interferon-regulatory factor) family, indicating 
suppression of immune signalling. As shown in Figure 4E, Reactome and GO analysis 
indicated that the signal was significantly enriched for downregulation of interferon-g 
(FDR=4.2e-6) and interferon a/b (FDR=3e-8), as well as downregulation of cell 
differentiation (FDR=5e-5). The signal was particularly strong in MSI cancers (p=0.012, 
Fisher’s Exact Test). By analysing RNA-seq data from the same patients, we found that 
consistent with the downregulation of interferon signalling, gene expression of HLA genes 
was significantly reduced in the majority of patients (Figure 4G).  
 
A second cluster (blue in the left dendrogram) identified two distinct subgroups of patients 
with differential chromatin accessibility for CTCF. CCCTC-Binding Factor (CTCF) is a key 
player in chromatin insulation, determining looping and TAD (Topological Associating 
Domain) formation. We report a larger group of cases characterised by loss of CTCF 
binding site accessibility, which was also enriched for MSI cancers. We also found a 
smaller but significant group showing increased CTCF accessibility. CTCF chromatin 
accessibility alterations were previously noted in single bulk cancer sample (Fang et al., 
2020), CTCF somatic mutations are frequent in CRC (Katainen et al., 2015), and indeed a 
mouse model of chronic CTCF hemizygosity led to higher cancer incidence and 
dysregulation of oncogenic pathways (Aitken et al., 2018). 
 
A third cluster (red in the left dendrogram) showed increased chromatin accessibility for 
TFs involved in stem cell differentiation and pluripotency (GO: ‘positive regulation of stem 
cell differentiation’ – FDR=2.5e-4, and ‘mesenchymal stem cell differentiation’ – FDR=9e-
4; KEGG: signalling pathways regulating pluripotency of stem cells – FDR=0.047), as well 
as TFs involved in development, such as the HOX, FOX and SOX families (UniProt: 
‘homeobox’ – FDR=2.7e-40, ‘developmental protein’ – FDR=1.7e-21). The chromatin 
accessibility of this cluster of TFs was higher in cancer in the majority of cases, pointing at 
a key role of reactivation of developmental genes in colorectal cancer tumorigenesis 
(Figure 4F). The expression of the TFs involved in this cluster is reported in Figure S22. 
 
We also note a small cluster characterised by increased accessibility of SNAI1 and SNAI2 
transcription factor binding sites, two genes involved in Epithelial to Mesenchymal 
Transition - EMT (Chae et al., 2018). This small cluster was significantly enriched with 
cases showing truncating mutations in chromatin modifier genes (p=0.047, Fisher’s Exact 
Test), consistently with previously reported regulation of EMT by chromatin modulators 
(Serresi et al., 2021) 
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Figure 4. Transcription factor binding site accessibility is rewired in tumours. (A) TF 
binding site accessibility (in this example CTCF) is computed by summing the signal of 
ATAC-seq reads centred at binding site, plotted against read length. (B) The same is done 
for the normal controls. (C) Signal from the normal is subtracted to the signal from the 
cancer to assess differential accessibility. TF accessibility for CTCF is reduced in this 
example as demonstrated by fewer ATAC cuts at the binding site in the cancer (lower read 
count at TF binding site) which leads to fewer long reads initiating from the TF binding site.  
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(D) The differential signal is then regressed against TSSe and purity to identify TF binding 
accessibility altered in tumours. Results here for the three major clusters of differentially 
accessible TF loci (colour is regression coefficient, star indicates significance). (E) String-
db analysis of the green TF cluster highlights downregulation of interferon signalling and 
cell differentiation signalling. (F) String-db analysis of the red cluster indicates upregulation 
of stem cell differentiation and activity of developmental genes such as the homeobox 
family. (G) Differential gene expression of HLA genes.  
 
Binding sites of developmental TFs with increased accessibility are demethylated 
 

Changes in chromatin accessibility can be accompanied by changes in DNA 
methylation, with heterochromatin regions often being methylated and vice-versa for open 
chromatin regions. This is particularly the case for regions that are permanently silenced 
after development (Smith and Meissner, 2013). We asked whether some of the SCAAs we 
identified at TF binding sites (Figure 4D) reflect in the methylation of the same loci. 

We performed methylation profiling on a subset of 8 samples using Illumina EPIC 
850k methylation arrays (1x sample from C516, 2x samples from C518, 2x samples from 
C560 and 3 samples from C561). Comparing the methylation of TF binding annotations in 
cluster 3 (Figure 4F), we found that methylation in these regions was significantly lower 
than in normal tissue, supporting the finding that these sites were accessible (Figure 5A). 
This was particularly clear for TF binding sites of DLX5, HOXA4, HOXB4, ISL1, SOX5 and 
SOX6 (Figure 5B). This suggests stable reactivation of regulatory regions involved in 
development and pluripotency. 
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Figure 5. Demethylation in reactivated TF binding sites and heritability of chromatin. 
(A) We selected genomic regions in cluster 3 (enriched in developmental genes like SOX 
and HOX families) and verified their methylation status with CpG methylation arrays in 
EPICC samples versus normal. (B) In particular regions corresponding to binding sites of 
DLX5, HOXA4, HOXB4, ISL1, SOX5 and SOX6 showed decreased methylation in cancer 
vs normal. (C) We compared ATAC distance (euclidean on promoter peaks) between 
glands from the same region (within-region) and glands of different regions (between-
regions) to evaluate divergence of chromatin against space and genetic distance. (D) For 
the large majority of patients within-region ATAC distance is significantly lower than 
between region, indicating heritability of the chromatin that follows the spatial and 
phylogenetic structure of the tumour. Here we plot the F statistics of the ANOVA model on 
TSSe, number of reads, and region. (E) A significant proportion of TF binding site 
accessibility changes were ‘clonal’ within the tumour, with distant regions showing the 
same pattern, again testimony of the heritability of chromatin accessibility. In this example 
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CTCF loop and promoter loci in C548. However, there were some exceptions, as in this 
example of C543. 
 
Chromatin changes are stable and heritable, and can be a substrate for Darwinian 
clonal selection 
 
Epigenetic alterations, and in particular chromatin modifications, are responsible for cell 
identity in all tissues, hence it remains unclear whether epigenetic changes in cancer are 
stable during tumour progression and growth. If they were stable, a key question would be 
whether they comprise a heritable trait passed on from mother to daughter cell, potentially 
providing the heritable substrate for Darwinian selection to operate. The overall picture in 
Figures 3E and F, with the majority of the most recurrent SCAAs being clonal, shows that 
chromatin alterations in cancer are stable during the course of tumour expansion, copied 
over thousands of cell generations as a heritable trait found several cm apart in different 
tumour regions.  
 
To further test the heritability of epigenetic alterations we compared epigenetic divergence 
of samples within the same region versus samples in different regions (Figure 5C). In a 
majority of patients (23/29), ANOVA controlling for TSSe and number of reads, showed 
that samples from the same region are significantly less divergent in terms of chromatin 
accessibility with respect to samples from different regions (see Methods), indicating that 
chromatin profiles are heritable and follow, at least in part, genetic divergence (Figure 5D). 
We also report the ANOVA coefficients for each region in Figure S23. 
 
Overall, the results support the finding that somatic chromatin modifications in cancer are 
in part heritable and stable over time. Moreover, many of the alteration that characterise 
cancers occur just before or at the onset of malignancy, with benign adenoma not sharing 
the widely altered epigenetic landscape observed in carcinomas. 
 
We asked the same question of heritability of the chromatin in regards to the global 
rewiring for TF activity we report in Figure 4. When examining these patterns in each 
distinct region of a tumour, we observed the same overall trend of increased or decreased 
accessibility in all regions in a large proportion of cases (Figure S24), suggesting that such 
rewiring of the chromatin existed in a common ancestor of all the samples and was 
inherited during tumour expansion. There were however some interesting exceptions 
where different regions showed distinct profiles. For example, C548 showed 
homogeneous loss of accessibility to CTCF binding sites at loop loci. In C543 both 
promoter and loop binding sites of CTCF were altered and in a heterogeneous manner, 
with region displaying differential organisation of the chromatin (Figure 5E). 
 
Mutational signatures affecting the epigenome 
 
With a median of 9 deep WGS samples per patient, we were powered to perform high 
resolution clonal and subclonal mutational signature analysis (Alexandrov et al., 2013, 
2015). Moreover, we could exploit the matched chromatin accessibility and transcriptomic 
profiles to accurately measure clonal and subclonal per-signature mutation rates in regions 
of the genome with different chromatin accessibility and gene expression. We used a 
method based on sparse signatures identification, which is more robust to overfitting 
compared to previous methods (Lal et al., 2021), to perform mutational signature discovery 
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in our cohort. However, we note that signature discovery with other methods, such as 
SigProfiler (Alexandrov et al., 2020) identified the same signatures (Figure S25). 
 
 
We identified six signatures (Figure 6A):  
 
• SparseSignature1, corresponding to COSMIC signature 1 of C>T deamination at 

methylated CpG sites 
• SparseSignature2, corresponding to COSMIC signatures 2+13 caused by APOBEC 

enzymes 
• SparseSignature3, corresponding to COSMIC clock-like signature 5 
• SparseSignature4, corresponding to COSMIC signature 17a+b of unknown aetiology 
• SparseSignature5, corresponding to COSMIC signature 9+41 also of unknown 

aetiology 
• SparseSignature6, corresponding to COSMIC signature 44 caused by mismatch repair 

deficiency.  
 
This analysis splits the cohort into 5 distinct clusters of patients with significantly distinct 
signature composition (Figure 6B), with the two major clusters enriched for MSS (cluster 1) 
and MSI cases (cluster 2). Cluster 3 contains only patient 549, which is the only case 
enriched with the APOBEC signature. Cluster 4 with patients 561 and 539 have higher 
SparseSignatures 4 and 5 of unknown aetiology. Cluster 5 with patients 518 and 548 have 
higher SparseSignature 3 (clock-like). The activity of each signature in each cluster of 
patients is reported in Figure 6C. 
 
In Figure 6D we show the proportion of each signature between clonal and subclonal 
mutations of the same patient, highlighting the significant change in signature composition 
over time. As expected, SPS1 (deamination) is dominant in MSS cases whereas MSI 
cancers are dominated by both SPS1 (deamination) and SPS6 (mismatch repair). 
Interestingly, SPS2 (APOBEC), SPS4 and SPS5 (unknown) increase at the subclonal 
level, possibly due to their link to the altered tumour microenvironment. 
 
We reasoned that different mutational processes may differentially alter TF binding site 
affinity, thus directly influencing the epigenome. It has been previously documented that 
point mutations can disrupt CTCF binding sites (Katainen et al., 2015) We examined all 
the somatic mutations in CTCF sites that were predicted to cause significant loss or gain of 
binding using deltaSVM (Lee et al., 2015) and assign this subset of mutations to the six 
signatures, thus constructing an ‘observed signature’ of gain or loss of CTCF. For different 
patient clusters, we then considered only CTCF binding sites in the genome and sampled 
the mutational signature composition to build the ‘predicted signature’ of mutations 
causing CTCF loss or gain based again on deltaSVM. We asked whether the most active 
mutational signatures could simply explain the accumulation of mutations in CTCF binding 
sites that change its binding affinity. Indeed, mutations predicted to cause loss of binding 
had a signature highly similar to the predicted signature (cosine similarity = 0.977; Figure 
S26A), and the same was true for gains (cosine similarity = 0.919; Figure S26B). 
Interestingly, SparseSignature6 in MSI cluster 2 (mismatch repair, Figure S26C) and 
SparseSignature4 (COSMIC signature 17, Figure S26D) in cluster 4, were also consistent 
with causing gain of CTCF binding affinity (cosine similarity = 0.925 and 0.977 
respectively). These results indicate that signature 1 deamination is predominantly 
responsible for mutations altering CTCF binding in MSS cancers, with a higher tendency of 
generating loss of binding (Figure 6E). In MSI cases, signature 6 mismatch repair is also a 
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dominant factor in causing altered binding of CTCF, with preference for generating 
increased affinity (Figure 6E). This analysis illustrates how mutational processes acting on 
the cancer genome can directly influence the cancer epigenome. 
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Figure 6. Mutational signatures and the epigenome. (A) Mutational signature discovery 
with sparse signatures identified 6 signatures in our cohort. (B) Principal Component 
Analysis divided the patients into 5 clusters depending on contribution from each 
signature. (C) Signature activity varied between clusters. (D) Clonal and subclonal 
mutational signature composition for each patient. (E) Proportion of each signature for 
every cluster responsible for generating loss or gain of CTCF binding affinity in our cohort. 
(F) The epigenome influences accumulation of deamination signature 1 in distinct regions, 
both for clonal and subclonal mutations. (G) Signature SparseSignature4, mostly present 
subclonally, is also influenced by the epigenome status. (H) Signature SparseSignature5, 
particularly at the subclonal level, is again depleted in active regions as SparseSignature1.  
 
The epigenome influences the mutational processes acting on the genome 
 
Mutations in chromatin modifier genes, or in transcription factor binding sites, can 
determine the characteristics of the epigenome and the chromatin structure. At the same 
time, the epigenome also can determine how the cancer genome accumulates mutations 
due to its effect on different mutational processes and activity of DNA repair genes. 
 
In this cohort, we have the unique opportunity of having matched chromatin accessibility 
and transcriptome profiles. We leverage on this by annotating each cancer’s genome by 
epigenetic regulatory regions: active/inactive promoter, active/inactive enhancer, intergenic 
and coding (expressed vs not expressed). For this analysis we considered the (in)activity 
of a promoter or an enhancer if the chromatin accessibility status was the same in normal 
and cancer (i.e., the epigenetic region did not change activity during tumourigenesis). 
Although we have information also on epigenetic regions that were changed from active to 
inactive in the cancer and vice versa, not enough mutations had the time to accumulate in 
the relatively brief final period between change of chromatin and sampling, hence analysis 
on those could not be done. We also used the RNA-seq data to split the coding genome 
into: genes expressed in the normal, genes not expressed in the normal, genes expressed 
in the tumour (were not expressed in the normal), genes not expressed in the tumour 
(were expressed in the normal). We then examined the mutational signatures activity in 
each of these genomic annotations per patient, using a Jackknife analysis to verify 
differences in mutation accumulation from distinct mutational processes.  
 
We found that both clonal and subclonal mutational signature SparseSignature1 
(deamination) was 2-4 folds higher in closed chromatin regions of the genome, consistent 
with the need for methyl-cytosine (enriched in inactive regions) to be present in order for it 
to become deaminated and produce the associated mutational signature (Figure 6F). 
Demethylated regions of the genome with high accessibility, such as active promoters and 
enhancers, suffer up to 4 times less from the accumulation of mutations from C>T 
deamination with respect to regions in closed chromatin. This could also be due to the 
contribution of transcription-coupled DNA repair. The same was true for expressed versus 
not expressed genes in the normal. Genes not expressed in cancer (they were in normal) 
did not have enough time to accumulate deamination. Genes expressed in tumour instead 
still carried the ageing mutations accumulated in the normal tissue before carcinogenesis, 
and hence showed an intermediate mutational load (Figure 6F). A very similar pattern was 
observed at the subclonal level. The same was true for SparseSignature4 (Figure 6G) and 
SparseSignature5 (Figure 6H), which were more active subclonally, hence the pattern 
visible more clearly for subclonal mutations. These effects could also be due to differences 
in replication timing of active and inactive regions of the genome (Tomkova et al., 2018). 
Whereas the signal for SparseSignature1-5 was consistent in MSI cases as well, the same 
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magnitude of differences was not observed in mismatch repair signature, which seemed to 
be more uniformly distributed (Figure S27).  
 

Discussion 
 
Seminal studies in clonal evolution have profiled intra-tumour heterogeneity using multi-
region bulk sampling (reviewed in (McGranahan and Swanton, 2017). Although extremely 
useful, bulk sequencing data contain distinct cancer and normal cell populations, making it 
very difficult to deconvolute the signal (Tarabichi et al., 2021). Single-cell sequencing 
helps (Gawad et al., 2016) but remains extremely noisy, especially for single nucleotide 
variant (SNV) calling, and multi-omics profiling of the same cell is at an early stage. 
Moreover it is populations that evolve, not individual cells, and due to extensive cell death 
and lineage extinction in cancers it is likely that the large majority of profiled cells would 
have never contributed to the long-term evolution of a malignancy. Generally, we are 
interested in profiling single populations or ‘clones’ instead, with the aim of predicting their 
future evolution and impact on the clinical course of the disease. 
 
Although we know a lot about the genetic lesions that lead to colorectal malignancies, 
epigenetic events in colorectal cancer and many other tumour types, despite being 
recognised as highly significant (Suvà et al., 2013), are severely understudied (Black and 
McGranahan, 2021). Recently, a pan-cancer analysis revealed the chromatin accessibility 
profile of multiple cancer types, but the lack of appropriate matched normal control 
precluded proper identification of cancerous events, as opposed to tissue specific and ‘cell 
of origin’ chromatin profiles which remained the dominant signal in the data (Corces et al., 
2018). Seminal contributions by Scacheri and colleagues have used proper normal 
controls (single normal human colon crypts) in established colon cancer cell line models 
(Akhtar-Zaidi et al., 2012). Single bulk sample analyses added to this complex picture by 
discovering distinct chromatin compartmentalisation in colorectal cancers (Johnstone et 
al., 2020). All these studies point at the importance of studying the epigenome to fully 
comprehend carcinogenesis and malignant progression. 
 
Using single-gland multi-omic profiling, our study highlights that: 
 
• There are significant epigenetic events, also in cancer driver genes with otherwise no 

DNA mutation, which are highly recurrent in carcinogenesis. 
• Chromatin alterations are stable and heritable, providing a substrate for Darwinian 

selection to act.  
• Profiling the epigenome unveils a layer of cancer evolution that is largely invisible with 

genomic alterations alone, from immune escape to developmental genes reactivation. 
• The cancer epigenome influences the accumulation of somatic mutations in the 

genome. 
 
The fact that there are recurrent epigenetic changes in the promoters and enhancers of 
known cancer driver genes that are otherwise devoid of somatic mutations indicates that 
genomic medicine, which is based on the reliable identification of driver alterations to be 
targeted, needs to incorporate epigenetic assays. Furthermore, this could help explaining 
the many cases with limited or no driver mutations, thus facilitating tumour subtyping. 
 
The results on TF accessibility again point at immune remodulation as a factor contributing 
to carcinogenesis of the colon, even in the context of MSS tumours, which are generally 
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considered immunologically cold due to the limited number of infiltrating lymphocytes. 
Evidently, some level of immunogenicity must have been retained by MSS cancers in 
order for the emergence of interferon signalling suppression to be needed for 
carcinogenesis. 
 
One of the most intriguing results has also been the evidence of reactivation of 
developmental genes during tumourigenesis. Those genes are usually silenced in somatic 
tissues as they almost only needed at the time of morphogenesis, where pluripotency and 
growth potential are at the highest. The reactivation of these gene families and their 
involvement in tumourigenesis has been postulated before in the context of glioblastoma 
tumourigenesis (Liau et al., 2017), and these results confirm that the signal of this process 
is there in the epigenome of colorectal malignancies. This is important also because 
besides copy number alterations, mostly non-focal chromosomal arm gains or losses, 
there is little difference in driver alterations between benign adenomas and malignant 
carcinomas (Cross et al., 2018). Moreover, there is no solid prognostic genetic alteration 
that predicts recurrence in colorectal cancer, and differentiate stage II/III that remain 
localise in the colon, versus those that infiltrate beyond the muscle wall and will re-present 
as metastatic months or years later. Instead, the epigenome of adenomas and carcinomas 
seem to be radically different, and we hypothesise that these differences may be 
prognostic in differentiating stage II/III with occult metastatic disease from the rest. We will 
follow these patients clinically to test this. 
 
Finally, seminal papers have shown how the activity of mismatch repair genes (Polak et 
al., 2015) and nucleotide excision repair genes (Pich et al., 2018; Sabarinathan et al., 
2016), is directly impacted by the 3D structure of the genome and its chromatin 
confirmation. The results we present here quantify the activity of the most common 
mutational signatures, such deamination, across the genome with matched epigenetic 
annotations, demonstrating how the epigenome of colorectal cancers directly influence the 
processes of accumulation of mutations, and vice-versa.  
 
Necessarily, follow-up work is required to explore the significance of epigenetic alterations 
in cancer driver genes and other loci. And the involvement of developmental gene 
reactivation will need to be tested in different models of carcinogenesis. However, patient 
studies like this one are fundamental to unveiling the extent of non-genetic determinants of 
cancer clonal evolution that explain a substantial part of unknown tumour biology. 

 

Methods 
 
Sample preparation and sequencing 
The method of sample collection and molecular processing is described in detail an 
accompany Protocol manuscript. Processing of RNAseq data is described in the 
associated manuscript TRANSCRIPTOME. 
 
Whole-genome sequencing – alignment 
Contaminating adapter sequences were removed using Skewer v0.2.2 (Jiang et al., 2014). 
Adapter sequences were 'AGATCGGAAGAGC' and 'ACGCTCTTCCGATCT', with a 
maximum error rate of 0.1, minimum mean quality value of 10 and a minimum read length 
of 35 after trimming using options "-l 35 -r 0.1 -Q 10 -n". The trimmed and filtered reads 
from each sequencing run and library where separately aligned to the GRCh38 reference 
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assembly of the human genome (Schneider et al., 2017) using the BWA-MEM algorithm 
v0.7.17 (Li and Durbin, 2009) Following the GATK best practices and the associated set of 
tools v4.1.4.1,(Auwera et al., 2013; DePristo et al., 2011; McKenna et al., 2010) reads 
were sorted by coordinates (GATK SortSam), merged independent sequencing runs or 
libraries generated from the same tissue sample and marked duplicated reads using 
GATKs MarkDuplicates. The structure of the final bam files was verified using GATKs 
ValidateSamFile. 
 
Alignment – ATAC-seq 
Adapter sequences were removed with Skewer v0.2.2 (Jiang et al., 2014) using the full-
length adapter sequences below with the option "-m any.  
 
Adapter sequences: 
CTGTCTCTTATACACATCTCCGAGCCCACGAGACNNNNNNNNATCTCGTATGCCGTC
TTCTGCTTG 
CTGTCTCTTATACACATCTGACGCTGCCGACGANNNNGTGTAGATCTCGGTGGTCGC
CGTATCATT 
 
The reads of each sequencing run and library were aligned to the GRCh38 reference 
genome using Bowtie2 v2.3.4.3 (Langmead and Salzberg, 2012) with the options "--very-
sensitive -X 2000" set. After sorting the reads with samtools v1.9 (Li et al., 2009) reads 
mapping to non-canonical chromosomes and mitochondria (chrM) were removed (GATK 
PrintReads followed by RevertSam and SortSam). After of independent libraries of each 
sample, we removed duplicated reads using GATKs MarkDuplicates and removed all 
reads mapping to multiple-locations (multi-mappers). The final bam files were validated 
with GATK’s ValidateSamFile. 
 
Detection of germline variants 
HaplotypeCaller v4.1.4.1 with the GATK package (Poplin et al., 2018) was used to identify 
germline variants from the reference normal samples in each patient (buffy coats or 
adjacent normal tissue) using know germline variant annotations from the build 146 of the 
dbSNP database (Sherry et al., 2001) separately for each chromosome. Resulting VCF 
files were then merged with GATK MergeVcfs. Variant recalibration was performed with 
gatk VariantRecalibrator with options set according to GATK best practices (Auton et al., 
2015; Frazer et al., 2007; Mills et al., 2006; Sherry et al., 2001) and applied to VCF files 
using gatk ApplyVQSR with the options "-mode SNP -ts-filter-level 99.0" and "-mode 
INDEL -ts-filter-level 99.0" respectively. All germline variant calls marked as "PASS" were 
retained. 
 
Verification of sample-patient matches 
For all samples we excluded the possibly of sample mismatch by comparing germline 
variants identified in normal tissue to neoplasia samples of a given patient. The reads of 
each read-group were extracted with samtools view using options '-bh {input_bam} -r 
{read_group_id}' and GATK’s CheckFingerprint tool was applied to extract statistics on 
sample-patient matches (Javed et al., 2020). For virtually all high-purity samples without 
extensive loss of heterozygosity, we were able to confirm that the samples were obtained 
from the expected patient, for the latter group we inspected copy-number profiles (see 
below) to confirm that these matched the remaining samples. 
 
Copy number analysis 
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Deep whole genome sequencing 
Coverage of genomic loci relative to matched normal tissue samples (buffycoats or 
adjacent normals) were extracted with methods provided in the sequenza v2.1.2 package 
for R (Favero et al., 2015) and binned in non-overlapping windows of 106 bp. B-allele 
frequencies (BAF) of germline mutations determined with the GATK HaplotypeCaller (see 
above) for each patient were added to these binned files. Joint segmentation on BAFs and 
read depth counts across all samples from a given tumour were used to determine a set of 
breakpoints to use for the subsequent analysis. specifically, GC content bias correction 
from was applied using the ‘gc.norm’ method from sequenza v2.1.2 and positions with 
non-unique mapability (i.e., < 1) determined by QDNAseq v.3.8 (Scheinin et al., 2014) in 
windows of 50 bp were removed. Piecewise constant curves were fitted for each 
chromosome arm using the multipcf function (gamma = 80) from the copynumber v1.22.0 
package for R (Nilsen et al., 2012). The per-patient set of break points, binned depth-ratio 
and BAF data were then inputted into the sequenza algorithm (version 2.1.2) to determine 
allele specific copy-numbers, ploidy Ψ and purity ρ estimates (Favero et al., 2015). The 
initial parameter space searched was restricted to {ρ | 0.1 ≤ ρ ≤1} and {Ψ | 1 ≤ Ψ ≤ 7}. 
Upon manuel review of the results, we identified several samples with unreasonable fits 
(cases where calls suggested extremely variable ploidy values across samples). For these 
samples, we manually identified alternative solutions consistent with the other samples 
and somatic variant calls. 
 
Low-pass whole genome sequencing 
Low-pass WGS bam files were processed using QDNAseq (Scheinin et al., 2014) to 
convert read counts in 500kb bins across the autosomes of hg38 into log2ratio data. Data 
normalisation was performed in accordance with the QDNAseq workflow, except for outlier 
smoothing (smoothOutlierBins function) which was seen to artificially depress signal from 
highly amplified bins. Bins for hg38 were also generated according to QDNAseq 
instructions. Log2 ratio values in each bin were normalised by subtracting the median log2 
ratio from all log2 ratios per sample. Samples in a patient were segmented jointly using the 
multipcf function in the R package copynumber (gamma = 10) (Nilsen et al., 2012) and the 
mean segment log2ratio was calculated across the bins.  
 
Absolute copy number status was calculated using the approach taken by ASCAT (Loo et 
al., 2010). Using the ASCAT equation to describe LogR ratios, we took an integer ploidy 
value Ψt in the tumour t as determined by paired deep WGS in each case, and searched a 
range of purities from 0.1 to 1 (and assumed gamma was 1 as is the case in sequencing 
data). For each purity (ρ) value we calculated the continuous copy number status of each 
bin and calculated the sum of squared differences of these values to the nearest positive 
integer of the modulus. Purity estimates were given by local minima (goodness of fit to 
integer copy number values, measured as the sum of square distances) across the purity 
range considered. The absolute copy number state for each bin was taken as the closest 
integer value calculated using this purity. If no local minimum is found the purity is 
assumed to be 1. If the best solution produced negative copy number states at some loci, 
these were set to copy number zero to avoid impossible copy number states. In two 
patients per sample ploidies were determined by manual adjustment due to integer ploidy 
values producing poor fits. 
 
SNV detection 
Somatic mutations were first called for each tumour sample separately against matched 
blood derived or adjacent normal tissue samples with Mutect2 (version 4.1.4.1) using 
options ”–af-of-alleles-not-in resource 0.0000025 –germline-resource af-
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onlygnomad.hg38.vcf.gz” (Cibulskis et al., 2013; Poplin et al., 2018) Variants detected in 
any tumour sample (marked PASS, coverage AD 10 in both normal and tumour, at least 3 
variant reads in the tumour, 0 variant reads in the normal, reference genotype in normal 
and non-reference genotype in cancer) were merged into a single list of “candidate 
mutations”. The multi-sample caller Platypus v0.8.1.1 (Rimmer et al., 2014) was then used 
to recall variants at each candidate mutation position in all samples of the patient. In 
practice, this meant that the pipeline leverage information across samples to improve the 
sensitivity of variant calling. The platypus output of joint variant calls was then filtered to 
only keep high quality variants with flags ”PASS”, ”alleleBias”, ”QD” or ”Q20”, in canonical 
chromosomes (i.e., not in decoy), a minimum number of reads NR>5 in all samples, a 
genotyping quality GQ>10 in all samples, a reference genotype (i.e., 0/0) in the normal 
reference and a non-reference genotype (i.e., 0/1 or 1/1) in at least one tumour sample.  
 
To alleviate concerns of false-negative calls of mutations in important driver alterations, we 
generated a second set of variant calls for the identification of known driver mutations and 
dNdS analysis (see details below) to which we did not apply the second step of filtering.  
 
SNV annotation 
Somatic variants were annotated and candidate driver genes of colorectal cancers 
reported by (Cross et al., 2018) and IntOGen (Martínez-Jiménez et al., 2020) as well as 
pan-cancer driver genes reported (Martincorena et al., 2017) and (Tarabichi et al., 2021) 
filtered with the Variant Effect Predictor v93.2 (McLaren et al., 2016). 
 
MSI status detection 
The identification of microsatellite instability (MSI) colorectal cancers was performed with 
the MSIsensor v0.2 (Niu et al., 2014). We first determined the position of microsatellites 
sites by applying the msisensor scan method to the GRCh38 reference assembly and 
subset these to the first chromosome. In a second step we identified the fraction of 
mutated microsatellites in each sample using the msisensor msi method with default 
options. Generally, in known MSI cases (e.g., those identified by mutation burden and 
mutational signature) more than 30% of microsatellites were mutated and we used this as 
a critical value to classify cases as MSS and MSI. 
 
Extraction of reads supporting variants 
Using the VCF files from both somatic and germline variant calling, we extracted the 
number of reads supporting the reference and alternate alleles as well as the total number 
of reads covering the sites from WGS, LP-WGS and ATAC-seq samples using python and 
the pysam library (Li et al., 2009), pysam version 0.15.2, samtools version 1.9. 
 
dN/dS analysis 
dndscv package for R (Martincorena et al., 2017) was used for dN/dS analysis. Per-patient 
variant calls were obtained from the vcf files (Obenchain et al., 2014)and lifted over to the 
hg19 reference genome using the rtracklayer package for R (Lawrence et al., 2009) 
Variants were divided into clonal mutations (i.e., present in all samples) and subclonal 
mutations (i.e., present in a subset of samples) present in the cancer and a set of mutation 
present in any of the adenoma samples. MSI and MSS patients were treated separately. 
dndscv was applied separately to each of the four sets (MSI/MSS & clonal/subclonal) 
(using default parameters apart from deactivated removal of cases due to number of 
variants). Further, dN/dS values for a set of 167 chromatin modifier genes were extracted. 
 
ATAC-seq 
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ATAC peak calling analysis 
 
Extraction of cut-sites  
For the detection of cut-sites (hereafter “peaks” where read density was high) bed-files of 
ATAC-seq cut-sites were produced. Aligned reads were sorted by read name using 
“samtools sort -n{bam}”, all proper reads pairs (i.e., reads mapped to the same 
chromosome and with correct read orientation) were isolated using ”samtools view -bf 0x2” 
and finally converted to the bed format using ”bedtools bamtobed -bedpe -mate1 -i{bam}”. 
Equivalent to (Buenrostro et al., 2013) the start site of reads was shifted to obtain the cut 
sites: specifically, forward reads were shifted by -4 bases and reverse reads by +5 bases. 
ATAC-seq reads spanning nucleosomes have an insertion size periodicity of multiples of 
200 bp and reads in regions of open-chromatin have insertion sizes smaller than 100 bp 
(Buenrostro et al., 2013). For this reason, in line with previous studies, ATAC-seq reads 
were divided into a set of nucleosome-free reads (insertion size £ 100) and a set of 
nucleosome associated reads (180 £ insertion size £ 620). 
 
Peak detection 
Peaks were called separately for each tumour region using MACS2 v2.21 (Zhang et al., 
2008) using ”macs2 callpeak -f BED -g hs –shift -75 –extsize 150 –nomodel –call-summits 
–keep-dup all -p 0.01” with the concatenated and sorted bed read files of nucleosome-free 
cut-sites of all samples as input. A set of normal peaks (across patients) were also called 
using the concatenated normal sample bed files (i.e., region "E" samples) and per 
adenoma peak calls using all adenoma bulk samples as input. 
 
Filtering and concatenation of peaks 
Strict filtering of per-region peak calls was applied (extended by 250 bp, q-value of 0.1%, 
enrichment of 4.0, maximum number of peaks 20,000). Iterative merging was then applied, 
using a method equivalent to that used by (Corces et al., 2018) on per-region peak calls of 
individual patients (per-tumour peaks set) as well as across all cancer samples and pan-
patient normal peak calls (pan-patient peak set). This procedure resulted in a total of N = 
343,240 peaks, of which filtered N = 67,215 peaks called in >2 tumour regions or the panel 
of normal. The ChIPseeker v2.14.0 package for R (Yu et al., 2015) was used to annotate 
peaks based on their genomic location. For peaks that were not proximal to known 
promotor regions (1000 bp), overlaps with known Enhancer elements reported in the 
double-elite annotations of the GeneHancer database was examined (Fishilevich et al., 
2017). The general distribution of these features in the genome and overlaps of peaks with 
those reported by (Corces et al., 2018). 
 
Extraction of cut-sites in peaks  
Read counts for each peak in the final set were collated using bedtools (Quinlan and Hall, 
2010) as follows: ”bedtools coverage -a bed peaks -b bed cut sites -split -counts -sorted”.  
 
Purity estimation for ATAC-seq samples  
Clonal variants identified by paired WGS sequencing (clonal variants were those present 
in all samples from the cancer) were used to estimate sample-specific ATACseq purity. 
First, variants in intervals with identical (clonal) copy-number states (i.e., A/B states) and 
regions of closed chromatin, were identified from WGS data. Copy-number values 𝑐" and 
mutation multiplicity 𝑚" of each variant site 𝑖 were obtained from the WGS data. For a 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 12, 2021. ; https://doi.org/10.1101/2021.07.12.451121doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.12.451121
http://creativecommons.org/licenses/by-nc-nd/4.0/


mutation at site 𝑖 covered by 𝑛&," reads in sample 𝑠  the number of reads 𝑘"  containing the 
alternate allele is expected to follow a binomial distribution with the likelihood: 

𝐵+𝑘",𝑝&,", 𝑛&,". = 0
𝑛&,"
𝑘"
1 𝑝&,"

23+1 − 𝑝&,".
67,3823 

where the expected success probability 𝑝&," is a function of the sample purity as, the 
number of mutated alleles in the tumour cells 𝑚&," , the total copy-number of the mutated 
site in the tumour cells 𝑐&," and the copy-number in contaminating normal cells CN=2 
 

𝑝&," =
𝜌&𝑚&,"

𝜌&𝑐&," + (1 − 𝜌&)𝑐6
=

𝜌&𝑚&,"

𝜌&𝑐&," + 2 − 2𝜌&
 

 
A maximum-likelihood estimate of the sample purity 𝜌& was then obtained by minimising 
the negative-log-likelihood across all 𝑁 mutated sites: 
 

𝑙(ρ&) =A−𝑙𝑜𝑔 D𝐵+𝑘",𝑝&,", 𝑛&,".E
F

"GH

 

 
 
Identification of recurrently altered peaks across patients 
Analysis was restricted to samples with purity 𝜌 > 0.4. Peaks proximal (£ 1000 bp) to a 
transcription start site (i.e., promotors) and those more distant to a TSS (i.e., putative 
enhancers) were considered separately to account for the possibility of differential 
dispersion. An overdispersed Poisson model was fitted to each peak edgeR v3.30.3 
(McCarthy et al., 2012; Robinson et al., 2010), and per sample set normalisation factors 
were calculated using the TMMwsp method (Robinson and Oshlack, 2010), estimated a 
global dispersion estimate across sets from all cancers and compared each set of pure 
glands (per-patient) against a large pool-of-normal tissue ATAC-seq samples.  
Independent filtering of events (CPM of at least 15 in tumour or normal, minimum fold 
change of 2) was applied, recurrently altered peaks called as those that were significantly 
altered at a level of p £ 0.01 in at least 5/25 (i.e., 20%) of cases. 
 
Identification of associated changes in gene expression 
The basic processing of matched RNAseq data is described in the associated manuscript 
TRANSCRIPTOME. A subset of 27,731 peaks that where either adjacent to a known 
transcription start site (TSS) of a gene (Haeussler et al., 2018) or overlapped a previously 
characterised enhancer element described in the GenHancer database (Fishilevich et al., 
2017) were identified. Of these 944/27731(@ 3.40%) were recurrently altered. Changes in 
gene-expression of genes associated with these sites were tested for using DESeq2 (Love 
et al., 2014) to compare coefficients of the fitted beta-binomial regression model (design: 
~Patient, with all normal samples as ‘Normal’) with the contrast argument being a list of 
vectors containing the significant and non-significant patient sets.   
For promotors, a one-tailed hypothesis test was applied by setting the altHypothesis 
argument to ‘less’ (for closed peaks) or ‘greater’ (for opened peaks). For enhancers a two-
tailed hypothesis test on all associated genes was applied by setting the altHypothesis 
argument to ‘greaterAbs’. P-values were from all tests were adjusted for multiple 
hypothesis testing using FDR method (Benjamini and Hochberg, 1995) assoications at 
FDR<0.1% were reported. For the visualisation of gene expression values, the average 
gene expression values across samples from a given cancer and all normal samples on 
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variance stabilised (log-transformed) FPM values (counts per million reads in gene) were 
calculated. 
 
Identification of subclonal changed is recurrently altered peaks 
Subclonality was assessed only for a set of recurrent somatic accessibility changes, 
comprising recurrent events affecting drivers from CRC and the top 20 most recurrent in 
each of the of the 4 categories: gained promoter, lost promoter, gained enhancer, lost 
enhancer (total of 88 sites assessed).  
 
Our previous analyses recognised that sample purity was highly correlated with tumour 
piece (regions A-D). To distinguish subclonal chromatin accessibility alterations from 
variability in ploidy, regression to account for purity was performed. Specifically, a log ratio 
test from DESeq2 (Love et al., 2014) was used to compare a “full model” ~purity + region 
to a reduced model ~purity. Samples from the same region were used as biological 
replicates. Events were considered putatively subclonal when the adjusted p-value was 
below 0.05 and if the direction of log fold change from analysis of matched bulk tissues 
was correlated with that observed in individual samples. In the case of gained events, 
subclonal events were filtered out if MACS peak-calling (see above) had not called a peak 
within 500 bp of the location of the putative gain event (this removed 33 sites). For losses, 
5/45 subclonal events were removed as the log fold change was in the wrong direction. 
 
For visualisation of peaks, coverage per region was calculated 1 kb upstream and 1kb 
downstream from the centre of the peak. Coverage was normalised per million reads in 
peaks and was plotted using functions from GenomicRanges (Lawrence et al., 2013) and 
Gviz (Hahne and Ivanek, 2016). 
 
TF Binding site prediction  
The motifmatchr package for R (Schep, 2021), a reimplementation of the C++ library 
MOODS (Korhonen et al., 2009; Pizzi et al., 2011), was used to identify binding sites for all 
human TF motifs defined in a curated version of the CIS-BP database (Weirauch et al., 
2014). The list of predicted binding sites was filtered using a minimum significance value of 
p £ 10-6, followed by removal of binding sites in centromeric regions and non-autosomal 
(i.e., sex and non-canonical) chromosome. After this initial filtering predicted binding sites 
were split into six distinct groups based on i) there distance to the next TSS (proximal: d £  
2000 bp, close: 2000 bp < d £ 10,000 bp, distal d > 10,000 bp) and ii) whether they 
overlapped with a peak observed in the ATAC-seq data. For a number of TF homotypic 
clustering of binding sites in specific intervals was observed; to account for this binding 
sites that where closer than d £ 1000 bp to the next predicted binding site of the same TF 
were removed.  
 
Extraction of signal values  
For each of the TF sets described above, the counts of insertions around the centre of the 
TF binding site (±1000 bp) as well as the insertion size of the read pair (i.e., the distance to 
the second nick) for each sample (Lawrence et al., 2013) were tabulated. The insertion-
sizes (rows) were binned into intervals of 5 bp and divided by total count of reads with an 
equivalent size in the entire genome. After this the background signal was estimated to be 
the average number of insertions 1000 bp – 750 bp from the centre of TF binding site per 
insertion size and subtracted from the counts. The difference between these “normalised 
and background corrected TF signals” in each sample and a pool of normal samples was 
calculated and integrated across the central region of the TF binding sites (insertion size 
[25;120], distances [-100 bp;100 bp]) as a summary statistic. Regression analysis linear 
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regression was used to identify associations with purity estimates and in this context 
signals were found to correlated with TSSe (for both nucleosome-free and all reads). For 
this reason, an additional term was added to the regression model of each TF to correct 
for this effect: signal ~ tsse*tssenf + purity:patient where tsse and tssenf are the TSSe 
differences of the sample and the pooled-normal samples) and weighted each observation 
by the square root of the number of reads in the sample. A second linear model in which a 
region-specific effect of the purity: signal ~ tsse*tssenf + purity:region was considered was 
also fitted to the data. For both models, the statistical significance of the ‘purity’ coefficient 
was determined. The estimates of the coefficients were also used as a patient specific 
summary for subsequent analysis. 
 
Cluster analysis  
The analysis was focused on the 150 TF for which a significant association with the 
tumour cell content (i.e., the purity) and TF signal was most frequently observed. With the 
aim to identify general patterns in these data, a clustering analysis was conducted 
(hierarchical clustering with Euclidean distance and complete linkage). This method 
identified three major groups of TFs, and to each of these, analysis with String-DB 
(Szklarczyk et al., 2018) was applied to identify significantly overrepresented pathways. 
  
 
Methylation arrays analysis 
A reference normal dataset methylation array dataset was downloaded from (Fennell et al., 
2019) that including normal tissue sampled adjacent to colorectal cancers that was profiled 
using the HumanMethylation450 BeadChip array (Illumina).  
 
Here, 8 bulk samples from 4 patients (C516, C518, C560 and C561) were profiled 
MethylationEPIC BeadChip (Infinium) microarray according to manufactorer’s instructions.  
 
The ChAMP R package pipeline (Tian et al., 2017) was used to analyse the methylation 
beadarray data. Probes that had a detection of P > 0.01 and probes with <3 beads in at 
least 5% of samples per probe, probes that were on the X or Y chromosome, all SNP-related 
probe as well as all multi-hit probes were all removed. Subset-within-array normalization to 
was used to correct for biases resulting from type 1 and type 2 probes on the array. After 
QC and normalization, beta values were calculated for further comparison. 
 
To compare the methylation patterns between our samples and the reference normal 
dataset, the overlapped probes of all samples located in the region of distal to TSS (dTSS), 
close to TSS (cTSS) and proximal to TSS (pTSS) in both on ATAC peak (oPEAK) and not 
on ATAC peak (nPEAK) were compared.  
 
Mutational signatures analysis 
Mutational signatures analysis was performed with SparseSignatures (Lal et al., 2021). 
This method uses LASSO regularization (Tibshirani, 1996) to reduce noise in the 
signatures, controlled by a regularization parameter lambda (λ). It implements a procedure 
based on bi-cross-validation (Owen and Perry, 2009) to select the best values for both the 
regularization parameter λ and the number of signatures. Deconvolution using a maximum 
of 10 signatures was performed and values of λ of 0.000, 0.025, 0.050 and 0.100 were 
tested. Optimal parameters were selected based on the median bi-cross-validation error 
estimated over 1000 iterations, resulting in an optimal estimate with minimum cross-
validation median error when 6 signatures were fitted and λ=0.025. A second analysis with 
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SigProfiler (Alexandrov et al., 2020), with default parameters and a total of 1000 iterations, 
confirmed the existence of these signatures. 
Signatures based clustering was performed considering the 6 signatures solution by 
SparseSignatures; the low-rank signatures exposure matrix given as an output by the tool 
was used to compute the pairwise similarity matrix for each patient as 1 - cosine similarity 
of their exposures. Clustering was then performed on the similarity matrix by k-means with 
6 clusters explaining all the variance. 
 
Mutational signatures exposures were also analyzed across epigenetic regions. Mutations 
were first grouped in clonal or subclonal across whole genome and then in different 
genomic regions (as described above). Signatures activities in each region was estimated 
by Jackknife sampling (Efron and Stein, 1981). Specifically, data from each patient were 
partitioned based on their clusters as defined above, and repeated Jackknife sampling 
performed 100 times independently for each of the 3 clusters (including a random sample 
of 90% of the tissue samples each time). For each iteration the mutations within each 
genomic region were used to computed a data matrix normalised against trinucleotide 
count (across the 96 channels) in the whole genome versus region specific counts, and 
signatures assignments then performed on the normalized data by LASSO (Lal et al., 
2021; Tibshirani, 1996). Finally, relative signature activities estimated over the 100 
Jackknife samples were normalized based on total size of each region. 

Supplementary Figure Legends 
 
Figure S1. Colectomy specimen collection images. Resection specimens were 
collected from UCLH and sampled with the supervision of a pathologist. Spatial 
information on different regional samples was retained and indicated in the images. A, B, 
C, D are cancer regions. E is distant normal epithelium. Eventual concomitant adenomas 
are reported as F, G, H, etc. 
 
Figure S2. Gland and bulk collection from each tumour region. We collected individual 
glands from cancer and normal samples from different regions of each tumour. We also 
collected ‘minibulks’, composed by agglomerate of a few dozen glands. Each sample was 
imaged individually. 
 
Figure S3. Copy number alteration profiles. We estimated absolute copy number 
alterations for each sample in each patient, both for deep WGS and low-pass WGS. 
 
Figure S4. Single nucleotide variant profiles. We called point mutations and indels in 
each sample and identified clusters of mutations found at the same frequency in the same 
samples. Values in Cancer Cell Fraction (CCF) are represented. 
 
Figure S5. Mutations in chromatin modifier genes for all samples. 
 
Figure S6. Images of all the normal samples used for ATAC-seq reference. 
 
Figure S7. Gene expression differences for all the recurrent peaks that correlated 
with gene expression. EMT genes at the end. 
 
Figure S8. Comparison of peak calling in our cohort from reanalysed TCGA ATAC-
seq data.  
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Figure S9. Copy number differences for all the peaks in Figure 3E and F.  
 
Figure S10. Peak densities for promoter gained loci in Figure 3E.  
 
Figure S11. Peak densities for promoter lost loci in Figure 3E. 
 
Figure S12. Peak densities for enhancer gained loci in Figure 3F.   
 
Figure S13. Peak densities for enhancer lost loci in Figure 3F.   
 
Figure S14. Peak densities for peaks found in cancers but not in concomitant 
adenomas in Figure 3E,F.   
 
Figure S15. Peak densities for promoter gained peaks found subclonal from Figure 
3E,F. 
 
Figure S16. Peak densities for promoter lost peaks found subclonal from Figure 
3E,F. 
Figure S17. Peak densities for enhancer gained peaks found subclonal from Figure 
3E,F. 
 
Figure S18. Peak densities for enhancer lost peaks found subclonal from Figure 
3E,F. 
 
Figure S19. Transcription Factor binding sites density plots for annotations in 
Figure 4D.  
 
Figure S20. Overlapping of TF annotations in Figure 4D. 
 
Figure S21. Correlation of the TF signal in Figure 4D between all versus only unique 
loci. 
 
Figure S22. Gene expression of TFs from cluster 1 of heatmap in Figure 4A. 
 
Figure S23. Coefficients of the ANOVA model for the correlation between genetic 
and epigenetic distance for each region. 
 
Figure S24. Mutational signature deconvolution with SigProfiler. 
 
Figure S25. Coefficient of the purity model for TF loci in Figure 4D for each region. 
 
Figure S26. Predicted versus observed mutational signatures that cause gain and 
loss of CTCF. 
 
Figure S27. Accumulation of different mutational signatures in distinct epigenetic 
regions. 
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